JP6850110B2 - Valve body molding method for soft seal sluice valve - Google Patents

Valve body molding method for soft seal sluice valve Download PDF

Info

Publication number
JP6850110B2
JP6850110B2 JP2016225153A JP2016225153A JP6850110B2 JP 6850110 B2 JP6850110 B2 JP 6850110B2 JP 2016225153 A JP2016225153 A JP 2016225153A JP 2016225153 A JP2016225153 A JP 2016225153A JP 6850110 B2 JP6850110 B2 JP 6850110B2
Authority
JP
Japan
Prior art keywords
core metal
rubber material
valve
support pin
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016225153A
Other languages
Japanese (ja)
Other versions
JP2018079667A (en
Inventor
賢二 呉竹
賢二 呉竹
久人 小谷
久人 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Alloy Manufacturing Co Ltd
Original Assignee
Shimizu Alloy Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Alloy Manufacturing Co Ltd filed Critical Shimizu Alloy Manufacturing Co Ltd
Priority to JP2016225153A priority Critical patent/JP6850110B2/en
Publication of JP2018079667A publication Critical patent/JP2018079667A/en
Application granted granted Critical
Publication of JP6850110B2 publication Critical patent/JP6850110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding Valves (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、弾性材によりライニングされたソフトシール仕切弁の弁体成形方法に関し、特に、弁体芯材の表面全体がライニングされる全面ライニング型のソフトシール仕切弁に適した弁体成形方法に関する。 The present invention relates to a valve body forming method for a soft-sealed sluice valve lined with an elastic material, and more particularly to a valve body forming method suitable for a full-lined soft-sealed sluice valve in which the entire surface of a valve body core material is lined. ..

この種のソフトシール仕切弁の弁体は、一般に、金属製などの芯材の全面に、ゴム等の弾性材がライニングされることで構成される。通常、弁体芯金にゴム材料をライニングする場合には、上型と下型とからなる成形型が用いられ、その成形時には、上型と下型との間に芯金の全面が挟み込まれ、上型に設けられた注入口より未加硫のゴム(ライニング材料)が芯材の上面側から成形型内に大きな注入圧力で流し込まれる。その際、ゴムが上型と芯金との隙間から下型と芯金との隙間に流れ込み、芯金の下面側にもライニングが施される。 The valve body of this type of soft-seal sluice valve is generally formed by lining the entire surface of a core material such as metal with an elastic material such as rubber. Normally, when lining a rubber material on a valve body core metal, a molding mold consisting of an upper mold and a lower mold is used, and at the time of molding, the entire surface of the core metal is sandwiched between the upper mold and the lower mold. Unvulcanized rubber (lining material) is poured into the molding mold from the upper surface side of the core material with a large injection pressure from the injection port provided on the upper mold. At that time, the rubber flows from the gap between the upper mold and the core metal into the gap between the lower mold and the core metal, and the lower surface side of the core metal is also lined.

この場合、下型には弁体支持用のピンが設けられ、この支持ピンにより芯金が支持されて、この芯金と下型との間の隙間が保持された状態になっている。上型側より注がれたゴムは、この隙間を通って芯金の下面側に流れ込み、この下面が上面とともにライニングされる。成形後には、支持ピンで支えられてゴムが到達していない部分に対して、手作業でゴム材料又は樹脂等が埋め込まれて補修される。このような成形方法では、ゴムの埋め込み部分の数や面積を少なくするために、支持ピンにより支えられる位置が数か所に抑えられ、その径も小さくなっていることが多い。 In this case, the lower mold is provided with a pin for supporting the valve body, and the core metal is supported by the support pin, so that the gap between the core metal and the lower mold is maintained. The rubber poured from the upper mold side flows into the lower surface side of the core metal through this gap, and the lower surface is lined together with the upper surface. After molding, a rubber material or resin or the like is manually embedded in the portion supported by the support pin and not reached by the rubber to repair the portion. In such a molding method, in order to reduce the number and area of the rubber embedded portion, the positions supported by the support pins are suppressed to several places, and the diameter thereof is often small.

さらに、このような弁体成形方法として、特許文献1における弁体ゴムライニング方法が開示されている。このライニング方法では、上型と下型とによる成形型に支持ピンで芯金が支持され、ライニング用の隙間が確保された状態でキャビティ内に大圧力でゴムが圧入され、続いて、支持ピンが隙間の外に下降され、キャビティと弁体との隙間から支持ピン跡部分に圧入ゴムが埋められて加硫がおこなわれる。このように、ライニングの途中で支持ピンを移動させることで、下型と弁体との隙間から流れ込むゴムを支持ピン跡まで到達させ、弁体全面をライニングしようとする方法も知られている。 Further, as such a valve body molding method, the valve body rubber lining method in Patent Document 1 is disclosed. In this lining method, the core metal is supported by the support pins in the molding molds of the upper mold and the lower mold, and the rubber is press-fitted into the cavity with a large pressure while the gap for the lining is secured, and then the support pins. Is lowered to the outside of the gap, and press-fit rubber is buried in the support pin trace portion from the gap between the cavity and the valve body, and vulcanization is performed. As described above, there is also known a method in which the support pin is moved in the middle of the lining so that the rubber flowing from the gap between the lower mold and the valve body reaches the support pin mark and the entire surface of the valve body is lined.

これらのライニング方法において、ゴム注入時には大きな圧力が芯金に作用する。この注入圧力に耐えうるために、一般に、ゴムライニング用の芯金は大きな肉厚に設けられ、リブが形成されて強度が確保されている。この場合、通常、芯金の材料としては、ダクタイル鋳鉄、ステンレス鋳鋼等の金属が使用され、これらの金属は、ゴム材料に比べて比重が大きく、弁体全体の質量のほとんどを占めるため、弁体全体の質量に与える影響が大きい。そのため、芯金を大きな肉厚にし、リブを形成すると、芯金の質量が増大して弁体全体の質量が大きくなる。弁体の質量が大きくなると、ライニング時や、製品組立て時の作業性が悪くなり、現場等においても、弁体を交換する際の作業性も悪化することから、これらを回避するために、芯金の軽量化が要求されている。 In these lining methods, a large pressure acts on the core metal when injecting rubber. In order to withstand this injection pressure, the core metal for rubber lining is generally provided with a large wall thickness, and ribs are formed to ensure strength. In this case, a metal such as ductile cast iron or stainless cast steel is usually used as the material of the core metal, and these metals have a larger specific gravity than the rubber material and occupy most of the mass of the entire valve body. It has a great effect on the mass of the whole body. Therefore, when the core metal is made thick and ribs are formed, the mass of the core metal increases and the mass of the entire valve body increases. If the mass of the valve body becomes large, the workability at the time of lining or assembling the product deteriorates, and the workability at the time of replacing the valve body also deteriorates at the site, etc. There is a demand for weight reduction of gold.

これに加えて、ライニングゴムの薄肉化も要求されており、これによると、ゴム材料の使用量が減少して材料費も抑えられる。ゴムの加硫時間も短くなることから、ライニング成形にかかるコストも下げることが可能になる。 In addition to this, thinning of the lining rubber is also required, which reduces the amount of rubber material used and the material cost. Since the vulcanization time of rubber is also shortened, it is possible to reduce the cost required for lining molding.

特開昭59−194828号公報JP-A-59-194828

しかしながら、前述した弁体成形方法を用いて、肉厚が薄くリブの無い芯金にライニングを施して弁体の軽量化を図ろうとする場合、支持ピンで支える位置が数か所と少なく、支持ピンの径も小さいときには、芯金がゴムの注入圧力による影響を受けやすくなり、この圧力に耐えきれずに変形しやすくなる。これに対して、支持ピンを大径化し、個数を増加して芯金へのゴム注入圧力を緩和しようとすると、大型化した支持ピン同士の間隔が狭くなるためにこれらの間に加硫中のゴムが流れ込みにくくなり、その結果、均等なライニング厚を確保できなくなる可能性がある。さらに、支持ピンで支えられていた部分に別のゴム材料又は樹脂等を埋め込む際には、手作業であって、しかも埋め込み面積が多くなることで手間がかかる。加硫中のゴムを流し込んだ部分と性質が異なり、これらを均等な厚みに形成することも難しくなる。これらの理由により、バルブへの組込み後に埋め込み部分から水が浸入し、芯金がさびるなどの機能性の悪化にもつながる。 However, when trying to reduce the weight of the valve body by lining a core metal having a thin wall thickness and no ribs by using the valve body molding method described above, there are only a few positions to support the valve body, and the support is supported. When the diameter of the pin is also small, the core metal is easily affected by the injection pressure of the rubber, and cannot withstand this pressure and is easily deformed. On the other hand, if the diameter of the support pins is increased and the number of the support pins is increased to reduce the rubber injection pressure into the core metal, the distance between the enlarged support pins becomes narrower, and vulcanization is in progress between them. It becomes difficult for the rubber to flow in, and as a result, it may not be possible to secure an even lining thickness. Further, when embedding another rubber material, resin, or the like in the portion supported by the support pin, it is a manual work and it takes time and effort because the embedding area is large. The properties are different from the parts into which the rubber is poured during vulcanization, and it becomes difficult to form these in an even thickness. For these reasons, water infiltrates from the embedded portion after being incorporated into the valve, leading to deterioration of functionality such as rusting of the core metal.

