JP6850238B2 - Gas-liquid separator and oil-cooled compressor - Google Patents

Gas-liquid separator and oil-cooled compressor Download PDF

Info

Publication number
JP6850238B2
JP6850238B2 JP2017201983A JP2017201983A JP6850238B2 JP 6850238 B2 JP6850238 B2 JP 6850238B2 JP 2017201983 A JP2017201983 A JP 2017201983A JP 2017201983 A JP2017201983 A JP 2017201983A JP 6850238 B2 JP6850238 B2 JP 6850238B2
Authority
JP
Japan
Prior art keywords
gas
flow path
oil
space
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201983A
Other languages
Japanese (ja)
Other versions
JP2019072688A (en
Inventor
耕平 黒田
耕平 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017201983A priority Critical patent/JP6850238B2/en
Priority to PCT/JP2018/035457 priority patent/WO2019077945A1/en
Priority to CN201880067997.9A priority patent/CN111212683A/en
Publication of JP2019072688A publication Critical patent/JP2019072688A/en
Application granted granted Critical
Publication of JP6850238B2 publication Critical patent/JP6850238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits

Description

本発明は、気液分離器及び油冷式圧縮機に関する。 The present invention relates to a gas-liquid separator and an oil-cooled compressor.

特許文献1には、気液分離器の一例である油分離器が開示されている。この油分離器は、油冷式圧縮機の吐出空気に含まれる油分を遠心力によって一次分離する容器と、一次分離後の吐出空気に含まれる油分を捕捉して二次分離する油分離エレメントとを備える。 Patent Document 1 discloses an oil separator which is an example of a gas-liquid separator. This oil separator has a container that first separates the oil contained in the discharged air of the oil-cooled compressor by centrifugal force, and an oil separation element that captures the oil contained in the discharged air after the primary separation and secondarily separates it. To be equipped.

特開2011−41920号公報Japanese Unexamined Patent Publication No. 2011-41920

容器における油の一次分離の効率を向上すれば、油分離エレメントで捕捉する必要のある油量を低減し、油分離エレメントの使用寿命を延ばすことができ、油分離エレメントの目詰まり等の不具合発生のおそれも低減できる。 If the efficiency of primary oil separation in the container is improved, the amount of oil that needs to be captured by the oil separation element can be reduced, the service life of the oil separation element can be extended, and problems such as clogging of the oil separation element occur. The risk of

しかし、特許文献1の油分離器では、容器における油分の一次分離の効率向上については、特に考慮されてない。 However, in the oil separator of Patent Document 1, the improvement of the efficiency of the primary separation of the oil component in the container is not particularly considered.

本発明は、遠心力によって気体に含まれる液体を一次分離する容器と、一次分離後の気体から液体を捕捉して二次分離する液分離エレメントとを備える気液分離器において、一次分離の効率を向上することを課題とする。また、本発明は、そのような気液分離器(油分離器)を備える油冷式圧縮機を提供することを課題とする。 The present invention relates to a gas-liquid separator comprising a container for primary separation of a liquid contained in a gas by centrifugal force and a liquid separation element for capturing the liquid from the gas after the primary separation and secondary separation. The challenge is to improve. Another object of the present invention is to provide an oil-cooled compressor provided with such a gas-liquid separator (oil separator).

本発明の第1の態様は、有底の筒状であって、導入口から液体を含む気体が導入される容器と、前記容器と仕切板部とによって画定される第1空間に配置され、前記仕切板部から下向きに延び、前記容器の前記側壁から離間して設けられている、両端開口の筒部と、前記筒部から前記側壁に向けて突出すると共に、平面視で前記側壁に沿って延在し、前記側壁、前記筒部、及び前記仕切板部と共に前記導入口から導入された前記気体が流れる案内流路を画定し、前記案内流路は前記導入口の位置する側とは反対側に前記第1空間に開放する出口を有している、整流部と、前記案内流路の前記導入口の位置する側を閉鎖する閉鎖部と、前記仕切板部の上方に設けられ、前記仕切板部と共に第2空間を画定するケーシングと、前記第2空間に、前記ケーシングの周面との間に隙間を設けて配置された液分離エレメントと、前記仕切板部に形成され、前記筒部内と前記第2空間とを直接かつ流体的に接続する接続流路と、前記液分離エレメントをその外側から内側に通過した前記気体を外部へ流出させる導出口と、一端が前記接続流路に直接的かつ流体的に接続されるように前記仕切板部内に形成された放気ポートと、前記放気ポートを介して前記液分離エレメントより上流側の前記第1空間および前記第2空間に流体的に連通し、当該連通した位置における気体の圧力が閾値未満であれば閉弁状態であり、当該圧力が閾値以上となると開弁して前記接続流路を大気開放する安全弁とを備える、気液分離器を提供する。
The first aspect of the present invention is a bottomed tubular shape, which is arranged in a first space defined by a container into which a gas containing a liquid is introduced from an introduction port, and the container and a partition plate portion. A tubular portion having openings at both ends, which extends downward from the partition plate portion and is provided apart from the side wall of the container, and projects from the tubular portion toward the side wall, and along the side wall in a plan view. A guide flow path through which the gas introduced from the introduction port flows is defined together with the side wall, the cylinder portion, and the partition plate portion, and the guide flow path is the side on which the introduction port is located. A rectifying section having an outlet that opens to the first space on the opposite side, a closing section that closes the side of the guide flow path where the introduction port is located, and a partition plate portion are provided above the partition plate portion. A casing that defines a second space together with the partition plate portion, a liquid separation element that is arranged in the second space with a gap between the peripheral surface of the casing, and a liquid separation element that is formed in the partition plate portion and described above. A connection flow path that directly and fluidly connects the inside of the cylinder and the second space, an outlet that allows the gas that has passed through the liquid separation element from the outside to the inside to flow out to the outside, and one end of the connection flow path. To the first space and the second space on the upstream side of the liquid separation element via the air release port formed in the partition plate portion so as to be directly and fluidly connected to the liquid separation element. It is fluidly communicated, and if the pressure of the gas at the communicating position is less than the threshold value, the valve is closed, and when the pressure is equal to or higher than the threshold value, the valve is opened to open the connecting flow path to the atmosphere . A gas-liquid separator is provided.

導入口から第1空間に導入された気体は、容器の側壁に沿った旋回流となって下方へ流れる。気体に含まれる液体は、遠心力によって分離されて側壁に付着し、側壁を伝って落下して容器下方に回収される(一次分離)。容器下方に達した後、気体は筒部内を上昇し、接続流路を介して第2空間に流入する。第2空間に流入した気体は、液分離エレメントを外側から内側に通過し、気体に含まれる液体は液分離エレメントで捕捉されることで気体から分離される(二次分離)。二次分離後の気体は導出口から導出される。 The gas introduced into the first space from the introduction port flows downward as a swirling flow along the side wall of the container. The liquid contained in the gas is separated by centrifugal force, adheres to the side wall, falls along the side wall, and is collected under the container (primary separation). After reaching the lower part of the container, the gas rises in the cylinder portion and flows into the second space through the connecting flow path. The gas flowing into the second space passes through the liquid separation element from the outside to the inside, and the liquid contained in the gas is separated from the gas by being captured by the liquid separation element (secondary separation). The gas after the secondary separation is derived from the outlet.

導入口から第1空間への導入の初期段階における気体は、側壁、筒部、仕切板部、及び整流部で画定された案内流路、つまり容器の横断面での断面積よりも十分に小さい断面積を有する流路を通るので、流路断面積が急激に拡大することに起因する空気流の速度低下を回避できる。言い換えれば、整流部が設けられていない場合と比較して、導入口から第1空間への流入の初期段階における旋回流の流速が速くなる。また、側壁、筒部、仕切板部、及び整流部で画定された案内流路を通ることで、旋回流の向きが誘導される。これらの要因、つまり、旋回流の流速向上と、旋回流の向きの誘導とによって、一次分離による液体の分離の効率を向上できる。一次分離の効率向上により、液分離エレメントによる二次分離によって分離すべき液体の量を低減できる。その結果、液分離エレメントの使用寿命を延ばすことができ、液分離エレメントの目詰まり等の不具合発生のおそれも低減できる。 The gas in the initial stage of introduction from the introduction port to the first space is sufficiently smaller than the cross-sectional area of the guide flow path defined by the side wall, the cylinder part, the partition plate part, and the rectifying part, that is, the cross-sectional area of the container. Since it passes through a flow path having a cross-sectional area, it is possible to avoid a decrease in the speed of the air flow due to a rapid expansion of the cross-sectional area of the flow path. In other words, the flow velocity of the swirling flow in the initial stage of the inflow from the introduction port to the first space becomes faster than in the case where the rectifying unit is not provided. Further, the direction of the swirling flow is guided by passing through the guide flow path defined by the side wall, the tubular portion, the partition plate portion, and the rectifying portion. By these factors, that is, the improvement of the flow velocity of the swirling flow and the induction of the direction of the swirling flow, the efficiency of liquid separation by the primary separation can be improved. By improving the efficiency of the primary separation, the amount of liquid to be separated by the secondary separation by the liquid separation element can be reduced. As a result, the service life of the liquid separation element can be extended, and the possibility of problems such as clogging of the liquid separation element can be reduced.

