JP6848041B2 - Overvoltage protection device for variable speed pumped storage power generation system - Google Patents

Overvoltage protection device for variable speed pumped storage power generation system Download PDF

Info

Publication number
JP6848041B2
JP6848041B2 JP2019232500A JP2019232500A JP6848041B2 JP 6848041 B2 JP6848041 B2 JP 6848041B2 JP 2019232500 A JP2019232500 A JP 2019232500A JP 2019232500 A JP2019232500 A JP 2019232500A JP 6848041 B2 JP6848041 B2 JP 6848041B2
Authority
JP
Japan
Prior art keywords
short
overvoltage protection
protection device
power generation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019232500A
Other languages
Japanese (ja)
Other versions
JP2020065437A (en
Inventor
隆太 長谷川
隆太 長谷川
照之 石月
照之 石月
勇太朗 北森
勇太朗 北森
隆久 影山
隆久 影山
裕一 塩崎
裕一 塩崎
崇 藤田
崇 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019232500A priority Critical patent/JP6848041B2/en
Publication of JP2020065437A publication Critical patent/JP2020065437A/en
Application granted granted Critical
Publication of JP6848041B2 publication Critical patent/JP6848041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明の実施形態は、可変速揚水発電システムの過電圧保護装置に関する。 An embodiment of the present invention relates to an overvoltage protection device for a variable speed pumped storage power generation system.

二次励磁式の可変速揚水発電システムの過電圧保護装置においては、発電システムが電力系統に連系する地点またはその至近端での三相短絡故障などの事故電流が大きい重大故障の場合、二次回路に誘起される過大な電圧を二次回路中に設けた短絡器を用いて短絡することによってその過電圧を抑制する。 In the overvoltage protection device of the secondary excitation type variable speed pumping power generation system, in the case of a serious failure with a large accident current such as a three-phase short circuit failure at the point where the power generation system is connected to the power system or its immediate end, two The overvoltage is suppressed by short-circuiting the excessive voltage induced in the secondary circuit using a short circuit provided in the secondary circuit.

可変速揚水発電システムの交流励磁装置(二次励磁装置)は、周波数変換器により構成され、当該短絡中に動作を継続させると短絡電流により損傷が起きる可能性があるため、上記故障の際には当該二次励磁装置を停止する。 The AC exciter (secondary exciter) of the variable speed pumping power generation system is composed of a frequency converter, and if the operation is continued during the short circuit, damage may occur due to the short circuit current. Stops the secondary exciter.

上記二次回路の短絡状態が継続すると、可変速揚水発電システムの発電電動機は二次短絡した誘導機の構成となり、励磁電源を系統から受けるとともに、系統との間で大きな有効電力の授受を行うため、系統の安定のために、早期に系統と連系する主回路遮断器を解列し、二次回路の短絡継続により励磁源を喪失した可変速揚水発電システムを保護停止させる必要がある。 If the short-circuited state of the secondary circuit continues, the power generation motor of the variable-speed pumping power generation system becomes a secondary short-circuited induction machine, receives exciting power from the system, and transfers a large amount of active power to and from the system. Therefore, in order to stabilize the system, it is necessary to disconnect the main circuit breaker connected to the system at an early stage and to protect and stop the variable speed pumping power generation system that has lost the excitation source due to the continuous short circuit of the secondary circuit.

しかし、このような至近端の重大事故においても系統遮断器によって事故が除去された後は、その主回路遮断器を遮断することなく運転を継続できるようにすることは、大容量の発電設備である可変速揚水発電システムにおいて重要な課題であった。 However, even in such a serious accident at the nearest end, after the accident is eliminated by the system circuit breaker, it is possible to continue the operation without interrupting the main circuit breaker, which is a large-capacity power generation facility. This was an important issue in the variable speed pumped storage power generation system.

このような解題を解決するものとしては、系統事故が系統遮断器により除去された後、二次回路の短絡器による短絡状態を二次励磁装置として用いる周波数変換器により強制的に解除し、二次励磁装置による安定な運転を早期に再開させ、主機の運転を継続させることができる可変速揚水発電システムの過電圧保護装置が提案されている(例えば、特許文献1)。 To solve such a problem, after the system accident is removed by the system circuit breaker, the short-circuited state by the short-circuiter of the secondary circuit is forcibly released by the frequency converter used as the secondary exciter. An overvoltage protection device for a variable speed pumped storage power generation system capable of restarting stable operation by a secondary exciter at an early stage and continuing operation of the main engine has been proposed (for example, Patent Document 1).

特開平7−193982号公報Japanese Unexamined Patent Publication No. 7-193882

しかし、従来の方法では、短絡器を電流耐量が高いサイリスタで構成するため、二次励磁用変換器で逆電圧をかけ、強制的に短絡器の電流をゼロにする必要があり、短絡状態を解除するためには、短絡器に流れる過渡直流分を含む大きな短絡電流が二次励磁用変換器の定常電流以下になるまで待たねばならず、より早い短絡器の解除による安定した通常運転状態再開実施が必要な場合もあった。 However, in the conventional method, since the short circuit is composed of a thyristor having a high current withstand, it is necessary to apply a reverse voltage with a converter for secondary excitation to forcibly reduce the current of the short circuit to zero, so that the short circuit state is caused. In order to release the short circuit, it is necessary to wait until the large short circuit current including the transient DC component flowing through the short circuit becomes less than the steady current of the secondary excitation converter, and the stable normal operation state is restarted by releasing the short circuit earlier. In some cases it was necessary to implement it.

一方、短絡器に流れる当該過渡直流分を含む電流が二次励磁装置の定常電流より大きくとも、短時間電流耐量以内を条件として二次励磁用変換器で逆電圧をかけ短絡器の短絡状態を早期に解除することを試みると、その大きな短絡電流が二次励磁用変換器に流入し、直流電圧を上昇させ、過電圧保護装置の過電圧保護機能を再動作させることがあるため、過電圧保護装置の短絡状態解除を早期に安定に行うためには、二次励磁装置の電流容量を通常運転のために必要な容量を超える大容量の変換器を設ける必要があった。 On the other hand, even if the current including the transient DC component flowing through the short-circuit is larger than the steady-state current of the secondary exciter, a reverse voltage is applied by the secondary exciter converter to cause the short-circuit state of the short-circuit, provided that the current withstand is within a short time. If you try to release it early, the large short-circuit current may flow into the secondary excitation converter, raise the DC voltage, and restart the overvoltage protection function of the overvoltage protection device. In order to release the short-circuit state quickly and stably, it is necessary to provide a converter having a large capacity that exceeds the current capacity of the secondary exciter that exceeds the capacity required for normal operation.

年に数回以下の頻度でしか動作しない過電圧保護装置に、据付面積の確保と変換器の大容量化で数億円以上の費用をかけることは、経済負担が大きく、可変速揚水発電所の導入に際して大きな障害になる可能性があった。 It is economically burdensome to spend hundreds of millions of yen or more on an overvoltage protection device that operates only a few times a year or less to secure an installation area and increase the capacity of the converter, and it is a variable speed pumped storage power plant. It could be a major obstacle to the introduction.

本発明は上述した課題を解決するためになされたものであり、故障電流の影響が大きい発電所連系点付近での三相短絡故障時においても、二次回路の短絡器の短絡状態を高速で解除し交流励磁装置による安定な運転を再開させることで、系統遮断器による事故除去が成功した後には並列用遮断器による系統からの解列や主機の停止を必要としない可変速揚水発電システムの過電圧保護装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and even in the case of a three-phase short-circuit failure near a power plant interconnection point where the influence of a fault current is large, the short-circuit state of the circuit breaker of the secondary circuit is speeded up. A variable speed pumping power generation system that does not require disconnection from the system or stop of the main engine by the parallel circuit breaker after the accident is successfully eliminated by the system circuit breaker by canceling with and restarting the stable operation by the AC exciter. It is an object of the present invention to provide an overvoltage protection device.

