JP6851240B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6851240B2
JP6851240B2 JP2017068824A JP2017068824A JP6851240B2 JP 6851240 B2 JP6851240 B2 JP 6851240B2 JP 2017068824 A JP2017068824 A JP 2017068824A JP 2017068824 A JP2017068824 A JP 2017068824A JP 6851240 B2 JP6851240 B2 JP 6851240B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
aqueous electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017068824A
Other languages
Japanese (ja)
Other versions
JP2018170240A (en
Inventor
田村 和明
和明 田村
曲 佳文
佳文 曲
赤穂 篤俊
篤俊 赤穂
徳田 光紀
光紀 徳田
史治 新名
史治 新名
暢宏 平野
暢宏 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Sanyo Electric Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Sanyo Electric Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sanyo Electric Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2017068824A priority Critical patent/JP6851240B2/en
Publication of JP2018170240A publication Critical patent/JP2018170240A/en
Application granted granted Critical
Publication of JP6851240B2 publication Critical patent/JP6851240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.

近年、ハイブリッド自動車、電気自動車等の環境対応車が本格的に普及してきた。同時に安価で効率的に燃費を向上させることを目的としたアイドリングストップシステムも広く用いられており、車両の電装化、動力アシスト機能強化に対応出来る、コストの低い電池へのニーズが高まっている。 In recent years, environmentally friendly vehicles such as hybrid vehicles and electric vehicles have become widespread in earnest. At the same time, idling stop systems aimed at improving fuel efficiency at low cost and efficiently are also widely used, and there is an increasing need for low-cost batteries that can support the electrification of vehicles and the enhancement of power assist functions.

車両の電装化や動力アシスト機能の強化を低コストで実現するための電池として、リチウムチタン複合酸化物を負極活物質として用いた電池が知られている。例えば特許文献1には、BET比表面積が2〜30m/gであるリチウム複合金属酸化物からなる正極活物質を有する正極と、式Li4+aTi12で表されるチタン酸リチウムからなる負極活物質を有する負極とを有する非水電解質二次電池が、黒鉛からなる負極活物質を有する負極を用いた非水電解質二次電池に比し、高い電流レート(ハイレート)で充電させた場合の充電特性に優れ、急速充電可能であることが開示されている。 Batteries using lithium-titanium composite oxide as a negative electrode active material are known as batteries for realizing electric vehicle electrical equipment and strengthening of power assist function at low cost. For example, Patent Document 1 comprises a positive electrode having a positive electrode active material made of a lithium composite metal oxide having a BET specific surface area of 2 to 30 m 2 / g, and lithium titanate represented by the formula Li 4 + a Ti 5 O 12. When a non-aqueous electrolyte secondary battery having a negative electrode having a negative electrode active material is charged at a higher current rate (high rate) than a non-aqueous electrolyte secondary battery using a negative electrode having a negative electrode active material made of graphite. It is disclosed that the charging characteristics of the battery are excellent and that the battery can be charged quickly.

特開2011−181367号公報Japanese Unexamined Patent Publication No. 2011-181367

正極活物質としてリチウム複合金属酸化物を含む正極と、負極活物質としてリチウムチタン複合酸化物を含む負極を備える非水電解質二次電池であって、ハイレート特性を向上しながら、耐久性に優れる非水電解質二次電池が求められている。 A non-aqueous electrolyte secondary battery including a positive electrode containing a lithium composite metal oxide as a positive electrode active material and a negative electrode containing a lithium titanium composite oxide as a negative electrode active material, which is excellent in durability while improving high rate characteristics. A water electrolyte secondary battery is required.

本開示の目的は、ハイレート特性を向上しながら、耐久性に優れる非水電解質二次電池を提供することにある。 An object of the present disclosure is to provide a non-aqueous electrolyte secondary battery having excellent durability while improving high rate characteristics.

本開示の一態様である非水電解質二次電池は、第1正極活物質及び第2正極活物質を含む正極合剤層を有する正極と、負極活物質としてリチウムチタン複合酸化物を含む負極合剤層を有する負極と、非水電解質と、を備え、前記第1正極活物質は、細孔径が100nm以下である細孔の質量当たりの体積が8mm/g以上であり、第2正極活物質は、細孔径が100nm以下である細孔の質量当たりの体積が5mm/g以下であり、第1正極活物質における細孔径が100nm以下である細孔の質量当たりの体積は、第2正極活物質における細孔径が100nm以下である細孔の質量当たりの体積に対して4倍以上であり、第1正極活物質の含有量が、第1正極活物質及び第2正極活物質の総量に対して30質量%以下であり、正極が保持する非水電解質の保持量が、正極合剤層の単位体積当たりで0.49g/cm以上であることを特徴とする。 The non-aqueous electrolyte secondary battery according to one aspect of the present disclosure is a combination of a positive electrode having a positive electrode mixture layer containing a first positive electrode active material and a second positive electrode active material and a negative electrode combination containing a lithium titanium composite oxide as a negative electrode active material. The first positive electrode active material comprises a negative electrode having an agent layer and a non-aqueous electrolyte, and the volume per mass of pores having a pore diameter of 100 nm or less is 8 mm 3 / g or more, and the second positive electrode active material is active. The volume of the pores having a pore diameter of 100 nm or less is 5 mm 3 / g or less, and the volume per mass of the pores having a pore diameter of 100 nm or less in the first positive electrode active material is the second. The pore diameter of the positive electrode active material is 100 nm or less, which is four times or more the volume per mass of the pores, and the content of the first positive electrode active material is the total amount of the first positive electrode active material and the second positive electrode active material. The amount of the non-aqueous electrolyte retained by the positive electrode is 0.49 g / cm 3 or more per unit volume of the positive electrode mixture layer.

本開示の非水電解質二次電池により、ハイレート特性を向上しながら、耐久性に優れる非水電解質二次電池を提供することが可能となる。 The non-aqueous electrolyte secondary battery of the present disclosure makes it possible to provide a non-aqueous electrolyte secondary battery having excellent durability while improving high rate characteristics.

実施形態の一例である非水電解質二次電池の構成を示す斜視図である。It is a perspective view which shows the structure of the non-aqueous electrolyte secondary battery which is an example of embodiment. 非水電解質二次電池が備える電極体の断面図である。It is sectional drawing of the electrode body included in the non-aqueous electrolyte secondary battery.

本発明者は、負極活物質としてリチウムチタン複合酸化物を含む負極を備える非水電解質二次電池において、正極が、細孔径が100nm以下である細孔の質量当たりの体積がそれぞれ特定されている第1正極活物質及び第2正極活物質を含む正極合剤層を有し、第1正極活物質の含有量が第1正極活物質及び第2正極活物質の総量に対して30質量%以下であり、正極が保持する非水電解質の保持量が、正極合剤層の単位体積当たりで0.49g/cm以上である場合に、ハイレート特性を向上させつつ、耐久性に優れる非水電解質二次電池を提供することが可能となることを見出した。 The present inventor has specified the volume per mass of the positive electrode having a pore diameter of 100 nm or less in the non-aqueous electrolyte secondary battery including the negative electrode containing a lithium titanium composite oxide as the negative electrode active material. It has a positive electrode mixture layer containing a first positive electrode active material and a second positive electrode active material, and the content of the first positive electrode active material is 30% by mass or less with respect to the total amount of the first positive electrode active material and the second positive electrode active material. When the retention amount of the non-aqueous electrolyte held by the positive electrode is 0.49 g / cm 3 or more per unit volume of the positive electrode mixture layer, the non-aqueous electrolyte is excellent in durability while improving the high rate characteristics. We have found that it will be possible to provide secondary batteries.

以下、図面を参照しながら、本開示の実施形態の一例について詳細に説明する。なお、本開示の非水電解質二次電池は、以下で説明する実施形態に限定されない。また、実施形態の説明で参照する図面は、模式的に記載されたものであり、各構成要素の寸法等は以下の説明を参酌して判断されるべきである。 Hereinafter, an example of the embodiment of the present disclosure will be described in detail with reference to the drawings. The non-aqueous electrolyte secondary battery of the present disclosure is not limited to the embodiments described below. In addition, the drawings referred to in the description of the embodiment are schematically described, and the dimensions and the like of each component should be determined in consideration of the following description.

[非水電解質二次電池]
図1を参照しながら、非水電解質二次電池10の構成を説明する。図1は、本実施形態の一例である非水電解質二次電池10(以下、「電池10」とも記す。)の構成を示す斜視図である。電池10は例えば、有底で開口を有する外装缶24と、該開口を塞ぐ封口板22とを備える。外装缶24は、平板状で略直方体の形状を有する容器である。外装缶24には、例えば、正極12と、負極14と、セパレータ16とを備える電極体26が、非水電解質(図示しない)とともに収容されている。電極体26は例えば、樹脂製の絶縁シートにより覆われた状態で、外装缶24内に収納される。
[Non-aqueous electrolyte secondary battery]
The configuration of the non-aqueous electrolyte secondary battery 10 will be described with reference to FIG. FIG. 1 is a perspective view showing a configuration of a non-aqueous electrolyte secondary battery 10 (hereinafter, also referred to as “battery 10”) which is an example of the present embodiment. The battery 10 includes, for example, an outer can 24 having a bottom and an opening, and a sealing plate 22 that closes the opening. The outer can 24 is a flat plate-shaped container having a substantially rectangular parallelepiped shape. In the outer can 24, for example, an electrode body 26 including a positive electrode 12, a negative electrode 14, and a separator 16 is housed together with a non-aqueous electrolyte (not shown). The electrode body 26 is housed in the outer can 24, for example, in a state of being covered with a resin insulating sheet.

外装缶24には、底部28を有し、底部28と対向する位置に開口が設けられる。封口板22は、外装缶24の開口を塞ぐ蓋体であり、封口板22には、例えば、正極端子18、負極端子20、注液口30、ガス排出弁32が設けられる。正極端子18は、外部の要素と正極12とを電気的に接続させる機能を有し、絶縁性のガスケットにより封口板22と電気的に絶縁された状態で取り付けられる。負極端子20は、外部の要素と負極14とを電気的に接続させる機能を有し、絶縁性のガスケットにより封口板22と電気的に絶縁された状態で取り付けられる。注液口30は非水電解質を注液するためのものであり、ガス排出弁32は、電池内部のガスを電池外部に排出するためのものである。 The outer can 24 has a bottom portion 28, and an opening is provided at a position facing the bottom portion 28. The sealing plate 22 is a lid that closes the opening of the outer can 24, and the sealing plate 22 is provided with, for example, a positive electrode terminal 18, a negative electrode terminal 20, a liquid injection port 30, and a gas discharge valve 32. The positive electrode terminal 18 has a function of electrically connecting an external element and the positive electrode 12, and is attached in a state of being electrically insulated from the sealing plate 22 by an insulating gasket. The negative electrode terminal 20 has a function of electrically connecting an external element and the negative electrode 14, and is attached in a state of being electrically insulated from the sealing plate 22 by an insulating gasket. The liquid injection port 30 is for injecting a non-aqueous electrolyte, and the gas discharge valve 32 is for discharging the gas inside the battery to the outside of the battery.

図2は、電池10が備える電極体26の断面図である。図2に示すように、電極体26は、例えば、正極12と負極14とがセパレータ16を介して巻回された巻回構造を有し、巻回構造の中心軸と直交する方向からプレス成型してなる構造を有する。 FIG. 2 is a cross-sectional view of the electrode body 26 included in the battery 10. As shown in FIG. 2, the electrode body 26 has, for example, a winding structure in which a positive electrode 12 and a negative electrode 14 are wound via a separator 16, and is press-molded from a direction orthogonal to the central axis of the winding structure. It has a structure made up of.