前記案内流路の前記気体が流れる方向と直交する方向の断面積は、前記筒部内の前記気体が流れる方向と直交する方向の断面積よりも小さく、前記筒部内の前記気体が流れる方向と直交する方向の断面積は、前記容器の横断面の断面積よりも小さいことが好ましい。 The cross-sectional area of the guide flow path in the direction orthogonal to the gas flow direction is smaller than the cross-sectional area in the direction orthogonal to the gas flow direction in the cylinder portion, and is orthogonal to the gas flow direction in the cylinder portion. The cross-sectional area in the direction of gas is preferably smaller than the cross-sectional area of the cross section of the container.

この構成により、筒内部に液分離エレメントが設けられていない方式の気液分離器において、筒部内の気体が流れる方向と直交する方向の断面積が相対的に大きくなるので、筒部内を上昇する気体の流れ(上昇流)の流速の増加が抑制される。上昇流の流速が低く保たれることで、気体に含まれる液体が重力によって容器下方に落下しやすくなり、一次分離の効率がさらに向上する。 With this configuration, in a gas-liquid separator of a type in which a liquid separation element is not provided inside the cylinder, the cross-sectional area in the direction orthogonal to the direction in which the gas flows in the cylinder is relatively large, so that the inside of the cylinder rises. The increase in the flow velocity of the gas flow (rising flow) is suppressed. By keeping the flow velocity of the ascending flow low, the liquid contained in the gas is likely to fall below the container due to gravity, and the efficiency of the primary separation is further improved.

前述のように整流部によって画定された流路断面積が限定された案内流路を旋回流が通ることで、一次分離の効率を高めている。さらに、筒内部に液分離エレメントが設けられていない方式の気液分離器とされることで、上昇流の流速が低く保たれる。そのため、接続流路に流体的に連通している安全弁、つまり液分離エレメントよりも上流に接続された安全弁を開弁した際に、気体と共に大気中に排出される液体の量を、効果的に低減できる。 As described above, the swirling flow passes through the guide flow path having a limited flow path cross-sectional area defined by the rectifying section, thereby improving the efficiency of the primary separation. Further, the gas-liquid separator of the type in which the liquid separation element is not provided inside the cylinder keeps the flow velocity of the ascending flow low. Therefore, when the safety valve that fluidly communicates with the connection flow path, that is, the safety valve that is connected upstream of the liquid separation element is opened, the amount of liquid discharged into the atmosphere together with the gas is effectively reduced. Can be reduced.

安全弁は、液体が流れる経路において液分離エレメントよりも上流に設けられている。そのため、安全弁の開弁時に液分離エレメントよりも下流の圧力が急激に低下して液分離エレメントを通過する気体の流速が急上昇するのを回避できる。液分離エレメントを通過する気体の流速の急上昇は、液分離エレメントによる液分離の効率低下と、それに伴う液体の流出、液分離エレメント自体の故障等の不具合の原因となり得る。液分離エレメントを通過する気体の流速の急上昇を回避することで、これらの不具合を防止できる。 The safety valve is provided upstream of the liquid separation element in the path through which the liquid flows. Therefore, when the safety valve is opened, it is possible to avoid a sudden decrease in pressure downstream of the liquid separation element and a sudden increase in the flow velocity of the gas passing through the liquid separation element. A sudden increase in the flow velocity of the gas passing through the liquid separation element may cause a decrease in the efficiency of the liquid separation by the liquid separation element, a liquid outflow, and a failure of the liquid separation element itself. These problems can be prevented by avoiding a rapid increase in the flow velocity of the gas passing through the liquid separation element.

前記案内流路の前記気体が流れる方向と直交する方向の断面積は、前記導入口から前記出口にわたって一定であってもよい。また、前記案内流路の前記気体が流れる方向と直交する方向の断面積は、前記導入口から前記出口に向けて漸増してもよい。案内流路の断面積が出口に向けて漸増することで、案内流路を流れる旋回流の流速は、導入口側において相対的に高くなり、案内流路の導入口側でより効果的に遠心力によって気体から液体を分離できる。その結果、筒体内の上昇流に含まれる液体、つまり液分離エレメントによる二次分離に供される気体や、安全弁の開弁時に大気中に排出される気体に含まれる液体の量をより確実に低減できる。 The cross-sectional area of the guide flow path in the direction orthogonal to the flow direction of the gas may be constant from the introduction port to the outlet. Further, the cross-sectional area of the guide flow path in the direction orthogonal to the flow direction of the gas may be gradually increased from the introduction port to the outlet. As the cross-sectional area of the guide flow path gradually increases toward the outlet, the flow velocity of the swirling flow flowing through the guide flow path becomes relatively high on the introduction port side, and is more effectively centrifuged on the introduction port side of the guide flow path. A liquid can be separated from a gas by force. As a result, the amount of liquid contained in the ascending current inside the cylinder, that is, the gas used for secondary separation by the liquid separation element and the amount of liquid contained in the gas discharged into the atmosphere when the safety valve is opened, is more reliable. Can be reduced.

前記整流部は、前記案内流路の前記出口が、前記導入口から見て、前記筒部の背後に位置するように設けられることが好ましい。 The rectifying portion is preferably provided so that the outlet of the guide flow path is located behind the tubular portion when viewed from the introduction port.

この構成、つまり整流部が旋回流の流れる向きに十分な長さを有する構成によって、前述した案内流路における旋回流の流速向上と、旋回流の向きの誘導とによる一次分離の効率向上を確実に実現できる。 This configuration, that is, the configuration in which the rectifying unit has a sufficient length in the direction of the swirling flow, ensures the improvement of the flow velocity of the swirling flow in the above-mentioned guide flow path and the improvement of the efficiency of the primary separation by guiding the direction of the swirling flow. Can be realized.

前記整流部は、内縁は前記筒部に接続し、外縁は前記側壁との間に隙間を有することが好ましい。 It is preferable that the inner edge of the rectifying portion is connected to the tubular portion and the outer edge has a gap between the rectifying portion and the side wall.

この構成により、一次分離時に案内流路内で分離されて側壁に付着した液体は、整流部の外縁と側壁との間の隙間を通って容器下方に移動して回収される。つまり、案内流路内に一次分離で分離された液体が残留するのを回避できる。 With this configuration, the liquid separated in the guide flow path during the primary separation and adhering to the side wall moves to the lower side of the container through the gap between the outer edge of the rectifying portion and the side wall and is collected. That is, it is possible to prevent the liquid separated by the primary separation from remaining in the guide flow path.

前記整流部は、前記筒部から前記側壁に向けて下向きに傾斜していてもよい。 The rectifying portion may be inclined downward from the tubular portion toward the side wall.

この構成により、一次分離時に整流部に付着した液体は、重力によって整流部の外縁と側壁との間の隙間に向かって流れ、この隙間を介して容器下方に移動して回収される。つまり、案内流路内に一次分離で分離された液体の残留をより確実に回避できる。 With this configuration, the liquid adhering to the rectifying section during the primary separation flows toward the gap between the outer edge of the rectifying section and the side wall due to gravity, and moves downward to the lower part of the container through this gap to be collected. That is, it is possible to more reliably avoid the residual liquid separated by the primary separation in the guide flow path.

