WO2021171369A1 - Gas-liquid separator - Google Patents
Gas-liquid separator Download PDFInfo
- Publication number
- WO2021171369A1 WO2021171369A1 PCT/JP2020/007487 JP2020007487W WO2021171369A1 WO 2021171369 A1 WO2021171369 A1 WO 2021171369A1 JP 2020007487 W JP2020007487 W JP 2020007487W WO 2021171369 A1 WO2021171369 A1 WO 2021171369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- main body
- liquid separator
- liquid
- liquid mixture
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/12—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/12—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
- B01D45/16—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/02—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising gravity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C5/00—Apparatus in which the axial direction of the vortex is reversed
- B04C5/02—Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
- B04C5/04—Tangential inlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/04—Measures to avoid lubricant contaminating the pumped fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/02—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
Definitions
- the present invention relates to a gas-liquid separator that separates a gas and a liquid from a gas-liquid mixture.
- lubricating oil liquid
- refrigerating machine oil is added to gas such as air and gas sucked into the compressor for the purpose of cooling and lubrication. Used. Therefore, lubricating oil is mixed in the gas discharged from the compressor.
- Patent Document 1 discloses a gas-liquid separator in which a gas-liquid mixture is blown into a tubular main body to centrifuge a gas and a liquid. ..
- a curved guide plate is attached to the gas-liquid separator main body (main body portion), which is a cylindrical pressure vessel, at predetermined intervals from the inner wall, and the main body portion is formed.
- a guide path is formed between the inner wall and the guide plate.
- the guide plate is formed in a predetermined length range from one end to the other end in a shape in which the distance from the inner wall of the main body is gradually increased. Therefore, the flow velocity of the gas-liquid mixture that has flowed into the main body decreases in the guide path. When the flow velocity of the gas-liquid mixture decreases, the gas-liquid mixture does not rotate sufficiently in the main body, and there is a possibility that the gas and the liquid cannot be separated favorably.
- the present invention has been made to solve the above problems, and to provide a gas-liquid separator capable of suitably separating gas-liquid by increasing the flow velocity of the gas-liquid mixture flowing into the main body. With the goal.
- the gas-liquid separator according to the present invention that achieves the above object is a gas-liquid separator that separates a gas and a liquid from a gas-liquid mixture.
- the gas-liquid separator is provided in communication with the tubular main body, the introduction path into which the gas-liquid mixture is introduced, and a rectifying plate attached to the main body to rectify the gas-liquid mixture. And have.
- the straightening vane has a narrow portion configured so that the distance from the inner wall of the main body portion gradually decreases toward the end portion from which the gas-liquid mixture flows out.
- the straightening vane has a narrow portion configured so that the distance from the inner wall of the main body gradually decreases toward the end where the gas-liquid mixture flows out.
- the flow velocity of the gas-liquid mixture can be increased, and the gas-liquid can be preferably separated.
- FIG. 1 It is a schematic perspective view which shows the gas-liquid separator which concerns on embodiment of this invention. It is a schematic cross-sectional view which shows the gas-liquid separator which concerns on this embodiment. It is a schematic plan view which shows the gas-liquid separator which concerns on this embodiment. It is a figure for demonstrating the structure of the rectifying plate of the gas-liquid separator which concerns on this embodiment. It is a figure which shows the gas-liquid separator which concerns on the modification 1, and is the figure which corresponds to FIG. It is a figure which shows the gas-liquid separator which concerns on the modification 1, and is the figure which corresponds to FIG. It is a figure which shows the gas-liquid separator which concerns on the modification 2, and is the figure which corresponds to FIG.
- FIGS. 1 to 4 An embodiment of the present invention will be described with reference to FIGS. 1 to 4.
- the same elements are designated by the same reference numerals, and duplicate description will be omitted.
- the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
- FIG. 1 is a schematic perspective view showing a gas-liquid separator 1 according to an embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view showing the gas-liquid separator 1 according to the present embodiment.
- FIG. 3 is a schematic plan view showing the gas-liquid separator 1 according to the present embodiment.
- FIG. 4 is a diagram for explaining the configuration of the rectifying plate 50 of the gas-liquid separator 1 according to the present embodiment.
- the gas-liquid separator 1 has a tubular main body 10, an introduction path 20 into which a gas-liquid mixture is introduced, an exhaust flow path 30 from which gas is exhausted, and refrigerating machine oil are discharged. It has an oil discharge flow path 40, a rectifying plate 50 for rectifying a gas-liquid mixture, and an intermediate plate 60 provided below the introduction path 20.
- the left-right direction in FIG. 3 may be referred to as the X direction
- the up-down direction in FIG. 3 may be referred to as the Y direction.
- the gas-liquid separator 1 is used in a gas compressor, preferably used in a high-speed multi-cylinder refrigerator, and more preferably used in a high-speed multi-cylinder refrigerator for ships.
- the main body 10 is formed in a tubular shape so as to extend in the vertical direction.
- the main body 10 is made of, for example, a casting, but is not particularly limited.
- the size of the main body 10 is not particularly limited, but it is preferably set to a size capable of separating gas and liquid. Specifically, it is preferable to set the volume so that the residence time of the gas-liquid mixture can be 0.6 seconds or more.
- the introduction path 20 is provided so as to communicate with the main body 10.
- the introduction path 20 is provided along the X direction as shown in FIG.
- the introduction path 20 is provided so as to be offset by a predetermined distance in the Y direction with respect to the center of the main body 10.
- the exhaust flow path 30 is provided above the main body 10.
- the gas (gas) separated from the refrigerating machine oil (liquid) is exhausted through the exhaust flow path 30.
- the exhaust flow path 30 is configured to once extend downward from the upper end portion 10A of the main body portion 10.
- the exhaust flow path when the exhaust flow path extends upward from the upper end portion without extending downward once, and the introduction path 20 and the exhaust flow path are close to each other, the exhaust flow path is from the end portion 50A of the straightening vane 50.
- the refrigerating machine oil separated from the gas may be discharged from the exhaust flow path 30.
- the exhaust flow path 30 is configured to extend downward once from the upper end portion 10A of the main body portion 10, so that the rectifying plate 50 Of the gas-liquid mixture flowing out from the end portion 50A, the refrigerating machine oil separated from the gas can be suitably suppressed from being discharged from the exhaust flow path 30.