実施形態によれば、高圧側が電力系統に接続される変圧器の低圧側の電源に固定子巻線を接続した巻線形誘導機の回転子巻線と交流励磁装置との間の回路に接続され、当該回路に過電圧が発生したときに当該回路を短絡させる短絡器を備え、前記短絡器の短絡動作中の通電電流が予め規定した電流規定値以下であり、且つ、前記短絡器の短絡動作の経過時間が予め規定した動作継続時間規定値以上であることを条件に、前記短絡器の短絡状態を強制的に解除する制御を行う制御装置を備えた可変速揚水発電システムの過電圧保護装置において、前記制御装置は、当該過電圧保護装置の動作継続時間が予め規定した過電圧保護装置連続動作規定時間以上であることを条件に、当該可変速揚水発電システムを前記電力系統から切り離す制御を行い、前記過電圧保護装置連続動作規定時間を、当該可変速揚水発電システムの系統事故前のすべりまたはすべり周波数もしくは回転速度の関数としてあるいは有効電力の関数として規定した、可変速揚水発電システムの過電圧保護装置が提供される。
According to the embodiment, the high voltage side is connected to the circuit between the rotor winding of the winding type inducer in which the stator winding is connected to the power source on the low pressure side of the transformer connected to the power system and the AC exciter. A short-circuiting device for short-circuiting the circuit when an overvoltage occurs in the circuit is provided, and the energizing current during the short-circuiting operation of the short-circuiting device is equal to or less than a predetermined current specified value and the short-circuiting operation of the short-circuiting device is performed. In the overvoltage protection device of the variable speed pumping power generation system equipped with a control device that forcibly releases the short-circuited state of the short-circuiter on condition that the elapsed time is equal to or longer than the predetermined operation duration specified value. wherein the control device, on condition that the operation duration of the overvoltage protection device is an overvoltage protector continuous operation specified time or more previously defined, have row control for disconnecting the variable-speed pumped-storage power generating system from the power system, the Overvoltage protection device Provided by the overvoltage protection device of the variable speed pumping power generation system, which defines the continuous operation specified time as a function of the sliding or sliding frequency or rotation speed before the system accident of the variable speed pumping power generation system or as a function of the active power. Will be done.

本発明によれば、故障電流の影響が大きい発電所連系点付近での三相短絡故障時においても、二次回路の短絡器の短絡状態を高速で解除し交流励磁装置による安定な運転を再開させることで、系統遮断器による事故除去が成功した後には並列用遮断器による系統からの解列や主機の停止を必要としない可変速揚水発電システムの過電圧保護装置を提供することができる。 According to the present invention, even in the case of a three-phase short-circuit failure near a power plant interconnection point where the influence of a fault current is large, the short-circuit state of the circuit breaker of the secondary circuit is released at high speed, and stable operation is performed by the AC exciter. By restarting, it is possible to provide an overvoltage protection device for a variable speed pumping power generation system that does not require disconnection from the system or stoppage of the main engine by a parallel circuit breaker after the accident is successfully eliminated by the system circuit breaker.

一実施形態に係る過電圧保護装置を含む可変速揚水発電システムの構成の一例を示す図。The figure which shows an example of the structure of the variable speed pumped storage power generation system which includes the overvoltage protection device which concerns on one Embodiment. 短絡器の回路構成の一例を示す図。The figure which shows an example of the circuit structure of a short circuit. 過電圧保護装置連続動作規定時間をすべりの関数として作成した一例を示す図。The figure which shows an example which made the overvoltage protection device continuous operation specified time as a function of slip. 過電圧保護装置連続動作規定時間を有効電力の関数として作成した一例を示す図。The figure which shows an example which made the overvoltage protection device continuous operation specified time as a function of active power. 過電圧保護装置の動作の一例を示すタイムチャート。A time chart showing an example of the operation of the overvoltage protection device. 過電圧保護装置の動作の別の例を示すタイムチャート。A time chart showing another example of the operation of the overvoltage protection device.

以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.

図1は、一実施形態に係る過電圧保護装置を含む可変速揚水発電システムの構成の一例を示す図である。 FIG. 1 is a diagram showing an example of a configuration of a variable speed pumped storage power generation system including an overvoltage protection device according to an embodiment.

図1に示されるように、本実施形態に係る可変速揚水発電システムは、巻線形誘導機1、周波数変換器4、制御装置5、短絡器6、主変圧器8、並列用遮断器9A、励磁用変圧器16および電流検知器11を含む。周波数変換器4は、巻線形誘導機1の交流励磁装置(二次励磁装置)に相当し、自励式のコンバータ2および自励式のインバータ3を含むほか、直流リンクコンデンサ12や、抵抗器13およびパワー半導体素子14からなるチョッパ15を含む。ここでは、自励式の周波数変換器を例に説明しているが、サイクロコンバータ等の他励式の変換器を用いても良い。制御装置5は、可変速揚水発電システムの通常の運転中は巻線型誘導機1の運転状態に対応した二次励磁電流を与えるように周波数変換器4のインバータ3、コンバータ2を制御し、系統事故時に二次回路に過電圧が発生したときは短絡器6を直ちに短絡させる制御と、後述する条件が成立した後に短絡器6を開放する制御を行う。制御装置5および短絡器6は、本実施形態に係る可変速揚水発電システムの過電圧保護装置(以下、「OVP」と称す場合がある)を構成する。過電圧保護装置は、例えば、周波数変換器4、短絡器6、制御装置5、および電流検知器11で構成してもよく、その制御には可変速揚水発電システムにて検出するインバータ出力電流、二次回路電圧、直流リンク電圧も使用できる。 As shown in FIG. 1, the variable speed pumped storage power generation system according to the present embodiment includes a winding type inducer 1, a frequency converter 4, a control device 5, a short circuiter 6, a main transformer 8, a parallel circuit breaker 9A, and the like. Includes an exciting transformer 16 and a current detector 11. The frequency converter 4 corresponds to an AC exciter (secondary exciter) of the winding induction machine 1, includes a self-excited converter 2 and a self-excited inverter 3, a DC link capacitor 12, a resistor 13, and a resistor 13. A chopper 15 composed of a power semiconductor element 14 is included. Here, a self-excited frequency converter is described as an example, but a separately-excited converter such as a cycloconverter may be used. The control device 5 controls the inverter 3 and the converter 2 of the frequency converter 4 so as to give a secondary exciting current corresponding to the operating state of the winding type induction machine 1 during the normal operation of the variable speed pumping power generation system, and controls the system. When an overvoltage occurs in the secondary circuit at the time of an accident, the short-circuiter 6 is immediately short-circuited, and the short-circuiter 6 is opened after the conditions described later are satisfied. The control device 5 and the short-circuit device 6 constitute an overvoltage protection device (hereinafter, may be referred to as “OVP”) of the variable speed pumped storage power generation system according to the present embodiment. The overvoltage protection device may be composed of, for example, a frequency converter 4, a short circuit 6, a control device 5, and a current detector 11, and the control thereof is an inverter output current detected by a variable speed pumping power generation system. The next circuit voltage and DC link voltage can also be used.

巻線形誘導機1の固定子巻線端子(一次巻線端子)には、並列用遮断器9Aを介して主変圧器8が接続され、巻線形誘導機1の固定子巻線端子の電圧は、主変圧器8により電力系統10の電圧に昇圧されたのち、系統遮断器9を介して電力系統10に接続されている。 The main transformer 8 is connected to the stator winding terminal (primary winding terminal) of the winding type inducer 1 via a parallel circuit breaker 9A, and the voltage of the stator winding terminal of the winding type inducer 1 is adjusted. After being boosted to the voltage of the power system 10 by the main transformer 8, it is connected to the power system 10 via the system circuit breaker 9.

一方、巻線形誘導機1の回転子巻線端子(二次巻線端子)には、周波数変換器4が接続されている。この周波数変換器4は、巻線形誘導機1の回転子巻線端子と主変圧器8との間の回路に励磁用変圧器16を介して接続され、三相交流電圧を取り込む。 On the other hand, the frequency converter 4 is connected to the rotor winding terminal (secondary winding terminal) of the winding type inducer 1. The frequency converter 4 is connected to the circuit between the rotor winding terminal of the winding type inducer 1 and the main transformer 8 via an exciting transformer 16 and takes in a three-phase AC voltage.

