JP2018090694A - Nano nitrocellulose and production method thereof - Google Patents

Nano nitrocellulose and production method thereof Download PDF

Info

Publication number
JP2018090694A
JP2018090694A JP2016234914A JP2016234914A JP2018090694A JP 2018090694 A JP2018090694 A JP 2018090694A JP 2016234914 A JP2016234914 A JP 2016234914A JP 2016234914 A JP2016234914 A JP 2016234914A JP 2018090694 A JP2018090694 A JP 2018090694A
Authority
JP
Japan
Prior art keywords
nano
nitrocellulose
gel
nitration
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016234914A
Other languages
Japanese (ja)
Other versions
JP6845499B2 (en
Inventor
賢 岡田
Masaru Okada
賢 岡田
美也子 秋吉
Miyako Akiyoshi
美也子 秋吉
猛裕 松永
Takehiro Matsunaga
猛裕 松永
齋藤 靖子
Yasuko Saito
靖子 齋藤
遠藤 貴士
Takashi Endo
貴士 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016234914A priority Critical patent/JP6845499B2/en
Publication of JP2018090694A publication Critical patent/JP2018090694A/en
Application granted granted Critical
Publication of JP6845499B2 publication Critical patent/JP6845499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide nano nitrocellulose having a larger BET specific surface area than conventional one; and to provide a production method of nano nitrocellulose having a larger BET specific surface area than conventional one.SOLUTION: Nano nitrocellulose is obtained by performing nitration with mixed acid of sulphuric acid and nitric acid, after pretreatment of nano cellulose gel with sulphuric acid. Nano nitrocellulose after nitration can have a large feathery BET specific surface area by various washing treatment, and preferably, by a dehydration treatment such as lyophilization.SELECTED DRAWING: Figure 4

Description

本発明は、ナノニトロセルロース(以下「n-NC」ということがある)及びその製造方法に関するものである。   The present invention relates to nanonitrocellulose (hereinafter sometimes referred to as “n-NC”) and a method for producing the same.

ニトロセルロース(以下「NC」ということがある)は、危険物第5類に指定され、無煙火薬(砲弾や銃器の発射薬)として使用されるほか、塗料、医薬、接着剤、セルロイド等の用途分野においても使用されている。   Nitrocellulose (hereinafter sometimes referred to as “NC”) is designated as a hazardous material class 5 and is used as smokeless gunpowder (a projectile for shells and firearms), as well as for paints, medicines, adhesives, celluloid, etc. It is also used in the field.

従来のNCは、セルロースとしての綿に硝酸と硫酸からなる混酸を反応させて製造するのが通常である。その際、セルロースを構成するグルコースは1単位分子当たり最大3カ所で硝酸エステル化(ニトロ化=硝化)される。硝化反応は極めて速く、生成したNCは、洗浄して酸を除去した後、真空乾燥や空気乾燥により乾燥させる。硝化により製造されたNCは、窒素の含有量により、13%以上のものを強綿薬、10%未満のものを脆綿薬、それらの間のものを弱綿薬と称せられる。   Conventional NC is usually produced by reacting cotton as cellulose with a mixed acid composed of nitric acid and sulfuric acid. At this time, glucose constituting the cellulose is nitrated (nitrated = nitrified) at a maximum of three locations per unit molecule. The nitrification reaction is extremely fast, and the produced NC is washed to remove the acid and then dried by vacuum drying or air drying. NCs produced by nitrification are referred to as strong cotton drugs, those with less than 10% as brittle cotton drugs, and those between them as weak cotton drugs, depending on the nitrogen content.

微細なNCを得るための従来の研究としては、既存のNCを溶媒に溶かして、エレクトロスピニング法(電界紡糸法)により、径が90〜150, 400〜500nmなどのナノファイバー状のNCを製造したもの(非特許文献1参照)、有機溶媒に溶かしたNCをガラス基板上に滴下、乾燥してサブミクロンサイズ(直径200〜900nm)の粒子状NCを製造したもの(非特許文献2参照)等が知られている。   Conventional research for obtaining fine NCs involves dissolving existing NCs in a solvent and producing nanofiber NCs with diameters of 90 to 150, 400 to 500 nm by electrospinning (electrospinning). (See Non-Patent Document 1), NC dissolved in an organic solvent is dropped on a glass substrate and dried to produce a sub-micron-sized (200 to 900 nm diameter) particulate NC (see Non-Patent Document 2) Etc. are known.