- the oil discharge flow path 40 is provided below the main body 10. Refrigerating machine oil separated from the gas is discharged through the oil discharge flow path 40.
- a float valve 90 is arranged above the oil discharge flow path 40. Since the float valve 90 has a known configuration, detailed description thereof will be omitted.
- the float valve 90 When the float valve 90 is opened, the refrigerating machine oil stored under the main body 10 is discharged through the oil discharge flow path 40, and after a predetermined time elapses, the float valve 90 is closed and the lower part of the main body 10 is closed. Refrigerating machine oil is stored in.
- the rectifying plate 50 rectifies the gas-liquid mixture introduced from the introduction path 20 and increases the flow velocity of the gas-liquid mixture introduced from the introduction path 20.
- the straightening vane 50 is fixed to the inner wall of the main body 10 above the introduction path 20, and is a first extension extending to the plus side in the X direction and the plus side in the Y direction. It has an existing portion 51 and a second extending portion 52 that is continuous with the first extending portion 51 and extends to the minus side in the vertical direction. As shown in FIG. 4, the straightening vane 50 is formed in an L shape when viewed from the front.
- the method of fixing the first extending portion 51 to the inner wall of the main body portion 10 is not particularly limited, but is fixed by welding, for example.
- the straightening vane may be integrally formed with the inner wall of the main body 10.
- the first extending portion 51 covers the introduction path 20 so that the gas-liquid mixture introduced from the introduction path 20 collides with the plus side in the X direction and the plus side in the Y direction. Extends to.
- the first extending portion 51 is formed in a straight line when viewed from above and when viewed from the front. Further, as shown in FIG. 4, the second extending portion 52 is formed in a straight line when viewed from the front.
- the first extending portion 51 since the first extending portion 51 is fixed to the inner wall of the main body portion 10 above the introduction path 20, the first extending portion 51 acts as an obstacle plate and is introduced from the introduction path 20. Of the resulting gas-liquid mixture, it is possible to preferably prevent the refrigerating machine oil from being discharged from the exhaust flow path 30.
- the first extending portion 51 of the straightening vane 50 has a distance from the inner wall of the main body portion 10 toward the end portion 50A from which the gas-liquid mixture flows out when viewed from above. It has a narrow portion 53 that is configured to be gradually narrowed. That is, in the vicinity of the narrow portion 53, the inner wall of the main body portion 10 is gradually approached toward the end portion 50A of the first extending portion 51. According to this configuration, the flow velocity of the gas-liquid mixture can be increased, and the gas-liquid can be separated more preferably.
- the flow velocity of the gas-liquid mixture in the introduction path 20 is 4 m / s to 10 m / s
- the flow velocity of the gas-liquid mixture at the end portion 50A of the straightening vane 50 is 6 m / s to 15 m / s. ..
- the intermediate plate 60 is provided below the introduction path 20.
- the intermediate plate 60 has an inner diameter smaller than the inner diameter of the main body 10.
- the intermediate plate 60 has a so-called donut shape.
- the inner diameter of the intermediate plate 60 is not particularly limited, but is 0.4 to 0.6 times the inner diameter of the main body 10.
- the intermediate plate 60 is configured separately from the main body 10, and the intermediate plate 60 is fixed to the main body 10 by welding, for example.
- the intermediate plate 60 is formed along the XY plane. That is, the intermediate plate 60 is configured to be substantially horizontal with respect to the gas-liquid separator 1 without being inclined. Since the intermediate plate 60 is provided along the horizontal direction in this way, it can be easily manufactured.
- the intermediate plate 60 By providing the intermediate plate 60 in this way, the turning region R (see FIG. 2) along the vertical direction becomes narrower and the turning speed can be improved as compared with the configuration in which the intermediate plate is not provided. Therefore, gas and liquid can be suitably separated.
- the introduced gas-liquid mixture flows between the inner wall of the main body 10 and the straightening vane 50 while flowing. It flows out from the end portion 50A of the straightening vane 50.
- the straightening vane 50 since the straightening vane 50 has a narrow portion 53, it flows out from the end portion 50A of the straightening vane 50 in a state where the flow velocity of the gas-liquid mixture is increased.
- the gas-liquid mixture flowing out from the end portion 50A of the straightening vane 50 is centrifuged by swirling the inner wall of the main body portion 10 (see FIG. 3).
- oil droplets of the refrigerating machine oil are small, it is difficult to centrifuge. Therefore, when the gas-liquid mixture swirls around the inner wall of the main body 10, oil droplets can be collected into large oil droplets and gravitationally settled along the inner wall of the main body 10.
- the gas-liquid separator 1 is a gas-liquid separator 1 that separates a gas and a liquid from a gas-liquid mixture.
- the gas-liquid separator 1 is provided in communication with the tubular main body 10 and the main body 10, and is attached to the introduction path 20 into which the gas-liquid mixture is introduced and the main body 10 to rectify the gas-liquid mixture. It has a plate 50 and. Further, the straightening vane 50 has a narrow portion 53 configured so that the distance from the inner wall of the main body portion 10 gradually decreases toward the end portion 50A from which the gas-liquid mixture flows out.
- the rectifying plate 50 is configured so that the distance from the inner wall of the main body 10 gradually decreases toward the end 50A where the gas-liquid mixture flows out. Since the narrow portion 53 is provided, the flow velocity of the gas-liquid mixture can be increased to preferably separate the gas-liquid.
- the straightening vane 50 is formed in a straight line when viewed from above. According to the gas-liquid separator 1 configured in this way, the straightening vane 50 can be easily manufactured.
- the straightening vane 50 is fixed to the inner wall of the main body 10 above the introduction path 20 when viewed from the front. According to the gas-liquid separator 1 configured in this way, it is preferable that the refrigerating machine oil separated from the gas out of the gas-liquid mixture flowing out from the end portion 50A of the straightening vane 50 is discharged from the exhaust flow path 30. Can be suppressed.
- the gas-liquid separator 1 further has an intermediate plate 60 which is provided below the introduction path 20 and has an inner diameter smaller than the inner diameter of the main body 10. According to the gas-liquid separator 1 configured as described above, the swirling region R along the vertical direction is narrowed, the swirling speed can be improved, and the gas-liquid separator can be more preferably separated.