正極12は、例えば正極芯体と、正極芯体の両表面に形成されている正極合剤層とで構成される。正極合剤層は例えば、正極芯体が帯状に露出した正極芯体露出部が、幅方向の少なくとも一方側の端部に長手方向に沿って形成されるように、形成されている。負極14は例えば、負極芯体と、負極芯体の両表面に形成されている負極合剤層とを備える。負極合剤層は例えば、負極芯体が帯状に露出した負極芯体露出部が、幅方向の少なくとも一方側の端部に長手方向に沿って形成されるように、形成されている。正極芯体露出部は、正極端子18に電気的に接続され、負極芯体露出部は、負極端子20に電気的に接続される。 The positive electrode 12 is composed of, for example, a positive electrode core and positive electrode mixture layers formed on both surfaces of the positive electrode core. The positive electrode mixture layer is formed, for example, so that an exposed portion of the positive electrode core body in which the positive electrode core body is exposed in a band shape is formed along the longitudinal direction at at least one end portion in the width direction. The negative electrode 14 includes, for example, a negative electrode core body and a negative electrode mixture layer formed on both surfaces of the negative electrode core body. The negative electrode mixture layer is formed, for example, so that an exposed negative electrode core body in which the negative electrode core body is exposed in a band shape is formed along the longitudinal direction at at least one end portion in the width direction. The positive electrode core body exposed portion is electrically connected to the positive electrode terminal 18, and the negative electrode core body exposed portion is electrically connected to the negative electrode terminal 20.

次に、電池10が備える正極12、負極14、セパレータ16及び非水電解質等について説明する。 Next, the positive electrode 12, the negative electrode 14, the separator 16, the non-aqueous electrolyte, and the like included in the battery 10 will be described.

[正極]
正極12は、上述の通り、例えば金属箔等の正極芯体と、正極芯体上に形成された正極合剤層とで構成される。正極芯体には、例えばアルミニウム等の正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は例えば、正極活物質、導電材及び結着材を含む。
[Positive electrode]
As described above, the positive electrode 12 is composed of a positive electrode core such as a metal foil and a positive electrode mixture layer formed on the positive electrode core. For the positive electrode core, for example, a metal foil stable in the potential range of the positive electrode such as aluminum, a film in which the metal is arranged on the surface layer, or the like can be used. The positive electrode mixture layer contains, for example, a positive electrode active material, a conductive material and a binder.

正極合剤層は、正極活物質として第1正極活物質及び第2正極活物質を含む。第1正極活物質における、細孔径が100nm以下である細孔の質量当たりの体積(以下「細孔体積V100N」とも記載する)が8mm/g以上であり、第2正極活物質における細孔体積V100Nが5mm/g以下である。また、第2正極活物質における細孔体積V100Nに対する、第1正極活物質における細孔体積V100Nの比率(以下「第1/第2細孔体積比率」とも記載する)が4倍以上である。さらに、第1正極活物質及び第2正極活物質の総量に対する第1正極活物質の含有率は30質量%以下である。正極活物質における細孔体積V100Nの測定方法については後述する。 The positive electrode mixture layer contains a first positive electrode active material and a second positive electrode active material as the positive electrode active material. In the first positive electrode active material, the volume per mass of pores having a pore diameter of 100 nm or less (hereinafter, also referred to as “pore volume V 100N ”) is 8 mm 3 / g or more, and the fineness in the second positive electrode active material. The hole volume V 100N is 5 mm 3 / g or less. Further, the ratio of the pore volume V 100N in the first positive electrode active material to the pore volume V 100N in the second positive electrode active material (hereinafter, also referred to as “1st / 2nd pore volume ratio”) is 4 times or more. is there. Further, the content of the first positive electrode active material with respect to the total amount of the first positive electrode active material and the second positive electrode active material is 30% by mass or less. The method for measuring the pore volume V 100N in the positive electrode active material will be described later.

第1正極活物質及び第2正極活物質は、いずれもリチウム含有遷移金属酸化物である。リチウム含有遷移金属酸化物は、リチウム(Li)及び遷移金属元素を少なくとも含む金属の酸化物である。リチウム含有遷移金属酸化物は、リチウム(Li)及び遷移金属元素以外の添加元素を含有していてもよい。 Both the first positive electrode active material and the second positive electrode active material are lithium-containing transition metal oxides. The lithium-containing transition metal oxide is an oxide of a metal containing at least lithium (Li) and a transition metal element. The lithium-containing transition metal oxide may contain an additive element other than lithium (Li) and the transition metal element.

電池10は、負極活物質としてリチウムチタン複合酸化物を含む負極14を備える。リチウムチタン複合酸化物は、高い充放電効率を有するため、従来の炭素材料からなる負極活物質を用いる場合と比較して、正極12での放電可能な電位の下限が低くなる。充放電がより高深度でなされると正極活物質粒子の膨張及び収縮がより大きくなることから、高深度での充放電サイクルの繰り返しにより、正極活物質の粒子における割れ(亀裂)の発生が加速され、割れの幅も拡大すると考えられる。これに起因して、リチウムチタン複合酸化物を負極活物質として用いる電池10では、従来の炭素材料からなる負極活物質を用いる場合と比較して、正極活物質層内の導通経路が複雑になって電池10の内部抵抗が上昇してしまうと考えられる。細孔体積が小さい正極活物質では、膨張及び収縮の影響が生じやすいことから、粒子の割れによる抵抗上昇の問題はより深刻である。 The battery 10 includes a negative electrode 14 containing a lithium titanium composite oxide as a negative electrode active material. Since the lithium-titanium composite oxide has high charge / discharge efficiency, the lower limit of the dischargeable potential at the positive electrode 12 is lower than that in the case of using the negative electrode active material made of a conventional carbon material. Since the expansion and contraction of the positive electrode active material particles become larger when the charge / discharge is performed at a higher depth, the occurrence of cracks in the positive electrode active material particles is accelerated by repeating the charge / discharge cycle at a high depth. It is thought that the width of the crack will also increase. Due to this, in the battery 10 using the lithium titanium composite oxide as the negative electrode active material, the conduction path in the positive electrode active material layer becomes complicated as compared with the case where the negative electrode active material made of the conventional carbon material is used. It is considered that the internal resistance of the battery 10 increases. Since the positive electrode active material having a small pore volume is likely to be affected by expansion and contraction, the problem of increased resistance due to particle cracking is more serious.

これに対して、電池10は、正極活物質として、細孔体積V100Nが特定された第1正極活物質及び第2正極活物質を、特定の含有比率で含む。正極活物質において100nm以下の細孔径を有する細孔が存在する場合、当該正極活物質では、有効な反応面積が増大するとともに、Liイオンの固体内拡散距離が著しく低下するため、抵抗が低減され、電池10のハイレート特性を向上させることができる。正極12では、細孔体積V100Nが8mm/g以上である第1正極活物質と、細孔体積V100Nが5mm/g以下である第2正極活物質とが含有されているため、充電反応が第1正極活物質において優先的に生じ、その結果、第1正極活物質は、第2正極活物質と比較して高酸化状態となり、反応活性が高くなると考えられる。 On the other hand, the battery 10 contains the first positive electrode active material and the second positive electrode active material having the pore volume V 100N specified as the positive electrode active material in a specific content ratio. When pores having a pore diameter of 100 nm or less are present in the positive electrode active material, the effective reaction area of the positive electrode active material is increased and the diffusion distance of Li ions in the solid is significantly reduced, so that the resistance is reduced. , The high rate characteristic of the battery 10 can be improved. Since the positive electrode 12 contains a first positive electrode active material having a pore volume V 100N of 8 mm 3 / g or more and a second positive electrode active material having a pore volume V 100N of 5 mm 3 / g or less. It is considered that the charging reaction preferentially occurs in the first positive electrode active material, and as a result, the first positive electrode active material is in a highly oxidized state as compared with the second positive electrode active material, and the reaction activity is increased.

このとき、第1正極活物質の近傍に存在している非水電解質が、高酸化状態となった第1正極活物質に接触することにより、酸化分解される。そして、非水電解質の酸化分解物が周囲の正極活物質へと拡散及び付着することにより、正極活物質の表面に被膜が形成される。この被膜が、充放電サイクルの繰り返しによる正極活物質粒子の割れの発生及び拡大を抑制することにより、充放電サイクルの繰り返しに伴って生じる正極活物質の抵抗の上昇を抑え、電池10のハイレート充放電サイクルに対する耐久性を向上させることができると考えられる。 At this time, the non-aqueous electrolyte existing in the vicinity of the first positive electrode active material is oxidatively decomposed by coming into contact with the first positive electrode active material in a highly oxidized state. Then, the oxidative decomposition product of the non-aqueous electrolyte diffuses and adheres to the surrounding positive electrode active material, so that a film is formed on the surface of the positive electrode active material. This film suppresses the occurrence and expansion of cracks in the positive electrode active material particles due to repeated charge / discharge cycles, thereby suppressing an increase in the resistance of the positive electrode active material that occurs due to repeated charge / discharge cycles, and high-rate charging of the battery 10. It is considered that the durability against the discharge cycle can be improved.

一方、細孔体積V100Nが8mm/g以上である第1正極活物質だけを正極活物質が含有する場合の反応は正極合剤層の全領域で均一に起こり易くなり、正極合剤層内の一部の正極活物質のみに反応が偏る事態は生じ難くなる。よって、正極活物質として第1正極活物質のみを含有する場合は高酸化状態となる正極活物質が非常に少ないため、非水電解質の酸化分解及び酸化分解物による被膜形成が殆ど生じない。その結果、正極活物質粒子における割れの発生及び拡大が抑制されず、電池10の充放電サイクルに対する耐久性が向上しないと考えられる。正極12が正極活物質として第2正極活物質のみを含有する場合についても、上記と同様の理由等により、電池10の充放電サイクルに対する耐久性は向上しないと考えられる。 On the other hand, when the positive electrode active material contains only the first positive electrode active material having a pore volume V 100N of 8 mm 3 / g or more, the reaction tends to occur uniformly in the entire region of the positive electrode mixture layer, and the positive electrode mixture layer tends to occur uniformly. It is unlikely that the reaction will be biased toward only a part of the positive electrode active material. Therefore, when only the first positive electrode active material is contained as the positive electrode active material, there are very few positive electrode active materials in a highly oxidized state, so that oxidative decomposition of the non-aqueous electrolyte and film formation by the oxidative decomposition products hardly occur. As a result, it is considered that the generation and expansion of cracks in the positive electrode active material particles are not suppressed, and the durability of the battery 10 against the charge / discharge cycle is not improved. Even when the positive electrode 12 contains only the second positive electrode active material as the positive electrode active material, it is considered that the durability of the battery 10 against the charge / discharge cycle is not improved for the same reason as described above.

電池10では、第1正極活物質及び第2正極活物質につき、第1/第2細孔体積比率が4倍以上である。第1/第2細孔体積比率が4倍未満であると、第1正極活物質の細孔体積V100Nと第2正極活物質の細孔体積V100Nとが近いことから、第1正極活物質において充電反応が優先的に生じ難くなり、第1正極活物質が高酸化状態になり難くなると考えられる。 In the battery 10, the volume ratio of the 1st and 2nd pores of the 1st positive electrode active material and the 2nd positive electrode active material is 4 times or more. When the first / second pore volume ratio is less than 4 times, since the pore volume V 100 N of the first positive electrode active material and the pore volume V 100 N of the second positive electrode active material are close, the first positive electrode active It is considered that the charging reaction is less likely to occur preferentially in the substance, and the first positive electrode active material is less likely to be in a highly oxidized state.

電池10では、正極合剤層における第1正極活物質及び第2正極活物質の総量に対する第1正極活物質の含有量が30質量%以下であり、20質量%以下であることが好ましい。第1正極活物質の当該含有量が多すぎると、正極12の作製に用いる正極合剤スラリーにおいて、斑状に粒子が凝集する等、粘度の上昇及び分散性の低下が生じることがある。その結果、部分的に正極合剤スラリーの塗工量が多くなり、圧延後の極板の品質が低下すると考えられる。 In the battery 10, the content of the first positive electrode active material in the positive electrode mixture layer is 30% by mass or less, preferably 20% by mass or less, based on the total amount of the first positive electrode active material and the second positive electrode active material. If the content of the first positive electrode active material is too large, the positive electrode mixture slurry used for producing the positive electrode 12 may have an increase in viscosity and a decrease in dispersibility, such as agglomeration of particles in a patchy manner. As a result, it is considered that the amount of the positive electrode mixture slurry coated is partially increased and the quality of the rolled electrode plate is deteriorated.