特許文献1の場合には、大径化・個数を増加した支持ピンを下降したときに、支持ピン上面が大面積になることから、この上面と弁体の支持ピン跡との隙間も広くなる。このため、これらの間にゴムを充填するときの時間が増加し、支持ピンの下降前に流し込んだゴムと同時に加硫することが難しくなる。これにより、芯金全面への均等なライニングが難しくなり、芯金の一部が露出する可能性もある。このことから、下降する支持ピンを用いてライニング成形する場合、支持ピンの下降前のゴムが加硫する前に、支持ピン跡に迅速にゴムを流し込む必要がある。 In the case of Patent Document 1, when the support pins having a larger diameter and an increased number are lowered, the upper surface of the support pins becomes a large area, so that the gap between the upper surface and the support pin traces of the valve body becomes wider. .. For this reason, the time required for filling the rubber between them increases, and it becomes difficult to vulcanize at the same time as the rubber poured before the support pin is lowered. This makes it difficult to evenly line the entire surface of the core metal, and there is a possibility that a part of the core metal will be exposed. For this reason, in the case of lining molding using the descending support pin, it is necessary to quickly pour the rubber into the support pin mark before the rubber before the descending of the support pin is vulcanized.

さらに、支持ピン下降後の支持ピン跡へのゴム充填に時間がかかると、弁体の自重とゴムの注入圧力によって弁体が下型方向に下降することがある。この場合、弁体上面側と弁体下面側とのゴム厚さに偏りが発生し、弁体上面に比較して下面のゴム厚さが薄くなり、弁体としての精度が低くなる。下型と弁体との隙間が小さくなることから、支持ピン跡への迅速なゴムの充填も一層難しくなる。 Further, if it takes time to fill the support pin traces with rubber after the support pin is lowered, the valve body may be lowered in the downward direction due to the weight of the valve body and the injection pressure of the rubber. In this case, the rubber thickness between the upper surface side of the valve body and the lower surface side of the valve body is uneven, the rubber thickness of the lower surface is thinner than that of the upper surface of the valve body, and the accuracy of the valve body is lowered. Since the gap between the lower mold and the valve body becomes smaller, it becomes more difficult to quickly fill the support pin marks with rubber.

これに加えて、支持ピンを大型化し、個数を増加すると、支持ピンの周辺のゴムが支持ピン跡に流れ込み、支持ピン周辺のゴム厚さが局部的に薄くなる問題も生じる。このため、支持ピンを押圧して下降させるために必要なゴムの量(厚み)が足りなくなり、支持ピンが下降しない場合がある。この場合、支持ピン跡にライニングできなくなり、芯金の露出につながる。 In addition to this, when the size of the support pins is increased and the number of the support pins is increased, the rubber around the support pins flows into the traces of the support pins, and the rubber thickness around the support pins becomes locally thin. Therefore, the amount (thickness) of rubber required to press and lower the support pin may be insufficient, and the support pin may not be lowered. In this case, it becomes impossible to line the support pin marks, which leads to the exposure of the core metal.

上述のことから、成形型と芯金との隙間を小さくすることも難しくなり、仮に隙間を小さくした場合にはゴムの流路も細くなって芯金までゴムが流れにくくなる。特に、注入したゴムが支持ピン周辺に達するまでには、上型と芯金との隙間、下型と芯金との隙間を通過するという成形型の構成上、これらの隙間にゴムが流れにくくなり、芯金全体にゴムが充填されなくなる。このため、上述した弁体成形方法では、ライニングゴムの薄肉化も難しくなりコスト大となる。 From the above, it is difficult to reduce the gap between the molding die and the core metal, and if the gap is reduced, the rubber flow path becomes narrow and it becomes difficult for the rubber to flow to the core metal. In particular, due to the structure of the molding mold, which passes through the gap between the upper mold and the core metal and the gap between the lower mold and the core metal by the time the injected rubber reaches the periphery of the support pin, it is difficult for the rubber to flow through these gaps. As a result, the entire core metal is no longer filled with rubber. Therefore, in the valve body molding method described above, it is difficult to thin the lining rubber, and the cost is high.

本発明は、上記の課題点を解決するために開発したものであり、その目的とするところは、芯金を補強することなく薄肉化して弁体全体の軽量化を図りつつライニング可能であり、芯金の全面に均等の厚さでライニングしてバルブの機能性を維持でき、ライニング厚さを薄くすることもできるソフトシール仕切弁の弁体成形方法を提供することにある。 The present invention has been developed in order to solve the above-mentioned problems, and an object of the present invention is that the lining can be made while reducing the weight of the entire valve body by thinning the core metal without reinforcing the core metal. It is an object of the present invention to provide a valve body forming method for a soft-sealed sluice valve, which can maintain the functionality of a valve by lining the entire surface of a core metal with an equal thickness and can also reduce the lining thickness.

上記目的を達成するため、請求項1に係る発明は、上型下型を有する成形型内にライニング用の隙間を設けた状態で仕切弁用弁体の芯金の弁翼側を上昇状態の支持ピンの支受面で支持させ、上型から芯金の被ライニング面に未加硫状態のゴム材料を圧入すると共に、支受面に対向する位置に芯金の表裏面を貫通する貫通穴が形成され、この貫通穴を含む周囲を支受面により支受可能に設け、芯金の表裏面に形成した隙間にゴム材料を圧入し、かつ貫通穴から圧入されるゴム材料の流入圧力で支持ピンの支受面を押圧して支持ピンを芯金の下面に生じる隙間まで下降させて支受面と芯金の下面との間に隙間を形成し、当該隙間にゴム材料を圧入することにより芯金の被ライニング面全体に均等の厚さのゴムライニングを形成するようにしたソフトシール仕切弁の弁体成形方法である。 In order to achieve the above object, in the invention according to claim 1, the valve blade side of the core metal of the sluice valve valve body is raised in a state where a gap for lining is provided in a molding die having an upper die and a lower die. A through hole that is supported by the support surface of the support pin, press-fits the unvulcanized rubber material from the upper mold into the lined surface of the core metal, and penetrates the front and back surfaces of the core metal at a position facing the support surface. Is formed, and the periphery including the through hole is provided so as to be supportable by the support surface, the rubber material is press-fitted into the gap formed on the front and back surfaces of the core metal, and the inflow pressure of the rubber material press-fitted from the through hole is used. Pressing the support surface of the support pin and lowering the support pin to the gap generated on the lower surface of the core metal to form a gap between the support surface and the lower surface of the core metal, and press-fitting the rubber material into the gap. This is a valve body forming method for a soft-sealed sluice valve in which a rubber lining having an equal thickness is formed on the entire surface of the core metal to be lined.

請求項2に係る発明は、支持ピンの支受面を押圧して下降させる際に、さらに芯金の上部に形成された弁棒取付け部を支持ピンにより支持し、この支持ピンの支受面に対向する位置に芯金の表裏面を貫通する貫通穴が形成され、この貫通穴を含む周囲を支受面により支受可能に設け、芯金の表裏面に形成した隙間にゴム材料を圧入し、かつ貫通穴から圧入されるゴム材料の流入圧力で支持ピンの支受面を押圧して支持ピンを芯金の下面に生じる隙間まで下降させて弁棒取付け部の下面に生じる隙間にゴム材料を圧入するようにしたソフトシール仕切弁の弁体成形方法である。 According to the second aspect of the present invention, when the support surface of the support pin is pressed and lowered, the valve rod mounting portion formed on the upper part of the core metal is further supported by the support pin, and the support surface of the support pin is supported. A through hole that penetrates the front and back surfaces of the core metal is formed at a position facing the center metal, and the periphery including this through hole is provided so as to be supportable by the support surface, and the rubber material is press-fitted into the gap formed on the front and back surfaces of the core metal. In addition, the inflow pressure of the rubber material press-fitted from the through hole presses the support surface of the support pin to lower the support pin to the gap formed on the lower surface of the core metal, and rubber is formed in the gap formed on the lower surface of the valve stem mounting portion. This is a valve body forming method for a soft-sealed sluice valve in which a material is press-fitted.