- the intermediate plate 60 is provided along the horizontal direction. According to the gas-liquid separator 1 configured in this way, the intermediate plate 60 can be easily formed.
- the straightening vane 50 has a first extending portion 51 extending to the plus side in the X direction and the plus side in the Y direction, and a first extending portion 51.
- a second extending portion 52 extending to the minus side in the Z direction is provided continuously with the portion 51, and is formed in an L shape.
- the straightening vane 150 is continuous with the first extending portion 151 extending to the plus side in the X direction and the minus side in the Y direction and the first extending portion 151.
- the second extending portion 152 extending to the minus side in the vertical direction and the third extending portion 153 extending to the minus side in the X direction and the plus side in the Y direction continuously to the second extending portion 152. And may be configured in a U shape having.
- the introduction path 20 is provided so as to be offset by a predetermined distance in the Y direction with respect to the center of the main body 10.
- the introduction path 20 may be configured without being offset with respect to the center of the main body 10.
- the intermediate plate 60 is provided along the horizontal direction.
- the intermediate plate 160 may be configured to be inclined downward in the radial direction. According to this configuration, the refrigerating machine oil on the intermediate plate 160 can be dropped downward along the inclined surface, and the accumulation of the refrigerating machine oil on the intermediate plate 160 can be preferably suppressed.
- the straightening vane 50 is formed in a linear shape when viewed from above, but the straightening vane is configured in the main body toward the end where the gas-liquid mixture flows out. It is not limited as long as it has a narrow portion formed so that the distance from the inner wall gradually becomes narrower, and may be formed in a curved shape, for example.
- the gas-liquid separator 1 has the intermediate plate 60, but the intermediate plate may not be provided.
- Gas-liquid separator 10 Main body, 20 Introductory route, 50, 150 rectifying plate, 50A end, 53 narrow part, 60, 160 intermediate plate.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Separating Particles In Gases By Inertia (AREA)
- Cyclones (AREA)
Abstract
[Problem] To provide a gas-liquid separator whereby it becomes possible to increase the flow rate of a gas-liquid mixture flown into a main body part and to achieve satisfactory gas-liquid separation. [Solution] The gas-liquid separator 1 is provided with a tubular main body part 10, an introduction path 20 which is arranged so as to communicate with the main body part and through which a gas-liquid mixture is introduced, and a flow-rectifying plate 50 which is attached to the main body part and can rectify the flow of the gas-liquid mixture, in which the flow-rectifying plate has a width-narrowing part 53 that is so configured that the distance between the flow-rectifying plate and the inner wall of the main body part can become narrow gradually toward an end part 50A through which the gas-liquid mixture flows out.
Description
本発明は、気液混合物から気体と液体を分離する気液分離器に関する。
The present invention relates to a gas-liquid separator that separates a gas and a liquid from a gas-liquid mixture.
空気、冷媒ガス、プロセスガスなどのガスを圧縮するガス圧縮機は、圧縮機に吸入された空気やガスなどの気体に、冷却、潤滑等を目的として、冷凍機油等の潤滑油(液体)が用いられる。したがって、圧縮機から吐出された気体中には、潤滑油が混在している。
In a gas compressor that compresses gas such as air, refrigerant gas, and process gas, lubricating oil (liquid) such as refrigerating machine oil is added to gas such as air and gas sucked into the compressor for the purpose of cooling and lubrication. Used. Therefore, lubricating oil is mixed in the gas discharged from the compressor.
このため、圧縮機から吐出された気体は、一旦気液分離器に導入されて、気液分離器内において冷凍機油を分離する必要がある。
Therefore, it is necessary that the gas discharged from the compressor is once introduced into the gas-liquid separator and the refrigerating machine oil is separated in the gas-liquid separator.
このような気液分離器として、例えば下記の特許文献1には、筒状の本体部の中に、気液混合物を吹き込んで、気体と液体を遠心分離する気液分離器が開示されている。
As such a gas-liquid separator, for example, Patent Document 1 below discloses a gas-liquid separator in which a gas-liquid mixture is blown into a tubular main body to centrifuge a gas and a liquid. ..
特許文献1に開示された気液分離器では、円筒状の圧力容器である気液分離器本体(本体部)に、内壁より所定間隔を介して湾曲形状の案内板を取り付けて、本体部の内壁と案内板との間に誘導路を形成している。
In the gas-liquid separator disclosed in Patent Document 1, a curved guide plate is attached to the gas-liquid separator main body (main body portion), which is a cylindrical pressure vessel, at predetermined intervals from the inner wall, and the main body portion is formed. A guide path is formed between the inner wall and the guide plate.
しかしながら、上述の特許文献1に開示された気液分離器では、案内板を一端から他端側に向かう所定の長さ範囲を、本体部の内壁との間隔を徐々に拡大する形状に形成しているため、本体部に流入した気液混合物は、誘導路において、流速が低下する。そして気液混合物の流速が低下すると、本体部において、気液混合物が十分に旋回せずに、好適に気体と液体を分離できない虞がある。
However, in the gas-liquid separator disclosed in Patent Document 1 described above, the guide plate is formed in a predetermined length range from one end to the other end in a shape in which the distance from the inner wall of the main body is gradually increased. Therefore, the flow velocity of the gas-liquid mixture that has flowed into the main body decreases in the guide path. When the flow velocity of the gas-liquid mixture decreases, the gas-liquid mixture does not rotate sufficiently in the main body, and there is a possibility that the gas and the liquid cannot be separated favorably.
本発明は上記の課題を解決するためになされたものであり、本体部に流入した気液混合物の流速を増大させて、好適に気液を分離することのできる気液分離器を提供することを目的とする。
The present invention has been made to solve the above problems, and to provide a gas-liquid separator capable of suitably separating gas-liquid by increasing the flow velocity of the gas-liquid mixture flowing into the main body. With the goal.