本発明の第2の態様は、油冷式の圧縮機本体と、前記圧縮機本体で圧縮された気体から油を分離する油分離器と、前記油分離器内を大気開放可能な安全弁とを備え、前記油分離器は、有底の筒状であって、導入口から前記圧縮機本体で圧縮された油を含む気体が導入される容器と、前記容器と前記仕切板部とによって画定される第1空間に配置され、前記仕切板部から下方に向けて延び、前記容器の前記側壁から離間して設けられている、両端開口の筒部と、前記筒部から前記側壁に向けて突出すると共に、平面視で前記側壁に沿って延在し、前記側壁、前記筒部、及び前記仕切板部と共に前記導入口から導入された前記気体が流れる案内流路を画定し、前記案内流路は前記導入口の位置する側とは反対側に前記第1空間に開放する出口を有している、整流部と、前記案内流路の前記導入口の位置する側を閉鎖する閉鎖部と、前記仕切板部の上方に設けられ、前記仕切板部と共に第2空間を画定するケーシングと、前記第2空間に、前記ケーシングの周面との間に隙間を設けて配置された油分離エレメントと、前記筒部内と前記第2空間とを流体的に接続する接続流路と、前記油分離エレメントをその外側から内側に通過した前記気体を外部へ流出させる導出口と、一端が前記接続流路に直接的かつ流体的に接続されるように前記仕切板部内に形成された放気ポートと、前記放気ポートを介して前記液分離エレメントより上流側の前記第1空間および前記第2空間に流体的に連通し、当該連通した位置における気体の圧力が閾値未満であれば閉弁状態であり、当該圧力が閾値以上となると開弁して前記接続流路を大気開放する安全弁とを備える、油冷式圧縮機を提供する。
A second aspect of the present invention comprises an oil-cooled compressor body, an oil separator that separates oil from the gas compressed by the compressor body, and a safety valve that can open the inside of the oil separator to the atmosphere. The oil separator has a bottomed tubular shape, and is defined by a container into which a gas containing oil compressed by the compressor main body is introduced from an introduction port, and the container and the partition plate portion. A tubular portion with openings at both ends, which is arranged in the first space, extends downward from the partition plate portion, and is provided apart from the side wall of the container, and protrudes from the tubular portion toward the side wall. At the same time, the guide flow path extending along the side wall in a plan view, defining the guide flow path through which the gas introduced from the introduction port flows together with the side wall, the cylinder portion, and the partition plate portion, is defined. Has an outlet that opens into the first space on the side opposite to the side where the introduction port is located, a rectifying unit, and a closing portion that closes the side of the guide flow path where the introduction port is located. A casing provided above the partition plate portion and defining a second space together with the partition plate portion, and an oil separation element arranged in the second space with a gap between the peripheral surface of the casing. , A connection flow path that fluidly connects the inside of the cylinder and the second space, an outlet that allows the gas that has passed through the oil separation element from the outside to the inside to flow out to the outside, and one end of the connection flow path. To the first space and the second space on the upstream side of the liquid separation element via the air release port formed in the partition plate portion so as to be directly and fluidly connected to the air. fluid communication is closed if the pressure is less than the threshold of the gas at the position through the communication, obtain Preparations and safety valve in which the pressure is atmospheric release the connecting channel to open it becomes equal to or larger than the threshold value , Provides an oil-cooled compressor.

本発明によれば、本発明は、遠心力によって気体から液体を一次分離する容器と、一次分離後の気体から液体をさらに二次分離する液分離エレメントとを備える気液分離器において、一次分離の効率を向上できる。 According to the present invention, the present invention provides a primary separation in a gas-liquid separator comprising a container for primary separation of a liquid from a gas by centrifugal force and a liquid separation element for further secondary separation of the liquid from the gas after the primary separation. Efficiency can be improved.

本発明の実施形態に係る油分離器(気液分離器)を備える圧縮機の系統図。The system diagram of the compressor provided with the oil separator (gas-liquid separator) which concerns on embodiment of this invention. 油分離器の縦断面図。Longitudinal section of the oil separator. 図2の部分IIIの拡大図。Enlarged view of Part III of FIG. 図2の線IV-IVに沿った断面図。Sectional drawing along line IV-IV of FIG.

図1は、本発明の実施形態に係る油分離器(気液分離器)1を備えた油冷式圧縮機2を示す。油冷式圧縮機2は、油冷式の圧縮機(本実施形態ではスクリュー圧縮機)である圧縮機本体3を備える。 FIG. 1 shows an oil-cooled compressor 2 provided with an oil separator (gas-liquid separator) 1 according to an embodiment of the present invention. The oil-cooled compressor 2 includes a compressor main body 3 which is an oil-cooled compressor (screw compressor in this embodiment).

圧縮機本体3は、吸込口3aから吸い込んだ空気を圧縮して吐出口3bから吐出する。圧縮機本体3には、潤滑及び冷却のための液体状の油が、給油流路4,5を介して供給される。そのため、吐出口3aから吐出される圧縮された空気には、油が含まれている。吐出口3aは吐出流路6の一端に流体的に接続されており、吐出流路6の他端は油分離器1の導入口21cに流体的に接続されている。 The compressor main body 3 compresses the air sucked from the suction port 3a and discharges it from the discharge port 3b. Liquid oil for lubrication and cooling is supplied to the compressor main body 3 via the oil supply passages 4 and 5. Therefore, the compressed air discharged from the discharge port 3a contains oil. The discharge port 3a is fluidly connected to one end of the discharge flow path 6, and the other end of the discharge flow path 6 is fluidly connected to the introduction port 21c of the oil separator 1.

圧縮機本体3の吐出口3bから吐出された圧縮された空気は、吐出流路6を経て導入口21cから油分離器1内に導入される。油分離器1内に導入された空気は、容器21内での遠心力による一次分離と、それに続く油分離エレメント35での捕捉による二次分離とを経て、導出口41aから導出される。導出口41aには、供給流路7の一端が流体的に接続されている。供給流路7の他端は図示しない需要設備(例えば空圧機器)に流体的に接続されている。油分離器1の導出口41aから導出された油分離後の空気は、供給流路7を介して需要設備に送出される。供給流路7には、保圧逆止弁8と空気冷却器(熱交換器)9が設けられている。

The compressed air discharged from the discharge port 3b of the compressor main body 3 is introduced into the oil separator 1 from the introduction port 21c via the discharge flow path 6. The air introduced into the oil separator 1 is led out from the outlet 41a through a primary separation by centrifugal force in the container 21 and a secondary separation by subsequent capture by the oil separation element 35. One end of the supply flow path 7 is fluidly connected to the outlet 41a. The other end of the supply flow path 7 is fluidly connected to a demand facility (for example, a pneumatic device) (not shown). The air after oil separation led out from the outlet 41a of the oil separator 1 is sent to the demand equipment via the supply flow path 7. The supply flow path 7 is provided with a pressure-holding check valve 8 and an air cooler (heat exchanger) 9.

油分離器1において一次分離された油は、油溜り24に一時的に溜められる。油溜り24は、給油流路4を介して圧縮機本体3に流体的に接続されている。油溜り24の油は、圧縮機本体3と油分離器1との差圧により、給油流路4を通って圧縮機本体3に戻される。給油流路4には、油冷却器(熱交換器)10と、異物除去等のための油フィルタ11とが設けられている。また、油冷却器10を迂回するバイパス流路12が設けられている。三方弁13によって、油溜り24からの油が油冷却器10を通る状態と、油冷却器10を通らずにバイパス流路12を通る状態とを切り換えることができる。この切り換えによって、圧縮機本体3に供給される油の温度が制御される。 The oil primary separated in the oil separator 1 is temporarily stored in the oil sump 24. The oil sump 24 is fluidly connected to the compressor main body 3 via the oil supply flow path 4. The oil in the oil sump 24 is returned to the compressor main body 3 through the oil supply flow path 4 by the differential pressure between the compressor main body 3 and the oil separator 1. The oil supply flow path 4 is provided with an oil cooler (heat exchanger) 10 and an oil filter 11 for removing foreign matter and the like. Further, a bypass flow path 12 that bypasses the oil cooler 10 is provided. The three-way valve 13 can switch between a state in which the oil from the oil sump 24 passes through the oil cooler 10 and a state in which the oil passes through the bypass flow path 12 without passing through the oil cooler 10. By this switching, the temperature of the oil supplied to the compressor main body 3 is controlled.

油分離器1において二次分離された油は、油溜り40に一時的に溜められる。油溜り40は、給油流路5を介して圧縮機本体3に流体的に接続されている。油溜り40の油は、圧縮機本体3と油分離器1との差圧により、給油流路5を通って圧縮機本体3に戻される。給油流路5には、逆止弁14が設けられている。 The oil secondarily separated in the oil separator 1 is temporarily stored in the oil sump 40. The oil sump 40 is fluidly connected to the compressor main body 3 via the oil supply flow path 5. The oil in the oil sump 40 is returned to the compressor main body 3 through the oil supply flow path 5 by the differential pressure between the compressor main body 3 and the oil separator 1. A check valve 14 is provided in the oil supply flow path 5.