第1正極活物質及び第2正極活物質の総量に対する第1正極活物質の含有量の下限は、特に限定されないが、例えば3質量%以上が好ましく、5質量%以上がより好ましい。第1正極活物質の含有量が上記の範囲にあると、正極合剤層において、優先的に反応が起こって高酸化状態となる正極活物質が偏在せず、非水電解質の酸化分解による被膜形成が促進され、正極合剤層に均一な被膜を形成できると考えられる。 The lower limit of the content of the first positive electrode active material with respect to the total amount of the first positive electrode active material and the second positive electrode active material is not particularly limited, but is preferably, for example, 3% by mass or more, and more preferably 5% by mass or more. When the content of the first positive electrode active material is within the above range, the positive electrode active material that preferentially reacts to be in a highly oxidized state is not unevenly distributed in the positive electrode mixture layer, and the film is formed by oxidative decomposition of the non-aqueous electrolyte. It is considered that the formation is promoted and a uniform film can be formed on the positive electrode mixture layer.

さらに、電池10では、正極12が保持する非水電解質の保持量が、正極合剤層の単位体積当たりで0.49g/cm以上であることが好ましい。正極12が保持する非水電解質の保持量が少なすぎると、正極合剤層内部の正極活物質粒子周囲の電解液が不足し、Liの固体内拡散能の低下により反応抵抗が増加して、ハイレート特性が低下するためである。また、正極12が保持する非水電解質の保持量が少なすぎると、電池10において充放電サイクルが繰り返されると、非水電解質の酸化分解反応により消費されて非水電解質が不足し、耐久性能が大きく低下するためである。 Further, in the battery 10, the holding amount of the non-aqueous electrolyte held by the positive electrode 12 is preferably 0.49 g / cm 3 or more per unit volume of the positive electrode mixture layer. If the amount of the non-aqueous electrolyte retained by the positive electrode 12 is too small, the electrolyte solution around the positive electrode active material particles inside the positive electrode mixture layer is insufficient, and the reaction resistance increases due to the decrease in the diffusivity of Li in the solid. This is because the high rate characteristic is lowered. Further, if the holding amount of the non-aqueous electrolyte held by the positive electrode 12 is too small, when the charge / discharge cycle is repeated in the battery 10, the non-aqueous electrolyte is consumed by the oxidative decomposition reaction of the non-aqueous electrolyte, and the non-aqueous electrolyte is insufficient, resulting in poor durability. This is because it drops significantly.

ここで、例えば、正極12が保持する非水電解質の保持量とは、電池10に含有されている非水電解質のうち、正極合剤層に含浸した状態で正極12に保持されている非水電解質の量を指し、その量は正極合剤層の単位体積当たりの質量で表される。以下、正極12/負極14が保持する非水電解質の保持量を、正極12/負極14の「電解液保持量」ともいう。 Here, for example, the holding amount of the non-aqueous electrolyte held by the positive electrode 12 is the non-water held in the positive electrode 12 in a state of being impregnated in the positive electrode mixture layer among the non-aqueous electrolytes contained in the battery 10. It refers to the amount of electrolyte, which is expressed as the mass per unit volume of the positive electrode mixture layer. Hereinafter, the amount of non-aqueous electrolyte retained by the positive electrode 12 / negative electrode 14 is also referred to as the “electrolyte retention amount” of the positive electrode 12 / negative electrode 14.

正極12の電解液保持量の上限は特に限定されない。本発明者の知見によれば、例えば、正極12の電解液保持量が正極合剤層の単位体積当たりで0.70g/cmを超えたとしても、正極活物質と電解液とが接する界面の抵抗に対する影響、即ち、非水電解質二次電池10のハイレート特性及び耐久性に対する影響は少ないと考えられる。その一方、特に高温等の過酷な環境下で、正極12の電解液保持量が多い非水電解質二次電池10の充放電を繰り返すと、ガスの発生が容易になる虞がある。そのため、信頼性を併せて考慮すると、正極12の電解液保持量は、0.70g/cm以下であることが好ましい。 The upper limit of the electrolytic solution holding amount of the positive electrode 12 is not particularly limited. According to the findings of the present inventor, for example, even if the amount of the electrolytic solution retained in the positive electrode 12 exceeds 0.70 g / cm 3 per unit volume of the positive electrode mixture layer, the interface between the positive electrode active material and the electrolytic solution is in contact with each other. It is considered that the influence on the resistance of the non-aqueous electrolyte secondary battery 10, that is, the influence on the high rate characteristics and durability of the non-aqueous electrolyte secondary battery 10 is small. On the other hand, if the non-aqueous electrolyte secondary battery 10 having a large amount of electrolyte retained in the positive electrode 12 is repeatedly charged and discharged in a harsh environment such as a particularly high temperature, gas may be easily generated. Therefore, in consideration of reliability, the amount of the electrolytic solution retained in the positive electrode 12 is preferably 0.70 g / cm 3 or less.

正極12の正極合剤層は、正極活物質として、細孔体積V100Nが8mm/g以上である第1正極活物質と、細孔体積V100Nが5mm/g以下である第2正極活物質とを少なくとも含む。第1正極活物質の細孔体積V100Nの上限は特に制限されないが、例えば、50mm/g以下であることが好ましく、更に好ましくは、20mm/g以下である。第2正極活物質の細孔体積V100Nについては、下限は特に制限されず、好ましくは2mm/g以下である。 The positive electrode mixture layer of the positive electrode 12 contains, as positive electrode active materials, a first positive electrode active material having a pore volume V 100N of 8 mm 3 / g or more and a second positive electrode having a pore volume V 100N of 5 mm 3 / g or less. Includes at least active material. The upper limit of the pore volume V 100N of the first positive electrode active material is not particularly limited, but is preferably, for example, 50 mm 3 / g or less, and more preferably 20 mm 3 / g or less. Regarding the pore volume V 100N of the second positive electrode active material, the lower limit is not particularly limited, and is preferably 2 mm 3 / g or less.

正極活物質における細孔体積V100Nは、例えば、窒素吸着法による窒素ガスの圧力に対する吸着量の測定結果に基づいて、BJH法により細孔分布曲線を作成して、細孔径が100nm以下である範囲の細孔の体積を合計することにより、算出することができる。BJH法は、円筒形の細孔をモデルとして細孔径に対する細孔体積を計算し、細孔分布を決定する方法である。BJH法に基づく細孔分布は、例えば、ガス吸着量測定装置(カンタクローム社製)を用いて測定することができる。 For the pore volume V 100N in the positive electrode active material, for example, a pore distribution curve is created by the BJH method based on the measurement result of the adsorption amount of nitrogen gas with respect to the pressure by the nitrogen adsorption method, and the pore diameter is 100 nm or less. It can be calculated by summing the volumes of the pores in the range. The BJH method is a method of determining the pore distribution by calculating the pore volume with respect to the pore diameter using a cylindrical pore as a model. The pore distribution based on the BJH method can be measured using, for example, a gas adsorption amount measuring device (manufactured by Kantachrome).

第1正極活物質及び第2正極活物質は、結晶構造が層状である、層状リチウム遷移金属酸化物であることが好ましい。例えば、一般式(1)Li1+x2+bで表される層状リチウム遷移金属酸化物が挙げられ、一般式(1)中、x、a及びbは、x+a=1、−0.2≦x≦0.2、及び、−0.1≦b≦0.1の条件を満たし、Mはニッケル(Ni)、コバルト(Co)、マンガン(Mn)及びアルミニウム(Al)からなる群より選択される少なくとも一種の元素を含む金属元素である。層状リチウム遷移金属酸化物は、充電反応時にリチウムイオンが引き抜かれた際に高酸化状態になり易いため、上述した非水電解質の酸化分解及び被膜形成が生じ易く、非水電解質二次電池10の充放電サイクルに対する耐久性向上効果が顕著に発現する。層状リチウム遷移金属酸化物としては、上記一般式(1)で表され、MとしてNi、Co及びMnを含有するニッケルコバルトマンガン酸リチウムが特に好ましい。 The first positive electrode active material and the second positive electrode active material are preferably layered lithium transition metal oxides having a layered crystal structure. For example, the general formula (1) Li 1 + x M a O layered lithium transition metal oxide represented by 2 + b can be mentioned, in formula (1), x, a and b, x + a = 1, -0.2 ≦ The conditions of x ≦ 0.2 and −0.1 ≦ b ≦ 0.1 are satisfied, and M is selected from the group consisting of nickel (Ni), cobalt (Co), manganese (Mn) and aluminum (Al). It is a metallic element containing at least one element. Since the layered lithium transition metal oxide tends to be in a highly oxidized state when lithium ions are extracted during the charging reaction, the above-mentioned oxidative decomposition and film formation of the non-aqueous electrolyte are likely to occur, and the non-aqueous electrolyte secondary battery 10 The effect of improving durability against the charge / discharge cycle is remarkably exhibited. As the layered lithium transition metal oxide, lithium nickel cobalt manganate represented by the above general formula (1) and containing Ni, Co and Mn as M is particularly preferable.

層状リチウム遷移金属酸化物は、Ni、Co、Mn及びAl以外の他の添加元素を含んでいてもよく、例えば、Li以外のアルカリ金属元素、Mn、Ni及びCo以外の遷移金属元素、アルカリ土類金属元素、第12族元素、Al以外の第13族元素、並びに、第14族元素が挙げられる。他の添加元素の具体例としては、例えば、ジルコニウム(Zr)、ホウ素(B)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、錫(Sn)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)及びケイ素(Si)等が挙げられる。 The layered lithium transition metal oxide may contain other additive elements other than Ni, Co, Mn and Al, for example, an alkali metal element other than Li, a transition metal element other than Mn, Ni and Co, and alkaline soil. Examples thereof include metal group elements, Group 12 elements, Group 13 elements other than Al, and Group 14 elements. Specific examples of other additive elements include, for example, zirconium (Zr), boron (B), magnesium (Mg), titanium (Ti), iron (Fe), copper (Cu), zinc (Zn), and tin (Sn). ), Sodium (Na), Potassium (K), Barium (Ba), Strontium (Sr), Calcium (Ca), Tungsten (W), Molybdenum (Mo), Niob (Nb), Silicon (Si) and the like. ..

なお、電池10において正極活物質及び負極活物質として用いられる化合物の組成は、ICP発光分光分析装置(例えば、Thermo Fisher Scientific社製、商品名「iCAP6300」等)を用いて測定することができる。 The composition of the positive electrode active material and the compound used as the negative electrode active material in the battery 10 can be measured using an ICP emission spectroscopic analyzer (for example, manufactured by Thermo Fisher Scientific, trade name "iCAP6300", etc.).

第1正極活物質及び第2正極活物質として用いる層状リチウム遷移金属酸化物の合成方法の例について説明する。例えば、水酸化リチウム等のリチウム含有化合物及びリチウム以外の金属元素Mを含有する水酸化物を焼成して得られた酸化物を、目的とする混合比率で混合し、当該混合物を焼成することにより、上記一般式(1)で表される層状リチウム遷移金属酸化物の一次粒子が凝集してなる二次粒子を合成することができる。当該混合物の焼成は、大気中又は酸素気流中で行う。焼成温度は、例えば500〜1100℃程度であり、焼成時間は、例えば焼成温度が500〜1100℃である場合、1〜30時間程度である。 An example of a method for synthesizing a layered lithium transition metal oxide used as a first positive electrode active material and a second positive electrode active material will be described. For example, an oxide obtained by firing a lithium-containing compound such as lithium hydroxide and a hydroxide containing a metal element M other than lithium is mixed at a desired mixing ratio, and the mixture is fired. , Secondary particles formed by agglomeration of primary particles of layered lithium transition metal oxide represented by the above general formula (1) can be synthesized. The mixture is fired in the atmosphere or in an oxygen stream. The firing temperature is, for example, about 500 to 1100 ° C., and the firing time is, for example, about 1 to 30 hours when the firing temperature is 500 to 1100 ° C.