上記目的を達成する本発明に係る気液分離器は、気液混合物から気体と液体を分離する気液分離器である。気液分離器は、筒状の本体部と、前記本体部に連通して設けられ、前記気液混合物が導入する導入路と、前記本体部に取り付けられ、前記気液混合物を整流する整流板と、を有する。また、前記整流板は、前記気液混合物が流出する端部に向けて、前記本体部の内壁との距離が徐々に狭くなるように構成される幅狭部を有する。
The gas-liquid separator according to the present invention that achieves the above object is a gas-liquid separator that separates a gas and a liquid from a gas-liquid mixture. The gas-liquid separator is provided in communication with the tubular main body, the introduction path into which the gas-liquid mixture is introduced, and a rectifying plate attached to the main body to rectify the gas-liquid mixture. And have. Further, the straightening vane has a narrow portion configured so that the distance from the inner wall of the main body portion gradually decreases toward the end portion from which the gas-liquid mixture flows out.
上述の気液分離器によれば、整流板は、気液混合物が流出する端部に向けて、本体部の内壁との距離が徐々に狭くなるように構成される幅狭部を有するため、気液混合物の流速を増大させることができ、好適に気液を分離することができる。
According to the gas-liquid separator described above, the straightening vane has a narrow portion configured so that the distance from the inner wall of the main body gradually decreases toward the end where the gas-liquid mixture flows out. The flow velocity of the gas-liquid mixture can be increased, and the gas-liquid can be preferably separated.
本発明の実施形態を、図1~図4を参照しつつ説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
An embodiment of the present invention will be described with reference to FIGS. 1 to 4. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
図1は、本発明の実施形態に係る気液分離器1を示す概略透視図である。図2は、本実施形態に係る気液分離器1を示す概略断面図である。図3は、本実施形態に係る気液分離器1を示す概略平面図である。図4は、本実施形態に係る気液分離器1の整流板50の構成を説明するための図である。
FIG. 1 is a schematic perspective view showing a gas-liquid separator 1 according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing the gas-liquid separator 1 according to the present embodiment. FIG. 3 is a schematic plan view showing the gas-liquid separator 1 according to the present embodiment. FIG. 4 is a diagram for explaining the configuration of the rectifying plate 50 of the gas-liquid separator 1 according to the present embodiment.
気液分離器1は、図1に示すように、筒状の本体部10と、気液混合物が導入する導入路20と、ガスが排気される排気流路30と、冷凍機油が排出される油排出流路40と、気液混合物を整流する整流板50と、導入路20の下方に設けられる中間板60と、を有する。なお、以下の説明において、図3の左右方向をX方向、図3の上下方向をY方向と称する場合がある。ここで、気液分離器1はガス圧縮機に用いられ、好適には高速多気筒冷凍機に用いられ、より好適には船用高速多気筒冷凍機に用いられる。
As shown in FIG. 1, the gas-liquid separator 1 has a tubular main body 10, an introduction path 20 into which a gas-liquid mixture is introduced, an exhaust flow path 30 from which gas is exhausted, and refrigerating machine oil are discharged. It has an oil discharge flow path 40, a rectifying plate 50 for rectifying a gas-liquid mixture, and an intermediate plate 60 provided below the introduction path 20. In the following description, the left-right direction in FIG. 3 may be referred to as the X direction, and the up-down direction in FIG. 3 may be referred to as the Y direction. Here, the gas-liquid separator 1 is used in a gas compressor, preferably used in a high-speed multi-cylinder refrigerator, and more preferably used in a high-speed multi-cylinder refrigerator for ships.
本体部10は、上下方向に延在するように筒状に構成されている。本体部10は、例えば鋳物によって構成されているが、特に限定されない。本体部10の大きさは特に限定されないが、好適に気液を分離することのできる大きさにすることが好ましい。具体的には、気液混合物の滞留時間が0.6秒以上取れる容積にすることが好ましい。
The main body 10 is formed in a tubular shape so as to extend in the vertical direction. The main body 10 is made of, for example, a casting, but is not particularly limited. The size of the main body 10 is not particularly limited, but it is preferably set to a size capable of separating gas and liquid. Specifically, it is preferable to set the volume so that the residence time of the gas-liquid mixture can be 0.6 seconds or more.
導入路20は、図1、図2に示すように、本体部10に連通して設けられる。導入路20は、図3に示すようにX方向に沿って設けられる。導入路20は、図3に示すように、本体部10の中心に対してY方向に所定の距離だけオフセットして設けられる。
As shown in FIGS. 1 and 2, the introduction path 20 is provided so as to communicate with the main body 10. The introduction path 20 is provided along the X direction as shown in FIG. As shown in FIG. 3, the introduction path 20 is provided so as to be offset by a predetermined distance in the Y direction with respect to the center of the main body 10.
排気流路30は、図1に示すように、本体部10の上方に設けられる。排気流路30を介して、冷凍機油(液体)と分離されたガス(気体)が排気される。
As shown in FIG. 1, the exhaust flow path 30 is provided above the main body 10. The gas (gas) separated from the refrigerating machine oil (liquid) is exhausted through the exhaust flow path 30.
排気流路30は、図2に示すように、本体部10の上端部10Aから一旦下方に延在するように構成されている。
As shown in FIG. 2, the exhaust flow path 30 is configured to once extend downward from the upper end portion 10A of the main body portion 10.
例えば排気流路が、上端部から一旦下方に延在することなく、上方に延在する構成である場合であって、導入路20および排気流路が近い場合、整流板50の端部50Aから流出した気液混合物のうち、ガスから分離された冷凍機油が排気流路30から排出される虞がある。
For example, when the exhaust flow path extends upward from the upper end portion without extending downward once, and the introduction path 20 and the exhaust flow path are close to each other, the exhaust flow path is from the end portion 50A of the straightening vane 50. Of the gas-liquid mixture that has flowed out, the refrigerating machine oil separated from the gas may be discharged from the exhaust flow path 30.
これに対して、本実施形態に係る気液分離器1であれば、排気流路30が、本体部10の上端部10Aから一旦下方に延在するように構成されているため、整流板50の端部50Aから流出した気液混合物のうち、ガスから分離された冷凍機油が排気流路30から排出されることを好適に抑制することができる。
On the other hand, in the gas-liquid separator 1 according to the present embodiment, the exhaust flow path 30 is configured to extend downward once from the upper end portion 10A of the main body portion 10, so that the rectifying plate 50 Of the gas-liquid mixture flowing out from the end portion 50A, the refrigerating machine oil separated from the gas can be suitably suppressed from being discharged from the exhaust flow path 30.