以下、図2から図4をさらに参照して油分離器1の構造を説明する。 Hereinafter, the structure of the oil separator 1 will be described with reference to FIGS. 2 to 4.

油分離器1は容器21を備える。本実施形態における容器21は、全体として細長い一端開口の円筒状であって、円形の底壁21aと、底壁21aから延びる円筒状の側壁21bとを備える。側壁21bの上端開口は、仕切板部22によって閉じられている。側壁21bの上部側(仕切板部22に比較的近接した位置)に、圧縮機本体3で圧縮された空気の導入口21c(前述のように吐出流路6が接続されている)が設けられている。 The oil separator 1 includes a container 21. The container 21 in the present embodiment has an elongated cylindrical shape with one end opening as a whole, and includes a circular bottom wall 21a and a cylindrical side wall 21b extending from the bottom wall 21a. The upper end opening of the side wall 21b is closed by the partition plate portion 22. An air introduction port 21c (the discharge flow path 6 is connected as described above) compressed by the compressor main body 3 is provided on the upper side of the side wall 21b (a position relatively close to the partition plate portion 22). ing.

容器21の側壁21b、容器21の底壁21a、及び仕切板部22によって、密閉された空間である第1空間23が画定されている。第1空間23の下部、つまり容器21の底壁21a付近の空間が油溜り24を構成している。 The first space 23, which is a closed space, is defined by the side wall 21b of the container 21, the bottom wall 21a of the container 21, and the partition plate portion 22. The lower part of the first space 23, that is, the space near the bottom wall 21a of the container 21, constitutes the oil sump 24.

第1空間23には両端開口の円筒体(筒部)25が配置されている。円筒体25は、上端が仕切板部22に固定され、容器21の底壁21aに向けて下向きに延びている。円筒体25の下端は、容器21の底壁21aに対して十分離れて上方に位置している。図4に最も明瞭に示すように、円筒体25は容器21の側壁21bに対して離間し、かつ同軸となるように配置されている。円筒体25と側壁21bとの間には空間26が設けられている。円筒体25の内部には、部材や要素(例えば、後述する油分離エレメント35のような要素)は配置されていない。 A cylindrical body (cylinder portion) 25 having openings at both ends is arranged in the first space 23. The upper end of the cylindrical body 25 is fixed to the partition plate portion 22, and extends downward toward the bottom wall 21a of the container 21. The lower end of the cylindrical body 25 is located above the bottom wall 21a of the container 21 sufficiently apart from the bottom wall 21a. As most clearly shown in FIG. 4, the cylindrical body 25 is arranged so as to be separated from the side wall 21b of the container 21 and coaxial with the side wall 21b. A space 26 is provided between the cylindrical body 25 and the side wall 21b. No member or element (for example, an element such as the oil separation element 35 described later) is arranged inside the cylindrical body 25.

第1空間23、より具体的には、円筒体25と容器21の側壁21bとの間の空間26には、整流板(整流部)27が配置されている。本実施形態における整流板27は、平面視で概ね円弧状に湾曲した帯板状である。整流板27の内縁27aの平面視での曲率は、円筒体25の平面視での曲率と略同一に設定されている。また、整流板27の外縁27bの平面視での曲率は、容器21の側壁21bの平面視での曲率と略同一に設定されている。整流板27の内縁27aは円筒体25に固定されており、整流板27の内縁27aと円筒体25との間には隙間がない。一方、整流板27の外縁27bは容器21の側壁21bに隣接して位置している。つまり、整流板27は円筒体25から側壁21bに向けて突出している。本実施形態における整流板27は、円筒体25から側壁21bに向けて概ね水平方向に突出しており、整流板27の上面は水平面に対して実質的に傾きを有さない。整流板27の外縁27bと容器21の側壁21bとの間には、僅かな隙間28が設けられている。 A rectifying plate (rectifying section) 27 is arranged in the first space 23, more specifically, in the space 26 between the cylindrical body 25 and the side wall 21b of the container 21. The straightening vane 27 in the present embodiment has a strip-like shape curved in a substantially arc shape in a plan view. The curvature of the inner edge 27a of the straightening vane 27 in a plan view is set to be substantially the same as the curvature of the cylindrical body 25 in a plan view. Further, the curvature of the outer edge 27b of the straightening vane 27 in a plan view is set to be substantially the same as the curvature of the side wall 21b of the container 21 in a plan view. The inner edge 27a of the straightening vane 27 is fixed to the cylindrical body 25, and there is no gap between the inner edge 27a of the straightening vane 27 and the cylindrical body 25. On the other hand, the outer edge 27b of the straightening vane 27 is located adjacent to the side wall 21b of the container 21. That is, the straightening vane 27 protrudes from the cylindrical body 25 toward the side wall 21b. The straightening vane 27 in the present embodiment projects substantially horizontally from the cylindrical body 25 toward the side wall 21b, and the upper surface of the straightening vane 27 has substantially no inclination with respect to the horizontal plane. A slight gap 28 is provided between the outer edge 27b of the straightening vane 27 and the side wall 21b of the container 21.

図4に示すように、平面視では、整流板27は側壁21bに沿って導入口21cから空気が導入される向き(矢印F参照)に延在している。容器21の側壁21bの内面、仕切板部22の下面、及び整流板27の上面によって平面視で部分円環状の案内流路29が画定されている。 As shown in FIG. 4, in a plan view, the straightening vane 27 extends along the side wall 21b in the direction in which air is introduced from the introduction port 21c (see arrow F). A partially annular guide flow path 29 is defined in a plan view by the inner surface of the side wall 21b of the container 21, the lower surface of the partition plate portion 22, and the upper surface of the rectifying plate 27.

案内流路29の一端側、つまり整流板27の導入口21c側の端部27c側は、導入口21cに対して空気が導入される向き(矢印F参照)とは反対側の位置において閉鎖板(閉鎖部)30によって閉鎖されている。閉鎖板30は円筒体25の外面、側壁21bの内面、仕切板部22の下面、及び整流板27の上面に接している。案内流路29の他端側、つまり整流板27の導入口21cとは反対側の端部27dでは、案内流路29は第1空間23に開放する出口29aを有している。図4に示すように、本実施形態では、閉鎖板30は、平面視において、円筒体25の接線方向に延びている。同図において二点鎖線で示すように、閉鎖板30は、平面視において、円筒体25の径方向に延びていてもよい。
One end side of the guide flow path 29, that is, the end portion 27c side of the straightening vane 27 on the introduction port 21c side is a closing plate at a position opposite to the direction in which air is introduced into the introduction port 21c (see arrow F). It is closed by (closed part) 30. The closing plate 30 is in contact with the outer surface of the cylindrical body 25, the inner surface of the side wall 21b, the lower surface of the partition plate portion 22, and the upper surface of the straightening vane 27. At the other end side of the guide flow path 29, that is, at the end portion 27d opposite to the introduction port 21c of the straightening vane 27, the guide flow path 29 has an outlet 29a that opens into the first space 23. As shown in FIG. 4, in the present embodiment, the closing plate 30 extends in the tangential direction of the cylindrical body 25 in a plan view. As shown by the alternate long and short dash line in the figure, the closing plate 30 may extend in the radial direction of the cylindrical body 25 in a plan view.

図4を参照すると、本実施形態における整流板27の導入口21c側の端部27cと、出口29a側の端部27dとの位置は、平面視において、これらの端部27c,27dが円筒体25と側壁21bとの共通の中心ないし軸線Axまわりになす角度θ1が180度となるように設定されている。 Referring to FIG. 4, the positions of the end portion 27c on the introduction port 21c side and the end portion 27d on the outlet 29a side of the straightening vane 27 in the present embodiment are such that these end portions 27c and 27d are cylindrical bodies in a plan view. The angle θ1 formed around the common center or axis Ax between the 25 and the side wall 21b is set to be 180 degrees.

案内流路29の空気が流れる方向と直交する方向の断面積(図3において符号A1で概念的に示す)は、容器21の横断面の断面積(図3において符号A3で概念的に示す)よりも十分小さく設定されている。また、案内流路29の断面積A1は、円筒体25内の空気が流れる方向の断面積(図3に符号A2で概念的に示す)よりも小さく設定されている。さらに、円筒体25内の断面積A2は、容器21の断面積A3よりも小さく設定されている。つまり、断面積A1,A2,A3には以下の関係がある。 The cross-sectional area of the guide flow path 29 in the direction orthogonal to the air flow direction (conceptually indicated by reference numeral A1 in FIG. 3) is the cross-sectional area of the cross section of the container 21 (conceptually indicated by reference numeral A3 in FIG. 3). Is set sufficiently smaller than. Further, the cross-sectional area A1 of the guide flow path 29 is set to be smaller than the cross-sectional area in the direction in which air flows in the cylindrical body 25 (conceptually indicated by reference numeral A2 in FIG. 3). Further, the cross-sectional area A2 in the cylindrical body 25 is set to be smaller than the cross-sectional area A3 of the container 21. That is, the cross-sectional areas A1, A2, and A3 have the following relationship.