請求項3に係る発明は、ゴム材料の加硫中に支持ピンを下降させた状態で、芯金の下面又は弁棒取付け部の下面に形成された隙間に向けて隙間の外方より回り込んで圧入されるゴム材料と貫通穴より圧入されて貫通穴の下部より隙間に放射方向に広がりながら圧入されるゴム材料とが隙間に充填されるようにしたソフトシール仕切弁の弁体成形方法である。 According to the third aspect of the present invention, in a state where the support pin is lowered during vulcanization of the rubber material, the support pin wraps around from the outside of the gap toward the gap formed on the lower surface of the core metal or the lower surface of the valve rod mounting portion. In the valve body molding method of the soft seal sluice valve, the rubber material that is press-fitted in is filled in the gap with the rubber material that is press-fitted from the through hole and spreads in the gap in the radial direction from the bottom of the through hole. is there.

請求項1に係る発明によると、成形型と芯金との隙間に加えて貫通穴からゴム材料を迅速に圧入し、芯金の上下面側に圧入したゴム材料が加硫する前に、被ライニング面全体にゴム材料を充填して均一に加硫できる。これにより、肉厚が薄くリブ等の補強を設けていない芯金のライニング用として、支持ピンを大型化したり個数を増加して支持ピン同士の間隔が狭くなった場合でも、芯金の被ライニング面全体に略均等の厚さでライニングを施すことができる。このことから、芯金を補強することなく薄肉にして弁体全体の軽量化を図りつつ、高精度にライニングして止水性などの機能性を確保できる。しかも、芯金の貫通穴を含む周囲を支受面で支受することで、この支受面を大面積に設けてゴム材料の圧入時に芯金に加わる力を緩和させ、芯金の変形や破損を防止しつつ貫通穴から支受面と芯金の下面との間にライニングを施し、高品質のソフトシール仕切弁の弁体を成形できる。また、貫通穴から芯金と下型との隙間に容易にゴム材料を圧入できるため、成形型と芯金との隙間を小さくし、ライニング厚を薄くして更なる軽量化やコンパクト化、及び使用するゴム材料の削減も図ることも可能になる。
さらに、支持ピンは、貫通穴からのゴム材料が圧入されて支受面を押圧することにより、支持ピンの下降手段を別に設けることなく、貫通穴からのゴム材料の圧入により支持ピンが下降して支受面と芯金の下面との隙間が面一となることで、ライニング部の表面への凹凸が発生することなく、確実にライニングされる。
According to the invention of claim 1, the rubber material is quickly press-fitted through the through hole in addition to the gap between the molding die and the core metal, and the rubber material press-fitted onto the upper and lower surfaces of the core metal is subject to vulcanization before being vulcanized. The entire lining surface can be filled with a rubber material and vulcanized uniformly. As a result, even if the support pins are enlarged or the number of support pins is increased to narrow the distance between the support pins, the core metal is lined for the core metal lining that is thin and has no reinforcement such as ribs. The entire surface can be lined with a substantially equal thickness. From this, it is possible to secure the functionality such as water stopping by lining with high precision while reducing the weight of the entire valve body by making the thickness thin without reinforcing the core metal. Moreover, by supporting the circumference including the through hole of the core metal with the support surface, this support surface is provided in a large area to alleviate the force applied to the core metal when the rubber material is press-fitted, and the core metal is deformed. A high-quality soft-sealed sluice valve can be formed by lining between the support surface and the lower surface of the core metal through the through hole while preventing damage. In addition, since the rubber material can be easily press-fitted into the gap between the core metal and the lower mold from the through hole, the gap between the molding mold and the core metal can be reduced, and the lining thickness can be reduced to further reduce the weight and size. It is also possible to reduce the amount of rubber material used.
Further, as for the support pin, the rubber material from the through hole is press-fitted to press the support surface, so that the support pin is lowered by press-fitting the rubber material from the through hole without providing a separate lowering means for the support pin. Since the gap between the support surface and the lower surface of the core metal is flush with each other, the surface of the lining portion is not uneven and the lining is reliably performed.

請求項2に係る発明によると、支持ピンの支受面を押圧して下降させる際に、弁棒取付け部の支持ピンの支受面を押圧して弁棒取付け部の下面に生じる隙間にゴム材料を圧入することができるので、弁翼側のライニングと同時に、弁棒取付け部にライニングを施し、芯金全体に均等な厚さによってゴム材料をライニング成形した弁体を設けることが可能となる。 According to the invention of claim 2, when the support surface of the support pin is pressed and lowered, the support surface of the support pin of the valve stem mounting portion is pressed and rubber is formed in the gap formed on the lower surface of the valve stem mounting portion. Since the material can be press-fitted, it is possible to provide a valve body in which the valve stem mounting portion is lined at the same time as the lining on the valve blade side, and the rubber material is lined and molded with an uniform thickness over the entire core metal.

請求項3に係る発明によると、支持ピンが下降した状態で、ゴム材料は、芯金下面から支受面に圧入されると共に、ゴム材料は、芯金上面で貫通穴に集まるように流れ、この貫通穴の短い距離を下降した後に、芯金下面に放射状に広がりながら芯金下面と支受面との間を通って隙間に充填され、芯金の表面を確実にライニングすることが可能となる。 According to the invention of claim 3 , the rubber material is press-fitted from the lower surface of the core metal to the support surface in a state where the support pin is lowered, and the rubber material flows so as to collect in the through hole on the upper surface of the core metal. After descending a short distance of this through hole, it spreads radially on the lower surface of the core metal and fills the gap through between the lower surface of the core metal and the support surface, making it possible to reliably line the surface of the core metal. Become.

ソフトシール仕切弁の一例を示す縦断面図である。It is a vertical cross-sectional view which shows an example of a soft seal sluice valve. 芯金を示す斜視図である。It is a perspective view which shows the core metal. 本発明のソフトシール仕切弁の弁体成形方法を示すフローチャートである。It is a flowchart which shows the valve body molding method of the soft seal sluice valve of this invention. 芯金を下型にセットした状態を示す平面図である。It is a top view which shows the state which the core metal was set in the lower mold. 図4のA−A断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 弁体成形装置を示す断面図である。It is sectional drawing which shows the valve body forming apparatus. 図6の成形型へのゴム材料の圧入状態を示す断面図である。It is sectional drawing which shows the press-fitting state of the rubber material into the molding die of FIG. 図7の支持ピンが下降した状態を示す断面図である。It is sectional drawing which shows the state which the support pin of FIG. 7 was lowered. 図4のB−B断面図である。FIG. 4 is a cross-sectional view taken along the line BB of FIG. 図8における貫通穴へのゴム材料の流れを示す模式図である。(a)はゴム材料の流れを示す模式平面図である。(b)はゴム材料の流れを示す模式断面図である。It is a schematic diagram which shows the flow of a rubber material through a through hole in FIG. (A) is a schematic plan view showing the flow of the rubber material. (B) is a schematic cross-sectional view showing the flow of the rubber material. 図10との比較例を示す模式図である。(a)はゴムの流れを示す模式平面図である。(b)はゴム材料の流れを示す模式断面図である。It is a schematic diagram which shows the comparative example with FIG. 10. (A) is a schematic plan view showing the flow of rubber. (B) is a schematic cross-sectional view showing the flow of the rubber material.

以下に、本発明におけるソフトシール仕切弁の弁体成形方法とその弁体成形装置の実施形態を図面に基づいて詳細に説明する。図1においては、本発明の弁体成形方法により成形する仕切弁用弁体を有するソフトシール仕切弁の一例を示しており、先ず、このソフトシール仕切弁について述べる。 Hereinafter, a valve body forming method for a soft-sealed sluice valve and an embodiment of the valve body forming apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a soft-sealed sluice valve having a sluice valve body molded by the valve body molding method of the present invention. First, the soft-sealed sluice valve will be described.

図1のソフトシール仕切弁1は、弁体2、弁箱3、蓋体4、弁棒5を有している。弁体2は、内部に芯金10を有し、筒型の弁箱3内に設けられた流路3aに対して、弁棒5により交叉方向に昇降動自在に取付けられる。芯金10の表面の全周面には、本発明の弁体成形方法によりライニング部11が成形され、このライニング部11は、例えば、EPDM、フッ素ゴムなどのゴム材料12により設けられる。 The soft seal sluice valve 1 of FIG. 1 has a valve body 2, a valve box 3, a lid body 4, and a valve rod 5. The valve body 2 has a core metal 10 inside, and is attached to a flow path 3a provided in the tubular valve box 3 by a valve rod 5 so as to be able to move up and down in the crossing direction. A lining portion 11 is formed on the entire peripheral surface of the surface of the core metal 10 by the valve body molding method of the present invention, and the lining portion 11 is provided by, for example, a rubber material 12 such as EPDM or fluororubber.