油排出流路40は、図1に示すように、本体部10の下方に設けられる。油排出流路40を介して、ガスと分離された冷凍機油が排出される。油排出流路40の上方には、フロート弁90が配置されている。フロート弁90は公知の構成であるため、詳細な説明は省略する。
As shown in FIG. 1, the oil discharge flow path 40 is provided below the main body 10. Refrigerating machine oil separated from the gas is discharged through the oil discharge flow path 40. A float valve 90 is arranged above the oil discharge flow path 40. Since the float valve 90 has a known configuration, detailed description thereof will be omitted.
フロート弁90が開放することによって、本体部10の下方に貯留された冷凍機油が油排出流路40を介して排出され、所定時間経過後に、フロート弁90が閉鎖して、本体部10の下方に冷凍機油が貯留される。
When the float valve 90 is opened, the refrigerating machine oil stored under the main body 10 is discharged through the oil discharge flow path 40, and after a predetermined time elapses, the float valve 90 is closed and the lower part of the main body 10 is closed. Refrigerating machine oil is stored in.
整流板50は、導入路20から導入した気液混合物を整流するとともに、導入路20から導入した気液混合物の流速を増大させる。
The rectifying plate 50 rectifies the gas-liquid mixture introduced from the introduction path 20 and increases the flow velocity of the gas-liquid mixture introduced from the introduction path 20.
整流板50は、図3、図4に示すように、導入路20の上方において本体部10の内壁に固定されるとともに、X方向のプラス側かつY方向のプラス側に延在する第1延在部51と、第1延在部51に連続して上下方向のマイナス側に延在する第2延在部52と、を有する。整流板50は、図4に示すように、正面視したときに、L字状に構成されている。
As shown in FIGS. 3 and 4, the straightening vane 50 is fixed to the inner wall of the main body 10 above the introduction path 20, and is a first extension extending to the plus side in the X direction and the plus side in the Y direction. It has an existing portion 51 and a second extending portion 52 that is continuous with the first extending portion 51 and extends to the minus side in the vertical direction. As shown in FIG. 4, the straightening vane 50 is formed in an L shape when viewed from the front.
第1延在部51が本体部10の内壁に対して固定される方法は、特に限定されないが、例えば溶接による固定である。なお、整流板は、本体部10の内壁と一体的に構成されていてもよい。第1延在部51は、図3に示すように、導入路20から導入された気液混合物が衝突するように、導入路20を覆うように、X方向のプラス側かつY方向のプラス側に延在する。
The method of fixing the first extending portion 51 to the inner wall of the main body portion 10 is not particularly limited, but is fixed by welding, for example. The straightening vane may be integrally formed with the inner wall of the main body 10. As shown in FIG. 3, the first extending portion 51 covers the introduction path 20 so that the gas-liquid mixture introduced from the introduction path 20 collides with the plus side in the X direction and the plus side in the Y direction. Extends to.
第1延在部51は、図3、図4に示すように、上方から視たときかつ正面視したときに、直線状に構成されている。また、第2延在部52は、図4に示すように、正面視したときに、直線状に構成されている。
As shown in FIGS. 3 and 4, the first extending portion 51 is formed in a straight line when viewed from above and when viewed from the front. Further, as shown in FIG. 4, the second extending portion 52 is formed in a straight line when viewed from the front.
上述したように、第1延在部51が導入路20の上方において、本体部10の内壁に固定されているため、第1延在部51が邪魔板として作用して、導入路20から導入した気液混合物のうち、冷凍機油が排気流路30から排出されることを好適に抑制することができる。
As described above, since the first extending portion 51 is fixed to the inner wall of the main body portion 10 above the introduction path 20, the first extending portion 51 acts as an obstacle plate and is introduced from the introduction path 20. Of the resulting gas-liquid mixture, it is possible to preferably prevent the refrigerating machine oil from being discharged from the exhaust flow path 30.
また、整流板50の第1延在部51は、図3に示すように、上方から視たときに、気液混合物が流出する端部50Aに向けて、本体部10の内壁との距離が徐々に狭くなるように構成される幅狭部53を有する。すなわち、幅狭部53近傍において、第1延在部51の端部50Aに向けて徐々に本体部10の内壁に近づいている。この構成によれば、気液混合物の流速を増大させることができ、より好適に気液を分離することができる。
Further, as shown in FIG. 3, the first extending portion 51 of the straightening vane 50 has a distance from the inner wall of the main body portion 10 toward the end portion 50A from which the gas-liquid mixture flows out when viewed from above. It has a narrow portion 53 that is configured to be gradually narrowed. That is, in the vicinity of the narrow portion 53, the inner wall of the main body portion 10 is gradually approached toward the end portion 50A of the first extending portion 51. According to this configuration, the flow velocity of the gas-liquid mixture can be increased, and the gas-liquid can be separated more preferably.
ここで、例えば、導入路20における気液混合物の流速が4m/s~10m/sであるとき、整流板50の端部50Aにおける気液混合物の流速は、6m/s~15m/sである。
Here, for example, when the flow velocity of the gas-liquid mixture in the introduction path 20 is 4 m / s to 10 m / s, the flow velocity of the gas-liquid mixture at the end portion 50A of the straightening vane 50 is 6 m / s to 15 m / s. ..
中間板60は、図1に示すように、導入路20よりも下方に設けられる。中間板60は、本体部10の内径よりも小さい内径を備える。中間板60はいわゆるドーナツ形状を備えている。中間板60の内径は、特に限定されないが、本体部10の内径の0.4~0.6倍である。
As shown in FIG. 1, the intermediate plate 60 is provided below the introduction path 20. The intermediate plate 60 has an inner diameter smaller than the inner diameter of the main body 10. The intermediate plate 60 has a so-called donut shape. The inner diameter of the intermediate plate 60 is not particularly limited, but is 0.4 to 0.6 times the inner diameter of the main body 10.
中間板60は、本体部10に対して別体に構成されており、中間板60は、例えば溶接によって、本体部10に対して固定されている。
The intermediate plate 60 is configured separately from the main body 10, and the intermediate plate 60 is fixed to the main body 10 by welding, for example.