A1<A2<A3 A1 <A2 <A3

仕切板部22の上部にケーシング31が固定されている。ケーシング31と仕切板部22とによって、密閉された空間である第2空間32が画定されている。仕切板部22には貫通孔(接続流路)22aが設けられており、この貫通孔22aを介しての円筒体25の内部と第2空間32とが流体的に連通している。 The casing 31 is fixed to the upper part of the partition plate portion 22. A second space 32, which is a closed space, is defined by the casing 31 and the partition plate portion 22. The partition plate portion 22 is provided with a through hole (connection flow path) 22a, and the inside of the cylindrical body 25 and the second space 32 are fluidly communicated with each other through the through hole 22a.

第2空間32には、油分離エレメント(液分離エレメント)35が配置されている。本実施形態における油分離エレメント35は、全体として両端開口の細長い円筒状であり、その周面とケーシング31との間には隙間36が設けられている。油分離エレメント35の上下端部は、上端板部37と下端板部38とによってそれぞれ閉塞されている。上端板部37と下端板部38は油分離エレメント35に挿通されたロッド39によって連結されている。下端板部38の上面のうちの油分離エレメント35の内側の部分が油溜り40を構成している。また、下端板部38には油分離エレメント35の内側の部分に凹部41が形成されている。この凹部41には、本実施形態では両端開口の円管である導出管42の下端が密嵌されている。また、凹部41には、前述した導出口41a(前述のように供給流路7が接続されている)が設けられている。 An oil separation element (liquid separation element) 35 is arranged in the second space 32. The oil separation element 35 in the present embodiment has an elongated cylindrical shape with openings at both ends as a whole, and a gap 36 is provided between the peripheral surface thereof and the casing 31. The upper and lower ends of the oil separation element 35 are closed by the upper end plate portion 37 and the lower end plate portion 38, respectively. The upper end plate portion 37 and the lower end plate portion 38 are connected by a rod 39 inserted through the oil separation element 35. The inner portion of the oil separation element 35 on the upper surface of the lower end plate portion 38 constitutes the oil sump 40. Further, the lower end plate portion 38 is formed with a recess 41 in the inner portion of the oil separation element 35. The lower end of the lead-out pipe 42, which is a circular pipe with both ends open in the present embodiment, is tightly fitted in the recess 41. Further, the recess 41 is provided with the above-mentioned outlet 41a (the supply flow path 7 is connected as described above).

仕切板部22には、一端が貫通孔22aに流体的に接続された放気ポート22bが設けられている。放気ポート22bの他端には、安全弁45が流体的に接続されている。安全弁45は、放気ポート22bの圧力、つまり貫通孔22a(接続流路)における圧力を検出する圧力センサ46が検出する圧力に応じて開閉する。具体的には、安全弁45は、圧力センサ46が検出した圧力が閾値未満であれば閉弁状態を維持し、圧力センサ46が検出した圧力が閾値以上となると開弁し、貫通孔22a(接続流路)を大気開放する。 The partition plate portion 22 is provided with an air release port 22b whose one end is fluidly connected to the through hole 22a. A safety valve 45 is fluidly connected to the other end of the air exhaust port 22b. The safety valve 45 opens and closes according to the pressure of the air release port 22b, that is, the pressure detected by the pressure sensor 46 that detects the pressure in the through hole 22a (connection flow path). Specifically, the safety valve 45 maintains the closed state when the pressure detected by the pressure sensor 46 is less than the threshold value, opens the valve when the pressure detected by the pressure sensor 46 exceeds the threshold value, and opens the through hole 22a (connection). Open the flow path) to the atmosphere.

次に、油分離器1の機能を説明する。 Next, the function of the oil separator 1 will be described.

導入口21cから容器21内の第1空間23に導入された空気は、容器21の側壁21bに沿った旋回流となって下方へ流れる。空気に含まれる油は、遠心力によって分離されて側壁21bに付着し、側壁21bを伝って落下して容器21の下方の油溜り24に回収される(一次分離)。容器21の下方に達した後、空気は上昇して円筒体25の下端から円筒体25内に進入する。空気は円筒体25内を上昇し、貫通孔22aを介してケーシング31内の第2空間に流入する。第2空間32に流入した気体は、隙間36を上昇した後、油分離エレメント35を外側から内側に通過する。この通過時に、空気に含まれる油が、油分離エレメント35で捕捉されることで空気から分離される(二次分離)。油分離エレメント35で捕捉された油は、油溜まり40に回収される。油分離エレメント35を外側から内側に通過した空気は、導出管42の上端から導出管42内に進入し、さらに凹部41を経て導出口41aから供給流路7へ送出される。 The air introduced from the introduction port 21c into the first space 23 in the container 21 flows downward as a swirling flow along the side wall 21b of the container 21. The oil contained in the air is separated by centrifugal force, adheres to the side wall 21b, falls along the side wall 21b, and is collected in the oil sump 24 below the container 21 (primary separation). After reaching the lower part of the container 21, the air rises and enters the cylindrical body 25 from the lower end of the cylindrical body 25. The air rises in the cylindrical body 25 and flows into the second space in the casing 31 through the through hole 22a. The gas that has flowed into the second space 32 rises through the gap 36 and then passes through the oil separation element 35 from the outside to the inside. At the time of this passage, the oil contained in the air is separated from the air by being captured by the oil separation element 35 (secondary separation). The oil captured by the oil separation element 35 is collected in the oil sump 40. The air that has passed through the oil separation element 35 from the outside to the inside enters the outlet pipe 42 from the upper end of the outlet pipe 42, and is further sent out from the outlet 41a to the supply flow path 7 through the recess 41.

導入口21cから第1空間23への導入の初期段階における空気は、側壁21b、仕切板部22、及び整流板27で画定された案内流路29、つまり容器21の横断面での断面積A2よりも十分に小さい断面積A1を有する流路を通る。そのため、導入口21cから第1空間23への導入時に流路断面積が急激に拡大することに起因する空気流の速度低下を回避できる。言い換えれば、整流板27が設けられていない場合と比較して、導入口21cから第1空間23への流入の初期段階における旋回流の流速が速くなる。また、限定された断面積A1を有する案内流路29を通ることで、旋回流の向きが誘導される。これらの要因、つまり、旋回流の流速向上と、旋回流の向きの誘導とによって、一次分離による油分離の効率を向上できる。一次分離の効率向上により、油分離エレメント35による二次分離によって分離すべき油の量を低減できる。その結果、油分離エレメント35の使用寿命を延ばすことができ、油分離エレメント35の目詰まり等の不具合発生のおそれも低減できる。 The air in the initial stage of introduction from the introduction port 21c to the first space 23 has a cross-sectional area A2 in the cross section of the guide flow path 29 defined by the side wall 21b, the partition plate portion 22, and the straightening vane 27, that is, the container 21. It passes through a flow path having a cross-sectional area A1 that is sufficiently smaller than that. Therefore, it is possible to avoid a decrease in the speed of the air flow due to the rapid expansion of the cross-sectional area of the flow path when the introduction port 21c is introduced into the first space 23. In other words, the flow velocity of the swirling flow in the initial stage of the inflow from the introduction port 21c to the first space 23 becomes faster than in the case where the straightening vane 27 is not provided. Further, the direction of the swirling flow is guided by passing through the guide flow path 29 having the limited cross-sectional area A1. By these factors, that is, the improvement of the flow velocity of the swirling flow and the guidance of the direction of the swirling flow, the efficiency of oil separation by the primary separation can be improved. By improving the efficiency of the primary separation, the amount of oil to be separated by the secondary separation by the oil separation element 35 can be reduced. As a result, the service life of the oil separation element 35 can be extended, and the possibility of problems such as clogging of the oil separation element 35 can be reduced.