第1正極活物質及び第2正極活物質として用いられる層状リチウム遷移金属酸化物における細孔体積V100Nは、例えば、上記金属元素Mを含有する水酸化物を準備する際に調整できる。金属元素Mを含有する水酸化物は、例えば金属元素Mの化合物を含む水溶液に水酸化ナトリウム等のアルカリ水溶液を滴下し攪拌することによって得られ、このときの水溶液の温度、アルカリ水溶液の滴下時間、攪拌速度及びpH等を調整することにより、得られる層状リチウム遷移金属酸化物における細孔体積V100Nを調整することができる。 The pore volume V 100N in the layered lithium transition metal oxide used as the first positive electrode active material and the second positive electrode active material can be adjusted, for example, when preparing the hydroxide containing the metal element M. The hydroxide containing the metal element M is obtained, for example, by dropping an alkaline aqueous solution such as sodium hydroxide into an aqueous solution containing the compound of the metal element M and stirring, and the temperature of the aqueous solution and the dropping time of the alkaline aqueous solution at this time. The pore volume V 100N in the obtained layered lithium transition metal oxide can be adjusted by adjusting the stirring speed, pH, and the like.

第1正極活物質及び第2正極活物質の平均粒径は、特に限定されないが、例えば、2μm以上であることが好ましく、3μm以上であることがより好ましい。第1正極活物質及び第2正極活物質の平均粒径が2μm未満である場合、正極合剤層内の導電材による導電経路を阻害して、ハイレートにおけるサイクル特性が低下することがある。第1正極活物質及び第2正極活物質の平均粒径の上限は特に限定しないが、例えば30μm以下が好ましい。第1正極活物質及び第2正極活物質の30μmを超えると、反応面積の低下により、負荷特性が低下することがある。第1正極活物質及び第2正極活物質は、一次粒子が凝集して形成された二次粒子である場合、第1正極活物質及び第2正極活物質の二次粒子の平均粒径が2μm以上30μm以下の範囲にあることが好ましい。 The average particle size of the first positive electrode active material and the second positive electrode active material is not particularly limited, but is preferably 2 μm or more, and more preferably 3 μm or more, for example. When the average particle size of the first positive electrode active material and the second positive electrode active material is less than 2 μm, the conductive path by the conductive material in the positive electrode mixture layer may be obstructed and the cycle characteristics at high rates may be deteriorated. The upper limit of the average particle size of the first positive electrode active material and the second positive electrode active material is not particularly limited, but is preferably 30 μm or less, for example. If it exceeds 30 μm of the first positive electrode active material and the second positive electrode active material, the load characteristics may be deteriorated due to the decrease in the reaction area. When the first positive electrode active material and the second positive electrode active material are secondary particles formed by aggregating the primary particles, the average particle size of the secondary particles of the first positive electrode active material and the second positive electrode active material is 2 μm. It is preferably in the range of 30 μm or more.

本開示における正極活物質及び負極活物質の平均粒径は、レーザ回折法によって測定される体積平均粒径であって、粒子径分布において体積積算値が50%となるメジアン径を意味する。正極活物質及び負極活物質の平均粒径は、例えば、レーザ回折散乱式粒度分布測定装置(株式会社堀場製作所製)を用いて測定できる。 The average particle size of the positive electrode active material and the negative electrode active material in the present disclosure is the volume average particle size measured by the laser diffraction method, and means the median diameter at which the volume integrated value is 50% in the particle size distribution. The average particle size of the positive electrode active material and the negative electrode active material can be measured using, for example, a laser diffraction / scattering type particle size distribution measuring device (manufactured by HORIBA, Ltd.).

本実施形態に係る正極12は、例えば、(1)第1正極活物質、第2正極活物質、導電材及び結着材を混合した後、N−メチル−2−ピロリドン(NMP)等の分散媒を添加して、正極合剤スラリーを調製するスラリー調製工程、(2)正極合剤スラリーを正極芯体の表面に塗布して塗布層を形成するスラリー塗布工程、(3)正極芯体上に形成された塗布層を乾燥させ、正極合剤層を形成する乾燥工程、(4)正極合剤層を、圧延ロール等の圧延手段を用いて圧延する圧延工程、を有する方法により製造すればよい。塗布工程において正極芯体の表面にスラリーを塗布する方法は、特に制限されず、グラビアコーター、スリットコーター、ダイコーター等の周知の塗布装置を使用して行えばよい。 In the positive electrode 12 according to the present embodiment, for example, (1) the first positive electrode active material, the second positive electrode active material, the conductive material and the binder are mixed, and then N-methyl-2-pyrrolidone (NMP) or the like is dispersed. A slurry preparation step of adding a medium to prepare a positive electrode mixture slurry, (2) a slurry coating step of applying the positive electrode mixture slurry to the surface of the positive electrode core to form a coating layer, and (3) on the positive electrode core. If it is manufactured by a method having a drying step of drying the coating layer formed in the above to form a positive electrode mixture layer, and (4) a rolling step of rolling the positive electrode mixture layer using a rolling means such as a rolling roll. Good. The method of applying the slurry to the surface of the positive electrode core in the coating step is not particularly limited, and a well-known coating device such as a gravure coater, a slit coater, or a die coater may be used.

正極合剤層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。これらは、単独で、2種類以上を組み合わせて用いてもよい。 Examples of the conductive material contained in the positive electrode mixture layer include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more types.

正極合剤層に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィン等が例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the binder contained in the positive electrode mixture layer include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimides, acrylic resins, and polyolefins. Further, these resins may be used in combination with carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO) and the like. These may be used alone or in combination of two or more.

電池10では、上述の通り、正極12は特定の範囲の非水電解質を正極合剤層中に保持している。正極12の電解液保持量を測定する方法としては、例えば下記の方法が挙げられる。 In the battery 10, as described above, the positive electrode 12 holds a specific range of non-aqueous electrolyte in the positive electrode mixture layer. Examples of the method for measuring the holding amount of the electrolytic solution of the positive electrode 12 include the following methods.

電池10を、例えば25℃の雰囲気下、1Cの放電電流でSOC(充電深度)が0%になるまで放電する。このときの放電は、例えば、電圧が1.5Vに低下するまで行えばよく、また、負極活物質として炭素系材料を主として含む場合は、電圧が2.5Vに低下するまで行えばよい。SOCが0%になった状態で、電池10を解体して電極体26を取り出し、さらに正極12、負極14及びセパレータ16に分離する。分離した正極12について一定の範囲を切り出し、正極芯体とその両面に正極合剤層を有してなる試料を得る。得られた試料を抽出溶媒(例えば、水)に浸し、振とうすることにより、正極12の正極合剤層に含浸している非水電解質を抽出溶媒中に抽出することができる。上記の振とうは、例えば、振とう装置(アズワン株式会社製、商品名「SHAKER SRR-2」)等の公知の振とう装置を用いて行ってもよい。 The battery 10 is discharged in an atmosphere of, for example, 25 ° C. with a discharge current of 1 C until the SOC (charging depth) becomes 0%. The discharge at this time may be performed until, for example, the voltage drops to 1.5 V, and when the negative electrode active material mainly contains a carbon-based material, the discharge may be performed until the voltage drops to 2.5 V. When the SOC becomes 0%, the battery 10 is disassembled, the electrode body 26 is taken out, and further separated into a positive electrode 12, a negative electrode 14, and a separator 16. A certain range is cut out from the separated positive electrode 12, and a sample having a positive electrode core and positive electrode mixture layers on both sides thereof is obtained. By immersing the obtained sample in an extraction solvent (for example, water) and shaking it, the non-aqueous electrolyte impregnated in the positive electrode mixture layer of the positive electrode 12 can be extracted into the extraction solvent. The above shaking may be performed using a known shaking device such as a shaking device (manufactured by AS ONE Corporation, trade name "SHAKER SRR-2").

次いで、抽出溶媒中の非水電解質の濃度を、例えば、ICP発光分光分析装置(Thermo Fisher Scientific社製iCAP6300)等の公知の分析装置を用いて測定する。なお、後述の通り、非水電解質は非水溶媒と非水溶媒に溶解した電解質塩とを含み、ICP発光分光分析装置は、抽出溶媒中の非水溶媒及び電解質塩のいずれも定量できる。上記のようにして定量された非水電解質(非水溶媒及び電解質塩)の重量と、別途測定した試料中の正極合剤層の体積(或いは、試料における正極合剤層の重量及び正極合剤層の密度)とに基づいて、正極12の電解液保持量として、正極合剤層の単位体積当たりの非水電解質を算出することができる。 Next, the concentration of the non-aqueous electrolyte in the extraction solvent is measured using a known analyzer such as, for example, an ICP emission spectroscopic analyzer (iCAP6300 manufactured by Thermo Fisher Scientific). As will be described later, the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent, and the ICP emission spectroscopic analyzer can quantify both the non-aqueous solvent and the electrolyte salt in the extraction solvent. The weight of the non-aqueous electrolyte (non-aqueous solvent and electrolyte salt) quantified as described above and the volume of the positive electrode mixture layer in the sample separately measured (or the weight of the positive electrode mixture layer in the sample and the positive electrode mixture). The non-aqueous electrolyte per unit volume of the positive electrode mixture layer can be calculated as the amount of the electrolytic solution retained by the positive electrode 12 based on the layer density).

正極12の電解液保持量の測定方法は、上記に限定されない。例えば、イオンクロマトグラフィーや、ガスクロマトグラフィー等の公知の分析方法により、上記振とう後の抽出溶媒中に含まれる非水電解質を定量することができる。また、正極12の試料の抽出を行う前後における抽出溶媒の重量変化量から、試料より抽出された非水電解質の量を特定してもよい。 The method for measuring the amount of electrolyte retained in the positive electrode 12 is not limited to the above. For example, the non-aqueous electrolyte contained in the extraction solvent after shaking can be quantified by a known analysis method such as ion chromatography or gas chromatography. Further, the amount of the non-aqueous electrolyte extracted from the sample may be specified from the amount of change in the weight of the extraction solvent before and after the extraction of the sample of the positive electrode 12.

正極12の電解液保持量は、例えば、正極合剤層の密度によって調整できる他、正極12に用いる導電剤、結着剤、及び、吸液剤、並びにそれらの組合せ等によっても調整できる。正極合剤層の密度は、例えば、上記の正極12の製造方法において、正極合剤スラリーの粘度、正極合剤スラリー中の正極活物質、導電材及び結着材の各含有量、正極合剤スラリーの塗布量、圧延時の圧力等を調整することにより、調整できる。なお、上記正極合剤層における第1正極活物質および第2正極活物質の総重量の配合比率は、例えば80質量%以上、94.5質量%以下である。上記正極合剤層における導電材の配合比率は、例えば5質量%以上、15質量%以下である。上記正極合剤層における結着材の配合比率は、例えば0.5質量%以上、5質量%以下である。 The amount of the electrolytic solution retained in the positive electrode 12 can be adjusted, for example, by adjusting the density of the positive electrode mixture layer, and also by adjusting the conductive agent, the binder, the liquid absorbing agent, and the combination thereof used for the positive electrode 12. The density of the positive electrode mixture layer is, for example, the viscosity of the positive electrode mixture slurry, the contents of the positive electrode active material, the conductive material and the binder in the positive electrode mixture slurry, and the positive electrode mixture in the above method for producing the positive electrode 12. It can be adjusted by adjusting the coating amount of the slurry, the pressure at the time of rolling, and the like. The total weight of the first positive electrode active material and the second positive electrode active material in the positive electrode mixture layer is, for example, 80% by mass or more and 94.5% by mass or less. The compounding ratio of the conductive material in the positive electrode mixture layer is, for example, 5% by mass or more and 15% by mass or less. The compounding ratio of the binder in the positive electrode mixture layer is, for example, 0.5% by mass or more and 5% by mass or less.