周波数変換器4内では、コンバータ2によって三相交流電圧が直流電圧に変換され、直流リンクコンデンサ12の直流電圧が維持される。直流電圧はインバータ3を介してすべり周波数相当の周波数の三相交流電圧に変換される。また、周波数変換器4は、二次巻線に誘起される故障電流が比較的小さい系統事故時の直流リンク電圧上昇を抑制しコンバータ2/インバータ3の運転継続能力を高めるため、抵抗器13とパワー半導体素子14(たとえばGTO、IGBT)とで構成されるチョッパ15を備えている。 In the frequency converter 4, the three-phase AC voltage is converted into a DC voltage by the converter 2, and the DC voltage of the DC link capacitor 12 is maintained. The DC voltage is converted into a three-phase AC voltage having a frequency corresponding to the slip frequency via the inverter 3. Further, the frequency converter 4 is combined with the resistor 13 in order to suppress an increase in the DC link voltage at the time of a system accident in which the failure current induced in the secondary winding is relatively small and to enhance the operation continuation ability of the converter 2 / inverter 3. It includes a chopper 15 composed of a power semiconductor element 14 (for example, GTO, IGBT).

短絡器6は、巻線形誘導機1の回転子巻線端子と周波数変換器4との間の回路に接続され、当該回路あるいは直流リンク回路にあらかじめ規定した値を超える過電圧が発生したときに当該回路を制御装置5の制御のもとで短絡させる。この短絡器6は、具体的には、周波数変換器4と巻線形誘導機1の回転子巻線端子とを結ぶ励磁電源供給線の各線間に電気的に接続されており、例えば図2に示されるようにサイリスタ等の他励素子を用いて構成される。なお、図2の例では、U相、V相、W相の各相間にそれぞれ1個のサイリスタを設けた場合が示されているが、この例に限定されるものではない。 The short circuit 6 is connected to a circuit between the rotor winding terminal of the winding inducer 1 and the frequency converter 4, and when an overvoltage exceeding a predetermined value occurs in the circuit or the DC link circuit, the short circuit 6 is said to be concerned. The circuit is short-circuited under the control of the control device 5. Specifically, the short-circuiter 6 is electrically connected between each line of the exciting power supply line connecting the frequency converter 4 and the rotor winding terminal of the winding type inducer 1, for example, FIG. As shown, it is configured by using a separately excited element such as a thyristor. In the example of FIG. 2, a case where one thyristor is provided between each of the U phase, the V phase, and the W phase is shown, but the present invention is not limited to this example.

制御装置5は、各所に設置された各種センサを通じて、直流リンクコンデンサ12における電圧(コンデンサ電圧)または二次回路電圧の計測値、周波数変換器4から流れる電流(変換器電流)の計測値、短絡器6を流れる電流の計測値を取得する。例えば、短絡器6を流れる電流は、電流検知器11を通じて検知することができる。制御装置5は、取得した各種の計測値に基づき、短絡器6、コンバータ2/インバータ3を構成する各素子を駆動制御する。なお、電流検知器11は、より具体的には、図2に示されるように短絡器6の各線間に設けたサイリスタ等の短絡スイッチにそれぞれ流れる電流を検出する複数の電流検知器11a、11b、11cで構成しても良い。 The control device 5 passes through various sensors installed in various places to measure the voltage (capacitor voltage) or secondary circuit voltage of the DC link capacitor 12, the measured value of the current flowing from the frequency converter 4, and the short circuit. Acquire the measured value of the current flowing through the capacitor 6. For example, the current flowing through the short circuit 6 can be detected through the current detector 11. The control device 5 drives and controls each element constituting the short-circuiter 6, the converter 2 / the inverter 3, based on the acquired various measured values. More specifically, as shown in FIG. 2, the current detectors 11 are a plurality of current detectors 11a and 11b that detect currents flowing through short-circuit switches such as thyristors provided between the lines of the short-circuiter 6. , 11c may be configured.

特に本実施形態の制御装置5は、電力系統10の事故(例えば発電所至近端送電線における短絡事故)の発生に応じて巻線形誘導機1の二次側回路の過電圧を前述のセンサを通じて検出した場合には、短絡器6を短絡させ、その後、短絡器6の短絡動作中の通電電流が予め規定した電流規定値Ith以下であり、且つ、短絡器6の短絡動作の経過時間が予め規定した動作継続時間規定値Tth以上であることを条件に、周波数変換器4により短絡器6を構成するサイリスタに逆電圧を印加することにより短絡器6の短絡状態を強制的に解除する制御を行う(以下、「特徴1」と呼ぶ)。 In particular, the control device 5 of the present embodiment transmits the overvoltage of the secondary circuit of the winding induction machine 1 through the above-mentioned sensor in response to the occurrence of an accident in the power system 10 (for example, a short-circuit accident in the transmission line near the power plant). When it is detected, the short-circuiter 6 is short-circuited, and then the energizing current during the short-circuit operation of the short-circuiter 6 is equal to or less than the predetermined current specified value Ith, and the elapsed time of the short-circuit operation of the short-circuiter 6 is predetermined. Control to forcibly release the short-circuited state of the short-circuited device 6 by applying a reverse voltage to the thyristers constituting the short-circuited device 6 by the frequency converter 4 on condition that the specified operation duration is equal to or higher than the specified value Tth. (Hereinafter, referred to as "feature 1").

ここで、上述の電流規定値Ithは、周波数変換器4が素子破壊などの支障をきたさないレベルであれば、周波数変換器4の定格電流を超える値とする(以下、「特徴2」と呼ぶ)。このようにすると、短絡器6の短絡状態をより早く解除させることが可能となる。この場合、電流規定値Ithは、周波数変換器4に備えられる素子の最大遮断電流以下の値とする(以下、「特徴3」と呼ぶ)か、あるいは周波数変換器4に対して過電流からの保護を保証するレベルとして予め設定した過電流保護設定値以下の値とする(以下、「特徴4」と呼ぶ)。 Here, the above-mentioned current specified value Ith is a value that exceeds the rated current of the frequency converter 4 as long as the frequency converter 4 does not cause any trouble such as element destruction (hereinafter, referred to as “feature 2”). ). In this way, the short-circuited state of the short-circuiter 6 can be released more quickly. In this case, the specified current value Ith is set to a value equal to or less than the maximum breaking current of the element provided in the frequency converter 4 (hereinafter referred to as “feature 3”), or is caused by an overcurrent with respect to the frequency converter 4. The level that guarantees protection is set to a value equal to or less than the preset overcurrent protection set value (hereinafter referred to as "feature 4").

一方、上述の動作継続時間規定値Tthは、電力系統10の系統事故の除去にかかる時間である事故除去時間以上とする(以下、「特徴5」と呼ぶ)。このときの事故除去時間を、系統保護リレー装置が正常に動作している場合に当該系統事故の除去を行う系統遮断器9が解列し事故除去するまでの最長時間とすることができる。このようにすることにより、確実に事故の除去がなされた後に短絡器6を復帰させる制御を行うことができる。ここで、動作継続時間規定値Tthは、電力系統10の系統事故の除去処理の中で最も早く除去が完了する時間(最短事故除去時間)以上としてもよい(以下、「特徴6」と呼ぶ)。例えば系統事故を除去するまでの保護リレーや遮断器の開路動作を実際に行う時間は、通常上記最長時間より早い場合が多く、Tthをその最短の事故除去時間とすることができる。 On the other hand, the above-mentioned operation duration specified value Tth is set to be equal to or longer than the accident elimination time, which is the time required to eliminate the system accident of the power system 10 (hereinafter, referred to as “feature 5”). The accident elimination time at this time can be set to the maximum time until the system circuit breaker 9 that eliminates the system accident is disconnected and the accident is eliminated when the system protection relay device is operating normally. By doing so, it is possible to control the return of the short circuit device 6 after the accident has been reliably eliminated. Here, the operation duration specified value Tth may be equal to or longer than the time (shortest accident removal time) at which the removal is completed earliest in the system accident removal process of the power system 10 (hereinafter referred to as "feature 6"). .. For example, the time for actually opening the protection relay or circuit breaker until the system accident is eliminated is usually earlier than the above-mentioned longest time, and Tth can be set as the shortest accident elimination time.