図1、図2、図4に示すように、芯金10は、弁棒5の挿通方向に対して対称形状に設けられ、芯金10の中央には弁棒挿入穴20が貫通して形成され、この弁棒挿入部20を挟んで両側に弁翼21、21が形成される。弁棒挿入穴20の上部には、枠形状に突出した弁棒取付け部22が設けられ、この弁棒取付け部22の内側には略立方形状のネジこま23が取付けられ、このネジこま23には雌ネジ部24が形成されている。雌ネジ部24には、弁棒5に形成された雄ネジ部25が螺着され、これらを介して弁棒5の回動により弁体2が弁箱3に対して上下動可能に設けられている。 As shown in FIGS. 1, 2, and 4, the core metal 10 is provided symmetrically with respect to the insertion direction of the valve rod 5, and the valve rod insertion hole 20 is formed through the center of the core metal 10. The valve blades 21 and 21 are formed on both sides of the valve rod insertion portion 20. A valve rod mounting portion 22 projecting in a frame shape is provided above the valve stem insertion hole 20, and a substantially cubic screw top 23 is mounted inside the valve rod mounting portion 22. Is formed with a female threaded portion 24. A male screw portion 25 formed on the valve rod 5 is screwed to the female screw portion 24, and the valve body 2 is provided so as to be able to move up and down with respect to the valve box 3 by rotating the valve rod 5 through the male screw portion 25. ing.

芯金10の弁翼21、21よりも両側にはプレート状のガイド部26が流路方向に並列するように設けられ、これらガイド部26、26の間にガイド溝27が形成される。芯金10の表裏側の突出部位には、円弧状の凹状溝部28が形成され、一方、芯金10の下部には、底面側に沿って表裏側に突出する円弧突起部29が形成される。 Plate-shaped guide portions 26 are provided on both sides of the valve blades 21 and 21 of the core metal 10 so as to be parallel to each other in the flow path direction, and a guide groove 27 is formed between the guide portions 26 and 26. An arcuate concave groove 28 is formed at the protruding portion on the front and back sides of the core metal 10, while an arc protruding portion 29 protruding from the front and back sides along the bottom surface side is formed at the lower portion of the core metal 10. ..

芯金10は、ゴム材料14がライニングされる被ライニング面30を有し、この被ライニング面30は、芯金10の外形面(表裏面)、弁棒5の挿入面、ネジこま23の装着面、ガイド部26の表裏面を有している。 The core metal 10 has a lined surface 30 on which the rubber material 14 is lined, and the lined surface 30 includes an outer surface (front and back surface) of the core metal 10, an insertion surface of the valve stem 5, and a screw top 23. It has a surface and front and back surfaces of the guide portion 26.

これらの被ライニング面30のうち、芯金10の表裏面同士、後述する成形型40の上型41、下型42内に芯金10が支持されるときに、下部に位置するネジこま23の装着面の表裏面同士には、それぞれを貫通する貫通穴50が形成される。貫通穴50は、後述する支持ピン51による支持位置に設けられ、本実施形態では、図2に示すように、合計9箇所の貫通穴50が設けられている。 Of these lined surfaces 30, when the core metal 10 is supported between the front and back surfaces of the core metal 10, the upper mold 41 and the lower mold 42 of the molding die 40 described later, the screw top 23 located at the lower part Through holes 50 are formed on the front and back surfaces of the mounting surface to penetrate each other. The through holes 50 are provided at positions supported by the support pins 51, which will be described later, and in the present embodiment, as shown in FIG. 2, a total of nine through holes 50 are provided.

貫通穴50は、芯金10の各弁翼21側に少なくとも1つ以上であり、支持ピン51に対して最低1つ設けられ、本実施形態では各弁翼21に4つずつ、弁棒取付け部22に1つ形成される。この場合、円柱状の支持ピン51の略中央位置になるように配置されていることが望ましく、各支持ピン51同士が接触することの無い適度の間隔をもって配置されている。さらに、貫通穴50は、各弁翼21に対して略等間隔に配置されているとよい。貫通穴50の径は、任意の大きさに設定することができる。 At least one through hole 50 is provided on each valve blade 21 side of the core metal 10, and at least one is provided for each support pin 51. In this embodiment, four through holes 50 are attached to each valve blade 21. One is formed in the portion 22. In this case, it is desirable that the support pins 51 are arranged so as to be substantially at the center of the columnar support pins 51, and the support pins 51 are arranged at appropriate intervals so that they do not come into contact with each other. Further, the through holes 50 may be arranged at substantially equal intervals with respect to each valve blade 21. The diameter of the through hole 50 can be set to any size.

図1において、芯金10に施されるライニング部11は、ゴム弁座面11a、シール部11bを有し、ゴム弁座面11aは、芯金10表裏側の凹状溝部28に埋め込まれるように形成され、シール部11bは、円弧突起部29の下部に厚く形成される。ゴム弁座面11aが、弁箱3内に設けられた弁座部3b、シール部11bが弁箱3の底部側に設けられた止水面3cにそれぞれシールすることで、弁箱3の流路3aが開閉可能に設けられている。 In FIG. 1, the lining portion 11 applied to the core metal 10 has a rubber valve seat surface 11a and a seal portion 11b, and the rubber valve seat surface 11a is embedded in the concave groove portions 28 on the front and back sides of the core metal 10. The seal portion 11b is formed so as to be thickly formed in the lower portion of the arc protrusion portion 29. The rubber valve seat surface 11a is sealed to the valve seat portion 3b provided in the valve box 3, and the seal portion 11b is sealed to the water stop surface 3c provided on the bottom side of the valve box 3, so that the flow path of the valve box 3 is formed. 3a is provided so as to be openable and closable.

本発明の弁体成形方法は、例えば、上述したソフトシール仕切弁1の芯金10に、トランスファー成型によりゴム材料12でライニング部11を成形し、弁体2を設ける場合に用いられる。弁体2の成形時には、図6に示す弁体成形装置が用いられ、この弁体成形装置は、成形型40と、芯金10と、芯金10支持用の支持ピン51とを有し、支持ピン51は、前述したように貫通穴50の下部に設けられる。 The valve body forming method of the present invention is used, for example, when a lining portion 11 is formed of a rubber material 12 on the core metal 10 of the soft seal sluice valve 1 described above by transfer molding to provide the valve body 2. At the time of molding the valve body 2, the valve body molding device shown in FIG. 6 is used, and this valve body molding device has a molding die 40, a core metal 10, and a support pin 51 for supporting the core metal 10. The support pin 51 is provided below the through hole 50 as described above.

図6〜図9において、弁体成形装置における成形型40は、上型41、下型42、スライド型52を有している。上型41には、上型枠部60と押圧体61、下型42には、下型枠部62とダイプレート部63がそれぞれ備えられ、上型枠部60、下型枠部62は、互いに組合わせ可能に設けられて、これらの組合わせ後には内部にライニング用のキャビティCが形成される。キャビティCは、芯金10よりもやや大きく設けられ、このキャビティC内に芯金10が支持されたときに、芯金10の周囲にライニング部11を形成するための隙間Gが形成される。 In FIGS. 6 to 9, the molding die 40 in the valve body molding apparatus has an upper die 41, a lower die 42, and a slide die 52. The upper mold 41 is provided with an upper mold portion 60 and a pressing body 61, and the lower mold 42 is provided with a lower mold portion 62 and a die plate portion 63. They are provided so as to be able to be combined with each other, and after these combinations, a cavity C for lining is formed inside. The cavity C is provided slightly larger than the core metal 10, and when the core metal 10 is supported in the cavity C, a gap G for forming a lining portion 11 is formed around the core metal 10.

上型枠部60には、未加硫状態のゴム材料12の投入口64、この投入口64に続けてキャビティCに連通する複数の注入口65が設けられる。押圧体61は、投入口64に挿入可能な押圧部66を有し、この押圧部66が投入口64に挿入可能な状態で、押圧体61が上型枠部60の上部に装着される。押圧体61を下降したときには、押圧部66により投入口64内の未加硫状態のゴム材料12が押圧され、注入口65からキャビティC内に注入される。 The upper mold portion 60 is provided with a charging port 64 for the unvulcanized rubber material 12, and a plurality of injection ports 65 communicating with the cavity C following the charging port 64. The pressing body 61 has a pressing portion 66 that can be inserted into the loading port 64, and the pressing body 61 is mounted on the upper part of the upper form portion 60 in a state where the pressing portion 66 can be inserted into the loading port 64. When the pressing body 61 is lowered, the unvulcanized rubber material 12 in the charging port 64 is pressed by the pressing portion 66 and injected into the cavity C from the injection port 65.