中間板60は、XY平面に沿って形成される。すなわち、中間板60は、気液分離器1に対して傾斜することなく、略水平となるように構成される。このように中間板60は、水平方向に沿って設けられるため、容易に製造することができる。
The intermediate plate 60 is formed along the XY plane. That is, the intermediate plate 60 is configured to be substantially horizontal with respect to the gas-liquid separator 1 without being inclined. Since the intermediate plate 60 is provided along the horizontal direction in this way, it can be easily manufactured.
このように中間板60が設けられることによって、中間板が設けられない構成と比較して、上下方向に沿う旋回領域R(図2参照)が狭くなり、旋回速度を向上させることができる。したがって、気液を好適に分離することができる。
By providing the intermediate plate 60 in this way, the turning region R (see FIG. 2) along the vertical direction becomes narrower and the turning speed can be improved as compared with the configuration in which the intermediate plate is not provided. Therefore, gas and liquid can be suitably separated.
以上のように構成された気液分離器1において、気液混合物が導入路20から導入されると、導入された気液混合物は、本体部10の内壁および整流板50の間を流れつつ、整流板50の端部50Aから流出する。ここで、整流板50は幅狭部53を有するため、気液混合物の流速が増大した状態で整流板50の端部50Aから流出する。整流板50の端部50Aから流出した気液混合物は、本体部10の内壁を旋回することによって、気液が遠心分離される(図3参照)。
In the gas-liquid separator 1 configured as described above, when the gas-liquid mixture is introduced from the introduction path 20, the introduced gas-liquid mixture flows between the inner wall of the main body 10 and the straightening vane 50 while flowing. It flows out from the end portion 50A of the straightening vane 50. Here, since the straightening vane 50 has a narrow portion 53, it flows out from the end portion 50A of the straightening vane 50 in a state where the flow velocity of the gas-liquid mixture is increased. The gas-liquid mixture flowing out from the end portion 50A of the straightening vane 50 is centrifuged by swirling the inner wall of the main body portion 10 (see FIG. 3).
例えば、冷凍機油の油滴が小さい場合は、遠心分離しにくい。よって、気液混合物が本体部10の内壁を旋回する際に、油滴を集めて大きな油滴にして、本体部10の内壁を沿って重力沈降させることができる。
For example, if the oil droplets of the refrigerating machine oil are small, it is difficult to centrifuge. Therefore, when the gas-liquid mixture swirls around the inner wall of the main body 10, oil droplets can be collected into large oil droplets and gravitationally settled along the inner wall of the main body 10.
以上説明したように、本実施形態に係る気液分離器1は、気液混合物から気体と液体を分離する気液分離器1である。気液分離器1は、筒状の本体部10と、本体部10に連通して設けられ、気液混合物が導入する導入路20と、本体部10に取り付けられ、気液混合物を整流する整流板50と、を有する。また、整流板50は、気液混合物が流出する端部50Aに向けて、本体部10の内壁との距離が徐々に狭くなるように構成される幅狭部53を有する。このように構成された気液分離器1によれば、整流板50は、気液混合物が流出する端部50Aに向けて、本体部10の内壁との距離が徐々に狭くなるように構成される幅狭部53を有するため、気液混合物の流速を増大させて、好適に気液を分離することができる。
As described above, the gas-liquid separator 1 according to the present embodiment is a gas-liquid separator 1 that separates a gas and a liquid from a gas-liquid mixture. The gas-liquid separator 1 is provided in communication with the tubular main body 10 and the main body 10, and is attached to the introduction path 20 into which the gas-liquid mixture is introduced and the main body 10 to rectify the gas-liquid mixture. It has a plate 50 and. Further, the straightening vane 50 has a narrow portion 53 configured so that the distance from the inner wall of the main body portion 10 gradually decreases toward the end portion 50A from which the gas-liquid mixture flows out. According to the gas-liquid separator 1 configured in this way, the rectifying plate 50 is configured so that the distance from the inner wall of the main body 10 gradually decreases toward the end 50A where the gas-liquid mixture flows out. Since the narrow portion 53 is provided, the flow velocity of the gas-liquid mixture can be increased to preferably separate the gas-liquid.
また、整流板50は、上方から視たときに、直線状に構成されている。このように構成された気液分離器1によれば、整流板50を容易に製造することができる。
Further, the straightening vane 50 is formed in a straight line when viewed from above. According to the gas-liquid separator 1 configured in this way, the straightening vane 50 can be easily manufactured.
また、整流板50は正面視した際に、導入路20の上方において、本体部10の内壁に固定されている。このように構成された気液分離器1によれば、整流板50の端部50Aから流出した気液混合物のうち、ガスから分離された冷凍機油が排気流路30から排出されることを好適に抑制することができる。
Further, the straightening vane 50 is fixed to the inner wall of the main body 10 above the introduction path 20 when viewed from the front. According to the gas-liquid separator 1 configured in this way, it is preferable that the refrigerating machine oil separated from the gas out of the gas-liquid mixture flowing out from the end portion 50A of the straightening vane 50 is discharged from the exhaust flow path 30. Can be suppressed.
また、気液分離器1は、導入路20より下方に設けられ、本体部10の内径よりも小さい内径を備える中間板60をさらに有する。このように構成された気液分離器1によれば、上下方向に沿う旋回領域Rが狭くなり、旋回速度を向上させることができ、より好適に気液を分離することができる。
Further, the gas-liquid separator 1 further has an intermediate plate 60 which is provided below the introduction path 20 and has an inner diameter smaller than the inner diameter of the main body 10. According to the gas-liquid separator 1 configured as described above, the swirling region R along the vertical direction is narrowed, the swirling speed can be improved, and the gas-liquid separator can be more preferably separated.
また、中間板60は、水平方向に沿って設けられる。このように構成された気液分離器1によれば、中間板60を容易に形成することができる。
Further, the intermediate plate 60 is provided along the horizontal direction. According to the gas-liquid separator 1 configured in this way, the intermediate plate 60 can be easily formed.
なお、本発明は上述した実施形態に限定されるものではなく、特許請求の範囲内で種々改変することができる。
The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims.