前述ように、整流板27の外縁27bと容器21の側壁21bの内面との間には、隙間28が設けられている。そのため、一次分離時に案内流路29内で分離されて側壁21bに付着した油は、この隙間28を通って容器21の下方に移動して油溜り24回収される。つまり、隙間28を設けたことで、案内流路29内に一次分離で分離された油が残留するのを回避できる。
As described above, between the inner surface of the side wall 21b of the outer edge 27b and the container 21 of the current plate 27, a gap 28 is provided. Therefore, the oil separated in the guide flow path 29 during the primary separation and adhering to the side wall 21b moves to the lower side of the container 21 through the gap 28 and is recovered in the oil sump 24. That is, by providing the gap 28, it is possible to prevent the oil separated by the primary separation from remaining in the guide flow path 29.

前述のように、円筒体25内の断面積A2は、容器21の断面積A3よりも小さく設定されているが断面積A1よりも十分大きく設定されている。そのため、円筒体25内を上昇する空気の流れ(上昇流)の流速は、案内流路29内の空気の流れの流速と比較して、大きく低下する。また、筒内部に液分離エレメントが設けられていない方式の気液分離器であるため、円筒体25内に進入する空気の流れの流速の増加も抑制されており、上昇流の流速が低く保たれる。上昇流の流速が低いことで、空気に含まれる油が重力によって容器21の下方に落下しやすくなり、一次分離の効率がさらに向上する。 As described above, the cross-sectional area A2 in the cylindrical body 25 is set to be smaller than the cross-sectional area A3 of the container 21, but is set sufficiently larger than the cross-sectional area A1. Therefore, the flow velocity of the air flow (upward flow) rising in the cylindrical body 25 is significantly lower than the flow velocity of the air flow in the guide flow path 29. Further, since the gas-liquid separator is of a type in which a liquid separation element is not provided inside the cylinder, an increase in the flow velocity of the air flow entering the cylindrical body 25 is suppressed, and the flow velocity of the ascending flow is kept low. Dripping. Since the flow velocity of the ascending flow is low, the oil contained in the air tends to fall below the container 21 due to gravity, and the efficiency of the primary separation is further improved.

安全弁45が開弁すると、油分離器1内、具体的には油分離エレメント35よりも上流の空気が大気に排出される。しかし、前述のように限定された断面積A1を有する案内流路29を旋回流が通ることで、一次分離の効率を高めている。そのため、油分離エレメント35よりも上流に接続された安全弁45を開弁した際に空気と共に大気中に排出される油の量を、効果的に低減できる。 When the safety valve 45 is opened, the air in the oil separator 1, specifically, upstream of the oil separation element 35, is discharged to the atmosphere. However, the swirling flow passes through the guide flow path 29 having the limited cross-sectional area A1 as described above, thereby increasing the efficiency of the primary separation. Therefore, the amount of oil discharged into the atmosphere together with the air when the safety valve 45 connected upstream of the oil separation element 35 is opened can be effectively reduced.

安全弁45は、油分離エレメント35よりも上流に設けられているため、安全弁45の開弁時に油分離エレメント35よりも下流の圧力が急激に低下して油分離エレメント35を通過する空気の流速が急上昇するのを回避できる。油分離エレメント35を通過する空気の流速の急上昇は、油分離エレメント35による油分離の効率低下と、それに伴う油の流出、油分離エレメント35自体の故障等の不具合の原因となり得る。安全弁45が開弁した際の油分離エレメント35を通過する空気流速の急上昇を回避することで、これらの不具合を防止できる。 Since the safety valve 45 is provided upstream of the oil separation element 35, the pressure downstream of the oil separation element 35 drops sharply when the safety valve 45 is opened, and the flow velocity of air passing through the oil separation element 35 increases. You can avoid a surge. A sudden increase in the flow velocity of air passing through the oil separation element 35 can cause problems such as a decrease in the efficiency of oil separation by the oil separation element 35, an accompanying oil spill, and a failure of the oil separation element 35 itself. By avoiding a sudden increase in the air flow velocity passing through the oil separation element 35 when the safety valve 45 is opened, these problems can be prevented.

本実施形態では、案内流路29の断面積A1は、導入口21cから出口29aにわたって一定である。案内流路29の断面積A1を導入口21cから出口29aに向けて漸増させてもよい。案内流路29の断面積A1を出口29aに向けて漸増することで、案内流路29を流れる旋回流の流速は、導入口21c側において相対的に高くなり、案内流路29の導入口21c側でより効果的に遠心力によって空気から油を分離できる。その結果、円筒体25内の上昇流に含まれる油、つまり油分離エレメント35による二次分離に供される空気や、安全弁45の開弁時に大気中に排出される空気に含まれる油の量をより確実に低減できる。 In the present embodiment, the cross-sectional area A1 of the guide flow path 29 is constant from the introduction port 21c to the outlet 29a. The cross-sectional area A1 of the guide flow path 29 may be gradually increased from the introduction port 21c toward the outlet 29a. By gradually increasing the cross-sectional area A1 of the guide flow path 29 toward the outlet 29a, the flow velocity of the swirling flow flowing through the guide flow path 29 becomes relatively high on the introduction port 21c side, and the introduction port 21c of the guide flow path 29 The oil can be separated from the air by centrifugal force more effectively on the side. As a result, the amount of oil contained in the ascending flow in the cylindrical body 25, that is, the amount of oil used for secondary separation by the oil separation element 35 and the amount of oil contained in the air discharged into the atmosphere when the safety valve 45 is opened. Can be reduced more reliably.

図4を参照すると、前述のように、本実施形態では、整流板27は、平面視における導入口21c側の端部27cと、出口29a側の端部27dとの位置は、これらの端部27c,27dがなす角度θ1が180度となるように設定されている。整流板27の端部27d、つまり案内流路29の出口29aの位置は、少なくとも、導入口21cから見て円筒体25の背後に隠れる位置Pに設定することが好ましい(この場合の端部27c,27dがなす角度を符号θ2で概念的に示す)。整流板27の端部27dをかかる位置に設定する構成、つまり整流板27が旋回流の流れる向きに十分な長さを有する構成によって、案内流路29における旋回流の流速向上と、旋回流の向きの誘導とによる一次分離の効率向上をより確実に実現できる。 Referring to FIG. 4, as described above, in the present embodiment, the position of the end portion 27c on the introduction port 21c side and the end portion 27d on the outlet 29a side of the straightening vane 27 in a plan view is such an end portion. The angle θ1 formed by 27c and 27d is set to be 180 degrees. The position of the end portion 27d of the straightening vane 27, that is, the outlet 29a of the guide flow path 29 is preferably set to at least a position P hidden behind the cylinder 25 when viewed from the introduction port 21c (the end portion 27c in this case). , 27d conceptually indicated by the symbol θ2). By setting the end portion 27d of the rectifying plate 27 at such a position, that is, the rectifying plate 27 has a sufficient length in the direction in which the swirling flow flows, the flow velocity of the swirling flow in the guide flow path 29 is improved and the swirling flow is improved. It is possible to more reliably improve the efficiency of primary separation by guiding the orientation.

図3を参照すると、前述のように、本実施形態における整流板27は、円筒体25から側壁21bに向けて概ね水平方向に突出している。図3において二点鎖線(符号δ)で示すように、整流板27は、円筒体25から側壁21bに向けて下向きに傾斜した構成、つまり整流板27の外縁27bが内縁27aより下方に位置する構成であってもよい。かかる構成の場合、一次分離時に整流板27の上面に付着した油は、重力によって整流板27の外縁27bと側壁21bとの間の隙間28に向かって流れ、この隙間28を通過して油溜り24へ降下する。つまり、この構成によって、案内流路29内に一次分離で分離された油が残留するのをより確実に回避できる。なお、隙間28の距離は、2mm以上5mm以下の範囲で設定することが望ましい。2mm未満のような微小な隙間は液体(例えば、油)が通過しにくいため案内流路29内に残留しやすくなり、5mmを超えるような隙間は気体の漏れ量が多くなるため案内流路29における流速が低下する問題が生じるため望ましくない。案内流路29内における液体の残留の解消と流速低下の回避のバランスを考慮すると、隙間28の距離は、2mm以上4mm以下の範囲で設定するのがより望ましい。上記の望ましい範囲内で設定された隙間28は、案内流路29内の液体の残留しやすい位置に少なくとも設けられておればよく、液体の残留の問題の生じていない位置においては、隙間28の設置を省略してもよい。 Referring to FIG. 3, as described above, the straightening vane 27 in the present embodiment projects substantially horizontally from the cylindrical body 25 toward the side wall 21b. As shown by the alternate long and short dash line (reference numeral δ) in FIG. 3, the straightening vane 27 has a configuration in which the straightening vane 27 is inclined downward from the cylindrical body 25 toward the side wall 21b, that is, the outer edge 27b of the straightening vane 27 is located below the inner edge 27a. It may be a configuration. In the case of such a configuration, the oil adhering to the upper surface of the straightening vane 27 during the primary separation flows toward the gap 28 between the outer edge 27b and the side wall 21b of the straightening vane 27 by gravity, passes through the gap 28, and is filled with oil. Descend to 24. That is, with this configuration, it is possible to more reliably prevent the oil separated by the primary separation from remaining in the guide flow path 29. The distance of the gap 28 is preferably set in the range of 2 mm or more and 5 mm or less. Since it is difficult for liquids (for example, oil) to pass through minute gaps of less than 2 mm, they tend to remain in the guide flow path 29, and gaps of more than 5 mm have a large amount of gas leakage, so the guide flow path 29 It is not desirable because it causes a problem that the flow velocity is reduced. Considering the balance between eliminating the residual liquid in the guide flow path 29 and avoiding the decrease in the flow velocity, it is more desirable to set the distance of the gap 28 in the range of 2 mm or more and 4 mm or less. The gap 28 set within the above desirable range may be provided at least at a position in the guide flow path 29 where the liquid is likely to remain, and at a position where the problem of liquid residue does not occur, the gap 28 may be provided. Installation may be omitted.