下型枠部62には、芯金10の貫通穴50に対応する位置に9箇所の挿通穴67が形成され、各挿通穴67に前述した支持ピン51が挿入される。
支持ピン51は、ダイプレート部63上に設けられ、このダイプレート部63と共に下型42の下型枠部62に対して昇降動可能に設けられ、下型枠部62に対して下降したときに、芯金10の貫通穴50が下型枠部62のキャビティCに連通するように設けられている。支持ピン51は、ダイプレート部63に固定されていてもよいが、固定されていない場合には、取り外し可能になり、清掃やメンテナンスが容易となる。
Nine insertion holes 67 are formed in the lower form portion 62 at positions corresponding to the through holes 50 of the core metal 10, and the support pins 51 described above are inserted into the insertion holes 67.
The support pin 51 is provided on the die plate portion 63, is provided so as to be able to move up and down with respect to the lower form portion 62 of the lower mold 42 together with the die plate portion 63, and when lowered with respect to the lower form portion 62. The through hole 50 of the core metal 10 is provided so as to communicate with the cavity C of the lower form portion 62. The support pin 51 may be fixed to the die plate portion 63, but if it is not fixed, the support pin 51 can be removed, facilitating cleaning and maintenance.

支持ピン51は、その上面側に支受面53を有し、この支受面53により芯金10が支持される。このとき、芯金10の貫通穴50を含む周囲を支受面51により支受可能になっている。 The support pin 51 has a support surface 53 on the upper surface side thereof, and the core metal 10 is supported by the support surface 53. At this time, the periphery including the through hole 50 of the core metal 10 can be supported by the support surface 51.

スライド型52は、上型枠部60と下型枠部62との間の両弁翼側に、弁体2の左右方向にスライドされて取付け可能に設けられる。このスライド型52により、芯金10の凹状溝部28との間にライニング部11が施されたときに凹状ガイド溝68が形成される。凹状ガイド溝68に弁箱3の図示しない凸部が遊嵌されることにより、弁体2が弁箱3に対して昇降動可能に取付け可能になっている。 The slide mold 52 is provided on both valve blade sides between the upper mold portion 60 and the lower mold portion 62 so as to be slid in the left-right direction of the valve body 2. The slide type 52 forms a concave guide groove 68 when the lining portion 11 is provided between the slide mold 52 and the concave groove portion 28 of the core metal 10. By loosely fitting a convex portion (not shown) of the valve box 3 into the concave guide groove 68, the valve body 2 can be attached to the valve box 3 so as to be able to move up and down.

続いて、本発明のソフトシール仕切弁の弁体成形方法を説明する。図3に示すように、本発明の弁体成形方法は、芯金支持工程、ゴム圧入工程、支持ピン下降工程を有し、弁体成形装置を介して各工程を経ることにより、図1における芯金10にライニング部11が設けられる。 Subsequently, a valve body forming method for the soft seal sluice valve of the present invention will be described. As shown in FIG. 3, the valve body molding method of the present invention includes a core metal support step, a rubber press-fitting step, and a support pin lowering step, and is shown in FIG. 1 by passing through each step via a valve body molding apparatus. A lining portion 11 is provided on the core metal 10.

芯金支持工程においては、先ず、図4、図5において、芯金10を水平状態にして下型42にセットする。この場合、図4において、破線で示した弁棒挿入穴20に、一点鎖線で示した長尺状の芯棒70が挿入され、この芯棒70の外周と弁棒挿入穴20との間に、ゴム材料12が圧入可能な隙間Gが設けられる。芯棒70との直交方向には、弁棒取付け部22が貫通するように長尺で断面矩形状のネジこま用型71が装着され、このネジこま用型71の外面と弁棒取付け部22の内側との間においても、ゴム材料12圧入用の隙間Gが設けられる。 In the core metal support step, first, in FIGS. 4 and 5, the core metal 10 is set in the lower mold 42 in a horizontal state. In this case, in FIG. 4, the long core rod 70 shown by the alternate long and short dash line is inserted into the valve rod insertion hole 20 shown by the broken line, and between the outer circumference of the core rod 70 and the valve rod insertion hole 20. , A gap G into which the rubber material 12 can be press-fitted is provided. In the direction orthogonal to the core rod 70, a screw-screw die 71 having a long and rectangular cross section is mounted so that the valve stem mounting portion 22 penetrates, and the outer surface of the screw-screw die 71 and the valve stem mounting portion 22 are mounted. A gap G for press-fitting the rubber material 12 is also provided between the inside and the inside of the rubber material.

芯金10の装着時には、この芯金10が弁棒5を中心に概ね対称形状であるが、図示しない位置決め手段で金型にセットするため、上面80、下面81が決められている。このとき、ダイプレート部63が下型枠部62に対して上昇した状態になっており、支持ピン51の支受面53が下型枠部62の表面よりも上方に突出している。これにより、芯金10の下面81が支受面53によって支受され、支持ピン51が貫通穴50の下に配置された状態となる。芯金10は、両弁翼21側及び弁棒取付け部22の貫通穴50を含む周囲が支受面53に支受された状態で、支持ピン51によって支持される。 When the core metal 10 is mounted, the core metal 10 has a substantially symmetrical shape centered on the valve stem 5, but the upper surface 80 and the lower surface 81 are determined because the core metal 10 is set in the mold by a positioning means (not shown). At this time, the die plate portion 63 is in a raised state with respect to the lower form portion 62, and the support surface 53 of the support pin 51 projects upward from the surface of the lower form portion 62. As a result, the lower surface 81 of the core metal 10 is supported by the support surface 53, and the support pin 51 is arranged under the through hole 50. The core metal 10 is supported by the support pin 51 in a state where both the valve blade 21 side and the periphery including the through hole 50 of the valve rod mounting portion 22 are supported by the support surface 53.

なお、本実施形態において、芯金10の上面80とはこの芯金10を成形型40に取付けたときに上方に位置する面、芯金10の下面81とは下方に位置する面をいう。 In the present embodiment, the upper surface 80 of the core metal 10 means a surface located above when the core metal 10 is attached to the molding die 40, and the lower surface 81 of the core metal 10 means a surface located below.

図6に示すように、下型42に上型41を組み合わせ、上型枠部60と下型枠部62との間にスライド型52を取付ける。これにより、支持ピン51で芯金10を下方から支持した状態で、成形型40内にライニング用のゴム材料12が流れるための隙間Gが設けられる。 As shown in FIG. 6, the upper mold 41 is combined with the lower mold 42, and the slide mold 52 is attached between the upper mold portion 60 and the lower mold portion 62. As a result, a gap G is provided for the rubber material 12 for lining to flow in the molding die 40 in a state where the core metal 10 is supported from below by the support pin 51.

次いで、ゴム圧入工程において、図6において、投入口64内に未加硫状態のゴム材料12を投入し、図7に示すように、ゴム材料12を押圧体61の押圧により押圧部66で注入口65側に押し込み、注入口65からキャビティC内に配置した芯金10の被ライニング面30に未加硫状態のゴム材料12を圧入してその上下の隙間Gに充填させる。この場合、下型枠部62と芯金10との隙間Gにゴム材料12が流れるまで、支持ピン51を図7の状態に保持するようにする。 Next, in the rubber press-fitting step, in FIG. 6, the unvulcanized rubber material 12 is charged into the charging port 64, and as shown in FIG. 7, the rubber material 12 is injected by the pressing portion 66 by pressing the pressing body 61. It is pushed toward the inlet 65 side, and the unvulcanized rubber material 12 is press-fitted into the lined surface 30 of the core metal 10 arranged in the cavity C from the injection port 65 to fill the gaps G above and below the vulcanized rubber material 12. In this case, the support pin 51 is held in the state shown in FIG. 7 until the rubber material 12 flows through the gap G between the lower form portion 62 and the core metal 10.

これにより、芯金10の被ライニング面30である、支持ピン51で支持されている部分以外の弁翼21を含む外形側(表裏面側)、弁棒挿入穴20、支持ピン51で支持されている部分以外の弁棒取付け部22の外面及びネジこま用型71との隙間、ガイド部26及びガイド溝27に対して、ゴム材料12によってライニング部11が成形される。このとき、凹状溝部28、円弧突起部29は、厚肉状にライニングされ、これにより、ソフトシール仕切弁1の組立て後の弁閉時のシール性が確保されるようになっている。 As a result, the core metal 10 is supported by the outer shape side (front and back side) including the valve blade 21 other than the portion supported by the support pin 51, the valve rod insertion hole 20, and the support pin 51, which is the lined surface 30 of the core metal 10. The lining portion 11 is formed by the rubber material 12 with respect to the outer surface of the valve stem mounting portion 22 and the gap between the screw spinning die 71, the guide portion 26, and the guide groove 27 other than the portion. At this time, the concave groove portion 28 and the arc protrusion portion 29 are lined in a thick wall shape, whereby the sealing property at the time of valve closing after assembling the soft seal sluice valve 1 is ensured.