さらに、動作継続時間規定値Tthをより短くするために、例えば当該過電圧保護装置が過電圧保護処理にかける動作時間(当該過電圧保護装置が二次側回路の過電圧を検出してから短絡器6を短絡させるまでにかかるタイムラグ)をも考慮し、動作継続時間規定値Tthを、上記最短事故除去時間から当該過電圧保護装置が過電圧保護処理にかける動作時間を差し引いた時間以上にしてもよい(以下、「特徴7」と呼ぶ)。このようにすると、短絡器6の短絡動作後の短絡状態の強制解除動作を、系統事故除去後、より早く実施することができる。当該強制解除動作をより早く実施するのは、周波数変換器4を用いた安定運転をできる限り速く再開することが可変速揚水発電システムの安定運転には好ましいからである。 Further, in order to shorten the operation duration specified value Tth, for example, the operation time that the overvoltage protection device applies to the overvoltage protection process (the overvoltage protection device detects the overvoltage of the secondary circuit and then short-circuits the short circuit 6). In consideration of the time lag required for the overvoltage protection, the operation duration specified value Tth may be set to be equal to or longer than the time obtained by subtracting the operation time required for the overvoltage protection process by the overvoltage protection device from the above-mentioned short-circuit accident elimination time (hereinafter, "" It is called "feature 7"). In this way, the forced release operation of the short-circuit state after the short-circuit operation of the short-circuit device 6 can be performed earlier after the system accident is eliminated. The reason why the forced release operation is performed earlier is that it is preferable for the stable operation of the variable speed pumped storage power generation system to restart the stable operation using the frequency converter 4 as soon as possible.

電流規定値Ithを大きくし、動作継続時間規定値Tthを短くすると、一旦短絡器6の短絡状態を周波数変換器4により強制的に解除しても、再度二次回路や直流リンク電圧に過電圧が発生し、短絡器6が再動作する場合が考えられる。そこで、制御装置5は、周波数変換器4により短絡器6の短絡状態を強制的に解除した後、予め規定した過電圧保護装置再動作規定時間Tr以内に当該過電圧保護装置の過電圧保護機能が再動作した場合は、短絡器6の短絡再動作中の通電電流が電流規定値Ith以下であり、且つ、短絡器6の短絡再動作の経過時間が動作継続時間規定値Tthよりも短い時間にあらかじめ定めた再動作継続時間規定値Tth2以上であることを条件に、短絡器6の短絡状態を強制的に解除する制御を行う(以下、「特徴8」と呼ぶ)。このようにすることにより、事故除去前に過電圧保護装置の過電圧保護機能が再動作しても、周波数変換器4または短絡器6の通電耐量の範囲内で、短絡器6の短絡動作および短絡状態の強制解除動作を繰り返し実施することができる。 When the current specified value Ith is increased and the operation duration specified value Tth is shortened, even if the short-circuited state of the short-circuiter 6 is forcibly released by the frequency converter 4, the secondary circuit and the DC link voltage are overvoltageed again. It may occur and the short circuit 6 may restart. Therefore, in the control device 5, after the short-circuit state of the short-circuiter 6 is forcibly released by the frequency converter 4, the overvoltage protection function of the overvoltage protection device restarts within the predetermined overvoltage protection device restart specified time Tr. If this is the case, the energizing current during the short-circuit restart of the short-circuit device 6 is set to a time shorter than the specified current value Ith and the elapsed time of the short-circuit restart of the short-circuit device 6 is shorter than the specified operation duration Tth. Control is performed to forcibly release the short-circuited state of the short-circuiter 6 on the condition that the restart operation duration is Tth2 or more (hereinafter, referred to as "feature 8"). By doing so, even if the overvoltage protection function of the overvoltage protection device is restarted before the accident is eliminated, the short-circuit operation and short-circuit state of the short-circuit device 6 are within the range of the current-carrying capacity of the frequency converter 4 or the short-circuit device 6. The forced release operation of can be repeatedly performed.

また、制御装置5は、短絡器6の短絡動作および短絡状態の強制解除動作の繰り返しを行う場合、当該繰り返しの動作を、短絡器6または周波数変換器4の通電耐量を保証する回数、通電時間または素子温度以内で実施する(以下、「特徴9」と呼ぶ)。このようにすることにより、際限ない繰り返しによって装置故障が発生することを未然に防ぐことができる。 Further, when the control device 5 repeats the short-circuit operation of the short-circuiter 6 and the forced release operation of the short-circuited state, the number of times and the energization time for guaranteeing the energization withstand capacity of the short-circuiter 6 or the frequency converter 4 are performed. Alternatively, it is carried out within the element temperature (hereinafter referred to as "feature 9"). By doing so, it is possible to prevent a device failure from occurring due to endless repetition.

また、動作継続時間規定値Tthは、電力系統10の系統事故の中で最も早く除去が完了する事故の除去にかかる時間(最短事故除去時間)より短い時間としてもよい(以下、「特徴10」と呼ぶ)。このようにした場合、動作継続時間規定値Tthを、系統遮断器9が解列し事故除去する時間よりも早くすることができる。系統事故継続中のため過電圧保護装置の短絡動作を繰り返す可能性が高くなるが、周波数変換器4または短絡器6の通電耐量の範囲内での運用のため、機器の損傷することなく、能力限界での運転が可能となる。 Further, the operation duration specified value Tth may be shorter than the time required for removing the accident that is completed earliest among the system accidents of the power system 10 (shortest accident removal time) (hereinafter, "feature 10"). Called). In this case, the operation duration specified value Tth can be set to be earlier than the time when the system circuit breaker 9 is disconnected and the accident is eliminated. Since the system accident is ongoing, there is a high possibility that the short-circuit operation of the overvoltage protection device will be repeated. It is possible to drive in.

また、制御装置5は、当該過電圧保護装置の動作継続時間が予め規定した過電圧保護装置連続動作規定時間Tc以上であることを条件に、並列用遮断器9Aを開路し当該可変速揚水発電システムを電力系統10から切り離す制御を行う(以下、「特徴11」と呼ぶ)。このようにすることにより、当該可変速揚水発電システムにおける装置故障等の不具合の発生を未然に防ぐことができる。 Further, the control device 5 opens the parallel circuit breaker 9A and uses the variable speed pumped storage power generation system on the condition that the operation duration of the overvoltage protection device is equal to or longer than the predetermined continuous operation specified time Tc of the overvoltage protection device. Control is performed to disconnect from the power system 10 (hereinafter, referred to as "feature 11"). By doing so, it is possible to prevent the occurrence of problems such as device failure in the variable speed pumped storage power generation system.

この場合、過電圧保護装置連続動作規定時間Tcは、例えば短絡器6の通電耐量を保証する動作継続時間Taとするか、あるいはたとえば周波数や電圧の系統保護リレーが動作レベルに到達する時間のように当該可変速揚水発電システムが安定に運転できることを保証する動作継続時間Tbとするか、もしくは両者のうちいずれか短い方としてもよい(以下、「特徴12」と呼ぶ)。また、過電圧保護装置連続動作規定時間Tcは、一定値としても良いが、代わりに例えば当該可変速揚水発電システムの系統事故前のすべりまたはすべり周波数もしくは回転速度の関数としてあるいは有効電力の関数として規定してもよい(以下、「特徴13」と呼ぶ)。 In this case, the overvoltage protection device continuous operation specified time Tc is, for example, the operation duration Ta that guarantees the energization withstand capacity of the short circuit device 6, or, for example, the time for the frequency or voltage system protection relay to reach the operation level. The operation duration Tb that guarantees that the variable speed pumped storage power generation system can be operated stably may be set, or the shorter of both may be used (hereinafter, referred to as “feature 12”). Further, the overvoltage protection device continuous operation specified time Tc may be a constant value, but instead, for example, it is specified as a function of the slip or slide frequency or rotation speed of the variable speed pumped storage power generation system before a system accident, or as a function of active power. It may be (hereinafter, referred to as "feature 13").

ここで、過電圧保護装置連続動作規定時間(OVPリセット時間)Tcを当該可変速揚水発電システムの系統事故前のすべりの関数として表現した場合の例を図3のグラフに示す。図3のグラフは、揚水運転中の系統の至近端での系統事故時に二次回路に流れる電流をEMTP等の瞬時値解析で求め、前記Ith以下になったところで、周波数変換器4にて逆電圧をかけて短絡器6を強制的に開放する場合の最大時間をすべりの関数としてプロットして求めたものである。このような関数を使用することにより、短絡器6の強制的な開放による可変速揚水発電システムの運転継続の成否を即座に判断でき、運転継続できない場合には、当該可変速揚水発電システムを電力系統10から即座に切り離して系統への影響を軽減でき、系統の安定運用が可能になる。 Here, an example in which the overvoltage protection device continuous operation specified time (OVP reset time) Tc is expressed as a function of slip before a system accident of the variable speed pumped storage power generation system is shown in the graph of FIG. In the graph of FIG. 3, the current flowing in the secondary circuit at the time of a system accident at the nearest end of the system during pumping operation is obtained by instantaneous value analysis such as EMTP, and when it becomes Ith or less, the frequency converter 4 is used. The maximum time when the short circuit 6 is forcibly opened by applying a reverse voltage is plotted as a function of slip and obtained. By using such a function, it is possible to immediately determine the success or failure of the operation continuation of the variable speed pumped storage power generation system by forcibly opening the short circuit device 6, and if the operation cannot be continued, the variable speed pumped storage power generation system is powered. It can be immediately separated from the system 10 to reduce the influence on the system, and stable operation of the system becomes possible.