以上より、本発明の具体的な実施形態やその変形例について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although specific embodiments of the present invention and variations thereof have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.

1 油分離器(気液分離器)
2 油冷式圧縮機
3 圧縮機本体
3a 吸込口
3b 吐出口
4,5 給油流路
6 吐出流路
7 供給流路
8 保圧逆止弁
9 空気冷却器
10 油冷却器
11 油フィルタ
12 バイパス流路
13 三方弁
14 逆止弁
21 容器
21a 底壁
21b 側壁
21c 導入口
23 第1空間
24 油溜り
22 仕切板部
22a 貫通孔(接続流路)
22b 放気ポート
25 円筒体(筒部)
26 空間
27 整流板(整流部)
27a 内縁
27b 外縁
27c,27d 端部
28 隙間
29 案内流路
29c 出口
30 閉鎖板(閉鎖部)
31 ケーシング
32 第2空間
35 油分離エレメント(液分離エレメント)
36 隙間
37 上端板部
38 下端板部
39 ロッド
40 油溜り
41 凹部
41a 導出口
42 導出管
45 安全弁
46 圧力センサ
1 Oil separator (gas-liquid separator)
2 Oil-cooled compressor 3 Compressor body 3a Suction port 3b Discharge port 4, 5 Oil supply flow path 6 Discharge flow path 7 Supply flow path 8 Pressure-holding check valve 9 Air cooler 10 Oil cooler 11 Oil filter 12 Bypass flow Road 13 Three-way valve 14 Check valve 21 Container 21a Bottom wall 21b Side wall 21c Introductory port 23 First space 24 Oil pool 22 Partition plate 22a Through hole (connection flow path)
22b Air exhaust port 25 Cylindrical body (cylinder part)
26 Space 27 Rectifier plate (rectifier)
27a Inner edge 27b Outer edge 27c, 27d End 28 Gap 29 Guide flow path 29c Exit 30 Closure plate (closed part)
31 Casing 32 Second space 35 Oil separation element (liquid separation element)
36 Gap 37 Upper end plate 38 Lower end plate 39 Rod 40 Oil pool 41 Recess 41a Outlet 42 Outlet pipe 45 Safety valve 46 Pressure sensor

Claims (8)

有底の筒状であって、導入口から液体を含む気体が導入される容器と、
前記容器と仕切板部とによって画定される第1空間に配置され、前記仕切板部から下向きに延び、前記容器の前記側壁から離間して設けられている、両端開口の筒部と、
前記筒部から前記側壁に向けて突出すると共に、平面視で前記側壁に沿って延在し、前記側壁、前記筒部、及び前記仕切板部と共に前記導入口から導入された前記気体が流れる案内流路を画定し、前記案内流路は前記導入口の位置する側とは反対側に前記第1空間に開放する出口を有している、整流部と、
前記案内流路の前記導入口の位置する側を閉鎖する閉鎖部と、
前記仕切板部の上方に設けられ、前記仕切板部と共に第2空間を画定するケーシングと、
前記第2空間に、前記ケーシングの周面との間に隙間を設けて配置された液分離エレメントと、
前記仕切板部に形成され、前記筒部内と前記第2空間とを直接かつ流体的に接続する接続流路と、
前記液分離エレメントをその外側から内側に通過した前記気体を外部へ流出させる導出口と
一端が前記接続流路に直接的かつ流体的に接続されるように前記仕切板部内に形成された放気ポートと、
前記放気ポートを介して前記液分離エレメントより上流側の前記第1空間および前記第2空間に流体的に連通し、当該連通した位置における気体の圧力が閾値未満であれば閉弁状態であり、当該圧力が閾値以上となると開弁して前記接続流路を大気開放する安全弁と
を備える、気液分離器。
A bottomed tubular container into which gas containing liquid is introduced from the inlet,
A tubular portion having an opening at both ends, which is arranged in a first space defined by the container and the partition plate portion, extends downward from the partition plate portion, and is provided apart from the side wall of the container.
A guide that projects from the tubular portion toward the side wall and extends along the side wall in a plan view, and the gas introduced from the introduction port flows together with the side wall, the tubular portion, and the partition plate portion. A rectifying unit that defines a flow path, and the guide flow path has an outlet that opens into the first space on a side opposite to the side where the introduction port is located.
A closing portion that closes the side of the guide flow path where the introduction port is located, and a closing portion.
A casing provided above the partition plate portion and defining a second space together with the partition plate portion.
A liquid separation element arranged in the second space with a gap between it and the peripheral surface of the casing.
A connection flow path formed in the partition plate portion and directly and fluidly connecting the inside of the cylinder portion and the second space,
An outlet that allows the gas that has passed through the liquid separation element from the outside to the inside to flow out to the outside .
An air release port formed in the partition plate portion so that one end is directly and fluidly connected to the connection flow path.
It is fluidly communicated with the first space and the second space on the upstream side of the liquid separation element via the air release port, and if the pressure of the gas at the communicating position is less than the threshold value, the valve is closed. A gas-liquid separator comprising a safety valve that opens the connection flow path to the atmosphere when the pressure exceeds a threshold value.
前記案内流路の前記気体が流れる方向と直交する方向の断面積は、前記筒部内の前記気体が流れる方向と直交する方向の断面積よりも小さく、
前記筒部内の前記気体が流れる方向と直交する方向の断面積は、前記容器の横断面の断面積よりも小さい、請求項1に記載の気液分離器。
The cross-sectional area of the guide flow path in the direction orthogonal to the gas flow direction is smaller than the cross-sectional area in the tubular portion in the direction orthogonal to the gas flow direction.
The gas-liquid separator according to claim 1, wherein the cross-sectional area in the cylinder portion in a direction orthogonal to the flow direction of the gas is smaller than the cross-sectional area of the cross section of the container.
前記案内流路の前記気体が流れる方向と直交する方向の断面積は、前記導入口から前記出口にわたって一定である、請求項1又は2に記載の気液分離器。 The gas-liquid separator according to claim 1 or 2 , wherein the cross-sectional area of the guide flow path in a direction orthogonal to the flow direction of the gas is constant from the introduction port to the outlet. 前記案内流路の前記気体が流れる方向と直交する方向の断面積は、前記導入口から前記出口に向けて漸増している、請求項1又は2に記載の気液分離器。 The gas-liquid separator according to claim 1 or 2 , wherein the cross-sectional area of the guide flow path in a direction orthogonal to the flow direction of the gas gradually increases from the introduction port to the outlet. 前記整流部は、前記案内流路の前記出口が、前記導入口から見て、前記筒部の背後に位置するように設けられている、請求項1からのいずれか1項に記載の気液分離器。 The gas according to any one of claims 1 to 4 , wherein the rectifying portion is provided so that the outlet of the guide flow path is located behind the tubular portion when viewed from the introduction port. Liquid separator. 前記整流部は、内縁は前記筒部に接続し、外縁は前記側壁との間に隙間を有している、請求項1からのいずれか1項に記載の気液分離器。 The gas-liquid separator according to any one of claims 1 to 5 , wherein the rectifying portion has an inner edge connected to the tubular portion and an outer edge having a gap between the rectifying portion and the side wall. 前記整流部は、前記筒部から前記側壁に向けて下向きに傾斜している、請求項に記載の気液分離器。 The gas-liquid separator according to claim 6 , wherein the rectifying section is inclined downward from the tubular portion toward the side wall. 油冷式の圧縮機本体と、
前記圧縮機本体で圧縮された気体から油を分離する油分離器と、
前記油分離器内を大気開放可能な安全弁と
を備え、
前記油分離器は、
有底の筒状であって、導入口から前記圧縮機本体で圧縮された油を含む気体が導入される容器と、
前記容器と前記仕切板部とによって画定される第1空間に配置され、前記仕切板部から下方に向けて延び、前記容器の前記側壁から離間して設けられている、両端開口の筒部と、
前記筒部から前記側壁に向けて突出すると共に、平面視で前記側壁に沿って延在し、前記側壁、前記筒部、及び前記仕切板部と共に前記導入口から導入された前記気体が流れる案内流路を画定し、前記案内流路は前記導入口の位置する側とは反対側に前記第1空間に開放する出口を有している、整流部と、
前記案内流路の前記導入口の位置する側を閉鎖する閉鎖部と、
前記仕切板部の上方に設けられ、前記仕切板部と共に第2空間を画定するケーシングと、
前記第2空間に、前記ケーシングの周面との間に隙間を設けて配置された油分離エレメントと、
前記筒部内と前記第2空間とを流体的に接続する接続流路と、
前記油分離エレメントをその外側から内側に通過した前記気体を外部へ流出させる導出口と
一端が前記接続流路に直接的かつ流体的に接続されるように前記仕切板部内に形成された放気ポートと、
前記放気ポートを介して前記液分離エレメントより上流側の前記第1空間および前記第2空間に流体的に連通し、当該連通した位置における気体の圧力が閾値未満であれば閉弁状態であり、当該圧力が閾値以上となると開弁して前記接続流路を大気開放する安全弁と
を備える、油冷式圧縮機。
Oil-cooled compressor body and
An oil separator that separates oil from the gas compressed by the compressor body,
Equipped with a safety valve that can open the inside of the oil separator to the atmosphere
The oil separator
A container with a bottomed cylinder into which a gas containing oil compressed by the compressor body is introduced from the introduction port.
With a tubular portion having both ends open, which is arranged in a first space defined by the container and the partition plate portion, extends downward from the partition plate portion, and is provided apart from the side wall of the container. ,
A guide that projects from the tubular portion toward the side wall and extends along the side wall in a plan view, and the gas introduced from the introduction port flows together with the side wall, the tubular portion, and the partition plate portion. A rectifying unit that defines a flow path, and the guide flow path has an outlet that opens into the first space on a side opposite to the side where the introduction port is located.
A closing portion that closes the side of the guide flow path where the introduction port is located, and a closing portion.
A casing provided above the partition plate portion and defining a second space together with the partition plate portion.
An oil separation element arranged in the second space with a gap between it and the peripheral surface of the casing.
A connection flow path that fluidly connects the inside of the cylinder and the second space,
An outlet that allows the gas that has passed through the oil separation element from the outside to the inside to flow out to the outside .
An air release port formed in the partition plate portion so that one end is directly and fluidly connected to the connection flow path.
It is fluidly communicated with the first space and the second space on the upstream side of the liquid separation element via the air release port, and if the pressure of the gas at the communicating position is less than the threshold value, the valve is closed. , Bei El and safety valve for atmosphere release the connecting channel and opens when the pressure is equal to or greater than a threshold, the oil-cooled compressor.
JP2017201983A 2017-10-18 2017-10-18 Gas-liquid separator and oil-cooled compressor Active JP6850238B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017201983A JP6850238B2 (en) 2017-10-18 2017-10-18 Gas-liquid separator and oil-cooled compressor
PCT/JP2018/035457 WO2019077945A1 (en) 2017-10-18 2018-09-25 Gas-liquid separator and oil-cooled compressor
CN201880067997.9A CN111212683A (en) 2017-10-18 2018-09-25 Gas-liquid separator and oil-cooled compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201983A JP6850238B2 (en) 2017-10-18 2017-10-18 Gas-liquid separator and oil-cooled compressor