続いて、支持ピン下降工程では、隙間Gにゴム材料12が流れ込んだ後、ゴム材料12の加硫中にダイプレート部63を下方に移動させることにより、図8、図9に示すように支持ピン51を下降させる。これによって、支持ピン51による支持部位の弁翼21側と弁棒取付け部22側に設けた各貫通穴50を貫通状態にし、これら貫通穴50を介して支持ピン51と弁翼21側の下面の8箇所と、支持ピン51と弁棒取付け部22の下面の1箇所とのそれぞれの隙間Gにゴム材料12を圧入する。このとき、弁棒取付け部22側では、ネジこま用型71底面側の貫通穴50からゴム材料12が圧入され、支持ピン51との間に充填される。これにより、芯金10の上面80、下面81側に略均等な厚さでゴム材料12を充填してライニング部11を成形する。 Subsequently, in the support pin lowering step, after the rubber material 12 has flowed into the gap G, the die plate portion 63 is moved downward during the vulcanization of the rubber material 12 to support the rubber material 12 as shown in FIGS. 8 and 9. Lower the pin 51. As a result, each through hole 50 provided on the valve wing 21 side and the valve rod mounting portion 22 side of the support portion by the support pin 51 is put into a penetrating state, and the support pin 51 and the lower surface on the valve wing 21 side are passed through these through holes 50. The rubber material 12 is press-fitted into the gap G between each of the eight locations and the support pin 51 and one location on the lower surface of the valve stem mounting portion 22. At this time, on the valve stem mounting portion 22 side, the rubber material 12 is press-fitted from the through hole 50 on the bottom surface side of the screw spinning top 71 and is filled between the valve rod mounting portion 22 and the support pin 51. As a result, the upper surface 80 and the lower surface 81 of the core metal 10 are filled with the rubber material 12 having a substantially uniform thickness to form the lining portion 11.

この場合、支持ピン51は、貫通穴50からのゴム材料12を圧入することによっても、このゴム材料12が支受面53を押圧することで下降する。支持ピン51の移動時には、支受面53が下型42の表面と面一になることで、ライニング部11の表面への凹凸の発生を防止できる。 In this case, the support pin 51 is lowered by pressing the rubber material 12 from the through hole 50 and pressing the support surface 53. When the support pin 51 is moved, the support surface 53 is flush with the surface of the lower mold 42, so that unevenness on the surface of the lining portion 11 can be prevented.

なお、上記実施形態では、貫通穴50が、芯金10の各弁翼21側と弁棒取付け部22とにそれぞれ設けられ、これらが支持ピン51により下方から支持されているが、芯金10全体に略均等な厚さでライニング部11を成形可能であれば、貫通穴50や支持ピン51は、少なくとも弁翼21側に設けられていればよい。このため、貫通穴50は1箇所であってもよく、また、貫通穴50の個数をバルブの呼び径等に応じて適宜増加することも可能である。貫通穴50は、支持ピン51の略中央位置に配置されているが、この位置を変えてもよく、さらに、1つの支持ピン51に対して、芯金10の貫通穴50を複数設けるようにしてもよい。貫通穴50の位置に対応して、支持ピン51の個数や外径寸法、配設位置等を変更することも可能である。 In the above embodiment, through holes 50 are provided on each valve blade 21 side of the core metal 10 and the valve rod mounting portion 22, and these are supported from below by the support pin 51, but the core metal 10 If the lining portion 11 can be formed with a substantially uniform thickness as a whole, the through hole 50 and the support pin 51 may be provided at least on the valve blade 21 side. Therefore, the number of through holes 50 may be one, and the number of through holes 50 can be appropriately increased according to the nominal diameter of the valve and the like. The through hole 50 is arranged at a substantially central position of the support pin 51, but this position may be changed, and a plurality of through holes 50 of the core metal 10 are provided for one support pin 51. You may. It is also possible to change the number of support pins 51, the outer diameter dimension, the arrangement position, and the like according to the position of the through hole 50.

次に、本発明におけるソフトシール仕切弁の弁体成形方法並びに弁体成形装置の上記実施形態における作用を述べる。
上述したように、本発明のソフトシール仕切弁の弁体成形方法において、弁体成形装置による芯金支持工程、ゴム圧入工程、支持ピン下降工程を経て、芯金10にライニング部11を成形することにより、図1、図2、図5に示すように、肉厚が薄くリブの無い強度的に弱い芯金10の場合であっても、支持ピン51の個数を増やして外径を大きくして芯金10を強固に保持し、その変形を防止しながら上面80、下面81に略均等な厚さのライニング部11を施すことができる。
Next, the valve body forming method of the soft seal sluice valve in the present invention and the operation of the valve body forming apparatus in the above embodiment will be described.
As described above, in the valve body forming method of the soft seal sluice valve of the present invention, the lining portion 11 is formed on the core metal 10 through the core metal supporting step, the rubber press-fitting step, and the support pin lowering step by the valve body forming apparatus. As a result, as shown in FIGS. 1, 2 and 5, even in the case of the core metal 10 having a thin wall thickness and no ribs and weak strength, the number of support pins 51 is increased to increase the outer diameter. The core metal 10 can be firmly held, and the upper surface 80 and the lower surface 81 can be provided with lining portions 11 having substantially equal thickness while preventing the core metal 10 from being deformed.

このとき、支持ピン51の個数及び太さは、弁体2の呼び径による芯金10の大きさ等に合わせて適宜配置するようにし、特に、弁翼21(肉厚の薄い部分)に均等にバランスよく配置することが望ましい。 At this time, the number and thickness of the support pins 51 are appropriately arranged according to the size of the core metal 10 according to the nominal diameter of the valve body 2, and in particular, are evenly distributed on the valve blade 21 (thin wall portion). It is desirable to arrange them in a well-balanced manner.

未加硫状態のゴム材料12が注入されるときには、芯金10の表面からのゴム材料12の流れに加えて、貫通穴50を通してもゴム材料12が弁翼21側、弁棒取付け部22側の下面側に流れるため、芯金10の表面から芯金10と下型枠部62との隙間のみをゴム材料12が流れる場合と比較して、支持ピン51付近へのゴム材料12の圧入にかかる時間を大幅に短縮できる。 When the unvulcanized rubber material 12 is injected, in addition to the flow of the rubber material 12 from the surface of the core metal 10, the rubber material 12 is on the valve blade 21 side and the valve rod mounting portion 22 side even through the through hole 50. Since it flows to the lower surface side of the core metal 10, the rubber material 12 is press-fitted into the vicinity of the support pin 51 as compared with the case where the rubber material 12 flows only through the gap between the core metal 10 and the lower mold portion 62 from the surface of the core metal 10. The time required can be significantly reduced.

これを詳述すると、図10(a)、図10(b)において、矢印は、支持ピン51が太い矢印に示す方向に下降したときのゴム材料12の流れを示しており、ゴム材料12は、二点鎖線で示した支受面53と芯金下面81との隙間Gに流れ込むようになっている。その際、芯金10と下型枠部62との隙間Gを通過したゴム材料12は、芯金下面81と支受面53との間を通って破線の矢印の方向に圧入される。これに加えて、ゴム材料12は、実線の矢印に示すように、芯金上面80で貫通穴50に集まるように流れ、この貫通穴50の短い距離を下降した後に、芯金下面81に放射状に広がりながらこの芯金下面81と支受面53との隙間Gに充填される。 More specifically, in FIGS. 10 (a) and 10 (b), the arrows indicate the flow of the rubber material 12 when the support pin 51 descends in the direction indicated by the thick arrow, and the rubber material 12 indicates the flow of the rubber material 12. , It flows into the gap G between the support surface 53 and the lower surface 81 of the core metal indicated by the alternate long and short dash line. At that time, the rubber material 12 that has passed through the gap G between the core metal 10 and the lower form portion 62 is press-fitted in the direction of the broken line arrow through between the core metal lower surface 81 and the support surface 53. In addition to this, as shown by the solid arrow, the rubber material 12 flows so as to gather in the through hole 50 at the upper surface 80 of the core metal, descends a short distance of the through hole 50, and then radiates to the lower surface 81 of the core metal. The gap G between the lower surface 81 of the core metal and the support surface 53 is filled while spreading.