さらに、上記すべりまたはすべり周波数もしくは回転速度の関数として規定した過電圧保護装置連続動作規定時間Tcが、短絡器6の通電耐量を保証する動作継続時間Taもしくは当該可変速揚水発電システムが安定に運転できることを保証する動作継続時間Tbのうちいずれか短い方を超える場合は、そのときの過電圧保護装置連続動作規定時間Tcを、上記動作継続時間Ta,Tbの内、最も短い時間としてもよい(以下、「特徴14」と呼ぶ)。このようにすることにより、並列用遮断器9Aにより当該可変速揚水発電システムを電力系統10から切り離すべきか否かの判別を、より一層適正に行うことができる。また、このようにした場合、つまり、すべりまたはすべり周波数もしくは回転速度の関数としてあるいは有効電力の関数として規定した時間よりも過電圧保護装置連続動作規定時間Tcが短くなる範囲がある場合、当該すべりまたはすべり周波数もしくは回転速度あるいは有効電力の運転制限域をあらかじめ規定し、当該運転制限域での運転を除外する機能(以下、「特徴15」と呼ぶ)、あるいは、その運転制限域での運転中に系統事故が発生した場合、短絡器6の強制的な解除制御をすることなく、並列用遮断器9Aを開路し可変速揚水発電システムを電力系統10から即座に切り離す機能(以下、「特徴16」と呼ぶ)を備えることができる。 Further, the overvoltage protection device continuous operation specified time Tc specified as a function of the slip or the slide frequency or the rotation speed is the operation duration Ta that guarantees the energization withstand capacity of the short circuiter 6, or the variable speed pumping power generation system can be operated stably. If the operation duration Tb that guarantees the above is longer than whichever is shorter, the overvoltage protection device continuous operation specified time Tc at that time may be set to the shortest time among the above operation durations Ta and Tb (hereinafter, Called "feature 14"). By doing so, it is possible to more appropriately determine whether or not the variable speed pumped storage power generation system should be separated from the power system 10 by the parallel circuit breaker 9A. Further, in this case, that is, when there is a range in which the overvoltage protection device continuous operation specified time Tc is shorter than the time specified as a function of slip or slip frequency or rotation speed or as a function of active power, the slip or A function (hereinafter referred to as "feature 15") that prescribes the operation limit range of the sliding frequency, rotation speed, or active power and excludes operation in the operation limit range, or during operation in the operation limit range. In the event of a system accident, a function to open the parallel circuit breaker 9A and immediately disconnect the variable speed pumping power generation system from the power system 10 without forcibly releasing the short circuit breaker 6 (hereinafter, "feature 16"). ) Can be provided.

また、過電圧保護装置連続動作規定時間(OVPリセット時間)Tcを当該可変速揚水発電システムの系統事故前の運転出力(有効電力)の関数として表現した場合の例を図4のグラフに示す。図4のグラフは、発電運転中の系統の至近端での系統事故時に二次回路に流れる電流をEMTP等の瞬時値解析で求め、前記Ith以下になったところで、周波数変換器4にて逆電圧をかけて短絡器6を強制的に開放する場合の最大時間を運転出力(有効電力)の関数としてプロットして求めたものである。このような関数を使用することにより、上記運転制限域がある場合でも当該運転制限域での運転を回避しつつ、万一当該運転制限域を通過中に事故が発生した場合でも、短絡器6の開放を待つことなく瞬時に系統から可変速揚水発電システムを解列して系統への影響を軽減でき、系統の安定運用が可能になる。 Further, an example in which the overvoltage protection device continuous operation specified time (OVP reset time) Tc is expressed as a function of the operating output (active power) before the system accident of the variable speed pumped storage power generation system is shown in the graph of FIG. In the graph of FIG. 4, the current flowing in the secondary circuit at the time of a system accident at the nearest end of the system during power generation operation is obtained by instantaneous value analysis such as EMTP, and when it becomes Ith or less, the frequency converter 4 is used. The maximum time when the short circuit 6 is forcibly opened by applying a reverse voltage is plotted as a function of the operating output (active power) and obtained. By using such a function, even if there is the above-mentioned operation restriction area, while avoiding the operation in the operation restriction area, even if an accident occurs while passing through the operation restriction area, the short circuit device 6 The variable speed pumped storage power generation system can be instantly disconnected from the system without waiting for the opening of the system to reduce the impact on the system, and stable operation of the system becomes possible.

次に、このように構成された巻線形誘導機1の過電圧保護装置の動作を、図5を用いて説明する。図5(a)は制御装置5が生成する各種信号のタイムチャートを、図5(b)は周波数変換器4の直流リンク回路の電圧の波形を、図5(c)は短絡器6の通電電流(の大きさ)の波形をそれぞれ示す。 Next, the operation of the overvoltage protection device of the winding type induction machine 1 configured in this way will be described with reference to FIG. FIG. 5A is a time chart of various signals generated by the control device 5, FIG. 5B is a waveform of the voltage of the DC link circuit of the frequency converter 4, and FIG. 5C is energization of the short circuit device 6. The waveforms of the current (magnitude) are shown respectively.

図5(a)に示すように時刻T1で電力系統10に事故が発生し、巻線形誘導機1の一次側巻線に事故電流が流れると、巻線形誘導機1の二次巻線にも当該事故電流が誘起される。この事故電流はインバータ3を介して直流リンクコンデンサ12を充電し、軽微な系統事故では十分な電圧抑制能力を有するチョッパ15の能力を超えると、図5(b)に示すように周波数変換器4の直流電圧が大きく上昇する。 As shown in FIG. 5A, when an accident occurs in the power system 10 at time T1 and an accident current flows in the primary winding of the winding induction machine 1, the secondary winding of the winding induction machine 1 also flows. The accident current is induced. When this accident current charges the DC link capacitor 12 via the inverter 3 and exceeds the capacity of the chopper 15 having sufficient voltage suppression capability in a minor system accident, the frequency converter 4 is shown in FIG. 5 (b). DC voltage rises significantly.

制御装置5は、図5(a)に示すように周波数変換器4の直流電圧が規定値を超えたタイミング(時刻T2)で過電圧を検出し、OVPゲート信号により短絡器6を動作させ、それと同時にOVP動作継続要求信号を出力して動作継続時間規定値Tth(例えば60ms)のカウントを開始する。これにより、短絡器6には図5(c)に示すように通電電流が流れ、周波数変換器4の直流電圧は図5(b)に示すように下降する。 As shown in FIG. 5A, the control device 5 detects the overvoltage at the timing (time T2) when the DC voltage of the frequency converter 4 exceeds the specified value, operates the short circuit device 6 by the OVP gate signal, and operates the short circuit device 6. At the same time, an OVP operation continuation request signal is output to start counting the operation duration specified value Tth (for example, 60 ms). As a result, an energizing current flows through the short circuit 6 as shown in FIG. 5 (c), and the DC voltage of the frequency converter 4 drops as shown in FIG. 5 (b).

その後、系統保護リレーシステムが動作することで、電力系統10内の系統遮断器9が開路し、時刻T0で系統事故の除去が完了すると、系統電圧が定格電圧近くに復帰し、故障電流は一旦小さくなるが、短絡器6を短絡させたままではその後急速に増加していく。 After that, when the system protection relay system operates, the system circuit breaker 9 in the power system 10 opens, and when the elimination of the system accident is completed at time T0, the system voltage returns to near the rated voltage and the fault current once. Although it becomes smaller, it increases rapidly thereafter if the short circuit breaker 6 is kept short-circuited.

次に、制御装置5は、図5(a)に示す動作継続時間規定値Tthが経過し、且つ、図5(c)に示す短絡器6の短絡動作中の通電電流が予め規定した電流規定値Ith以下となるタイミング(時刻T3)で、OVPリセット制御信号により周波数変換器4を再起動する指令を出し、さらに短絡器6の各相に流れる電流を電流検知器11により観測することにより電流の極性の情報を取得し、周波数変換器4の点弧するアームを適切に決定することにより電流を打ち消す方向に直流電圧を印加し、瞬時に短絡器6に通電している電流を零にすることにより短絡器6の短絡状態の解除を実施し、時刻T4で短絡器6の短絡状態の解除を完了させる。これにより、図5(c)に示すように短絡器6には通電電流が流れなくなり、図5(b)に示すように周波数変換器4の直流電圧は一瞬下がった後に定常の値に戻る。 Next, in the control device 5, the operation duration specified value Tth shown in FIG. 5 (a) has elapsed, and the energization current during the short-circuit operation of the short-circuit device 6 shown in FIG. 5 (c) is specified in advance. At the timing (time T3) when the value becomes Ith or less, a command to restart the frequency converter 4 is issued by the OVP reset control signal, and the current flowing in each phase of the short circuit 6 is observed by the current detector 11 to generate a current. By acquiring information on the polarity of the frequency converter 4 and appropriately determining the arm to ignite the frequency converter 4, a DC voltage is applied in the direction of canceling the current, and the current energized in the short circuit 6 is instantly reduced to zero. As a result, the short-circuit state of the short-circuit device 6 is released, and the release of the short-circuit state of the short-circuit device 6 is completed at time T4. As a result, as shown in FIG. 5C, the energizing current does not flow through the short circuiter 6, and as shown in FIG. 5B, the DC voltage of the frequency converter 4 drops for a moment and then returns to a steady value.

正常に短絡状態が解除された時点で周波数変換器4を通常運転とすることで、事故前と同様にすべり周波数と同等の周波数の交流電圧を周波数変換器4から出力させ、事故点が除去された時点で当該可変速揚水発電システムを通常の運転状態に復帰させる。 By setting the frequency converter 4 to normal operation when the short-circuit state is normally released, an AC voltage having a frequency equivalent to the slip frequency is output from the frequency converter 4 as before the accident, and the accident point is eliminated. At that point, the variable speed pumping power generation system is returned to the normal operating state.

前述した特徴1乃至4は、このように動作する過電圧保護装置のIthの設定に関する特徴を示したものであり、従来技術では通常運転時の最大電流としていた設定値をより大きくすることにより、短絡器6を短絡状態から解除する能力を向上させることができるという効果がある。さらに、前述した特徴5乃至7は、Tthの設定に関する特徴を示したものであり、短絡器6の短絡状態からの解除をより早くすることにより、短絡器を短絡状態から解除する能力を向上させることができるという効果がある。 The above-mentioned features 1 to 4 show the features related to the setting of Ith of the overvoltage protection device operating in this way, and short-circuit by increasing the set value which is the maximum current during normal operation in the prior art. There is an effect that the ability to release the vessel 6 from the short-circuited state can be improved. Further, the above-mentioned features 5 to 7 show the features related to the setting of Tth, and improve the ability to release the short-circuit device from the short-circuit state by accelerating the release of the short-circuit device 6 from the short-circuit state. It has the effect of being able to.

次に、短絡器6の短絡動作および短絡状態の強制解除動作を繰り返し実施する場合の動作を、図6を用いて説明する。図6(a)は制御装置5が生成する各種信号のタイムチャートを、図6(b)は周波数変換器4の直流リンク回路の電圧の波形を、図6(c)は短絡器6の通電電流(の大きさ)の波形をそれぞれ示す。 Next, the operation when the short-circuit operation of the short-circuit device 6 and the forced release operation of the short-circuit state are repeatedly performed will be described with reference to FIG. FIG. 6A is a time chart of various signals generated by the control device 5, FIG. 6B is a waveform of the voltage of the DC link circuit of the frequency converter 4, and FIG. 6C is energization of the short circuit device 6. The waveforms of the current (magnitude) are shown respectively.

図6(a)に示す時刻T1からT4までの動作は図5(a)と同様となる。ただし、Ithをより大きく、Tthをより短くしたこととも相まって、短絡状態を解除した後の過渡直流分の影響が大きく、タイミングT4の後の処理において、周波数変換器4が通常の運転を再開した後に直流電圧の上昇を抑制しきれずに、図6(b)に示すように時刻T5で過電圧となり、図6(c)に示すように短絡器6が再動作し通電電流が再度流れる場合がある。この場合も、二次電流には概系統周波数の交流成分が存在するため、次の周期で再度Ith以下になることがあり、そのタイミング(時刻T6)を捉えることができれば、再度変換器4により短絡器6に逆電圧をかけて強制的に通電電流をゼロにすることにより、時刻T7で短絡状態を解除し、その後変換器4にて通常運転を再開することができる。 The operation from time T1 to T4 shown in FIG. 6A is the same as that in FIG. 5A. However, coupled with the fact that Ith was made larger and Tth was made shorter, the effect of the transient direct current after the short-circuit state was released was large, and the frequency converter 4 resumed normal operation in the processing after the timing T4. Later, the rise of the DC voltage cannot be completely suppressed, and as shown in FIG. 6 (b), an overvoltage may occur at time T5, and as shown in FIG. 6 (c), the short circuit 6 may restart and the energizing current may flow again. .. In this case as well, since the AC component of the approximate system frequency exists in the secondary current, it may become Ith or less again in the next cycle, and if the timing (time T6) can be captured, the converter 4 will be used again. By applying a reverse voltage to the short circuit 6 to forcibly reduce the energizing current to zero, the short circuit state can be released at time T7, and then the normal operation can be restarted by the converter 4.

この短絡器6の再動作は系統事故による大きな故障電流によるものではないため、再度の運転再開のために最初の動作と同様の時間をTthとして待つ必要は無いが、短絡器6の再動作のときに過電圧または過電流発生で一旦停止した周波数変換器4の素子が安全に運転再開できる時間以上経過した後にするべきである。 Since the restart of the short circuit device 6 is not due to a large fault current due to a system accident, it is not necessary to wait for the same time as the first operation as Tth for restarting the operation, but the restart of the short circuit device 6 is performed. Occasionally, it should be done after the time or more that the element of the frequency converter 4 that has been temporarily stopped due to the occurrence of overvoltage or overcurrent can be safely restarted.

一例として、T2からT3までの最初のTthを系統遮断器9の動作保証時間を考慮して50msとし、二回目のT5からT6までの再動作時継続時間規定値Tth2を5msとしている。 As an example, the first Tth from T2 to T3 is set to 50 ms in consideration of the operation guarantee time of the system circuit breaker 9, and the specified value Tth2 at the time of the second restart from T5 to T6 is set to 5 ms.

この再動作時継続時間規定値Tth2は、系統事故の場合に誘起しされる大きな故障電流が事故除去や過渡直流分の減衰により十分小さくなる時間ではないため、系統事故時にこの時間で短絡器を強制的に短絡解除すると、再度過電圧が発生することが十分考えられる。したがって、この時間を採用する期間は必要十分な期間に制限を加えるべきである。上記一例では、この期間である過電圧保護装置再動作規定時間Trを二次電流に含まれる概系統周波数成分の1周期に必要に応じて余裕を加えた期間以下として30msとしたものである。この場合、制御装置5は、短絡器6の再度の動作後、前述した動作継続時間規定値Tthよりも短い時間である再動作継続時間規定値Tth2が経過し、且つ、短絡器6の短絡動作中の通電電流が予め規定した電流規定値以下となるタイミングT6で、周波数変換器4を再起動する指令を出し、さらに短絡器6の各相に流れる電流を電流検知器11により観測することにより電流の極性の情報を取得し、周波数変換器4の点弧するアームを適切に決定することにより電流を打ち消す方向に直流電圧を印加し、瞬時に短絡器6に通電している電流を零にすることにより短絡状態を解除させる。 The specified value Tth2 for the duration during restart is not the time when the large fault current induced in the case of a system accident becomes sufficiently small due to the elimination of the accident or the attenuation of the transient DC component. If the short circuit is forcibly released, it is quite possible that an overvoltage will occur again. Therefore, the period for adopting this time should be limited to the necessary and sufficient period. In the above example, the overvoltage protection device restart specified time Tr, which is this period, is set to 30 ms or less as a period equal to or less than a period in which a margin is added as necessary to one cycle of the general system frequency component included in the secondary current. In this case, after the short-circuiting device 6 is operated again, the control device 5 has elapsed the re-operation duration specified value Tth2, which is shorter than the above-mentioned operation duration specified value Tth, and the short-circuiting operation of the short-circuiting device 6 has elapsed. By issuing a command to restart the frequency converter 4 at the timing T6 when the energizing current inside becomes equal to or less than the predetermined current specified value, and further observing the current flowing in each phase of the short circuit 6 with the current detector 11. By acquiring information on the polarity of the current and appropriately determining the arm to ignite the frequency converter 4, a DC voltage is applied in the direction of canceling the current, and the current energized in the short circuit 6 is instantly reduced to zero. By doing so, the short-circuit state is released.

正常に短絡状態が解除されたタイミング(時刻T7)で周波数変換器4を通常運転とすることで、事故前と同様にすべり周波数と同等の周波数の交流電圧を周波数変換器4から出力させ、事故点が除去された時点で当該可変速揚水発電システムを通常の運転状態に復帰させる。 By setting the frequency converter 4 to normal operation at the timing (time T7) when the short-circuit state is normally released, an AC voltage having a frequency equivalent to the slip frequency is output from the frequency converter 4 as before the accident, resulting in an accident. When the points are removed, the variable speed pumping power generation system is returned to the normal operating state.

前述した特徴8,特徴9は、このように短絡器6が再動作する場合の制御の特徴を示したものであり、前述した特徴1乃至7のように短絡器6の短絡を早期化したことにより短絡器6の再動作が発生しても、再度その後系統周波数の1周期程度の間に再度短絡を解除して運転の継続を可能とするため、当該特徴1乃至7を含む制御において用いるIthをより大きく、Tthをより短く選定することが可能になる。 The above-mentioned features 8 and 9 show the characteristics of control when the short-circuiter 6 restarts in this way, and the short-circuiting of the short-circuiter 6 is accelerated as in the above-mentioned features 1 to 7. Even if the short circuit 6 is restarted due to this, the short circuit is released again within about one cycle of the system frequency after that, and the operation can be continued. Therefore, Ith used in the control including the features 1 to 7. Can be selected to be larger and Tth to be shorter.

また、上記再動作が複数回連続的に発生すると、半導体素子で構成する短絡器6、変換器4の温度が上昇し誤動作や損傷をする可能性があるため、前述した特徴9のようにこれらの通電耐量を保証することができるあらかじめ決めた時間内での繰り返し回数、通電時間、または素子温度以内に制限することもできる。 Further, if the above-mentioned re-operation occurs continuously a plurality of times, the temperature of the short-circuiter 6 and the converter 4 composed of semiconductor elements may rise, resulting in malfunction or damage. It is also possible to limit the number of repetitions within a predetermined time, the energization time, or the element temperature within a predetermined time that can guarantee the energization withstand capacity.

前述した特徴8,特徴9によれば、過電圧保護装置の耐量以内での短絡器6の動作と解除の高速な繰返しを安全に実施することができることから、短絡器6の再動作になる可能性が高い系統故障中であっても、二次回路電流が一旦Ithを下回れば短絡器6の強制解除を行ない、より早期に通常の運転を再開できる可能性を高めることができる。例えば、前述した特徴10のようにすれば、系統故障発生時の動作継続時間規定値Tthを系統事故除去後に限定することなくより短くして系統事故継続中の強制解除動作を行える。 According to the above-mentioned features 8 and 9, since the short-circuiting device 6 can be safely operated and released at high speed within the withstand capacity of the overvoltage protection device, the short-circuiting device 6 may be restarted. Even during a system failure with a high frequency, once the secondary circuit current falls below Ith, the short circuit device 6 is forcibly released, and the possibility that normal operation can be resumed earlier can be increased. For example, according to the above-mentioned feature 10, the operation duration specified value Tth at the time of the occurrence of a system failure can be shortened without limiting after the system accident is removed, and the forced release operation during the continuation of the system accident can be performed.

なお、上述した動作において、制御装置5は、短絡器6の短絡状態から、電源電圧に対するすべりに応じて予め規定した時間以内に短絡解除が出来ない場合はそれを検出し、電力系統10に及ぼす悪影響を回避するために並列用遮断器9Aを開路し電力系統10から当該可変速揚水発電システムを切り離すことができる。また、制御装置5は、過電圧保護装置連続動作規定時間Tcを経過しても復帰が出来ない可能性があるものとして予め定めたすべりの範囲(運転範囲)を運転禁止帯として運転を回避するかあるいは所定時間内に高速に通過させるように制御することもできる。過電圧保護装置連続動作規定時間Tcは、図5、図6に記載していないが、当該図のリセット完了のタイミングより前記Tcが早い場合が上記の状態であり、図3にはその運転状態になることを回避するかあるいは所定時間内に高速に通過させる制御を行う運転範囲の一例が示されている。 In the above-described operation, the control device 5 detects if the short circuit cannot be released within a predetermined time according to the slip with respect to the power supply voltage from the short-circuited state of the circuit breaker 6, and affects the power system 10. In order to avoid adverse effects, the parallel circuit breaker 9A can be opened to disconnect the variable speed pumping power generation system from the power system 10. Further, whether the control device 5 avoids operation by setting a predetermined slip range (operating range) as an operation prohibition zone, which may not be able to recover even after the overvoltage protection device continuous operation specified time Tc has elapsed. Alternatively, it can be controlled to pass at high speed within a predetermined time. Although the overvoltage protection device continuous operation specified time Tc is not shown in FIGS. 5 and 6, the above state is when the Tc is earlier than the reset completion timing in the figure, and the operating state is shown in FIG. An example of an operating range is shown in which control is performed to avoid the situation or to pass the vehicle at a high speed within a predetermined time.

このように、種々な運転条件に応じて運転方法を適切に決定することにより、巻線形誘導機1の二次巻線や周波数変換器4の保護の観点からも電力系統10への悪影響という観点からも安全に運転でき、さらに短絡状態の長期化にはつながらず、短時間での復帰を実現することができる。このような効果は、例えば前述した特徴11乃至16からも得ることができる。 In this way, by appropriately determining the operation method according to various operating conditions, the power system 10 may be adversely affected from the viewpoint of protecting the secondary winding of the winding type inducer 1 and the frequency converter 4. It is possible to operate safely from the ground, and it is possible to recover in a short time without leading to a prolonged short-circuit state. Such an effect can also be obtained from, for example, the above-mentioned features 11 to 16.

以上詳述したように、上述した実施形態によれば、故障電流の影響が大きい発電所連系点付近での三相短絡故障時においても、二次回路の短絡器の短絡状態を高速で解除し交流励磁装置による安定な運転を再開させることで、系統遮断器による事故除去が成功した後には並列用遮断器による系統からの解列や主機の停止を必要としない可変速揚水発電システムの過電圧保護装置を提供することができる。 As described in detail above, according to the above-described embodiment, the short-circuit state of the circuit breaker of the secondary circuit is released at high speed even at the time of a three-phase short-circuit failure near the power plant interconnection point where the influence of the failure current is large. By resuming stable operation with the AC exciter, the overvoltage of the variable speed pumping power generation system that does not require disconnection from the system or stop of the main engine by the parallel circuit breaker after the accident elimination by the system circuit breaker is successful. A protective device can be provided.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…巻線形誘導機、2…自励式コンバータ、3…自励式インバータ、4…周波数変換器、5…制御装置、6…短絡器、8…主変圧器、9…系統遮断器、9A…並列用遮断器、10…電力系統、11…電流検知器、12…直流リンクコンデンサ、13…抵抗器、14…パワー半導体素子、15…チョッパ、16…励磁用変圧器。 1 ... Winding induction machine, 2 ... Self-excited converter, 3 ... Self-excited inverter, 4 ... Frequency converter, 5 ... Control device, 6 ... Short circuit breaker, 8 ... Main transformer, 9 ... System circuit breaker, 9A ... Parallel Circuit breaker, 10 ... Power system, 11 ... Current detector, 12 ... DC link capacitor, 13 ... Resistor, 14 ... Power semiconductor element, 15 ... Chopper, 16 ... Excitation transformer.

Claims (4)

高圧側が電力系統に接続される変圧器の低圧側の電源に固定子巻線を接続した巻線形誘導機の回転子巻線と交流励磁装置との間の回路に接続され、当該回路に過電圧が発生したときに当該回路を短絡させる短絡器を備え、前記短絡器の短絡動作中の通電電流が予め規定した電流規定値以下であり、且つ、前記短絡器の短絡動作の経過時間が予め規定した動作継続時間規定値以上であることを条件に、前記短絡器の短絡状態を強制的に解除する制御を行う制御装置を備えた可変速揚水発電システムの過電圧保護装置において、
前記制御装置は、当該過電圧保護装置の動作継続時間が予め規定した過電圧保護装置連続動作規定時間以上であることを条件に、当該可変速揚水発電システムを前記電力系統から切り離す制御を行い、
前記過電圧保護装置連続動作規定時間を、当該可変速揚水発電システムの系統事故前のすべりまたはすべり周波数もしくは回転速度の関数としてあるいは有効電力の関数として規定した、可変速揚水発電システムの過電圧保護装置。
The high-voltage side is connected to the power system. The low-voltage side of the transformer is connected to the power supply on the low-voltage side, and the stator winding is connected to the power supply. A short-circuiting device that short-circuits the circuit when it occurs is provided, the energizing current during the short-circuiting operation of the short-circuiting device is equal to or less than a predetermined current specified value, and the elapsed time of the short-circuiting operation of the short-circuiting device is specified in advance. In the overvoltage protection device of the variable speed pumping power generation system provided with a control device that forcibly releases the short-circuited state of the short-circuited device on condition that the operation duration is equal to or more than the specified value.
Wherein the control device, on condition that the operation duration of the overvoltage protection device is an overvoltage protector continuous operation specified time or more previously defined, have row control for disconnecting the variable-speed pumped-storage power generating system from the power system,
An overvoltage protection device for a variable speed pumped storage power generation system in which the specified continuous operation time of the overvoltage protection device is defined as a function of slip or slide frequency or rotation speed before a system accident of the variable speed pumped storage power generation system or as a function of active power .
請求項に記載の可変速揚水発電システムの過電圧保護装置において、
前記すべりまたはすべり周波数もしくは回転速度の関数としてあるいは有効電力の関数として規定した前記過電圧保護装置連続動作規定時間が、前記短絡器の通電耐量を保証する動作継続時間もしくは当該可変速揚水発電システムが安定に運転できることを保証する動作継続時間のうちいずれか短い方を超える場合は、そのときの前記過電圧保護装置連続動作規定時間を、これらの内、最も短い時間とする、可変速揚水発電システムの過電圧保護装置。
In the overvoltage protection device of the variable speed pumped storage power generation system according to claim 1.
The overvoltage protection device continuous operation specified time specified as a function of the slip or slide frequency or rotation speed or as a function of the active power is the operation duration that guarantees the energization withstand capacity of the short circuit or the variable speed pumped storage power generation system is stable. If the operation duration that guarantees that the system can be operated exceeds the shorter of them, the overvoltage of the variable speed pumped storage power generation system is set to the shortest of these, the specified continuous operation time of the overvoltage protection device at that time. Protective device.
請求項に記載の可変速揚水発電システムの過電圧保護装置において、
前記すべりまたはすべり周波数もしくは回転速度の関数としてあるいは有効電力の関数として規定した時間よりも前記過電圧保護装置連続動作規定時間が短くなる範囲がある場合、当該すべりまたはすべり周波数もしくは回転速度あるいは有効電力の運転制限域をあらかじめ規定し、当該運転制限域での運転を除外するまたは当該運転制限域を所定時間内に通過させる制御を行う、可変速揚水発電システムの過電圧保護装置。
In the overvoltage protection device of the variable speed pumped storage power generation system according to claim 2.
If there is a range in which the specified time for continuous operation of the overvoltage protection device is shorter than the time specified as a function of the slip or slide frequency or rotation speed or as a function of active power, the slip or slide frequency or rotation speed or active power defines the operation limit zone in advance, performs control to pass to exclude or the operation restricted zone operation at the operation limit zone within a predetermined time, the overvoltage protection device of the variable speed pumped-storage power generation system.
請求項又はに記載の可変速揚水発電システムの過電圧保護装置において、
前記すべりまたはすべり周波数もしくは回転速度の関数としてあるいは有効電力の関数として規定した時間よりも前記過電圧保護装置連続動作規定時間が短くなる範囲において運転中に系統事故が発生した場合、前記短絡器の強制的な解除制御をすることなく、当該可変速揚水発電システムを前記電力系統から即座に切り離す制御を行う、可変速揚水発電システムの過電圧保護装置。
In the overvoltage protection device of the variable speed pumped storage power generation system according to claim 2 or 3.
If a system accident occurs during operation within the range where the specified time for continuous operation of the overvoltage protection device is shorter than the time specified as a function of the slip or slide frequency or rotation speed or as a function of active power, the short circuit is forced. An overvoltage protection device for a variable-speed pumped-storage power generation system that controls the variable-speed pumped-storage power generation system to be immediately disconnected from the power system without performing specific release control.
JP2019232500A 2019-12-24 2019-12-24 Overvoltage protection device for variable speed pumped storage power generation system Active JP6848041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019232500A JP6848041B2 (en) 2019-12-24 2019-12-24 Overvoltage protection device for variable speed pumped storage power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019232500A JP6848041B2 (en) 2019-12-24 2019-12-24 Overvoltage protection device for variable speed pumped storage power generation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016064441A Division JP6640635B2 (en) 2016-03-28 2016-03-28 Overvoltage protection device for variable speed pumped storage power generation system

Publications (2)

Publication Number Publication Date
JP2020065437A JP2020065437A (en) 2020-04-23
JP6848041B2 true JP6848041B2 (en) 2021-03-24

Family

ID=70387692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019232500A Active JP6848041B2 (en) 2019-12-24 2019-12-24 Overvoltage protection device for variable speed pumped storage power generation system

Country Status (1)

Country Link
JP (1) JP6848041B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447883B (en) * 2021-12-23 2024-01-09 北京四方继保工程技术有限公司 Differential protection method for transformer of pumped storage unit
CN116054279B (en) * 2023-02-16 2023-07-11 华北电力大学 Multi-node power network transient stability method and system containing variable speed pumping and storage machine unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641358B2 (en) * 1991-11-27 1997-08-13 三菱電機株式会社 Variable speed pumped storage power generation system
JP3286049B2 (en) * 1993-12-27 2002-05-27 西芝電機株式会社 Variable speed power generation system
JP6071912B2 (en) * 2014-01-27 2017-02-01 株式会社東芝 Overvoltage protection device and current adjustment circuit

Also Published As

Publication number Publication date
JP2020065437A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US7479756B2 (en) System and method for protecting a motor drive unit from motor back EMF under fault conditions
US8232778B1 (en) Independent, redundant overvoltage protection for a generator
JPWO2008047439A1 (en) Power converter
JP6640635B2 (en) Overvoltage protection device for variable speed pumped storage power generation system
JP6848041B2 (en) Overvoltage protection device for variable speed pumped storage power generation system
CA2940499C (en) System and method for starting a variable frequency drive with reduced arc flash risk
JP2013027304A (en) Drive system and operational method thereof
US7804270B2 (en) Motor start circuit with capacitive discharge protection
US4118749A (en) Field overvoltage protecting apparatus for synchronous machine
US8803468B2 (en) System and method for fast discharge of a ring motor field
JP6371021B1 (en) Variable speed pumped storage power generation system and variable speed pumped storage power generation method
US10291159B2 (en) Control system, controller, and control method for wound induction machine
US3449652A (en) Starting circuit for a synchronous motor
JP2011211783A (en) Overvoltage protector
JP6080364B2 (en) Voltage clamping method of active rectifier circuit for power loss reduction
JP2695958B2 (en) Secondary overvoltage protection device for wound induction machines
JPH0662600A (en) Secondary exciting apparatus
JP2752218B2 (en) Protection device for secondary excitation device
JP6585344B2 (en) Exciter for synchronous machine and excitation stop method
JPH0564423A (en) Chopper unit
JPH07245872A (en) Variable speed generator motor
JP2634692B2 (en) Secondary overvoltage protection device for AC-excited synchronous machine
KR100981045B1 (en) Method of Preventing Over-excitation in the Excitation Control System of the Power Generator
JPH05122993A (en) Secondary power controller
JPH03277121A (en) Control and protection system for self-excitation type converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6848041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150