例えば、上述した実施形態では、整流板50は、図3、図4に示すように、X方向のプラス側かつY方向のプラス側に延在する第1延在部51と、第1延在部51に連続して、Z方向のマイナス側に延在する第2延在部52と、を有し、L字状に構成された。しかしながら、整流板150は、図5、図6に示すように、X方向のプラス側かつY方向のマイナス側に延在する第1延在部151と、第1延在部151に連続して、上下方向のマイナス側に延在する第2延在部152と、第2延在部152に連続して、X方向のマイナス側かつY方向のプラス側に延在する第3延在部153と、を有するU字状に構成されていてもよい。
For example, in the above-described embodiment, as shown in FIGS. 3 and 4, the straightening vane 50 has a first extending portion 51 extending to the plus side in the X direction and the plus side in the Y direction, and a first extending portion 51. A second extending portion 52 extending to the minus side in the Z direction is provided continuously with the portion 51, and is formed in an L shape. However, as shown in FIGS. 5 and 6, the straightening vane 150 is continuous with the first extending portion 151 extending to the plus side in the X direction and the minus side in the Y direction and the first extending portion 151. , The second extending portion 152 extending to the minus side in the vertical direction and the third extending portion 153 extending to the minus side in the X direction and the plus side in the Y direction continuously to the second extending portion 152. And may be configured in a U shape having.
また、上述した実施形態では、導入路20は図3に示すように、本体部10の中心に対してY方向に所定の距離だけオフセットして設けられた。しかしながら、導入路20は、図5に示すように、本体部10の中心に対してオフセットされずに構成されていてもよい。
Further, in the above-described embodiment, as shown in FIG. 3, the introduction path 20 is provided so as to be offset by a predetermined distance in the Y direction with respect to the center of the main body 10. However, as shown in FIG. 5, the introduction path 20 may be configured without being offset with respect to the center of the main body 10.
また、上述した実施形態では、中間板60は水平方向に沿って設けられた。しかしながら、中間板160は、図7に示すように、径方向内方に向けて、下方向に傾斜するように構成されていてもよい。この構成によれば、中間板160上の冷凍機油を傾斜面に沿って下方に落下させることができ、中間板160上に冷凍機油が貯留することを好適に抑制することができる。
Further, in the above-described embodiment, the intermediate plate 60 is provided along the horizontal direction. However, as shown in FIG. 7, the intermediate plate 160 may be configured to be inclined downward in the radial direction. According to this configuration, the refrigerating machine oil on the intermediate plate 160 can be dropped downward along the inclined surface, and the accumulation of the refrigerating machine oil on the intermediate plate 160 can be preferably suppressed.
また、上述した実施形態では、整流板50は、上方から視たときに、直線状に構成されていたが、整流板の構成は、気液混合物が流出する端部に向けて、本体部の内壁との距離が徐々に狭くなるように構成される幅狭部を有する限りにおいて限定されず、例えば、湾曲形状に構成されていてもよい。
Further, in the above-described embodiment, the straightening vane 50 is formed in a linear shape when viewed from above, but the straightening vane is configured in the main body toward the end where the gas-liquid mixture flows out. It is not limited as long as it has a narrow portion formed so that the distance from the inner wall gradually becomes narrower, and may be formed in a curved shape, for example.
また、上述した実施形態では、気液分離器1は、中間板60を有していたが、中間板を有していなくてもよい。
Further, in the above-described embodiment, the gas-liquid separator 1 has the intermediate plate 60, but the intermediate plate may not be provided.
1 気液分離器、
10 本体部、
20 導入路、
50、150 整流板、
50A 端部、
53 幅狭部、
60、160 中間板。 1 Gas-liquid separator,
10 Main body,
20 Introductory route,
50, 150 rectifying plate,
50A end,
53 narrow part,
60, 160 intermediate plate.
10 本体部、
20 導入路、
50、150 整流板、
50A 端部、
53 幅狭部、
60、160 中間板。 1 Gas-liquid separator,
10 Main body,
20 Introductory route,
50, 150 rectifying plate,
50A end,
53 narrow part,
60, 160 intermediate plate.
Claims (5)
- 気液混合物から気体と液体を分離する気液分離器であって、
筒状の本体部と、
前記本体部に連通して設けられ、前記気液混合物が導入する導入路と、
前記本体部に取り付けられ、前記気液混合物を整流する整流板と、を有し、
前記整流板は、前記気液混合物が流出する端部に向けて、前記本体部の内壁との距離が徐々に狭くなるように構成される幅狭部を有する、気液分離器。 A gas-liquid separator that separates gas and liquid from a gas-liquid mixture.
Cylindrical body and
An introduction path that is provided in communication with the main body and into which the gas-liquid mixture is introduced,
It has a rectifying plate attached to the main body and rectifies the gas-liquid mixture.
The gas-liquid separator is a gas-liquid separator having a narrow portion formed so that the distance from the inner wall of the main body portion is gradually reduced toward the end portion from which the gas-liquid mixture flows out. - 前記整流板は、上方から視たときに、直線状に構成されている、請求項1に記載の気液分離器。 The gas-liquid separator according to claim 1, wherein the straightening vane is formed in a straight line when viewed from above.
- 前記整流板は正面視した際に、少なくとも前記導入路の上方において前記本体部の前記内壁に固定されている、請求項1または2に記載の気液分離器。 The gas-liquid separator according to claim 1 or 2, wherein the straightening vane is fixed to the inner wall of the main body at least above the introduction path when viewed from the front.
- 前記導入路より下方に設けられ、前記本体部の内径よりも小さい内径を備える中間板をさらに有する、請求項1~3のいずれか1項に記載の気液分離器。 The gas-liquid separator according to any one of claims 1 to 3, further comprising an intermediate plate provided below the introduction path and having an inner diameter smaller than the inner diameter of the main body.