一方、図11(a)、図11(b)においては比較例を示しており、この比較例の芯金には、貫通穴が設けられていない。この場合、図に示すように、支持ピン51が太い矢印に示す方向に下降したときに、ゴム材料12が破線の矢印に示した芯金下面81と支受面53との間のみを通りながら、芯金下面81と支受面53との隙間Gに充填される。 On the other hand, FIGS. 11 (a) and 11 (b) show comparative examples, and the core metal of this comparative example is not provided with a through hole. In this case, as shown in the figure, when the support pin 51 descends in the direction indicated by the thick arrow, the rubber material 12 passes only between the core metal lower surface 81 and the support surface 53 indicated by the broken line arrow. , The gap G between the lower surface 81 of the core metal and the support surface 53 is filled.

上記のことから、図10の場合には、支持ピン51同士の間隔が狭かったり、支受面53の総面積が広い場合であっても、芯金10と下型枠部62との隙間Gから圧入したゴム材料12が支持ピン51の周囲に到達する際に、貫通穴50から短い距離でゴム材料12を圧入してこれらを同時に加硫させることができ、厚みが一定で均質なライニング部11の成形が可能となる。これにより、ライニング部11を高精度に成形し、成形後の弁体2の機能性を向上して止水性能を高めることが可能になる。芯金下面81側にゴム材料12を手作業で埋め込むなどの補修作業を行う必要もない。 From the above, in the case of FIG. 10, even when the distance between the support pins 51 is narrow or the total area of the support surface 53 is large, the gap G between the core metal 10 and the lower form portion 62 When the rubber material 12 press-fitted from is reached around the support pin 51, the rubber material 12 can be press-fitted at a short distance from the through hole 50 and vulcanized at the same time. 11 can be molded. As a result, the lining portion 11 can be molded with high accuracy, the functionality of the valve body 2 after molding can be improved, and the water stopping performance can be improved. There is no need to perform repair work such as manually embedding the rubber material 12 on the lower surface 81 side of the core metal.

一方、図11の比較例の場合には、支持ピン51を下降してから芯金下面81と支受面53との隙間Gにゴム材料12が流れ込むまでに時間がかかるため、支持ピン51の下降前に圧入したゴム材料12が先に加硫してしまい、芯金下面81付近では、ライニング部11の厚みや性質が均一でなくなる可能性がある。 On the other hand, in the case of the comparative example of FIG. 11, since it takes time for the rubber material 12 to flow into the gap G between the lower surface 81 of the core metal and the support surface 53 after the support pin 51 is lowered, the support pin 51 The rubber material 12 press-fitted before lowering may be vulcanized first, and the thickness and properties of the lining portion 11 may not be uniform in the vicinity of the lower surface 81 of the core metal.

上記に加えて、本発明の弁体成形方法においては、支持ピン51の大径化や個数の増加により、芯金上面80に圧入されるゴム材料12の圧力や芯金10の自重でこの芯金10が下方に移動し、その位置が偏ることを防止している。これによって、芯金10の上下面80、81の隙間Gを均等に保持し、芯金10の全面に均等な厚さのライニング部11を成形可能となる。 In addition to the above, in the valve body forming method of the present invention, due to the increase in the diameter and the number of the support pins 51, the pressure of the rubber material 12 press-fitted into the upper surface 80 of the core metal and the weight of the core metal 10 make this core. The gold 10 moves downward to prevent its position from being biased. As a result, the gaps G between the upper and lower surfaces 80 and 81 of the core metal 10 are evenly held, and the lining portion 11 having a uniform thickness can be formed on the entire surface of the core metal 10.

さらには、支持ピン51は、ゴム材料12の貫通穴50への圧入を利用して下降するため、支受面53が下型枠部62の表面と面一になるまで確実に支持ピン51を下降でき、下面側のライニング部11の段差の発生を防いで滑らかな表面に仕上げることができる。 Further, since the support pin 51 is lowered by utilizing the press-fitting of the rubber material 12 into the through hole 50, the support pin 51 is securely held until the support surface 53 is flush with the surface of the lower form portion 62. It can be lowered, and it is possible to prevent the occurrence of a step on the lining portion 11 on the lower surface side and finish the surface smoothly.

上記のことから、ライニング部11を薄くすることも可能になるため、ゴム材料12の使用量を削減でき、ライニング成形時にはゴム材料12の加硫時間を短縮することが可能になる。 From the above, since the lining portion 11 can be made thinner, the amount of the rubber material 12 used can be reduced, and the vulcanization time of the rubber material 12 can be shortened at the time of lining molding.

次に、本発明のソフトシール仕切弁の弁体成形方法により芯金を支持する場合において、呼び径による支持ピンの外径寸法と個数との違いを、実施品と比較品とを用いて比較した。表1においては、図10に示した本発明の弁体成形方法による実施品、及び、図11に示した弁体成形方法により成形する場合の比較品について、バルブの呼び径が異なる場合の支持ピンの外径寸法と個数をそれぞれ示している。 Next, when the core metal is supported by the valve body forming method of the soft seal sluice valve of the present invention, the difference between the outer diameter dimension and the number of support pins according to the nominal diameter is compared between the implemented product and the comparative product. did. In Table 1, the products implemented by the valve body molding method of the present invention shown in FIG. 10 and the comparative products in the case of molding by the valve body molding method shown in FIG. 11 are supported when the nominal diameters of the valves are different. The outer diameter of the pin and the number of pins are shown respectively.

Figure 0006850110
Figure 0006850110

表1の結果より、バルブの呼び径350の比較的小径の場合、実施品は、比較品に対して支持ピン51の外径寸法を大きくしながら総個数を少なくできる。具体的には、φ50の支持ピン51を4箇所、φ30の支持ピン51を1箇所に設けることで芯金下面81の支持面積を広くできるため、ゴム材料12注入時の高圧力に対し、芯金10を薄肉にしてリブ等の補強を設けない場合であっても、その変形を防ぐことができる。 From the results in Table 1, when the nominal diameter of the valve is 350, which is a relatively small diameter, the total number of the implemented products can be reduced while increasing the outer diameter dimension of the support pins 51 as compared with the comparative product. Specifically, by providing the support pin 51 of φ50 at four places and the support pin 51 of φ30 at one place, the support area of the lower surface 81 of the core metal can be widened. Even when the gold 10 is thinned and no reinforcement such as ribs is provided, the deformation can be prevented.

バルブ呼び径450の比較的大径の場合には、これら呼び径の違いに応じて支持ピン51の外径寸法や個数を変更し、芯金下面81への支持面積を調節可能になる。すなわち、呼び径の拡大に伴って芯金下面81の面積が増加する場合に、支受面53の面積を増やした状態で支持できる。これによって、上下面80、81の面積の広い芯金(呼び径の大きい芯金)10に対して、ゴム材料12の圧入により高圧力が加わった場合にも、芯金10の一部や全体の変形を防ぎながらその上下面80、81に適切にライニング処理できる。 In the case of a relatively large valve nominal diameter 450, the outer diameter dimension and the number of the support pins 51 can be changed according to the difference in the nominal diameters, and the support area to the lower surface 81 of the core metal can be adjusted. That is, when the area of the lower surface 81 of the core metal increases as the nominal diameter increases, the support surface 53 can be supported in an increased area. As a result, even when a high pressure is applied to the core metal (core metal having a large nominal diameter) 10 having a large area on the upper and lower surfaces 80 and 81 by press-fitting the rubber material 12, a part or the whole of the core metal 10 is used. The upper and lower surfaces 80 and 81 can be appropriately lined while preventing deformation.

何れの呼び径の場合にも、実施品の場合には、支持ピン51の下降により貫通穴50を介して支持ピン51跡にゴム材料12を充填して均等な厚さのライニング部11を成形でき、しかも、ゴム材料12を均質な状態で加硫して高品質の弁体2を成形可能となる。 Regardless of the nominal diameter, in the case of the product, the rubber material 12 is filled in the trace of the support pin 51 through the through hole 50 by lowering the support pin 51, and the lining portion 11 having a uniform thickness is formed. Moreover, the rubber material 12 can be vulcanized in a homogeneous state to form a high-quality valve body 2.