M.R. Sovizi, S.S. Hajimirsadeghi, B. Naderizadeh, Effect of particle size on thermal decomposition of nitrocellulose, J. Hazard. Mater. 168 (2009) 1134-1139. doi:10.1016/j.jhazmat.2009.02.146Sovizi, S.S.Hajimirsadeghi, B. Naderizadeh, Effect of particle size on thermal decomposition of nitrocellulose, J. Hazard. Mater.168 (2009) 1134-1139.doi: 10.1016 / j.jhazmat.2009.02.146 X. Zhang, B.L. Weeks, Preparation of sub-micron nitrocellulose particles for improved combustion behavior, J. Hazard. Mater. 268 (2014) 224-228. doi:10.1016/j.jhazmat.2014.01.019.X. Zhang, B.L. Weeks, Preparation of sub-micron nitrocellulose particles for improved combustion behavior, J. Hazard. Mater. 268 (2014) 224-228.doi: 10.1016 / j.jhazmat.2014.01.019.

本発明者らは、従来のNCは、比表面積が大きくないため燃焼性能が十分でなく、煙火等に使用される割薬、打揚薬への応用展開が困難であること等の問題点が存在することを認識した。そして、従来のものよりも径が細く比表面積の高いn-NCが得られれば、上記のような問題点を解決できる可能性があることを着想した。   The inventors of the present invention have problems that the conventional NC has a large specific surface area, so that the combustion performance is not sufficient, and that it is difficult to apply to crackers and explosives used in smoke fires. Recognized that it exists. The inventors have conceived that the above problems may be solved if an n-NC having a smaller diameter and a higher specific surface area than the conventional one can be obtained.

本発明は、上述のような従来技術の問題点についての認識やそれらの問題点を解決しようとする着想を背景としてなされたものであり、従来のものよりもBET比表面積の高いn-NCの製造方法を提供することを課題とする。
また、本発明は、従来のものよりもBET比表面積の高いn-NCを提供することを課題とする。
The present invention has been made based on the recognition of the problems of the prior art as described above and the idea of solving those problems, and the n-NC having a higher BET specific surface area than the conventional one. It is an object to provide a manufacturing method.
Another object of the present invention is to provide an n-NC having a BET specific surface area higher than that of the conventional one.

本発明者は、上述のような課題のもとでの研究過程で、エレクトロスピニング法や滴下法について検討したが、次のような問題点を認識した。
(ア)エレクトロスピニング法で製造されるNCは、径が90〜500nm程度、比表面積は4.8〜26.9m2/g程度であり、径が50nm以下や比表面積が80m2/g以上のものは製造できない。
(イ)エレクトロスピニング法では、高電圧を印加するので、火薬を製造する際には、発火爆発に対する安全対策が不可欠である。
(ウ)エレクトロスピニング法では、紡糸前に一旦溶媒に溶解する必要があるが、特殊な溶媒が必要であるし、さらに、ニトロ化が低いものは溶解が困難であるので、用途に合わせた様々なニトロ化の(窒素量の)NCを製造することは困難である。
(エ)滴下法では、製造されるNCの比表面積は4〜18.2m2/g程度に過ぎず、また、大量生産に向かない手法である。
The present inventor examined the electrospinning method and the dropping method in the course of research under the above-mentioned problems, and recognized the following problems.
(A) NC produced by electrospinning has a diameter of about 90~500Nm, the specific surface area is about 4.8~26.9m 2 / g, the diameter of 50nm or less and a specific surface area of 80 m 2 / g or more of It cannot be manufactured.
(B) Since a high voltage is applied in the electrospinning method, safety measures against ignition explosion are indispensable when producing explosives.
(C) In the electrospinning method, it is necessary to dissolve once in a solvent before spinning, but a special solvent is required, and furthermore, those with low nitration are difficult to dissolve. It is difficult to produce a highly nitrated (nitrogen content) NC.
(D) In the dropping method, the specific surface area of the produced NC is only about 4 to 18.2 m 2 / g, and is not suitable for mass production.

本発明者は、さらに検討を進め、NCの原料のセルロースとして従来全く使用されなかったナノセルロースゲル(以下「n-Cゲル」ということがある)を用いること、n-Cゲルをニトロ化する前に、硫酸で前処理を行うことで、n-Cゲルの膨潤を促進させニトロ化の進行に効果があること、ニトロ化の際にもセルロースがナノ構造を有するためニトロ化率が高まる可能性があること、製造されるn-NCは比表面積が大きいため、燃焼性能の向上が期待できることなどの着想を得た。そして、本発明者は、n-Cゲルを原料としてBET比表面積の高いn-NCを製造できることを知見した。   The present inventor has further studied and uses a nanocellulose gel (hereinafter sometimes referred to as “n-C gel”) that has never been used as cellulose as a raw material for NC, and nitrates the n-C gel. Pretreatment with sulfuric acid promotes the swelling of n-C gel and is effective in the progress of nitration, and the nitration rate can be increased because cellulose has a nanostructure during nitration. The idea was that the n-NC to be produced has a large specific surface area, so that improvement in combustion performance can be expected. And this inventor discovered that n-NC with a high BET specific surface area can be manufactured from n-C gel as a raw material.

本発明は、上記のような認識や着想、知見などに基づくものであり、この出願によれば、以下の発明が提供される。
<1>BET比表面積が50〜900m2/gであるナノニトロセルロース。
<2>窒素量が6.76〜14.14%である<1>に記載のナノニトロセルロース。
<3>直径が14〜30nmの繊維状である<1>又は<2>に記載のナノニトロセルロース。
<4>ナノセルロースゲルを硫酸で前処理した後、硫酸と硝酸との混酸でニトロ化するナノニトロセルロースの製造方法。
<5>前記前処理の硫酸として濃度25〜75%のものを用いる<4>に記載のナノニトロセルロースの製造方法。
<6>前記ニトロ化を自転・公転ミキサー内で行う<4>又は<5>に記載のナノニトロセルロースの製造方法。
<7><4>〜<6>のいずれか1項に記載のナノニトロセルロースの製造方法において、ニトロ化後の洗浄工程と乾燥工程を含むナノニトロセルロースの製造方法。
<8><1>〜<3>のいずれか1項に記載のナノニトロセルロースを有効成分とする無煙火薬。
The present invention is based on the above recognition, idea, knowledge and the like. According to this application, the following invention is provided.
<1> Nano nitrocellulose having a BET specific surface area of 50 to 900 m 2 / g.
<2> The nano nitrocellulose according to <1>, wherein the nitrogen amount is 6.76 to 14.14%.
<3> The nano nitrocellulose according to <1> or <2>, which has a fiber shape with a diameter of 14 to 30 nm.
<4> A method for producing nanonitrocellulose, wherein a nanocellulose gel is pretreated with sulfuric acid and then nitrated with a mixed acid of sulfuric acid and nitric acid.
<5> The method for producing nanonitrocellulose according to <4>, wherein sulfuric acid having a concentration of 25 to 75% is used as the pretreatment sulfuric acid.
<6> The method for producing nanonitrocellulose according to <4> or <5>, wherein the nitration is performed in a rotation / revolution mixer.
<7> The method for producing nanonitrocellulose according to any one of <4> to <6>, comprising a washing step after nitration and a drying step.
<8> A smokeless explosive comprising the nano nitrocellulose according to any one of <1> to <3> as an active ingredient.

本発明は、次のような態様を含むことができる。
<9>窒素量が9〜13.7%である<2>に記載のナノニトロセルロース。
<10>BET比表面積が100〜130m2/gである<1>又は<2>に記載のナノニトロセルロース。
<11>硫酸前処理を複数回行う<4>又は<5>に記載のナノニトロセルロースの製造方法。
<12>ニトロ化に用いる硫酸と硝酸の濃度100%換算での量比が硝酸:硫酸=10:90〜30:70である<4>〜<7>のいずれか1項に記載のナノニトロセルロースの製造方法。
<13>ニトロ化に用いる混酸の硫酸と硝酸の濃度100%に換算した合計量に対するナノセルロースゲル量の比が0.05〜0.40g/mLである<4>〜<7>のいずれか1項に記載のナノニトロセルロースの製造方法。
<14>ニトロ化処理時間が10〜60分である<4>〜<7>のいずれか1項に記載のナノニトロセルロースの製造方法。
The present invention can include the following aspects.
<9> The nano nitrocellulose according to <2>, wherein the nitrogen content is 9 to 13.7%.
<10> The nanonitrocellulose according to <1> or <2>, wherein the BET specific surface area is 100 to 130 m 2 / g.
<11> The method for producing nanonitrocellulose according to <4> or <5>, wherein the sulfuric acid pretreatment is performed a plurality of times.
<12> The nanonitro of any one of <4> to <7>, wherein the concentration ratio of sulfuric acid and nitric acid used for nitration in terms of 100% is nitric acid: sulfuric acid = 10: 90 to 30:70 A method for producing cellulose.
<13> Any one of <4> to <7>, wherein the ratio of the amount of nanocellulose gel to the total amount of the mixed acid used in nitration converted to 100% sulfuric acid and nitric acid is 0.05 to 0.40 g / mL. The manufacturing method of nano nitrocellulose of description.
<14> The method for producing nanonitrocellulose according to any one of <4> to <7>, wherein the nitration time is 10 to 60 minutes.

本発明のn-NCは、従来のNCよりも高いBET比表面積を有する。   The n-NC of the present invention has a higher BET specific surface area than a conventional NC.

実施例で用いたn-Cの電子顕微鏡写真。The electron micrograph of nC used in the Example. 実施例により得られたn-NCの電子顕微鏡写真。The electron micrograph of n-NC obtained by the Example. 実施例、比較例により得られたn-NC(凍結乾燥および加熱乾燥)の示差走査熱量測定(DSC)を示すグラフ。The graph which shows the differential scanning calorimetry (DSC) of n-NC (freeze drying and heat drying) obtained by the Example and the comparative example. n−NC又はNCを容器内で点火、燃焼した際の容器内圧力変化を示すグラフ。The graph which shows the pressure change in a container at the time of igniting and burning n-NC or NC in a container.

本発明のn-NCは、従来のNCよりも高いBET比表面積を有している。その窒素量は通常、6.76〜14.14%の範囲が理論上可能であるが、実際は9.0〜13.7%である(なお、n-NCを含むNCの窒素量の理論的最大値は14.14%で、市販のNCの最も高い窒素量は13.5%程度である。)。本発明のn-NCは、好適には、直径が14〜30nmの繊維状である。
本発明のn-NCは、高いBET比表面積を有するため、燃焼性能が良好であることが期待できる。
以下では、本発明のn-NCの製造について説明する。なお、本明細書では、酸の濃度、窒素含有率、含水率、混合割合、みかけの収率等の%は、特に言及しない場合は質量%を意味する。また、前後2つの数値を〜で挟む数値範囲は、それらの数値である場合も含む。
The n-NC of the present invention has a higher BET specific surface area than the conventional NC. The nitrogen content is usually in the range of 6.76 to 14.14%, but is actually 9.0 to 13.7% (note that the theoretical maximum value of the nitrogen content of NC including n-NC is 14.14%, which is commercially available. The highest nitrogen content of NC is about 13.5%.) The n-NC of the present invention is preferably in the form of a fiber having a diameter of 14 to 30 nm.
Since n-NC of the present invention has a high BET specific surface area, it can be expected that the combustion performance is good.
Hereinafter, the production of the n-NC of the present invention will be described. In the present specification, “%” such as acid concentration, nitrogen content, water content, mixing ratio, and apparent yield means mass% unless otherwise specified. In addition, the numerical range in which the two numerical values before and after are included in the range includes those numerical values.

(n-Cゲル)
本発明のn-NCの製造方法では、出発物質としてn-Cゲルを使用する。n-Cゲルやその調製方法は、特許第5206947号公報に記載されている。n-Cゲル(含水率が通常94〜96%程度)は、そのまま用いるか、含水量が70%から94%未満程度まで機械的処理(圧縮)による脱水もしくは遠心脱水してから使用することが好ましい。
(N-C gel)
In the method for producing n-NC of the present invention, n-C gel is used as a starting material. The n-C gel and its preparation method are described in Japanese Patent No. 5206947. The n-C gel (water content is usually about 94 to 96%) can be used as it is, or after being dehydrated by mechanical treatment (compression) or centrifugal dewatering until the water content is about 70% to less than 94%. preferable.

(n-Cゲルの硫酸前処理)
硫酸前処理は、n-Cゲルの膨潤を促進させ、後述のニトロ化処理においてニトロ化の進行に効果がある。硫酸の濃度は限定するものではないが、好ましくは20〜80%、より好ましくは30〜70%である。前処理の硫酸の濃度が20%より低い場合、ニトロ化の進行効果が小さい。濃度が80%より高い場合、前処理工程やニトロ化処理工程でn-Cが溶解し、みかけの収率が低下する。
硫酸前処理を行わない場合、n-Cはニトロ化処理によりほとんど溶解してしまい、有効なn-NCは得られない。
(Sulfuric acid pretreatment of n-C gel)
The sulfuric acid pretreatment promotes the swelling of the n-C gel and is effective in the progress of nitration in the nitration treatment described later. The concentration of sulfuric acid is not limited, but is preferably 20 to 80%, more preferably 30 to 70%. When the concentration of sulfuric acid in the pretreatment is lower than 20%, the effect of nitration is small. When the concentration is higher than 80%, n-C is dissolved in the pretreatment step or nitration treatment step, and the apparent yield decreases.
When sulfuric acid pretreatment is not performed, n-C is almost dissolved by nitration treatment, and effective n-NC cannot be obtained.

(ニトロ化処理)
n-Cのニトロ化処理では、硫酸前処理後のn-Cゲルに硝酸と硫酸との混酸を加え、混合、撹拌してニトロ化を進める。
混酸における硫酸:硝酸の100%濃度換算での割合は、限定するものではないが、90:10〜70:30(好ましくは、85:15〜75:25)とすることができる。混酸に使用する硝酸は、濃度が高い方が高い窒素量のn-NCの合成に有利である。好ましい硝酸の濃度は60〜90%である。混酸に使用する硫酸は、濃度が好ましくは25〜75%のものである。
ニトロ化に用いる混酸の硫酸と硝酸の濃度100%に換算した合計量に対するナノセルロースゲル量の比は、限定するものではないが、0.05〜0.4g/ml、好ましくは0.1〜0.35g/mlとすることができる。この比が小さい方が高いみかけの収率や高い窒素量のn-NCを得ることができる。
混酸を加えたn-Cはゲル状であるので、ニトロ化を進行させるためには、ゲル状物に対して有効な混合、撹拌手段を用いることが望ましい。そのような混合、撹拌手段としては、限定するものではないが、自転・公転ミキサーを挙げることができる。混酸・n-C混合ゲルは、混合、撹拌中に昇温する場合が有るので、好ましくは40℃を超えないように間欠的又は連続的に冷却する。
(Nitration treatment)
In the nitration treatment of n-C, a mixed acid of nitric acid and sulfuric acid is added to the n-C gel after the sulfuric acid pretreatment, and the nitration proceeds by mixing and stirring.
The ratio of sulfuric acid: nitric acid in terms of 100% concentration in the mixed acid is not limited, but can be 90:10 to 70:30 (preferably 85:15 to 75:25). The nitric acid used for the mixed acid is advantageous for the synthesis of n-NC having a higher nitrogen content when the concentration is higher. A preferable concentration of nitric acid is 60 to 90%. The sulfuric acid used for the mixed acid preferably has a concentration of 25 to 75%.
The ratio of the amount of nanocellulose gel to the total amount of the mixed acid used for nitration converted to sulfuric acid and nitric acid is 100%, but is not limited, but is 0.05 to 0.4 g / ml, preferably 0.1 to 0.35 g / ml. can do. The smaller the ratio, the higher the apparent yield and the higher the amount of n-NC.
Since n-C to which a mixed acid has been added is in the form of a gel, it is desirable to use a mixing and stirring means effective for the gel in order to proceed with nitration. Such mixing and stirring means include, but are not limited to, a rotation / revolution mixer. Since the mixed acid / n-C mixed gel may be heated during mixing and stirring, it is preferably cooled intermittently or continuously so as not to exceed 40 ° C.

(ニトロ化処理後の任意工程:洗浄処理、乾燥処理)
ニトロ化処理後のn-NCは、必要に応じて、洗浄処理や乾燥処理を行うことができる。そのような洗浄処理や乾燥処理としては、従来のニトロ化処理後のNCに対して採用されているものを使用することができる。
洗浄処理としては、水洗浄や煮沸洗浄があり、n-NC中の混酸が除去される。
乾燥処理では、遠心脱水等の適宜の手段により脱水した後、n-NCが凝集しないように乾燥を行うことにより50〜900m2/gのBET比表面積のn-NCとすることができる。そのような乾燥手段としては凍結乾燥が好ましい。
凍結乾燥では、n-NC中の水分の少なくとも一部を炭素数1〜4程度の低級アルコール(例えば、メタノール、エタノール、n-プロパノール、n-ブタノール及びその異性体)に置換してから凍結し、真空下(1〜5Torr.好ましくは2〜4Torr)で乾燥するのが高い比表面積を得るうえで好ましい。
(Optional steps after nitration treatment: washing treatment, drying treatment)
The n-NC after the nitration treatment can be washed or dried as necessary. As such washing treatment and drying treatment, those employed for the NC after the conventional nitration treatment can be used.
The washing process includes water washing and boiling washing, and the mixed acid in n-NC is removed.
In the drying treatment, after dehydrating by an appropriate means such as centrifugal dehydration, the n-NC having a BET specific surface area of 50 to 900 m 2 / g can be obtained by drying so that n-NC does not aggregate. As such a drying means, freeze-drying is preferable.
In lyophilization, at least part of the water in n-NC is replaced with lower alcohols having about 1 to 4 carbon atoms (for example, methanol, ethanol, n-propanol, n-butanol and isomers thereof) and then frozen. In order to obtain a high specific surface area, drying under vacuum (1 to 5 Torr, preferably 2 to 4 Torr) is preferable.

(n-NC)
本発明のn-NCは、原料のn-Cとほぼ同等か又はそれよりも直径がやや細くなった繊維状のものである。それ故、そのBET比表面積は、原料のn-Cと同程度以上の50〜900m2/gとすることができる。
(N-NC)
The n-NC of the present invention is in the form of a fiber whose diameter is substantially the same as or slightly smaller than that of the raw material n-C. Therefore, the BET specific surface area can be set to 50 to 900 m 2 / g, which is equal to or higher than n-C of the raw material.

以下、実施例により本発明を更に詳細に説明する。本発明の内容はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The content of the present invention is not limited to this embodiment.