[負極]
負極14は、金属箔等からなる負極芯体と、当該負極芯体上に形成された負極合剤層とで構成される。負極芯体には、アルミニウム等の負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合剤層は、負極活物質、及び結着材を含む。負極14は、上記の正極12の製造方法に準じて製造でき、例えば、負極芯体上に負極活物質及び結着材等を含む負極合剤スラリーを塗布・乾燥させて負極合剤層を形成した後、圧延ロール等の圧延手段で負極合剤層を圧延することにより、負極芯体の両面に負極合剤層を形成した負極14を製造できる。
[Negative electrode]
The negative electrode 14 is composed of a negative electrode core made of a metal foil or the like and a negative electrode mixture layer formed on the negative electrode core. As the negative electrode core, a metal foil stable in the potential range of the negative electrode such as aluminum, a film in which the metal is arranged on the surface layer, or the like can be used. The negative electrode mixture layer contains a negative electrode active material and a binder. The negative electrode 14 can be manufactured according to the above-mentioned manufacturing method of the positive electrode 12, and for example, a negative electrode mixture slurry containing a negative electrode active material, a binder, and the like is applied and dried on the negative electrode core to form a negative electrode mixture layer. Then, by rolling the negative electrode mixture layer with a rolling means such as a rolling roll, the negative electrode 14 having the negative electrode mixture layers formed on both sides of the negative electrode core can be manufactured.

負極14に使用する負極活物質は、リチウムチタン複合酸化物を含有する。リチウムチタン複合酸化物は、一般式(2)Li4+yTi12(一般式(2)中、yは0以上1以下である)で表され、スピネル型の結晶構造を有する。 The negative electrode active material used for the negative electrode 14 contains a lithium titanium composite oxide. The lithium-titanium composite oxide is represented by the general formula (2) Li 4 + y Ti 5 O 12 (in the general formula (2), y is 0 or more and 1 or less), and has a spinel-type crystal structure.

リチウムチタン複合酸化物からなる負極活物質は例えば、層状リチウム遷移金属酸化物の合成方法に準じた方法で合成すればよい。例えば、水酸化リチウム等のリチウム含有化合物と、二酸化チタン、水酸化チタン等のチタン含有化合物とを、目的とする混合比率で混合し、当該混合物を焼成することにより、上記一般式(2)で表されるリチウムチタン複合酸化物の一次粒子が凝集してなる二次粒子を合成することができる。リチウム含有化合物とチタン含有化合物との混合物の焼成は、例えば、大気中(又は酸素気流中)で行えばよく、その際の焼成温度は例えば500〜1100℃程度であり、焼成温度が500〜1100℃程度である場合、焼成時間は例えば1〜30時間である。 The negative electrode active material composed of the lithium-titanium composite oxide may be synthesized, for example, by a method similar to the method for synthesizing the layered lithium transition metal oxide. For example, a lithium-containing compound such as lithium hydroxide and a titanium-containing compound such as titanium dioxide and titanium hydroxide are mixed at a desired mixing ratio, and the mixture is fired to obtain the above general formula (2). Secondary particles formed by aggregating the primary particles of the represented lithium titanium composite oxide can be synthesized. The calcination of the mixture of the lithium-containing compound and the titanium-containing compound may be performed in the air (or in an oxygen stream), for example, the calcination temperature at that time is, for example, about 500 to 1100 ° C., and the calcination temperature is 500 to 1100. When the temperature is about ° C., the firing time is, for example, 1 to 30 hours.

負極活物質としては、リチウムチタン複合酸化物以外に、リチウムイオンを可逆的に吸蔵及び放出できる化合物、例えば、天然黒鉛、人造黒鉛等の炭素材料、Si及びSn等のリチウムと合金化可能な金属等を含有してもよい。 As the negative electrode active material, in addition to the lithium titanium composite oxide, a compound capable of reversibly occluding and releasing lithium ions, for example, a carbon material such as natural graphite and artificial graphite, and a metal capable of alloying with lithium such as Si and Sn. Etc. may be contained.

負極14に用いる結着剤としては、公知の結着剤を用いることができ、正極12の場合と同様、PTFE等のフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、並びに、ポリオレフィン系樹脂等を用いることができる。また、水系溶媒を用いて負極合剤スラリーを調製する場合に用いられる結着剤としては、例えば、CMC又はその塩、スチレン−ブタジエンゴム(SBR)、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)等が挙げられる。 As the binder used for the negative electrode 14, a known binder can be used, and as in the case of the positive electrode 12, a fluororesin such as PTFE, a PAN, a polyimide resin, an acrylic resin, and a polyolefin resin can be used. Etc. can be used. Examples of the binder used when preparing a negative electrode mixture slurry using an aqueous solvent include CMC or a salt thereof, styrene-butadiene rubber (SBR), polyacrylic acid (PAA) or a salt thereof, and polyvinyl. Alcohol (PVA) and the like can be mentioned.

本実施形態に係る非水電解質二次電池10では、負極14の電解液保持量が、負極合剤層の単位体積当たりで0.58g/cm以上であることが好ましい。負極14の電解液保持量が上記の範囲にあると、非水電解質二次電池10のハイレート特性及び耐久性をさらに改善できるためである。 In the non-aqueous electrolyte secondary battery 10 according to the present embodiment, the electrolyte holding amount of the negative electrode 14 is preferably 0.58 g / cm 3 or more per unit volume of the negative electrode mixture layer. This is because when the electrolyte holding amount of the negative electrode 14 is within the above range, the high rate characteristics and durability of the non-aqueous electrolyte secondary battery 10 can be further improved.

負極14の電解液保持量の測定は、例えば、上述した正極12の電解液保持量の測定方法と同様に行えばよい。また、負極14の電解液保持量の調整についても、上述した正極12の電解液保持量の調整方法と同様に行えばよい。 The measurement of the electrolytic solution holding amount of the negative electrode 14 may be performed in the same manner as the method for measuring the electrolytic solution holding amount of the positive electrode 12 described above. Further, the adjustment of the electrolytic solution holding amount of the negative electrode 14 may be performed in the same manner as the above-described method of adjusting the electrolytic solution holding amount of the positive electrode 12.

[非水電解質]
非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質に用いる非水溶媒としては、例えば、エステル類、エーテル類、ニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができ、また、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を用いることもできる。
[Non-aqueous electrolyte]
The non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. As the non-aqueous solvent used for the non-aqueous electrolyte, for example, amides such as esters, ethers, nitriles and dimethylformamide, and a mixed solvent of two or more of these can be used, and these solvents can be used. A halogen substituent in which at least a part of hydrogen is replaced with a halogen atom such as fluorine can also be used.

非水電解質に含まれるエステル類としては、環状カーボネート類、鎖状カーボネート類、カルボン酸エステル類が例示できる。具体的には、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類;ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状カーボネート類;プロピオン酸メチル(MP)、プロピオン酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル等の鎖状カルボン酸エステル;及び、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)等の環状カルボン酸エステル等が挙げられる。γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)等の環状カルボン酸エステルが挙げられる。 Examples of the esters contained in the non-aqueous electrolyte include cyclic carbonates, chain carbonates, and carboxylic acid esters. Specifically, for example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, vinylene carbonate; dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl. Chain carbonates such as propyl carbonate, ethyl propyl carbonate and methyl isopropyl carbonate; chain carboxylic acid esters such as methyl propionate (MP), ethyl propionate, methyl acetate, ethyl acetate and propyl acetate; and γ-butyrolactone ( GBL), cyclic carboxylic acid esters such as γ-valerolactone (GVL) and the like can be mentioned. Cyclic carboxylic acid esters such as γ-butyrolactone (GBL) and γ-valerolactone (GVL) can be mentioned.

非水電解質に含まれるエーテル類としては、例えば、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,3−ジオキサン、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテル等の環状エーテル;ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類等が挙げられる。 Examples of ethers contained in the non-aqueous electrolyte include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, and 1,3-. Cyclic ethers such as dioxane, 1,4-dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether; diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl Ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, Chain ethers such as 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl, etc. Can be mentioned.

非水電解質に含まれるニトリル類の例としては、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、n−ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル等が挙げられる。 Examples of nitriles contained in non-aqueous electrolytes include acetonitrile, propionitrile, butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, 1,2,3-propanetricarbohydrate. Examples thereof include nitriles and 1,3,5-pentantricarbonitrile.

非水電解質に含まれるハロゲン置換体の例としては、4−フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、メチル3,3,3−トリフルオロプロピオネート(FMP)等のフッ素化鎖状カルボン酸エステル等が挙げられる。 Examples of halogen substituents contained in non-aqueous electrolytes include fluorinated cyclic carbonates such as 4-fluoroethylene carbonate (FEC), fluorinated chain carbonates, and methyl 3,3,3-trifluoropropionate (FMP). ) And the like, fluorinated chain carboxylic acid ester and the like.

非水電解質に用いる電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiC(CSO)、LiCFCO、Li(P(C)F)、Li(P(C)F)、LiPF6−x(C2n+1(1≦x≦6、nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)[リチウム−ビスオキサレートボレート(LiBOB)]、Li(B(C)F)等のホウ酸塩類、LiN(FSO、LiN(C2l+1SO)(C2m+1SO){l、mは1以上の整数}等のイミド塩類等が挙げられる。リチウム塩は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The electrolyte salt used for the non-aqueous electrolyte is preferably a lithium salt. Examples of the lithium salt, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiC (C 2 F 5 SO 2), LiCF 3 CO 2, Li (P (C 2 O 4 ) F 4 ), Li (P (C 2 O 4 ) F 2 ), LiPF 6-x (C n F 2n + 1 ) x (1 ≦ x ≦ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7 , Li (B (C 2 O 4 ) 2 ) [lithium-bisoxalate volate (LiBOB)], Borates such as Li (B (C 2 O 4 ) F 2 ), LiN (FSO 2 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) {l, m is 1 or more Examples thereof include imide salts such as integer}. Only one type of lithium salt may be used, or two or more types may be mixed and used.

上記の通り、非水電解質は、正極合剤層において高酸化状態にある第1正極活物質と接触して酸化分解し、酸化分解物の被膜を正極活物質の表面に形成する。この観点から、非水電解質としては、LiPFを用いることが好ましい。 As described above, the non-aqueous electrolyte comes into contact with the first positive electrode active material in a highly oxidized state in the positive electrode mixture layer and is oxidatively decomposed to form a film of the oxidative decomposition product on the surface of the positive electrode active material. From this viewpoint, it is preferable to use LiPF 6 as the non-aqueous electrolyte.

[セパレータ]
セパレータ16には、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ16の材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロース等が好適である。セパレータ16は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータ16の表面にアラミド系樹脂等の樹脂や、アルミナやチタニア等の無機微粒子が塗布されたものを用いることもできる。
[Separator]
For the separator 16, for example, a porous sheet having ion permeability and insulating property is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric. As the material of the separator 16, olefin resins such as polyethylene and polypropylene, cellulose and the like are suitable. The separator 16 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin. Further, it may be a multilayer separator containing a polyethylene layer and a polypropylene layer, and a resin such as an aramid resin or an inorganic fine particle such as alumina or titania coated on the surface of the separator 16 can also be used.

以上の説明では、電池10について、巻回構造を有する電極体26により説明を行った。しかし、本開示の非水電解質二次電池の構成はこの構成に限定されない。例えば、帯状の正極12と帯状の負極14とを対向させた状態で、正極12及び負極14とが九十九折りされた電極体を構成してもよい。また、複数の枚葉状の正極極板と複数の枚葉状の負極極板とをセパレータ16を介して交互に積層して積層型の電極体を構成してもよい。また外装体についても、角型の外装体に限定されない。例えば、円筒型の金属製外装体、コイン状の外装体を使用してもよいし、ラミネートフィルムで電極体を覆ってもよい。外装体の材質も外装体と電極体とが電気的に接続しない構成であれば導電性材料により構成される必要はなく、例えば、樹脂製の外装体を用いてもよい。 In the above description, the battery 10 has been described by the electrode body 26 having a wound structure. However, the configuration of the non-aqueous electrolyte secondary battery of the present disclosure is not limited to this configuration. For example, the positive electrode 12 and the negative electrode 14 may form a zigzag-folded electrode body with the band-shaped positive electrode 12 and the band-shaped negative electrode 14 facing each other. Further, a plurality of single-wafer-shaped positive electrode plates and a plurality of single-wafer-shaped negative electrode plates may be alternately laminated via a separator 16 to form a laminated electrode body. Further, the exterior body is not limited to the square exterior body. For example, a cylindrical metal outer body, a coin-shaped outer body may be used, or the electrode body may be covered with a laminated film. The material of the outer body does not need to be made of a conductive material as long as the outer body and the electrode body are not electrically connected to each other. For example, a resin outer body may be used.

<実施例1>
[正極の作製]
リチウム含有化合物と、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)を含むリチウム以外の金属元素を含有する水酸化物を焼成して得られた酸化物とを、目的とする混合比率で混合し、当該混合物を焼成することにより、層状リチウム遷移金属酸化物の一次粒子が凝集してなる二次粒子を合成し、第1正極活物質及び第2正極活物質として用いる層状リチウム遷移金属酸化物を得た。
<Example 1>
[Cathode preparation]
A lithium-containing compound and an oxide obtained by firing a hydroxide containing a metal element other than lithium including nickel (Ni), cobalt (Co), and manganese (Mn) are mixed at a desired mixing ratio. By mixing and firing the mixture, secondary particles formed by aggregating the primary particles of the layered lithium transition metal oxide are synthesized, and the layered lithium transition metal oxidation used as the first positive electrode active material and the second positive electrode active material. I got something.

前記方法により、組成式Li1.054Ni0.199Co0.597Mn0.199Zr0.005で表される層状リチウム遷移金属酸化物(第1正極活物質)、及び、組成式Li1.067Ni0.498Co0.199Mn0.299Zr0.005で表される層状リチウム遷移金属酸化物(第2正極活物質)を、質量比3:7で混合して混合物を得た。正極活物質及び後に示す負極活物質として用いられる化合物の組成は、ICP発光分光分析装置(Thermo Fisher Scientific社製、商品名「iCAP6300」)を用いて測定した。 According to the above method, a layered lithium transition metal oxide (first positive electrode active material) represented by the composition formula Li 1.054 Ni 0.199 Co 0.597 Mn 0.199 Zr 0.005 O 2 and a composition formula. A layered lithium transition metal oxide (second positive electrode active material) represented by Li 1.067 Ni 0.498 Co 0.199 Mn 0.299 Zr 0.005 O 2 is mixed at a mass ratio of 3: 7. A mixture was obtained. The composition of the positive electrode active material and the compound used as the negative electrode active material described later was measured using an ICP emission spectroscopic analyzer (manufactured by Thermo Fisher Scientific Co., Ltd., trade name "iCAP6300").

また、BJH法を用いて測定した第1正極活物質の細孔体積V100Nは8mm/gであり、第2正極活物質の細孔体積V100Nは2mm/gであった。第1正極活物質及び第2正極活物質の体積平均粒径を、レーザ回折散乱式粒度分布測定装置(株式会社堀場製作所製)を用いて測定した結果、第1正極活物質の体積平均粒径は5.0μmであり、第2正極活物質の体積平均粒径は2.0μmであった。 The pore volume V 100N of the first positive electrode active material measured by the BJH method was 8 mm 3 / g, and the pore volume V 100N of the second positive electrode active material was 2 mm 3 / g. As a result of measuring the volume average particle diameters of the first positive electrode active material and the second positive electrode active material using a laser diffraction scattering type particle size distribution measuring device (manufactured by Horiba Seisakusho Co., Ltd.), the volume average particle diameter of the first positive electrode active material Was 5.0 μm, and the volume average particle size of the second positive electrode active material was 2.0 μm.

前記方法で作製した正極活物質(第1正極活物質と第2正極活物質の混合物)と、カーボンブラック(導電材)と、ポリフッ化ビニリデン(PVDF)(結着剤)とを、91:7:2の質量比で混合した。当該混合物に分散媒としてN−メチル−2−ピロリドン(NMP)を加え、混合機(プライミクス株式会社製、T.K.ハイビスミックス)を用いて攪拌し、正極合剤スラリーを調製した。調製した正極合剤スラリーの粘度(単位:mPa・s)を、B型粘度計(英弘精機株式会社製、製品名「ブルックフィールド粘度計」)を用いて測定した。 91: 7 of the positive electrode active material (mixture of the first positive electrode active material and the second positive electrode active material) produced by the above method, carbon black (conductive material), and polyvinylidene fluoride (PVDF) (binding agent). The mixture was mixed at a mass ratio of 2: 2. N-Methyl-2-pyrrolidone (NMP) was added to the mixture as a dispersion medium, and the mixture was stirred using a mixer (TK Hibismix manufactured by Primix Corporation) to prepare a positive mixture slurry. The viscosity (unit: mPa · s) of the prepared positive electrode mixture slurry was measured using a B-type viscometer (manufactured by Eiko Seiki Co., Ltd., product name “Brookfield viscometer”).

前記のスラリーを正極芯体であるアルミニウム箔上に塗布し、塗膜を乾燥させて正極合剤層を形成した。次いで、正極合剤層を圧延ロールにより圧延して、アルミニウム箔の両面に正極合剤層が形成された正極12を作製した。前記のスラリーを正極芯体であるアルミニウム箔上に塗布し、塗膜を乾燥させて正極合剤層を形成した。次いで、正極合剤層を圧延ロールにより圧延して、アルミニウム箔の両面に正極合剤層が形成された正極12を作製した。本実施形態における圧延方法としては、例えば、圧延前の正極合剤層の厚み110〜115μmに対し、圧延後の正極合剤層厚みが70〜90μmの範囲になるように圧延調整を行うことにより、正極合剤層の保持量を上記範囲に調整することができる。なお、本開示の非水電解質二次電池に用いられる正極合剤層における電解液を保持する量を制御する方法は、上記の圧延方法に限定されない。 The slurry was applied onto an aluminum foil as a positive electrode core, and the coating film was dried to form a positive electrode mixture layer. Next, the positive electrode mixture layer was rolled by a rolling roll to prepare a positive electrode 12 having positive electrode mixture layers formed on both sides of the aluminum foil. The slurry was applied onto an aluminum foil as a positive electrode core, and the coating film was dried to form a positive electrode mixture layer. Next, the positive electrode mixture layer was rolled by a rolling roll to prepare a positive electrode 12 having positive electrode mixture layers formed on both sides of the aluminum foil. As a rolling method in the present embodiment, for example, the thickness of the positive electrode mixture layer before rolling is 110 to 115 μm, and the thickness of the positive electrode mixture layer after rolling is adjusted to be in the range of 70 to 90 μm. , The holding amount of the positive electrode mixture layer can be adjusted within the above range. The method of controlling the amount of the electrolytic solution retained in the positive electrode mixture layer used in the non-aqueous electrolyte secondary battery of the present disclosure is not limited to the above-mentioned rolling method.

[負極の作製]
組成式LiTi12で表されるリチウムチタン複合酸化物と、カーボンブラック(導電材)と、ポリフッ化ビニリデン(PVDF)とを、90:8:2の質量比で混合した。当該混合物にNMPを加え、混合機(プライミクス株式会社製、T.K.ハイビスミックス)を用いて攪拌し、負極合剤スラリーを調製した。次に、負極芯体であるアルミニウム箔上に負極合剤スラリーを塗布し、塗膜を乾燥させた後、塗膜を圧延ロールにより圧延して、アルミニウム箔の両面に負極合剤層が形成された負極14を作製した。
[Preparation of negative electrode]
Lithium-titanium composite oxide represented by the composition formula Li 4 Ti 5 O 12 , carbon black (conductive material), and polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 90: 8: 2. NMP was added to the mixture, and the mixture was stirred using a mixer (TK Hibismix manufactured by Primix Corporation) to prepare a negative electrode mixture slurry. Next, the negative electrode mixture slurry is applied onto the aluminum foil which is the negative electrode core, the coating film is dried, and then the coating film is rolled by a rolling roll to form negative electrode mixture layers on both sides of the aluminum foil. Negative electrode 14 was produced.

[非水電解質の調製]
プロピレンカーボネート(PC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、25:35:40の体積比で混合して混合溶媒を調製した。当該混合溶媒に、LiPFを1.2モル/Lの濃度となるように溶解させて、非水電解質を調製した。なお、上記負極合剤層における負極活物質の配合比率は、例えば80質量%以上、95質量%以下である。上記負極合剤層における導電材の配合比率は、例えば5質量%以上、15質量%以下である。上記負極合剤層における結着材の配合比率は、例えば1質量%以上、5質量%以下である。
[Preparation of non-aqueous electrolyte]
Propylene carbonate (PC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 25:35:40 to prepare a mixed solvent. A non-aqueous electrolyte was prepared by dissolving LiPF 6 in the mixed solvent to a concentration of 1.2 mol / L. The blending ratio of the negative electrode active material in the negative electrode mixture layer is, for example, 80% by mass or more and 95% by mass or less. The blending ratio of the conductive material in the negative electrode mixture layer is, for example, 5% by mass or more and 15% by mass or less. The compounding ratio of the binder in the negative electrode mixture layer is, for example, 1% by mass or more and 5% by mass or less.

[電池の作製]
上記で得られた正極12及び負極14を、ポリプロピレン製の微多孔膜のセパレータ16を介して渦巻き状に巻回した後、プレス成型し、扁平形状の電極体26を作製した。電極体26の幅方向両端部に形成された正極芯体露出部及び負極芯体露出部のそれぞれに集電体部を溶接した。次いで、集電体部を溶接した電極体26を、アルミニウム製の外装缶24に収容し、上記の非水電解質を注液口30から注液した後、開口部を封口板22にて封口して、図1に示す定格容量が10Ahの非水電解質二次電池10を作製した。
[Battery production]
The positive electrode 12 and the negative electrode 14 obtained above were spirally wound through a separator 16 made of a microporous polypropylene film and then press-molded to prepare a flat electrode body 26. A current collector portion was welded to each of the positive electrode core body exposed portion and the negative electrode core body exposed portion formed at both ends in the width direction of the electrode body 26. Next, the electrode body 26 to which the current collector portion is welded is housed in an aluminum outer can 24, the above non-aqueous electrolyte is injected from the liquid injection port 30, and then the opening is sealed with a sealing plate 22. Therefore, a non-aqueous electrolyte secondary battery 10 having a rated capacity of 10 Ah shown in FIG. 1 was produced.

[電解液保持量の測定]
電池10を、25℃の雰囲気下、1Cの放電電流でSOC(充電深度)が0%になるまで放電した結果、電圧が1.5Vにまで低下した。次いで、電池10を解体して電極体を取り出し、さらに正極12、負極14及びセパレータ16に分離した。得られた正極12について一定の範囲を切り出し、正極芯体とその両面に正極合剤層を有してなる試料を得た。得られた試料を水(抽出溶媒)に浸し、振とう装置(アズワン株式会社製、商品名「SHAKER SRR-2」)を用いて振とうすることで、正極12が正極合剤層において保持する非水電解質を水中に抽出した抽出液を得た。次いで、ICP発光分光分析装置(Thermo Fisher Scientific社製iCAP6300)を用いて、抽出液中の非水電解質の濃度を定量し、正極12の試料から抽出された非水電解質の重量を算出した。算出された非水電解質の重量と、別途測定した試料中の正極合剤層の体積とに基づいて、正極12の電解液保持量を求めた。また、同様に負極14の電解液保持量を求めた。その結果、実施例1の電池10では、正極12の電解液保持量は0.655g/cmであり、負極14の電解液保持量は0.628g/cmであった。
[Measurement of electrolyte retention]
As a result of discharging the battery 10 in an atmosphere of 25 ° C. with a discharge current of 1 C until the SOC (charging depth) becomes 0%, the voltage drops to 1.5 V. Next, the battery 10 was disassembled, the electrode body was taken out, and further separated into a positive electrode 12, a negative electrode 14, and a separator 16. A certain range was cut out from the obtained positive electrode 12, and a sample having a positive electrode core and positive electrode mixture layers on both sides thereof was obtained. The obtained sample is immersed in water (extraction solvent) and shaken using a shaking device (manufactured by AS ONE Co., Ltd., trade name "SHAKER SRR-2"), whereby the positive electrode 12 is held in the positive electrode mixture layer. An extract obtained by extracting the non-aqueous electrolyte into water was obtained. Next, the concentration of the non-aqueous electrolyte in the extract was quantified using an ICP emission spectroscopic analyzer (iCAP6300 manufactured by Thermo Fisher Scientific), and the weight of the non-aqueous electrolyte extracted from the sample of the positive electrode 12 was calculated. The amount of electrolyte retained in the positive electrode 12 was determined based on the calculated weight of the non-aqueous electrolyte and the volume of the positive electrode mixture layer in the sample separately measured. Similarly, the amount of the electrolytic solution retained in the negative electrode 14 was determined. As a result, in the battery 10 of Example 1, the electrolytic solution holding amount of the positive electrode 12 was 0.655 g / cm 3 , and the electrolytic solution holding amount of the negative electrode 14 was 0.628 g / cm 3 .

<実施例2>
電池10の製造において、正極合剤層を圧延する圧力の調整、負極合剤層を圧延する圧力の調整を行ったこと以外は、実施例1と同様の構成を有した電池10を作製した。実施例2の電池10では、正極12の電解液保持量は0.662g/cmであり、負極14の電解液保持量は0.618g/cmであった。
<Example 2>
In the production of the battery 10, the battery 10 having the same configuration as that of the first embodiment was produced except that the pressure for rolling the positive electrode mixture layer was adjusted and the pressure for rolling the negative electrode mixture layer was adjusted. In the battery 10 of Example 2, the electrolytic solution holding amount of the positive electrode 12 was 0.662 g / cm 3 , and the electrolytic solution holding amount of the negative electrode 14 was 0.618 g / cm 3 .

<実施例3>
非水電解質二次電池10の製造において、正極合剤層を圧延する圧力の調整を行ったこと以外は、実施例1と同様の構成を有した電池10を作製した。実施例3の電池10では、正極12の電解液保持量は0.490g/cmであり、負極14の電解液保持量は0.628g/cmであった。
<Example 3>
In the production of the non-aqueous electrolyte secondary battery 10, the battery 10 having the same configuration as that of the first embodiment was produced except that the pressure for rolling the positive electrode mixture layer was adjusted. In the battery 10 of Example 3, the electrolytic solution holding amount of the positive electrode 12 was 0.490 g / cm 3 , and the electrolytic solution holding amount of the negative electrode 14 was 0.628 g / cm 3 .

<比較例1>
正極の作製工程において、正極活物質として第1正極活物質を使用せず、第2正極活物質のみを使用したこと以外は、実施例1と同様の構成を有した非水電解質二次電池を作製した。比較例1の非水電解質二次電池では、正極の電解液保持量は0.655g/cmであり、負極の電解液保持量は0.628g/cmであった。
<Comparative example 1>
A non-aqueous electrolyte secondary battery having the same configuration as in Example 1 except that the first positive electrode active material was not used as the positive electrode active material and only the second positive electrode active material was used in the process of producing the positive electrode. Made. In the non-aqueous electrolyte secondary battery of Comparative Example 1, the electrolyte holding amount of the positive electrode was 0.655 g / cm 3 , and the electrolyte holding amount of the negative electrode was 0.628 g / cm 3 .

<比較例2>
正極の作製工程において、第1正極活物質及び第2正極活物質を質量比4:6で混合して混合物を作製し、正極合剤スラリーを調製したこと以外は、実施例1と同様の構成を有した非水電解質二次電池を作製した。比較例2の非水電解質二次電池では、正極の電解液保持量は0.655g/cmであり、負極の電解液保持量は0.628g/cmであった。
<Comparative example 2>
In the process of producing a positive electrode, the configuration is the same as that of Example 1 except that the first positive electrode active material and the second positive electrode active material are mixed at a mass ratio of 4: 6 to prepare a mixture to prepare a positive electrode mixture slurry. A non-aqueous electrolyte secondary battery having the above was prepared. In the non-aqueous electrolyte secondary battery of Comparative Example 2, the electrolyte holding amount of the positive electrode was 0.655 g / cm 3 , and the electrolyte holding amount of the negative electrode was 0.628 g / cm 3 .

<比較例3>
正極の作製工程において、組成式Li1.054Ni0.199Co0.597Mn0.199Zr0.005で表され、細孔体積V100Nが5mm/gである層状リチウム遷移金属酸化物を第1正極活物質として使用したこと以外は、実施例1と同様の構成を有した非水電解質二次電池を作製した。比較例3の非水電解質二次電池では、正極の電解液保持量は0.655g/cmであり、負極の電解液保持量は0.628g/cmであった。
<Comparative example 3>
In the process of producing a positive electrode, a layered lithium transition metal represented by the composition formula Li 1.054 Ni 0.199 Co 0.597 Mn 0.199 Zr 0.005 O 2 and having a pore volume V 100N of 5 mm 3 / g. A non-aqueous electrolyte secondary battery having the same configuration as that of Example 1 was produced except that the oxide was used as the first positive electrode active material. In the non-aqueous electrolyte secondary battery of Comparative Example 3, the electrolyte holding amount of the positive electrode was 0.655 g / cm 3 , and the electrolyte holding amount of the negative electrode was 0.628 g / cm 3 .

<比較例4>
非水電解質二次電池の製造において、正極合剤層を圧延する圧力の調整を行ったこと以外は、実施例1と同様の構成を有した非水電解質二次電池を作製した。比較例4の非水電解質二次電池では、正極の電解液保持量は0.450g/cmであり、負極14の電解液保持量は0.620g/cmであった。
<Comparative example 4>
In the production of the non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery having the same configuration as that of Example 1 was produced except that the pressure for rolling the positive electrode mixture layer was adjusted. In the non-aqueous electrolyte secondary battery of Comparative Example 4, the electrolyte holding amount of the positive electrode was 0.450 g / cm 3 , and the electrolyte holding amount of the negative electrode 14 was 0.620 g / cm 3 .

<比較例5>
非水電解質二次電池の製造において、正極合剤層を圧延する圧力の調整を行ったこと以外は、実施例1と同様の構成を有した非水電解質二次電池を作製した。比較例5の非水電解質二次電池では、正極の電解液保持量は0.400g/cmであり、負極の電解液保持量は0.620g/cmであった。
<Comparative example 5>
In the production of the non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery having the same configuration as that of Example 1 was produced except that the pressure for rolling the positive electrode mixture layer was adjusted. In the non-aqueous electrolyte secondary battery of Comparative Example 5, the electrolyte holding amount of the positive electrode was 0.400 g / cm 3 , and the electrolyte holding amount of the negative electrode was 0.620 g / cm 3 .

[電池試験]
上述のように作製した各実施例及び各比較例の非水電解質二次電池を使用して、以下に示す評価試験を実施した。
[Battery test]
The evaluation test shown below was carried out using the non-aqueous electrolyte secondary batteries of each Example and each Comparative Example prepared as described above.

(1)ハイレート特性試験
各電池につき、25℃の温度雰囲気で、1Cの充電電流でSOC(充電深度)20%まで充電した。この後、5C放電ステップ→5C充電ステップ→10C放電ステップ→10C充電ステップ→15C放電ステップ→15C充電ステップ→20C放電ステップ→20C充電ステップ→25C放電ステップ→25C充電ステップの順で充放電電流を増加させた。このとき、各ステップにおける充電または放電の時間はいずれも30秒間であり、各ステップの間に15分間の休止期間を設けた。つまり、30秒間の放電→15分間休止→30秒間充電→15分間休止の順で充放電サイクルを行った。そして、この充放電サイクルにおいて放電時間が10秒経過した時点における電池電圧を放電電流に対してプロットし、最小二乗法にて求めた直線から1.5Vに達したときの電流値を算出し、その電流値から求めた抵抗値を、各非水電解質二次電池の出力値として得た。各非水電解質二次電池について得られた抵抗値に基づいて、下記の基準により、ハイレート特性試験に対する耐久性を評価した。

○:実施例1を100としたときのハイレート特性試験後の抵抗値が104%未満
×:実施例1を100としたときのハイレート特性試験後の抵抗値が104%以上 表1に、各実施例及び各比較例の非水電解質二次電池について得られた抵抗値及びハイレート特性の評価結果を示す。
(1) High-rate property test Each battery was charged to a SOC (charging depth) of 20% with a charging current of 1 C in a temperature atmosphere of 25 ° C. After that, the charge / discharge current is increased in the order of 5C discharge step → 5C charge step → 10C discharge step → 10C charge step → 15C discharge step → 15C charge step → 20C discharge step → 20C charge step → 25C discharge step → 25C charge step. I let you. At this time, the charging or discharging time in each step was 30 seconds, and a rest period of 15 minutes was provided between each step. That is, the charge / discharge cycle was performed in the order of 30-second discharge → 15-minute pause → 30-second charge → 15-minute pause. Then, in this charge / discharge cycle, the battery voltage at the time when the discharge time elapses for 10 seconds is plotted against the discharge current, and the current value when 1.5 V is reached from the straight line obtained by the minimum square method is calculated. The resistance value obtained from the current value was obtained as the output value of each non-aqueous electrolyte secondary battery. Based on the resistance value obtained for each non-aqueous electrolyte secondary battery, the durability against the high rate characteristic test was evaluated according to the following criteria.

◯: The resistance value after the high-rate characteristic test when Example 1 is 100 is less than 104% ×: The resistance value after the high-rate characteristic test when Example 1 is 100 is 104% or more. The evaluation results of the resistance value and the high rate characteristic obtained for the non-aqueous electrolyte secondary battery of each example and each comparative example are shown.

(2)耐久性試験
25℃の温度雰囲気で、1Cの充電電流にてSOC80%となる電圧まで充電した。次いで、60℃の温度雰囲気で、5Cの放電電流にてSOCが20%になる電圧まで放電し、その後5Cの充電電流でSOC80%まで充電するというサイクルを繰り返す、部分充放電サイクル試験を行った。この部分充放電サイクルを、部分充放電サイクル開始時の出力に対する出力の比(出力初期比)が80%になるまで繰り返し、出力初期比が80%になるまでの総放電量を求めた。このときの総放電量に基づいて、下記の基準により、充放電サイクルに対する耐久性を評価した。

○:実施例1を100としたときの耐久性試験後の総放電量が95%以上
×:実施例1を100としたときの耐久性試験後の総放電量が95%未満 表1に、各実施例及び比較例5を除く各比較例の非水電解質二次電池について得られた総放電量及び評価結果を示す。
(2) Durability test In a temperature atmosphere of 25 ° C., the battery was charged to a voltage of 80% SOC with a charging current of 1C. Next, a partial charge / discharge cycle test was conducted in which a cycle of discharging to a voltage at which SOC becomes 20% with a discharge current of 5C and then charging to SOC 80% with a charging current of 5C was repeated in a temperature atmosphere of 60 ° C. .. This partial charge / discharge cycle was repeated until the ratio of the output to the output at the start of the partial charge / discharge cycle (initial output ratio) became 80%, and the total discharge amount until the initial output ratio became 80% was determined. Based on the total discharge amount at this time, the durability against the charge / discharge cycle was evaluated according to the following criteria.

◯: Total discharge amount after durability test when Example 1 is 100 or more ×: Total discharge amount after durability test when Example 1 is 100 is less than 95% Table 1 shows. The total discharge amount and the evaluation result obtained for the non-aqueous electrolyte secondary battery of each Comparative Example except for each Example and Comparative Example 5 are shown.