Publications (2)

Publication Number Publication Date
JP2019072688A JP2019072688A (en) 2019-05-16
JP6850238B2 true JP6850238B2 (en) 2021-03-31

Family

ID=66172913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201983A Active JP6850238B2 (en) 2017-10-18 2017-10-18 Gas-liquid separator and oil-cooled compressor

Country Status (3)

Country Link
JP (1) JP6850238B2 (en)
CN (1) CN111212683A (en)
WO (1) WO2019077945A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4112153A4 (en) * 2020-02-25 2023-08-09 Mayekawa Mfg. Co., Ltd. Gas-liquid separator
WO2021171369A1 (en) * 2020-02-25 2021-09-02 株式会社前川製作所 Gas-liquid separator
CN112569698A (en) * 2020-11-27 2021-03-30 亚普汽车部件股份有限公司 Gas-liquid separation device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934990A (en) * 1972-03-17 1976-01-27 Stratoflex, Inc. Air cooler and cleaner for compressed air
JPS5832729Y2 (en) * 1981-03-05 1983-07-21 北越工業株式会社 Oil separator for oil-cooled rotary compressor
US5170640A (en) * 1991-03-04 1992-12-15 Carrier Corporation Oil separator
JPH05141015A (en) * 1991-09-17 1993-06-08 Toshiba Corp Environment maintenance equipment using solar battery
JPH05141815A (en) * 1991-11-26 1993-06-08 Mitsubishi Heavy Ind Ltd Oil separator
CN201308800Y (en) * 2008-11-04 2009-09-16 王松涛 Centrifugal net filter
JP4695215B1 (en) * 2010-03-05 2011-06-08 独立行政法人石油天然ガス・金属鉱物資源機構 Gas-liquid separator and flow rate measuring device
JP5651701B2 (en) * 2010-09-24 2015-01-14 北越工業株式会社 Oil-cooled compressor receiver tank
JP5520800B2 (en) * 2010-12-17 2014-06-11 株式会社神戸製鋼所 Oil separator
CN103184997B (en) * 2011-12-30 2016-05-11 神钢压缩机制造(上海)有限公司 Compression set
CN202778176U (en) * 2012-07-04 2013-03-13 成都达瑞斯科技有限公司 Cyclone type oily flue gas purification device
JP6437220B2 (en) * 2014-06-25 2018-12-12 日立ジョンソンコントロールズ空調株式会社 Oil separator and screw compressor using the oil separator
JP6553435B2 (en) * 2015-07-15 2019-07-31 株式会社神戸製鋼所 Oil separation and recovery unit
EP3202482A1 (en) * 2016-02-02 2017-08-09 General Electric Technology GmbH A gas dryer for an electric machine

Also Published As

Publication number Publication date
WO2019077945A1 (en) 2019-04-25
JP2019072688A (en) 2019-05-16
CN111212683A (en) 2020-05-29

Similar Documents

Publication Publication Date Title
JP6850238B2 (en) Gas-liquid separator and oil-cooled compressor
US8945266B2 (en) Oil separator
BE1018543A3 (en) LIQUID SEPARATOR.
WO2015029845A1 (en) Oil separator, and compressor provided with same
EP3144047B1 (en) Purification apparatus for compressed air
US7871461B2 (en) Bubble separator
US8267071B2 (en) Device for separating liquids from gases
ES2316422T3 (en) COMPRESSOR SYSTEM
JPH0365259A (en) Cyclone device to separate waste particles from fluid
CN107405556A (en) Multi-stage rotary coalescer device
JP6437220B2 (en) Oil separator and screw compressor using the oil separator
US7985273B2 (en) Device for the precipitation of liquid droplets from a gas stream
EP2868878A1 (en) Oil separator
CN105822558A (en) Oil and gas separator with adjustable flow and parallel multi-branches
US20120137642A1 (en) Filter
CN101784326B (en) Liquid separator
KR100988331B1 (en) Air purifier unit with oil separator and compressed air provider unit
US20120195740A1 (en) Drain Discharge Equipment for Compressor and Gas Turbine System
CN110290847A (en) Condensate trap for flue gas measurement equipment
US7938870B2 (en) Liquid separator with bypass
JP4352228B2 (en) Breather equipment
KR20230119719A (en) gas cooler
JP2005106019A (en) Oil separator and pcv system
JP6639864B2 (en) Gas-liquid separation device
CN108019991A (en) A kind of refrigeration system refrigerant gas and lubricating oil separation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210305

R151 Written notification of patent or utility model registration

Ref document number: 6850238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350