以上、本発明の実施の形態について詳述したが、本発明は、前記実施の形態記載に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の精神を逸脱しない範囲で、種々の変更ができるものである。例えば、支持ピンを下降させるためのダイプレートの動作方法にこだわることはなく、ダイプレート以外の手段で支持ピンを下降させることも可能である。さらには、芯金支持工程、ゴム圧入工程、支持ピン下降工程を経るものであれば、トランスファー成型以外の各種の成形手段を用いることもできる。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the description of the embodiments, and is within the scope of the invention described in the claims of the present invention. Therefore, various changes can be made. For example, the operation method of the die plate for lowering the support pin is not particular, and the support pin can be lowered by means other than the die plate. Further, various molding means other than transfer molding can be used as long as the core metal support step, the rubber press-fitting step, and the support pin lowering step are performed.

1 ソフトシール仕切弁
2 弁体
10 芯金
11 ライニング部
12 ゴム材料
21 弁翼
22 弁棒取付け部
30 被ライニング面
40 成形型
41 上型
42 下型
50 貫通穴
51 支持ピン
53 支受面
65 注入口
80 芯金上面
81 芯金下面
G 隙間
1 Soft seal sluice valve 2 Valve body 10 Core metal 11 Lining part 12 Rubber material 21 Valve wing 22 Valve rod mounting part 30 Lined surface 40 Molded type 41 Upper type 42 Lower type 50 Through hole 51 Support pin 53 Support surface 65 Note Entrance 80 Core metal upper surface 81 Core metal lower surface G Gap

Claims (3)

上型下型を有する成形型内にライニング用の隙間を設けた状態で仕切弁用弁体の芯金の弁翼側を上昇状態の支持ピンの支受面で支持させ、前記上型から前記芯金の被ライニング面に未加硫状態のゴム材料を圧入すると共に、前記支受面に対向する位置に前記芯金の表裏面を貫通する貫通穴が形成され、この貫通穴を含む周囲を前記支受面により支受可能に設け、前記芯金の表裏面に形成した隙間にゴム材料を圧入し、かつ前記貫通穴から圧入されるゴム材料の流入圧力で前記支持ピンの支受面を押圧して前記支持ピンを前記芯金の下面に生じる隙間まで下降させて前記支受面と前記芯金の下面との間に隙間を形成し、当該隙間にゴム材料を圧入することにより前記芯金の被ライニング面全体に均等の厚さのゴムライニングを形成するようにしたことを特徴とするソフトシール仕切弁の弁体成形方法。 The valve blade side of the core metal of the sluice valve valve body is supported by the support surface of the support pin in the raised state with a gap for lining provided in the molding die having the upper die and the lower die, and the upper die is used as described above. An unvulked rubber material is press-fitted into the lined surface of the core metal, and a through hole penetrating the front and back surfaces of the core metal is formed at a position facing the support surface, and the periphery including the through hole is formed. A rubber material is press-fitted into the gaps formed on the front and back surfaces of the core metal so as to be supportable by the support surface, and the support surface of the support pin is pressed by the inflow pressure of the rubber material press-fitted from the through hole. The core is pressed to lower the support pin to a gap formed on the lower surface of the core metal to form a gap between the support surface and the lower surface of the core metal, and a rubber material is press-fitted into the gap to form the core. A valve body forming method for a soft-sealed sluice valve, characterized in that a rubber lining having an equal thickness is formed on the entire surface to be lined with gold. 前記支持ピンの支受面を押圧して下降させる際に、さらに前記芯金の上部に形成された弁棒取付け部を支持ピンにより支持し、この支持ピンの支受面に対向する位置に前記芯金の表裏面を貫通する貫通穴が形成され、この貫通穴を含む周囲を前記支受面により支受可能に設け、前記芯金の表裏面に形成した隙間にゴム材料を圧入し、かつ前記貫通穴から圧入されるゴム材料の流入圧力で前記支持ピンの支受面を押圧して前記支持ピンを前記芯金の下面に生じる隙間まで下降させて前記弁棒取付け部の下面に生じる隙間にゴム材料を圧入するようにした請求項1に記載のソフトシール仕切弁の弁体成形方法。 When the support surface of the support pin is pressed and lowered, the valve rod mounting portion formed on the upper part of the core metal is further supported by the support pin, and the support pin is positioned at a position facing the support surface. Through holes are formed through the front and back surfaces of the core metal, and the periphery including the through holes is provided so as to be supportable by the support surface, and the rubber material is press-fitted into the gaps formed on the front and back surfaces of the core metal. The support surface of the support pin is pressed by the inflow pressure of the rubber material press-fitted from the through hole to lower the support pin to the gap formed on the lower surface of the core metal, and the gap formed on the lower surface of the valve stem mounting portion. The valve body forming method for a soft-sealed sluice valve according to claim 1, wherein a rubber material is press-fitted into the sluice. 前記ゴム材料の加硫中に前記支持ピンを下降させた状態で、前記芯金の下面又は前記弁棒取付け部の下面に形成された前記隙間に向けて前記隙間の外方より回り込んで圧入されるゴム材料と前記貫通穴より圧入されて前記貫通穴の下部より前記隙間に放射方向に広がりながら圧入される前記ゴム材料とが前記隙間に充填されるようにした請求項1又は2に記載のソフトシール仕切弁の弁体成形方法。 With the support pin lowered during vulcanization of the rubber material, the rubber material is press-fitted by wrapping around from the outside of the gap toward the gap formed on the lower surface of the core metal or the lower surface of the valve rod mounting portion. The first or second aspect of the present invention, wherein the rubber material to be press-fitted and the rubber material press-fitted from the lower portion of the through-hole into the gap while spreading in the radial direction are filled in the gap. How to mold the soft seal sluice valve.
JP2016225153A 2016-11-18 2016-11-18 Valve body molding method for soft seal sluice valve Active JP6850110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225153A JP6850110B2 (en) 2016-11-18 2016-11-18 Valve body molding method for soft seal sluice valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225153A JP6850110B2 (en) 2016-11-18 2016-11-18 Valve body molding method for soft seal sluice valve

Publications (2)

Publication Number Publication Date
JP2018079667A JP2018079667A (en) 2018-05-24
JP6850110B2 true JP6850110B2 (en) 2021-03-31

Family

ID=62198586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225153A Active JP6850110B2 (en) 2016-11-18 2016-11-18 Valve body molding method for soft seal sluice valve

Country Status (1)

Country Link
JP (1) JP6850110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112620501A (en) * 2020-11-05 2021-04-09 深圳恒钢精密机械制造有限公司 Stamping die with accurate positioning

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194828A (en) * 1983-04-19 1984-11-05 Maezawa Kogyo Kk Rubber lining for soft seal valve
JPS61270125A (en) * 1985-05-27 1986-11-29 Kubota Ltd Rubber lining method for valve body of soft seal sluice valve
JPS62115256U (en) * 1986-01-14 1987-07-22
JP2964783B2 (en) * 1992-07-09 1999-10-18 富士通株式会社 Electronic device housing
JP2005009621A (en) * 2003-06-20 2005-01-13 Takanichi Kk Bracket for mounting retainer

Also Published As

Publication number Publication date
JP2018079667A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
CN101528387B (en) Mold
JP5681027B2 (en) Manufacturing method of laminated iron core
CN105365153A (en) Method for monitoring the operational state of a surface inspection system for detecting defects on the surface of semiconductor wafers
JP6850110B2 (en) Valve body molding method for soft seal sluice valve
JP2014093862A (en) Resin sealing method for laminated core
CN105428054B (en) Dry-type transformer coil upright pouring die and pouring procedure
TWI617411B (en) Resin molding device fixed platform, resin molding device, and manufacturing method of resin molding device fixed platform
EP3310229B1 (en) Composite bath tub and method of manufacture
KR101202951B1 (en) Manhole base mold and molding method for forming
JP6195071B2 (en) Skin integrated resin molding equipment
KR102194412B1 (en) Gravity casting machine and Gravity casting method of tiltilg type
JP2017159624A (en) Insert molding method and insert molding apparatus
CN107192592B (en) Forming frame for mortar tensile bonding strength test and forming method thereof
JPH1034765A (en) Mold apparatus for manufacturing bladder for tire vulcanization
JP4185275B2 (en) Injection molding equipment
JP2012207718A (en) Soft seal valve and method of lining valve element of soft seal valve
JP2013049141A (en) Method and device for manufacturing molded product
JP2012106391A (en) Resin molding method and resin product
JP6471043B2 (en) Cylinder repair member, underground drainage facility including the same, and cylinder repair method
CN206229970U (en) A kind of resin sand mould
KR101488236B1 (en) method of foaming injection
CN210547870U (en) Casting molding type composite ceramic wear-resistant ring manufacturing mold
CN206465331U (en) Resin-cast silicon rubber dead head device
JP2020090058A (en) Method for manufacturing footrest member, and footrest member
JP3764369B2 (en) Injection molding equipment

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210305

R150 Certificate of patent or registration of utility model

Ref document number: 6850110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250