(3)巻回良品率試験
正極及び負極の厚さの均一性を確認する目的で、実施例及び比較例において作製された電極体の巻回良品率を評価した。より具体的には、各実施例及び各比較例で作製された電極体について、正極、負極及びセパレータの巻回構造の軸方向におけるずれ幅の最大値(巻きずれ)を測定した。巻きずれが小さい程、正極又は負極の厚さ、即ち、正極合剤層及び負極合剤層の厚さの均一性が高くなる。上述の通り、正極及び負極の厚さが不均一になると、局所的に活物質の劣化が加速し、非水電解質二次電池の耐久性が低下すると考えられる。したがって、電極体の巻きずれを測定することにより、正極及び負極における各合剤層の厚さの均一性を確かめ、非水電解質二次電池の耐久性を評価できると考えられる。
(3) Good winding rate test For the purpose of confirming the uniformity of the thickness of the positive electrode and the negative electrode, the good winding rate of the electrode bodies produced in Examples and Comparative Examples was evaluated. More specifically, with respect to the electrode bodies produced in each Example and each Comparative Example, the maximum value (winding deviation) of the deviation width in the axial direction of the winding structure of the positive electrode, the negative electrode and the separator was measured. The smaller the unwinding, the higher the uniformity of the thickness of the positive electrode or the negative electrode, that is, the thickness of the positive electrode mixture layer and the negative electrode mixture layer. As described above, when the thicknesses of the positive electrode and the negative electrode become non-uniform, it is considered that the deterioration of the active material is locally accelerated and the durability of the non-aqueous electrolyte secondary battery is lowered. Therefore, it is considered that the durability of the non-aqueous electrolyte secondary battery can be evaluated by confirming the uniformity of the thickness of each mixture layer in the positive electrode and the negative electrode by measuring the unwinding of the electrode body.

本測定試験では、各電極体において、巻きずれが±1mm以内の範囲に入るものを「合格」、当該範囲に入らないものを「不合格」と評価した。各実施例及び各比較例ごとに、50個の電極体の巻きずれを測定し、巻きずれの評価が「合格」であった電極体の個数の総数に対する割合(巻回良品率)を求めた。得られた巻回良品率に基づいて、下記の基準により実施例および比較例の非水電解質二次電池の耐久性を評価した。

○:実施例1を100としたときの巻回良品率が95%以上
×:実施例1を100としたときの巻回良品率が95%未満 表1に、各実施例及び各比較例について、正極合剤スラリーの粘度、電極体の巻回良品率、及び、巻回良品率に基づく耐久性の評価結果を示す。
In this measurement test, in each electrode body, those having a winding deviation within ± 1 mm were evaluated as "pass", and those not within the range were evaluated as "fail". For each Example and each Comparative Example, the winding deviation of 50 electrode bodies was measured, and the ratio (winding non-defective product rate) to the total number of electrode bodies whose evaluation of the winding deviation was "pass" was obtained. .. Based on the obtained non-defective winding rate, the durability of the non-aqueous electrolyte secondary batteries of Examples and Comparative Examples was evaluated according to the following criteria.

◯: The good winding rate when Example 1 is 100 or more ×: The good winding rate when Example 1 is 100 is less than 95% Table 1 shows each Example and each Comparative Example. , The viscosity of the positive electrode mixture slurry, the non-defective winding rate of the electrode body, and the evaluation result of durability based on the non-defective winding rate are shown.

なお、比較例5については、ハイレート特性の結果は示されているが耐久性試験の結果が省略されている。これは、比較例1、3、4の非水電解質電池のように表1のハイレート特性(抵抗)の結果が実施例1に対して100%を上回ると耐久性も100%を下回っており、比較例5もハイレート特性(抵抗)の結果が100%を上回っていることから、耐久性が実施例1に対して100%を下回ることが推測されるため、耐久性試験を省略したためである。 Regarding Comparative Example 5, although the result of the high rate characteristic is shown, the result of the durability test is omitted. This is because, as in the non-aqueous electrolyte batteries of Comparative Examples 1, 3 and 4, when the result of the high rate characteristic (resistance) in Table 1 exceeds 100% with respect to Example 1, the durability is also less than 100%. This is because the result of the high rate characteristic (resistance) of Comparative Example 5 also exceeds 100%, and therefore the durability is estimated to be less than 100% of that of Example 1, so that the durability test is omitted.

Figure 0006851240
Figure 0006851240

表1の結果から明らかなように、負極活物質としてリチウムチタン複合酸化物を用いた非水電解質二次電池において、細孔体積V100Nが8mm/g以上である第1正極活物質と、細孔体積V100Nが5mm/g以下である第2正極活物質とを含み、第1/第2細孔体積比率が4倍以上であり、第1正極活物質の含有量が第1正極活物質及び第2正極活物質の総量に対して30質量%以下であり、正極が保持する非水電解質の保持量が、正極合剤層の単位体積当たりで0.49g/cm以上である、実施例1〜3の非水電解質二次電池は、上記構成のいずれかを満たしていない比較例1〜5と比較して、ハイレート特性、充放電サイクル後の耐久性及び巻回良品率において顕著に優れることがわかった。巻回良品率が優れる非水電解質二次電池では、正極及び負極の厚さの均一性に優れるため、非水電解質二次電池の耐久性に優れると考えられる。 As is clear from the results in Table 1, in the non-aqueous electrolyte secondary battery using lithium titanium composite oxide as the negative electrode active material, the first positive electrode active material having a pore volume V 100N of 8 mm 3 / g or more and It contains a second positive electrode active material having a pore volume V 100N of 5 mm 3 / g or less, a first / second pore volume ratio of 4 times or more, and a content of the first positive electrode active material of the first positive electrode. It is 30% by mass or less with respect to the total amount of the active material and the second positive electrode active material, and the holding amount of the non-aqueous electrolyte held by the positive electrode is 0.49 g / cm 3 or more per unit volume of the positive electrode mixture layer. The non-aqueous electrolyte secondary batteries of Examples 1 to 3 have higher rate characteristics, durability after a charge / discharge cycle, and a good winding rate as compared with Comparative Examples 1 to 5 which do not satisfy any of the above configurations. It turned out to be significantly better. A non-aqueous electrolyte secondary battery having an excellent winding non-defective rate is considered to have excellent durability of the non-aqueous electrolyte secondary battery because the thickness of the positive electrode and the negative electrode is excellent in uniformity.

10 非水電解質二次電池、12 正極、14 負極、16 セパレータ、18 正極端子、20 負極端子、22 封口板、24 外装缶、26 電極体、28 底部、30 注液口、32 ガス排出弁。 10 Non-aqueous electrolyte secondary battery, 12 positive electrode, 14 negative electrode, 16 separator, 18 positive terminal, 20 negative electrode terminal, 22 sealing plate, 24 outer can, 26 electrode body, 28 bottom, 30 injection port, 32 gas discharge valve.

Claims (2)

第1正極活物質及び第2正極活物質を含む正極合剤層を有する正極と、
負極活物質としてリチウムチタン複合酸化物を含む負極合剤層を有する負極と、
非水電解質と、を備え、
前記第1正極活物質は、細孔径が100nm以下である細孔の質量当たりの体積が8mm/g以上であり、
前記第2正極活物質は、細孔径が100nm以下である細孔の質量当たりの体積が5mm/g以下であり、
前記第1正極活物質における細孔径が100nm以下である細孔の質量当たりの体積は、前記第2正極活物質における細孔径が100nm以下である細孔の質量当たりの体積に対して4倍以上であり、
前記第1正極活物質の含有量が、前記第1正極活物質及び前記第2正極活物質の総量に対して30質量%以下であり、
前記正極が保持する前記非水電解質の保持量が、正極合剤層の単位体積当たりで0.49g/cm以上であり、
前記第1正極活物質及び前記第2正極活物質がいずれも、一般式(1)Li 1+x 2+b (一般式(1)中、x、a及びbは、x+a=1、−0.2≦x≦0.2、及び、−0.1≦b≦0.1の条件を満たし、Mは、Ni、Co、Mn及びAlからなる群より選択される少なくとも一種の元素を含む金属元素である)で表される層状リチウム遷移金属酸化物である、非水電解質二次電池。
A positive electrode having a positive electrode mixture layer containing a first positive electrode active material and a second positive electrode active material, and
A negative electrode having a negative electrode mixture layer containing a lithium-titanium composite oxide as a negative electrode active material,
With non-aqueous electrolyte,
The first positive electrode active material has a volume of 8 mm 3 / g or more per mass of pores having a pore diameter of 100 nm or less.
The second positive electrode active material has a volume of 5 mm 3 / g or less per mass of pores having a pore diameter of 100 nm or less.
The volume per mass of the pores having a pore diameter of 100 nm or less in the first positive electrode active material is four times or more the volume per mass of the pores having a pore diameter of 100 nm or less in the second positive electrode active material. And
The content of the first positive electrode active material is 30% by mass or less with respect to the total amount of the first positive electrode active material and the second positive electrode active material.
The amount held in the non-aqueous electrolyte cathode is held state, and are 0.49 g / cm 3 or more per unit volume of the positive electrode mixture layer,
The first both the positive electrode active material and the second cathode active material, in the general formula (1) Li 1 + x M a O 2 + b ( formula (1), x, a and b, x + a = 1, -0 . Satisfying the conditions of 2 ≦ x ≦ 0.2 and −0.1 ≦ b ≦ 0.1, M is a metal element containing at least one element selected from the group consisting of Ni, Co, Mn and Al. A non-aqueous electrolyte secondary battery, which is a layered lithium transition metal oxide represented by).
前記第1正極活物質及び前記第2正極活物質の平均粒径がいずれも2μm以上である、請求項1に記載の非水電解質二次電池。
The non-aqueous electrolyte secondary battery according to claim 1, wherein both the first positive electrode active material and the second positive electrode active material have an average particle size of 2 μm or more.
JP2017068824A 2017-03-30 2017-03-30 Non-aqueous electrolyte secondary battery Active JP6851240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017068824A JP6851240B2 (en) 2017-03-30 2017-03-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068824A JP6851240B2 (en) 2017-03-30 2017-03-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2018170240A JP2018170240A (en) 2018-11-01
JP6851240B2 true JP6851240B2 (en) 2021-03-31

Family

ID=64018005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068824A Active JP6851240B2 (en) 2017-03-30 2017-03-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6851240B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396492B (en) * 2019-02-08 2024-04-16 三洋电机株式会社 Method for manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6705068B1 (en) * 2020-01-17 2020-06-03 住友化学株式会社 Positive electrode active material for all-solid-state lithium-ion battery, electrode and all-solid-state lithium-ion battery
JP6930015B1 (en) * 2020-11-19 2021-09-01 住友化学株式会社 Precursor, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556377B2 (en) * 2001-04-20 2010-10-06 株式会社Gsユアサ Positive electrode active material and manufacturing method thereof, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005123179A (en) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp Lithium compound oxide particle for lithium secondary battery positive electrode material, and lithium secondary battery positive electrode using the same, and the lithium secondary battery
JP2007220455A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2011003450A (en) * 2009-06-19 2011-01-06 Panasonic Corp All solid polymer battery
WO2012111813A1 (en) * 2011-02-18 2012-08-23 株式会社 東芝 Positive pole, non-aqueous electrolyte battery and battery pack

Also Published As

Publication number Publication date
JP2018170240A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2022044935A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2018061298A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2018105539A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6811404B2 (en) Non-aqueous electrolyte secondary battery
WO2018003477A1 (en) Positive electrode active material, positive electrode, and non-aqueous electrolytic secondary cell
JP6851236B2 (en) Non-aqueous electrolyte secondary battery
JPWO2020044614A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP6854460B2 (en) Non-aqueous electrolyte secondary battery
JPWO2019131234A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
WO2016151979A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
JP6851240B2 (en) Non-aqueous electrolyte secondary battery
JP6865398B2 (en) Non-aqueous electrolyte secondary battery
WO2017056449A1 (en) Nonaqueous electrolyte secondary battery
WO2021181973A1 (en) Nonaqueous electrolyte secondary battery
JP6920639B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
WO2021241078A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021186950A1 (en) Non-aqueous electrolyte secondary battery
JP6986688B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP7022946B2 (en) Non-aqueous electrolyte secondary battery
WO2022044489A1 (en) Positive-electrode active material for nonaqueous-electrolyte secondary cell, and nonaqueous-electrolyte secondary cell
WO2021186949A1 (en) Nonaqueous electrolyte secondary battery
JPWO2020174794A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
JP7011427B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7555000B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021210444A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R150 Certificate of patent or registration of utility model

Ref document number: 6851240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150