- 前記中間板は、水平方向に沿って設けられる、請求項4に記載の気液分離器。 The gas-liquid separator according to claim 4, wherein the intermediate plate is provided along the horizontal direction.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/007487 WO2021171369A1 (en) | 2020-02-25 | 2020-02-25 | Gas-liquid separator |
PCT/JP2020/034459 WO2021171662A1 (en) | 2020-02-25 | 2020-09-11 | Gas-liquid separator |
PCT/JP2020/047667 WO2021171755A1 (en) | 2020-02-25 | 2020-12-21 | Gas-liquid separator |
RS20240942A RS65872B1 (en) | 2020-02-25 | 2020-12-21 | Gas-liquid separator |
EP20920780.2A EP4112153B1 (en) | 2020-02-25 | 2020-12-21 | Gas-liquid separator |
CN202080012294.3A CN113557073B (en) | 2020-02-25 | 2020-12-21 | Gas-liquid separator |
KR1020217027419A KR102619597B1 (en) | 2020-02-25 | 2020-12-21 | gas liquid separator |
JP2021551907A JP7274596B2 (en) | 2020-02-25 | 2020-12-21 | gas-liquid separator |
US17/801,335 US20240335843A1 (en) | 2020-02-25 | 2020-12-21 | Gas-liquid separator |
TW110105831A TWI758099B (en) | 2020-02-25 | 2021-02-19 | Gas-liquid separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/007487 WO2021171369A1 (en) | 2020-02-25 | 2020-02-25 | Gas-liquid separator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021171369A1 true WO2021171369A1 (en) | 2021-09-02 |
Family
ID=77490810
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/007487 WO2021171369A1 (en) | 2020-02-25 | 2020-02-25 | Gas-liquid separator |
PCT/JP2020/034459 WO2021171662A1 (en) | 2020-02-25 | 2020-09-11 | Gas-liquid separator |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/034459 WO2021171662A1 (en) | 2020-02-25 | 2020-09-11 | Gas-liquid separator |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102619597B1 (en) |
CN (1) | CN113557073B (en) |
WO (2) | WO2021171369A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN218458899U (en) * | 2022-09-07 | 2023-02-10 | 考克利尔竞立(苏州)氢能科技有限公司 | Partition plate type gas-liquid separator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5676054U (en) * | 1979-11-19 | 1981-06-20 | ||
JPH05277444A (en) * | 1992-03-30 | 1993-10-26 | Mitsubishi Materials Corp | Powder classifier |
JPH05296610A (en) * | 1992-04-13 | 1993-11-09 | Daikin Ind Ltd | Centrifugal oil separator |
JP2001246216A (en) * | 1999-12-28 | 2001-09-11 | Denso Corp | Gas-liquid separator |
JP2004052710A (en) * | 2002-07-23 | 2004-02-19 | Hokuetsu Kogyo Co Ltd | Receiver tank for oil-cooled compressor |
JP2019072688A (en) * | 2017-10-18 | 2019-05-16 | 株式会社神戸製鋼所 | Gas-liquid separator and hydraulic compressor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101822924B (en) * | 2010-05-11 | 2012-05-16 | 南京航空航天大学 | Centrifugal gas-liquid separator |
JP2013044456A (en) * | 2011-08-23 | 2013-03-04 | Hitachi Appliances Inc | Oil separator and refrigerating cycle apparatus |
-
2020
- 2020-02-25 WO PCT/JP2020/007487 patent/WO2021171369A1/en active Application Filing
- 2020-09-11 WO PCT/JP2020/034459 patent/WO2021171662A1/en active Application Filing
- 2020-12-21 KR KR1020217027419A patent/KR102619597B1/en active IP Right Grant
- 2020-12-21 CN CN202080012294.3A patent/CN113557073B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5676054U (en) * | 1979-11-19 | 1981-06-20 | ||
JPH05277444A (en) * | 1992-03-30 | 1993-10-26 | Mitsubishi Materials Corp | Powder classifier |
JPH05296610A (en) * | 1992-04-13 | 1993-11-09 | Daikin Ind Ltd | Centrifugal oil separator |
JP2001246216A (en) * | 1999-12-28 | 2001-09-11 | Denso Corp | Gas-liquid separator |
JP2004052710A (en) * | 2002-07-23 | 2004-02-19 | Hokuetsu Kogyo Co Ltd | Receiver tank for oil-cooled compressor |
JP2019072688A (en) * | 2017-10-18 | 2019-05-16 | 株式会社神戸製鋼所 | Gas-liquid separator and hydraulic compressor |
Also Published As
Publication number | Publication date |
---|---|
KR102619597B1 (en) | 2023-12-29 |
KR20210118923A (en) | 2021-10-01 |
WO2021171662A1 (en) | 2021-09-02 |
CN113557073B (en) | 2022-12-13 |
CN113557073A (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2830618B2 (en) | Centrifugal oil separator | |
US11148072B2 (en) | Inlet diverter | |
US8800599B2 (en) | Throttling valve and method for enlarging liquid droplet sizes in the throttled fluid stream | |
US6709476B2 (en) | Centrifugal air-oil separator | |
JPH0365259A (en) | Cyclone device to separate waste particles from fluid | |
WO2021171369A1 (en) | Gas-liquid separator | |
JP2013044456A (en) | Oil separator and refrigerating cycle apparatus | |
EP1541943B1 (en) | Gas liquid separator | |
NZ239581A (en) | Gas-liquid separator with tangential inflow nozzle to cylindrical body with central discharge pipe | |
JP5341472B2 (en) | Oil separator built-in compressor | |
US20100242422A1 (en) | Device for the Precipitation of Liquid Droplets from a Gas Stream | |
JP3593594B2 (en) | Gas-liquid separator | |
TWI758099B (en) | Gas-liquid separator | |
US9022230B2 (en) | Oil separation means and refrigeration device equipped with the same | |
JP2001121036A (en) | Centrifugal separator | |
JP4255817B2 (en) | Gas-liquid separator | |
JP2006305525A (en) | Gas-liquid separator | |
JP5517899B2 (en) | Oil separator | |
JPH10185367A (en) | Oil separator | |
WO2018198516A1 (en) | Oil separator and refrigeration cycle device | |
CN209212500U (en) | A kind of automobile air conditioner compressor cyclone type oil-gas separator | |
CA2937888C (en) | Dual cyclone separator | |
JP2014125951A (en) | Piston for internal combustion engine | |
JP2024044515A (en) | Gas-liquid separator | |
CN109340085A (en) | A kind of automobile air conditioner compressor cyclone type oil-gas separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20921238 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20921238 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |