JP6845499B2 - Nanonitrocellulose and its manufacturing method - Google Patents

Nanonitrocellulose and its manufacturing method Download PDF

Info

Publication number
JP6845499B2
JP6845499B2 JP2016234914A JP2016234914A JP6845499B2 JP 6845499 B2 JP6845499 B2 JP 6845499B2 JP 2016234914 A JP2016234914 A JP 2016234914A JP 2016234914 A JP2016234914 A JP 2016234914A JP 6845499 B2 JP6845499 B2 JP 6845499B2
Authority
JP
Japan
Prior art keywords
gel
sulfuric acid
surface area
specific surface
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016234914A
Other languages
Japanese (ja)
Other versions
JP2018090694A (en
Inventor
賢 岡田
賢 岡田
美也子 秋吉
美也子 秋吉
猛裕 松永
猛裕 松永
齋藤 靖子
靖子 齋藤
遠藤 貴士
貴士 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016234914A priority Critical patent/JP6845499B2/en
Publication of JP2018090694A publication Critical patent/JP2018090694A/en
Application granted granted Critical
Publication of JP6845499B2 publication Critical patent/JP6845499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、ナノニトロセルロース(以下「n-NC」ということがある)及びその製造方法に関するものである。 The present invention relates to nanonitrocellulose (hereinafter sometimes referred to as "n-NC") and a method for producing the same.

ニトロセルロース(以下「NC」ということがある)は、危険物第5類に指定され、無煙火薬(砲弾や銃器の発射薬)として使用されるほか、塗料、医薬、接着剤、セルロイド等の用途分野においても使用されている。 Nitrocellulose (hereinafter sometimes referred to as "NC") is designated as a Class 5 Dangerous Goods and is used as a smokeless powder (a propellant for shells and firearms), as well as for paints, medicines, adhesives, celluloids, etc. It is also used in the field.

従来のNCは、セルロースとしての綿に硝酸と硫酸からなる混酸を反応させて製造するのが通常である。その際、セルロースを構成するグルコースは1単位分子当たり最大3カ所で硝酸エステル化(ニトロ化=硝化)される。硝化反応は極めて速く、生成したNCは、洗浄して酸を除去した後、真空乾燥や空気乾燥により乾燥させる。硝化により製造されたNCは、窒素の含有量により、13%以上のものを強綿薬、10%未満のものを脆綿薬、それらの間のものを弱綿薬と称せられる。 Conventional NC is usually produced by reacting cotton as cellulose with a mixed acid composed of nitric acid and sulfuric acid. At that time, glucose constituting cellulose is nitrate esterified (nitrification = nitrification) at a maximum of 3 places per unit molecule. The nitrification reaction is extremely fast, and the produced NC is washed to remove the acid, and then dried by vacuum drying or air drying. Depending on the nitrogen content, NC produced by nitrification is called a strong cotton drug if it is 13% or more, a brittle cotton drug if it is less than 10%, and a weak cotton drug if it is between them.

微細なNCを得るための従来の研究としては、既存のNCを溶媒に溶かして、エレクトロスピニング法(電界紡糸法)により、径が90〜150, 400〜500nmなどのナノファイバー状のNCを製造したもの(非特許文献1参照)、有機溶媒に溶かしたNCをガラス基板上に滴下、乾燥してサブミクロンサイズ(直径200〜900nm)の粒子状NCを製造したもの(非特許文献2参照)等が知られている。 As a conventional study for obtaining fine NC, the existing NC is dissolved in a solvent and an electrospinning method (electrospinning method) is used to produce nanofiber-like NC having a diameter of 90 to 150, 400 to 500 nm. (See Non-Patent Document 1), NC dissolved in an organic solvent was dropped onto a glass substrate, and dried to produce a submicron-sized (diameter 200 to 900 nm) particulate NC (see Non-Patent Document 2). Etc. are known.

M.R. Sovizi, S.S. Hajimirsadeghi, B. Naderizadeh, Effect of particle size on thermal decomposition of nitrocellulose, J. Hazard. Mater. 168 (2009) 1134-1139. doi:10.1016/j.jhazmat.2009.02.146M.R. Sovizi, S.S. Hajimirsadeghi, B. Naderizadeh, Effect of particle size on thermal decomposition of nitrocellulose, J. Hazard. Mater. 168 (2009) 1134-1139. doi: 10.1016 / j.jhazmat.2009.02.146 X. Zhang, B.L. Weeks, Preparation of sub-micron nitrocellulose particles for improved combustion behavior, J. Hazard. Mater. 268 (2014) 224-228. doi:10.1016/j.jhazmat.2014.01.019.X. Zhang, B.L. Weeks, Preparation of sub-micron nitrocellulose particles for improved combustion behavior, J. Hazard. Mater. 268 (2014) 224-228. doi: 10.1016 / j.jhazmat.2014.01.019.

本発明者らは、従来のNCは、比表面積が大きくないため燃焼性能が十分でなく、煙火等に使用される割薬、打揚薬への応用展開が困難であること等の問題点が存在することを認識した。そして、従来のものよりも径が細く比表面積の高いn-NCが得られれば、上記のような問題点を解決できる可能性があることを着想した。 The present inventors have a problem that the conventional NC does not have a large specific surface area, so that the combustion performance is not sufficient, and it is difficult to apply it to a splitting agent or a launching agent used for fireworks or the like. Recognized that it exists. Then, it was conceived that if n-NC having a smaller diameter and a higher specific surface area than the conventional one can be obtained, the above-mentioned problems may be solved.

本発明は、上述のような従来技術の問題点についての認識やそれらの問題点を解決しようとする着想を背景としてなされたものであり、従来のものよりもBET比表面積の高いn-NCの製造方法を提供することを課題とする。
また、本発明は、従来のものよりもBET比表面積の高いn-NCを提供することを課題とする。
The present invention has been made in the background of recognizing the problems of the prior art as described above and the idea of solving those problems, and is an n-NC having a higher BET specific surface area than the conventional one. An object is to provide a manufacturing method.
Another object of the present invention is to provide n-NC having a higher BET specific surface area than the conventional one.

本発明者は、上述のような課題のもとでの研究過程で、エレクトロスピニング法や滴下法について検討したが、次のような問題点を認識した。
(ア)エレクトロスピニング法で製造されるNCは、径が90〜500nm程度、比表面積は4.8〜26.9m2/g程度であり、径が50nm以下や比表面積が80m2/g以上のものは製造できない。
(イ)エレクトロスピニング法では、高電圧を印加するので、火薬を製造する際には、発火爆発に対する安全対策が不可欠である。
(ウ)エレクトロスピニング法では、紡糸前に一旦溶媒に溶解する必要があるが、特殊な溶媒が必要であるし、さらに、ニトロ化が低いものは溶解が困難であるので、用途に合わせた様々なニトロ化の(窒素量の)NCを製造することは困難である。
(エ)滴下法では、製造されるNCの比表面積は4〜18.2m2/g程度に過ぎず、また、大量生産に向かない手法である。
The present inventor examined the electrospinning method and the dropping method in the research process under the above-mentioned problems, but recognized the following problems.
(A) NC produced by electrospinning has a diameter of about 90~500Nm, the specific surface area is about 4.8~26.9m 2 / g, the diameter of 50nm or less and a specific surface area of 80 m 2 / g or more of Cannot be manufactured.
(B) Since a high voltage is applied in the electrospinning method, safety measures against ignition and explosion are indispensable when manufacturing explosives.
(C) In the electrospinning method, it is necessary to dissolve in a solvent once before spinning, but a special solvent is required, and those with low nitration are difficult to dissolve. It is difficult to produce a highly nitrated NC (of nitrogen content).
(D) In the dropping method, the specific surface area of the NC produced is only about 4 to 18.2 m 2 / g, and it is not suitable for mass production.

本発明者は、さらに検討を進め、NCの原料のセルロースとして従来全く使用されなかったナノセルロースゲル(以下「n-Cゲル」ということがある)を用いること、n-Cゲルをニトロ化する前に、硫酸で前処理を行うことで、n-Cゲルの膨潤を促進させニトロ化の進行に効果があること、ニトロ化の際にもセルロースがナノ構造を有するためニトロ化率が高まる可能性があること、製造されるn-NCは比表面積が大きいため、燃焼性能の向上が期待できることなどの着想を得た。そして、本発明者は、n-Cゲルを原料としてBET比表面積の高いn-NCを製造できることを知見した。 The present inventor further studies and uses nanocellulose gel (hereinafter sometimes referred to as "n-C gel") which has not been used at all as the raw material cellulose for NC, and nitrates the n-C gel. Prior treatment with sulfuric acid promotes the swelling of the n-C gel and is effective in the progress of nitration, and the nitration rate can be increased because the cellulose has nanostructures even during nitration. It was inspired by the fact that it has properties and that the produced n-NC has a large specific surface area, so that improvement in combustion performance can be expected. Then, the present inventor has found that n-NC having a high BET specific surface area can be produced using n-C gel as a raw material.

本発明は、上記のような認識や着想、知見などに基づくものであり、この出願によれば、以下の発明が提供される。
<1>窒素量6.76〜14.14%の、直径が14〜30nmの繊維状であるナノニトロセルロースから構成される、BET比表面積が50〜900m/gである繊維状ナノニトロセルロース。
<2>繊維状ナノセルロースゲルに濃度20〜80%の硫酸を加え、混合・撹拌した後、遠心脱水して得られた、硫酸前処理ナノセルロースゲルを、硫酸と硝酸との混酸でニトロ化し、その後、洗浄し、凍結乾燥することを特徴とする、繊維状ナノニトロセルロースの製造方法。
The present invention is based on the above recognition, ideas, findings, etc., and the present invention provides the following inventions.
<1> amount from 6.76 to 14.14% of nitrogen, diameter comprised nano nitrocellulose is a fibrous 14~30Nm, fibrous nano nitrocellulose BET specific surface area of 50~900m 2 / g ..
<2> Sulfuric acid pretreated nanocellulose gel obtained by adding sulfuric acid having a concentration of 20 to 80% to the fibrous nanocellulose gel, mixing and stirring, and then centrifugally dehydrating is nitrated with a mixed acid of sulfuric acid and nitric acid. A method for producing fibrous nanonitrocellulose, which comprises washing and then lyophilizing.

本発明は、次のような態様を含むことができる。
<3>前記ニトロ化を自転・公転ミキサー内で行う、<2>に記載の繊維状ナノニトロセルロースの製造方法
<4><1>に記載の繊維状ナノニトロセルロースを有効成分とする、無煙火薬
The present invention can include the following aspects.
<3> The method for producing fibrous nanonitrocellulose according to <2>, wherein the nitration is carried out in a rotation / revolution mixer .
<4> A smokeless powder containing the fibrous nanonitrocellulose according to <1> as an active ingredient .

本発明のn-NCは、従来のNCよりも高いBET比表面積を有する。 The n-NC of the present invention has a higher BET specific surface area than the conventional NC.

実施例で用いたn-Cの電子顕微鏡写真。An electron micrograph of nC used in the examples. 実施例により得られたn-NCの電子顕微鏡写真。Electron micrograph of n-NC obtained by Example. 実施例、比較例により得られたn-NC(凍結乾燥および加熱乾燥)の示差走査熱量測定(DSC)を示すグラフ。The graph which shows the differential scanning calorimetry (DSC) of n-NC (freeze-drying and heat-drying) obtained by an Example and a comparative example. n−NC又はNCを容器内で点火、燃焼した際の容器内圧力変化を示すグラフ。The graph which shows the pressure change in the container when igniting and burning n-NC or NC in the container.

本発明のn-NCは、従来のNCよりも高いBET比表面積を有している。その窒素量は通常、6.76〜14.14%の範囲が理論上可能であるが、実際は9.0〜13.7%である(なお、n-NCを含むNCの窒素量の理論的最大値は14.14%で、市販のNCの最も高い窒素量は13.5%程度である。)。本発明のn-NCは、好適には、直径が14〜30nmの繊維状である。
本発明のn-NCは、高いBET比表面積を有するため、燃焼性能が良好であることが期待できる。
以下では、本発明のn-NCの製造について説明する。なお、本明細書では、酸の濃度、窒素含有率、含水率、混合割合、みかけの収率等の%は、特に言及しない場合は質量%を意味する。また、前後2つの数値を〜で挟む数値範囲は、それらの数値である場合も含む。
The n-NC of the present invention has a higher BET specific surface area than the conventional NC. The nitrogen content is usually theoretically possible in the range of 6.76 to 14.14%, but in reality it is 9.0 to 13.7% (note that the theoretical maximum nitrogen content of NC including n-NC is 14.14%, which is commercially available. The highest amount of nitrogen in NC is about 13.5%.). The n-NC of the present invention is preferably fibrous with a diameter of 14 to 30 nm.
Since the n-NC of the present invention has a high BET specific surface area, it can be expected that the combustion performance is good.
Hereinafter, the production of n-NC of the present invention will be described. In the present specification,% of acid concentration, nitrogen content, water content, mixing ratio, apparent yield, etc. means mass% unless otherwise specified. In addition, the numerical range in which two numerical values before and after are sandwiched between ~ includes the case where they are those numerical values.

(n-Cゲル)
本発明のn-NCの製造方法では、出発物質としてn-Cゲルを使用する。n-Cゲルやその調製方法は、特許第5206947号公報に記載されている。n-Cゲル(含水率が通常94〜96%程度)は、そのまま用いるか、含水量が70%から94%未満程度まで機械的処理(圧縮)による脱水もしくは遠心脱水してから使用することが好ましい。
(N-C gel)
In the method for producing n-NC of the present invention, n-C gel is used as a starting material. The n-C gel and a method for preparing the gel are described in Japanese Patent No. 5206974. The n-C gel (water content is usually about 94 to 96%) can be used as it is, or it can be used after dehydration or centrifugal dehydration by mechanical treatment (compression) to a water content of about 70% to less than 94%. preferable.

(n-Cゲルの硫酸前処理)
硫酸前処理は、n-Cゲルの膨潤を促進させ、後述のニトロ化処理においてニトロ化の進行に効果がある。硫酸の濃度は限定するものではないが、好ましくは20〜80%、より好ましくは30〜70%である。前処理の硫酸の濃度が20%より低い場合、ニトロ化の進行効果が小さい。濃度が80%より高い場合、前処理工程やニトロ化処理工程でn-Cが溶解し、みかけの収率が低下する。
硫酸前処理を行わない場合、n-Cはニトロ化処理によりほとんど溶解してしまい、有効なn-NCは得られない。
(Sulfuric acid pretreatment of n-C gel)
The sulfuric acid pretreatment promotes the swelling of the n-C gel and is effective in the progress of nitration in the nitration treatment described later. The concentration of sulfuric acid is not limited, but is preferably 20 to 80%, more preferably 30 to 70%. When the concentration of sulfuric acid in the pretreatment is lower than 20%, the effect of promoting nitration is small. When the concentration is higher than 80%, n-C is dissolved in the pretreatment step and the nitration treatment step, and the apparent yield is lowered.
If the sulfuric acid pretreatment is not performed, n-C is almost dissolved by the nitration treatment, and effective n-NC cannot be obtained.

(ニトロ化処理)
n-Cのニトロ化処理では、硫酸前処理後のn-Cゲルに硝酸と硫酸との混酸を加え、混合、撹拌してニトロ化を進める。
混酸における硫酸:硝酸の100%濃度換算での割合は、限定するものではないが、90:10〜70:30(好ましくは、85:15〜75:25)とすることができる。混酸に使用する硝酸は、濃度が高い方が高い窒素量のn-NCの合成に有利である。好ましい硝酸の濃度は60〜90%である。混酸に使用する硫酸は、濃度が好ましくは25〜75%のものである。
ニトロ化に用いる混酸の硫酸と硝酸の濃度100%に換算した合計量に対するナノセルロースゲル量の比は、限定するものではないが、0.05〜0.4g/ml、好ましくは0.1〜0.35g/mlとすることができる。この比が小さい方が高いみかけの収率や高い窒素量のn-NCを得ることができる。
混酸を加えたn-Cはゲル状であるので、ニトロ化を進行させるためには、ゲル状物に対して有効な混合、撹拌手段を用いることが望ましい。そのような混合、撹拌手段としては、限定するものではないが、自転・公転ミキサーを挙げることができる。混酸・n-C混合ゲルは、混合、撹拌中に昇温する場合が有るので、好ましくは40℃を超えないように間欠的又は連続的に冷却する。
(Nitration treatment)
In the n-C nitration treatment, a mixed acid of nitric acid and sulfuric acid is added to the n-C gel after the sulfuric acid pretreatment, and the mixture is mixed and stirred to proceed with nitration.
The ratio of sulfuric acid: nitric acid in the mixed acid in terms of 100% concentration can be, but is not limited to, 90:10 to 70:30 (preferably 85:15 to 75:25). The higher the concentration of nitric acid used in the mixed acid, the more advantageous it is for the synthesis of n-NC with a high nitrogen content. The preferred concentration of nitric acid is 60-90%. The sulfuric acid used for the mixed acid preferably has a concentration of 25 to 75%.
The ratio of the amount of nanocellulose gel to the total amount of the mixed acid used for nitration converted to 100% concentration of sulfuric acid and nitric acid is not limited, but is 0.05 to 0.4 g / ml, preferably 0.1 to 0.35 g / ml. can do. The smaller the ratio, the higher the apparent yield and the higher nitrogen content of n-NC can be obtained.
Since n-C to which the mixed acid is added is in the form of a gel, it is desirable to use a mixing and stirring means effective for the gel-like substance in order to proceed with the nitration. Examples of such mixing and stirring means include, but are not limited to, a rotation / revolution mixer. Since the temperature of the mixed acid / nC mixed gel may rise during mixing and stirring, it is preferably cooled intermittently or continuously so as not to exceed 40 ° C.

(ニトロ化処理後の任意工程:洗浄処理、乾燥処理)
ニトロ化処理後のn-NCは、必要に応じて、洗浄処理や乾燥処理を行うことができる。そのような洗浄処理や乾燥処理としては、従来のニトロ化処理後のNCに対して採用されているものを使用することができる。
洗浄処理としては、水洗浄や煮沸洗浄があり、n-NC中の混酸が除去される。
乾燥処理では、遠心脱水等の適宜の手段により脱水した後、n-NCが凝集しないように乾燥を行うことにより50〜900m2/gのBET比表面積のn-NCとすることができる。そのような乾燥手段としては凍結乾燥が好ましい。
凍結乾燥では、n-NC中の水分の少なくとも一部を炭素数1〜4程度の低級アルコール(例えば、メタノール、エタノール、n-プロパノール、n-ブタノール及びその異性体)に置換してから凍結し、真空下(1〜5Torr.好ましくは2〜4Torr)で乾燥するのが高い比表面積を得るうえで好ましい。
(Arbitrary process after nitration treatment: cleaning treatment, drying treatment)
The n-NC after the nitration treatment can be washed or dried, if necessary. As such a cleaning treatment or a drying treatment, those adopted for NC after the conventional nitration treatment can be used.
The cleaning treatment includes water cleaning and boiling cleaning, and the mixed acid in n-NC is removed.
In the drying treatment, after dehydration by an appropriate means such as centrifugal dehydration, drying is performed so that n-NC does not aggregate, so that n-NC having a BET specific surface area of 50 to 900 m 2 / g can be obtained. Freeze-drying is preferable as such a drying means.
In freeze-drying, at least a part of the water content in n-NC is replaced with a lower alcohol having about 1 to 4 carbon atoms (for example, methanol, ethanol, n-propanol, n-butanol and isomers thereof) and then frozen. , It is preferable to dry under vacuum (1 to 5 Torr, preferably 2 to 4 Torr) in order to obtain a high specific surface area.

(n-NC)
本発明のn-NCは、原料のn-Cとほぼ同等か又はそれよりも直径がやや細くなった繊維状のものである。それ故、そのBET比表面積は、原料のn-Cと同程度以上の50〜900m2/gとすることができる。
(N-NC)
The n-NC of the present invention is a fibrous material having a diameter substantially equal to or slightly smaller than that of the raw material n-C. Therefore, its BET specific surface area can be 50 to 900 m 2 / g, which is equal to or higher than that of the raw material n-C.

以下、実施例により本発明を更に詳細に説明する。本発明の内容はこの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. The content of the present invention is not limited to this embodiment.

<実施例1:n-NCの製造例1>
(1)n-Cゲルの作製
含水量が約95%のn-Cゲルを作製した。
(2)n-Cゲルの脱水
上記(1)で作製したn-Cゲルを遠心分離機((株)久保田製作所製 テーブルトップ遠心機5420)を用いて10分間遠心脱水し、含水量が約92%の脱水n-Cゲル(原料ゲル)を得た。
(3)硫酸前処理(2回)
上記(2)で得た脱水n-Cゲル16gと濃度65%の硫酸16mLを自転公転ミキサー(ARE310、THINKY製)で10分間混合・撹拌した後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水し、一次硫酸前処理n-Cゲルを得た。
この一次硫酸前処理n-Cゲルに濃度65%の硫酸16mLを加え、再度、自転公転ミキサー(ARE310、THINKY製)で10分撹拌した後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水し、二次硫酸前処理n-Cゲルを得た。
(4)混酸の調製
ドラフト内で、氷温に冷却しながら、表1中に記載の量の硝酸(濃度70%)に硫酸(濃度98%)を徐々に加えて混酸を調製した。調製後の混酸は4℃程度に保持した。
(5)ニトロ化
上記(3)で得られた硫酸前処理n-Cゲルを上記(4)で調製した混酸140mLに加え、4℃程度になるまで冷却保持した。
4℃程度に保持された溶液を自転公転ミキサー(ARE310、THINKY製)、で10分間撹拌した後、温度が30℃程度まで上昇した溶液を30分間氷水で4℃程度まで冷却した。これらの撹拌と冷却を5回繰り返し、ニトロ化を完了して、未洗浄n-NCゲルを得た。
(6)水洗浄
上記(5)で得た未洗浄n-NCゲルを3L容器に入れ、純水3L程度を注水後、ガラス棒で撹拌し、n-NCゲルが沈殿するまで30分〜12時間放置し、上澄みを廃棄した。これらの注水、撹拌、沈殿、及び、上澄み廃棄を3〜4回繰り返し、n-NCゲルをpH7まで洗浄を進めた。
pH7まで洗浄を進めたn-NCゲルを遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で5分間脱水し、水洗浄n-NCゲルを得た。
(7)煮沸洗浄
上記(6)で得た水洗浄n-NCゲル1gあたり10mL以上注水し、還流装置付のナスフラスコを用いて8時間煮沸洗浄を行った後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水した。これらの注水、煮沸洗浄、遠心脱水をpH7で安定するまで数回繰り返し、煮沸洗浄n-NCゲル(生成ゲル)を得た。
(8)凍結乾燥
上記(7)で得た煮沸洗浄n-NCゲル1gに炭素数1〜4程度の低級アルコール1mLを添加し、自転公転ミキサー(ARE310、THINKY製)で撹拌した後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水した。これらの添加、撹拌、遠心脱水を3〜4回繰り返した。
得られたn-NC1gに低級アルコール0.5mLを添加し、自転公転ミキサー(ARE310、THINKY製)で撹拌し、冷蔵庫に入れて冷却し、完全に凍結させた。凍結後、半解凍し、ナスフラスコに入れた状態で真空乾燥器にセットし、炭素数1〜4程度の低級アルコールと水分が完全に揮発するまで凍結乾燥を行い、羽毛状のn-NCを得た。
(9)製造されたn-NCについて
上記(8)で得た実験#27のn-NCについて、走査型電子顕微鏡(日本電子(株)製JSM-7400)で観察したところ、平均直径は20nm程度であり、原料のn-Cと同様のナノ繊維構造を有するものであった。また、BET比表面積を測定したところ、103m2/gであり、原料のn-Cの比表面積100〜130m2/gと同程度であった。また、窒素含有量は、13.7%程度であった。
<Example 1: Production example 1 of n-NC>
(1) Preparation of n-C gel An n-C gel having a water content of about 95% was prepared.
(2) Dehydration of n-C gel The n-C gel prepared in (1) above is centrifuged for 10 minutes using a centrifuge (Tabletop centrifuge 5420 manufactured by Kubota Seisakusho Co., Ltd.), and the water content is approximately. A 92% dehydrated n-C gel (raw material gel) was obtained.
(3) Sulfuric acid pretreatment (twice)
After mixing and stirring 16 g of the dehydrated n-C gel obtained in (2) above and 16 mL of sulfuric acid having a concentration of 65% for 10 minutes with a rotation revolution mixer (ARE310, manufactured by THINKY), a centrifuge (Kubota Seisakusho Co., Ltd. table) Centrifuge with a top centrifuge 5420) to obtain a primary sulfuric acid pretreated n-C gel.
Add 16 mL of sulfuric acid with a concentration of 65% to this primary sulfuric acid pretreatment n-C gel, stir again with a rotating revolution mixer (ARE310, manufactured by THINKY) for 10 minutes, and then centrifuge (table top centrifuge manufactured by Kubota Seisakusho Co., Ltd.). Centrifuge dehydration was performed in a machine 5420) to obtain a secondary sulfuric acid pretreated n-C gel.
(4) Preparation of mixed acid A mixed acid was prepared by gradually adding sulfuric acid (concentration 98%) to the amount of nitric acid (concentration 70%) shown in Table 1 while cooling to ice temperature in the draft. The mixed acid after preparation was kept at about 4 ° C.
(5) Nitroization The sulfuric acid pretreatment n-C gel obtained in (3) above was added to 140 mL of the mixed acid prepared in (4) above, and cooled and maintained until about 4 ° C.
The solution kept at about 4 ° C. was stirred with a rotation / revolution mixer (ARE310, manufactured by THINKY) for 10 minutes, and then the solution whose temperature rose to about 30 ° C. was cooled to about 4 ° C. with ice water for 30 minutes. These stirring and cooling were repeated 5 times to complete the nitration to obtain an unwashed n-NC gel.
(6) Washing with water Put the unwashed n-NC gel obtained in (5) above in a 3L container, pour about 3L of pure water, stir with a glass rod, and wait 30 minutes to 12 until the n-NC gel precipitates. It was left for a while and the supernatant was discarded. These water injection, stirring, precipitation, and supernatant disposal were repeated 3 to 4 times, and the n-NC gel was washed to pH 7.
The n-NC gel washed to pH 7 was dehydrated for 5 minutes with a centrifuge (table top centrifuge 5420 manufactured by Kubota Seisakusho Co., Ltd.) to obtain a water-washed n-NC gel.
(7) Boil cleaning 10 mL or more of water was injected per 1 g of the water cleaning n-NC gel obtained in (6) above, and after boiling cleaning for 8 hours using a eggplant flask equipped with a reflux device, a centrifuge (Co., Ltd.) Centrifugal dehydration was performed with a table top centrifuge 5420) manufactured by Kubota Seisakusho. These water injection, boiling washing, and centrifugal dehydration were repeated several times until the pH became stable at 7, to obtain a boiling washing n-NC gel (generated gel).
(8) Freeze-drying Add 1 mL of lower alcohol having about 1 to 4 carbon atoms to 1 g of the boiling-washed n-NC gel obtained in (7) above, stir with a rotation / revolution mixer (ARE310, manufactured by THINKY), and then centrifuge. Centrifugal dehydration was performed with a machine (table top centrifuge 5420 manufactured by Kubota Seisakusho Co., Ltd.). These addition, stirring and centrifugal dehydration were repeated 3 to 4 times.
0.5 mL of lower alcohol was added to 1 g of the obtained n-NC, the mixture was stirred with a rotation / revolution mixer (ARE310, manufactured by THINKY), placed in a refrigerator, cooled, and completely frozen. After freezing, it is half-thawed, set in a vacuum dryer in an eggplant flask, and freeze-dried until the lower alcohol having 1 to 4 carbon atoms and water are completely volatilized to obtain feather-shaped n-NC. Obtained.
(9) Manufactured n-NC When the n-NC of Experiment # 27 obtained in (8) above was observed with a scanning electron microscope (JSM-7400 manufactured by JEOL Ltd.), the average diameter was 20 nm. It had a nanofiber structure similar to that of the raw material n-C. Moreover, when the specific surface area of BET was measured, it was 103 m 2 / g, which was about the same as the specific surface area of n-C of the raw material of 100 to 130 m 2 / g. The nitrogen content was about 13.7%.

Figure 0006845499
Figure 0006845499

エレクトロスピニング法で作製したNCの直径Xは90〜500nmであり、NCを、直径Xnm、長さYμm、密度ρ(g/cm3;通常1.65g/cm3程度)、表面積S(m2)、重量V(g)とすると、比表面積=S/V=[π・X・Y+π(X/2)^2・2]/[π(X/2)^2・Y・ρ]=4/(ρX)+2/(ρY)、ここでY≫Xであるため、比表面積≒4/(ρX)x103(m2/g)となる。該式により算出した比表面積は、4.8〜26.9m2/gであることから、本発明の実施例のn-NCは、エレクトロスピニング法で作製したn-NCよりも4倍程度以上の比表面積を有するものと言える。
なお、実施例1のn-NCについて、その平均直径20nmに基づいて同様に算出した比表面積は121m2/gである。上記実測値103m2/gは、平均直径に基づく比表面積より少し低い値となっているが、これは繊維同士の多少の重なりによるものと考えられる。
下記の実施例4〜7のn-NCについてはBET比表面積を測定していないが、その繊維の直径はn-Cと同等か又はそれより僅かに小さくなっている。それ故、凍結乾燥などの凝集が防止される乾燥方法を採用することにより、実施例1と同様のBET比表面積が得られると言える。
また、n-Cゲルとしては繊維直径が3〜100nmのものが得られるので、それらの繊維直径のn-Cゲルを用いれば、BET比表面積が50〜900m2/gの範囲内のn-NCを合成することも可能である。
The diameter X of the NC manufactured by electrospinning is 90~500Nm, the NC, diameter X nm, length Ymyuemu, density ρ (g / cm 3; usually 1.65 g / cm 3 or so), surface area S (m 2) of , If the weight is V (g), the specific surface area = S / V = [π ・ X ・ Y + π (X / 2) ^ 2 ・ 2] / [π (X / 2) ^ 2 ・ Y ・ ρ] = Since 4 / (ρX) + 2 / (ρY), where Y >> X, the specific surface area ≒ 4 / (ρX) x 10 3 (m 2 / g). Since the specific surface area calculated by the formula is 4.8 to 26.9 m 2 / g, the n-NC of the examples of the present invention is about four times or more the specific surface area of the n-NC produced by the electrospinning method. It can be said that it has.
The specific surface area of n-NC of Example 1 calculated in the same manner based on the average diameter of 20 nm is 121 m 2 / g. The measured value of 103 m 2 / g is slightly lower than the specific surface area based on the average diameter, which is considered to be due to some overlap between the fibers.
Although the BET specific surface area has not been measured for n-NC of Examples 4 to 7 below, the diameter of the fiber is equal to or slightly smaller than that of n-C. Therefore, it can be said that the same BET specific surface area as in Example 1 can be obtained by adopting a drying method such as freeze-drying that prevents agglutination.
Further, since n-C gels having a fiber diameter of 3 to 100 nm can be obtained, if n-C gels having those fiber diameters are used, the BET specific surface area is in the range of 50 to 900 m 2 / g. It is also possible to synthesize NC.

<実施例2:n-NCの示差走査熱量測定>
実施例1の実験#27のn-NCと同じ製造方法で得た、凍結乾燥n-NC、および、加熱乾燥以外は実施例1と同じ製造方法で得た加熱乾燥n-NC(比較例)について示差走査熱量測定を行った。測定結果を図3に示した。加熱乾燥n-NCについては、乾燥の際に凝集する。よって得られた試料は比表面積が小さいため、ピークが広がってしまい、火薬として性能が出せない。一方、凍結乾燥を行った凍結乾燥n-NCでは、鋭いピークが得られ、比表面積が大きく、火薬として性能が出せることが本結果から予想できる。
<Example 2: Differential scanning calorimetry of n-NC>
Freeze-dried n-NC obtained by the same production method as n-NC of Experiment # 27 of Example 1, and heat-dried n-NC obtained by the same production method as Example 1 except for heat drying (Comparative Example). The differential scanning calorimetry was carried out. The measurement results are shown in FIG. For heat-dried n-NC, it aggregates during drying. Therefore, since the specific surface area of the obtained sample is small, the peak spreads and the performance as an explosive cannot be obtained. On the other hand, in the freeze-dried n-NC that has been freeze-dried, a sharp peak can be obtained, the specific surface area is large, and it can be expected from this result that the performance as an explosive can be obtained.

<実施例3:n-NCの燃焼試験>
実施例1の実験#27のn-NC又は市販のNC(窒素量13.4%)0.2gを点火装置を備えた100ccの耐圧密閉容器に導入し、密閉後点火した。図3に点火後の時間経過に伴う容器内圧力変化を示す。n-NCはNCに比べ、最高圧力が高く、また、最高圧力に達するまでの時間が短かった。このことから、n-NCは、NCに比べ燃焼性能が向上していると考えられる。
<Example 3: Combustion test of n-NC>
0.2 g of n-NC of Experiment # 27 of Example 1 or commercially available NC (nitrogen amount 13.4%) was introduced into a 100 cc pressure-resistant airtight container equipped with an ignition device, and the mixture was sealed and then ignited. FIG. 3 shows the change in pressure inside the container with the passage of time after ignition. The maximum pressure of n-NC was higher than that of NC, and the time required to reach the maximum pressure was short. From this, it is considered that n-NC has improved combustion performance as compared with NC.

<実施例4:n-NCの製造例2、硫酸前処理条件の影響調査>
硫酸前処理の条件およびニトロ化の条件を表2のとおり変更し、実施例1の実験#27と同様にしてn-NCを製造した。硫酸濃度が65%で1回処理した場合にみかけの収率(=煮沸洗浄n-NCゲル(生成ゲル)/脱水n-Cゲル(原料ゲル))が最も高く210%となった。同濃度で2回処理した場合には、窒素含有率が11.6%と高くなった。
これらの実施例からみて、硫酸前処理後の水分濃度51〜60%がみかけの収率の点で好ましいと言える。また、窒素濃度を高くする点では2回処理することが好ましい。
<Example 4: N-NC production example 2, investigation of the effect of sulfuric acid pretreatment conditions>
The conditions for sulfuric acid pretreatment and the conditions for nitration were changed as shown in Table 2, and n-NC was produced in the same manner as in Experiment # 27 of Example 1. When the sulfuric acid concentration was 65% and the treatment was performed once, the apparent yield (= boiling washing n-NC gel (produced gel) / dehydrated n-C gel (raw material gel)) was the highest at 210%. When treated twice at the same concentration, the nitrogen content was as high as 11.6%.
From these examples, it can be said that a water concentration of 51 to 60% after the sulfuric acid pretreatment is preferable in terms of apparent yield. Further, in terms of increasing the nitrogen concentration, it is preferable to perform the treatment twice.

Figure 0006845499
Figure 0006845499

<実施例5:n-NCの製造例3、ニトロ化条件の影響調査1>
ニトロ化条件における硫酸と硝酸の100%濃度換算での量比等を表3のとおりに変更し、実施例1の実験#27と同様にしてn-NCを製造した。混酸に用いる硫酸量の比を高くすると高い収率が得られた。混酸に用いる硫酸量の比が84(実験#6)の場合、みかけの収率と窒素含有率がバランス良く、高くなった。
<Example 5: Production example 3 of n-NC, influence investigation of nitration conditions 1>
The amount ratio of sulfuric acid and nitric acid converted to 100% concentration under nitration conditions was changed as shown in Table 3, and n-NC was produced in the same manner as in Experiment # 27 of Example 1. A high yield was obtained by increasing the ratio of the amount of sulfuric acid used for the mixed acid. When the ratio of the amount of sulfuric acid used for the mixed acid was 84 (Experiment # 6), the apparent yield and the nitrogen content were well-balanced and high.

Figure 0006845499
Figure 0006845499

<実施例6:n-NCの製造例4、ニトロ化条件の影響調査2>
ニトロ化条件におけるn-Cゲル量の混酸(100%濃度換算)量に対する比等を表4のとおりに変更し、実施例1の実験#27と同様にしてn-NCを製造した。用いるn-Cの量を少なくすると、収率や窒素含有率が高くなった。その傾向は、n-Cゲル/混酸の比が0.2g/ml以下の場合に特に著しい。
<Example 6: Production example of n-NC 4, influence investigation of nitration conditions 2>
The ratio of the amount of n-C gel to the amount of mixed acid (converted to 100% concentration) under nitration conditions was changed as shown in Table 4, and n-NC was produced in the same manner as in Experiment # 27 of Example 1. When the amount of nC used was reduced, the yield and nitrogen content increased. The tendency is particularly remarkable when the ratio of n-C gel / mixed acid is 0.2 g / ml or less.

Figure 0006845499
Figure 0006845499

<実施例7:n-NCの製造例5、ニトロ化条件の影響調査3>
ニトロ化条件における反応時間を表5のとおりに変更し、実施例1の実験#27と同様にしてn-NCを製造した。反応時間が45分の場合に収率や窒素含有率が最も高くなった。反応時間が90分程度以上に長くなると、収率や窒素含有率が45分の場合よりも低くなった。これらのことから、高いみかけの収率を得るニトロ化処理時間は10〜30分(好ましくは10〜20分)であり、高い窒素含有率を得るニトロ化処理時間は30〜60分(好ましくは40〜50分)であると言える。
<Example 7: Production example 5 of n-NC, influence investigation of nitration conditions 3>
The reaction time under the nitration conditions was changed as shown in Table 5, and n-NC was produced in the same manner as in Experiment # 27 of Example 1. The yield and nitrogen content were highest when the reaction time was 45 minutes. When the reaction time was longer than about 90 minutes, the yield and nitrogen content were lower than in the case of 45 minutes. From these facts, the nitration treatment time for obtaining a high apparent yield is 10 to 30 minutes (preferably 10 to 20 minutes), and the nitration treatment time for obtaining a high nitrogen content is 30 to 60 minutes (preferably). It can be said that it takes 40 to 50 minutes).

Figure 0006845499
Figure 0006845499

本発明のn-NCは、従来のものよりも高いBET比表面積を有するものであり、無煙火薬、塗料、医薬、接着剤、セルロイド等の分野において利用することが期待される。 The n-NC of the present invention has a higher BET specific surface area than conventional ones, and is expected to be used in the fields of smokeless powder, paints, pharmaceuticals, adhesives, celluloids and the like.

Claims (4)

窒素量6.76〜14.14%の、直径が14〜30nmの繊維状であるナノニトロセルロースから構成される、BET比表面積が50〜900m/gである繊維状ナノニトロセルロース。 A fibrous nanonitrocellulose having a BET specific surface area of 50 to 900 m 2 / g, composed of fibrous nanonitrocellulose having a nitrogen content of 6.76 to 14.14% and a diameter of 14 to 30 nm. 繊維状ナノセルロースゲルに濃度20〜80%の硫酸を加え、混合・撹拌した後、遠心脱水して得られた、硫酸前処理ナノセルロースゲルを、硫酸と硝酸との混酸でニトロ化し、その後、洗浄し、凍結乾燥することを特徴とする、繊維状ナノニトロセルロースの製造方法。 Sulfuric acid with a concentration of 20 to 80% was added to the fibrous nanocellulose gel, mixed and stirred, and then the sulfuric acid pretreated nanocellulose gel obtained by centrifugal dehydration was nitrated with a mixed acid of sulfuric acid and nitric acid, and then A method for producing fibrous nanonitrocellulose, which comprises washing and lyophilizing. 前記ニトロ化を自転・公転ミキサー内で行う、請求項2に記載の繊維状ナノニトロセルロースの製造方法。 The method for producing fibrous nanonitrocellulose according to claim 2, wherein the nitration is carried out in a rotation / revolution mixer. 請求項1に記載の繊維状ナノニトロセルロースを有効成分とする、無煙火薬。 A smokeless powder containing the fibrous nanonitrocellulose according to claim 1 as an active ingredient.
JP2016234914A 2016-12-02 2016-12-02 Nanonitrocellulose and its manufacturing method Active JP6845499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016234914A JP6845499B2 (en) 2016-12-02 2016-12-02 Nanonitrocellulose and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016234914A JP6845499B2 (en) 2016-12-02 2016-12-02 Nanonitrocellulose and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018090694A JP2018090694A (en) 2018-06-14
JP6845499B2 true JP6845499B2 (en) 2021-03-17

Family

ID=62565164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234914A Active JP6845499B2 (en) 2016-12-02 2016-12-02 Nanonitrocellulose and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6845499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070185A1 (en) * 2021-10-25 2023-05-04 Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais Porous foam for retaining organic and inorganic compounds, method for producing same and uses thereof
KR102515525B1 (en) * 2022-01-10 2023-03-29 제이엔케이에너지 주식회사 The nitrocellous production method for reducing environmental pollution and isopropyl alcohol used nitrocellous production recycling method

Also Published As

Publication number Publication date
JP2018090694A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Xu et al. A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method
Guo et al. Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal
Zhang et al. Recent advances on the crystallization engineering of energetic materials
Ma et al. Facile, continuous and large-scale production of core–shell HMX@ TATB composites with superior mechanical properties by a spray-drying process
JP6845499B2 (en) Nanonitrocellulose and its manufacturing method
Yang et al. Cocrystal explosive hydrate of a powerful explosive, HNIW, with enhanced safety
CA3043249A1 (en) Novel methods for creation of sub-micron biocarbon materials from biomass and their fields of application
CN110550607B (en) alpha-AlH 3 flotation method and application thereof
CN106748584A (en) The method that emulsion method prepares spheroidization organic molecule monomer or compound
CN110422859A (en) A kind of preparation method of torispherical diamide ammonium crystal
CN109251116A (en) A kind of production method of interior fireworks nitrocotton
Korchagina et al. Miscanthus× giganteus var. KAMIS as a new feedstock for cellulose nitrates
CN103554524B (en) Ultrafine dispersion method for single-compound explosive in energetic composite material
Zhou et al. Polymer-directed crystallization of HMX to construct nano-/microstructured aggregates with tunable polymorph and microstructure
CN110590565A (en) Method for preparing highly-sphericized 1,1-diamino-2,2-dinitroethylene crystals
US20100279102A1 (en) Homogeneous mesoporous nanoenergetic metal oxide composites and fabrication thereof
Cerrutti et al. Synthesis of carboxymethylcelluloses with different degrees of substitution and their performance as renewable stabilizing agents for aqueous ceramic suspensions
Ji et al. Preparation and characterization of CL-20/EPDM by a crystal refinement and spray drying method
Yang et al. Preparation of ultrafine TATB and the technology for crystal morphology control
CN101857516B (en) Micro-pore firework powder capable with improved fire ignition and transfer properties and preparation method thereof
Zhang et al. Rapid Assembly and Preparation of Energetic Microspheres LLM‐105/CL‐20
CN106518883B (en) Six azepine isoamyl of nanometer ε crystal form hexanitro hereby alkane explosive and its batch preparation
Yang et al. Preparation and characteristic of NC/RDX nanofibers by electrospinning
CN112725917A (en) Preparation method of areca seed cellulose nanofibrils
CN109438146B (en) Slurry production process of nitrocotton for indoor fireworks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200415

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6845499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250