<実施例1:n-NCの製造例1>
(1)n-Cゲルの作製
含水量が約95%のn-Cゲルを作製した。
(2)n-Cゲルの脱水
上記(1)で作製したn-Cゲルを遠心分離機((株)久保田製作所製 テーブルトップ遠心機5420)を用いて10分間遠心脱水し、含水量が約92%の脱水n-Cゲル(原料ゲル)を得た。
(3)硫酸前処理(2回)
上記(2)で得た脱水n-Cゲル16gと濃度65%の硫酸16mLを自転公転ミキサー(ARE310、THINKY製)で10分間混合・撹拌した後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水し、一次硫酸前処理n-Cゲルを得た。
この一次硫酸前処理n-Cゲルに濃度65%の硫酸16mLを加え、再度、自転公転ミキサー(ARE310、THINKY製)で10分撹拌した後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水し、二次硫酸前処理n-Cゲルを得た。
(4)混酸の調製
ドラフト内で、氷温に冷却しながら、表1中に記載の量の硝酸(濃度70%)に硫酸(濃度98%)を徐々に加えて混酸を調製した。調製後の混酸は4℃程度に保持した。
(5)ニトロ化
上記(3)で得られた硫酸前処理n-Cゲルを上記(4)で調製した混酸140mLに加え、4℃程度になるまで冷却保持した。
4℃程度に保持された溶液を自転公転ミキサー(ARE310、THINKY製)、で10分間撹拌した後、温度が30℃程度まで上昇した溶液を30分間氷水で4℃程度まで冷却した。これらの撹拌と冷却を5回繰り返し、ニトロ化を完了して、未洗浄n-NCゲルを得た。
(6)水洗浄
上記(5)で得た未洗浄n-NCゲルを3L容器に入れ、純水3L程度を注水後、ガラス棒で撹拌し、n-NCゲルが沈殿するまで30分〜12時間放置し、上澄みを廃棄した。これらの注水、撹拌、沈殿、及び、上澄み廃棄を3〜4回繰り返し、n-NCゲルをpH7まで洗浄を進めた。
pH7まで洗浄を進めたn-NCゲルを遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で5分間脱水し、水洗浄n-NCゲルを得た。
(7)煮沸洗浄
上記(6)で得た水洗浄n-NCゲル1gあたり10mL以上注水し、還流装置付のナスフラスコを用いて8時間煮沸洗浄を行った後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水した。これらの注水、煮沸洗浄、遠心脱水をpH7で安定するまで数回繰り返し、煮沸洗浄n-NCゲル(生成ゲル)を得た。
(8)凍結乾燥
上記(7)で得た煮沸洗浄n-NCゲル1gに炭素数1〜4程度の低級アルコール1mLを添加し、自転公転ミキサー(ARE310、THINKY製)で撹拌した後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水した。これらの添加、撹拌、遠心脱水を3〜4回繰り返した。
得られたn-NC1gに低級アルコール0.5mLを添加し、自転公転ミキサー(ARE310、THINKY製)で撹拌し、冷蔵庫に入れて冷却し、完全に凍結させた。凍結後、半解凍し、ナスフラスコに入れた状態で真空乾燥器にセットし、炭素数1〜4程度の低級アルコールと水分が完全に揮発するまで凍結乾燥を行い、羽毛状のn-NCを得た。
(9)製造されたn-NCについて
上記(8)で得た実験#27のn-NCについて、走査型電子顕微鏡(日本電子(株)製JSM-7400)で観察したところ、平均直径は20nm程度であり、原料のn-Cと同様のナノ繊維構造を有するものであった。また、BET比表面積を測定したところ、103m2/gであり、原料のn-Cの比表面積100〜130m2/gと同程度であった。また、窒素含有量は、13.7%程度であった。
<Example 1: Production Example 1 of n-NC>
(1) Production of n-C gel An n-C gel having a water content of about 95% was produced.
(2) Dehydration of n-C gel The n-C gel prepared in (1) above was centrifuged for 10 minutes using a centrifuge (Table Top Centrifuge 5420, manufactured by Kubota Corporation), and the water content was about A 92% dehydrated n-C gel (raw material gel) was obtained.
(3) Sulfuric acid pretreatment (twice)
16 g of the dehydrated n-C gel obtained in (2) above and 16 mL of 65% sulfuric acid were mixed and stirred for 10 minutes with a rotating / revolving mixer (ARE310, manufactured by THINKY), and then a centrifuge (Table made by Kubota Corporation). Centrifugal dehydration was performed with a top centrifuge 5420) to obtain a primary sulfuric acid pretreated n-C gel.
After adding 16 mL of 65% sulfuric acid to this primary sulfuric acid pre-treated n-C gel and stirring again for 10 minutes with an auto-revolution mixer (ARE310, manufactured by THINKY), centrifuge (Table top centrifuge manufactured by Kubota Corporation) Machine 5420) to obtain a secondary sulfuric acid pretreated n-C gel.
(4) Preparation of mixed acid While cooling to ice temperature in a fume hood, sulfuric acid (concentration 98%) was gradually added to nitric acid (concentration 70%) shown in Table 1 to prepare a mixed acid. The mixed acid after preparation was kept at about 4 ° C.
(5) Nitration The sulfuric acid pretreatment n-C gel obtained in (3) above was added to 140 mL of the mixed acid prepared in (4) above, and the mixture was kept cooled until it reached about 4 ° C.
The solution maintained at about 4 ° C. was stirred for 10 minutes with a rotation and revolution mixer (ARE310, manufactured by THINKY), and then the solution whose temperature had risen to about 30 ° C. was cooled to about 4 ° C. with ice water for 30 minutes. These stirring and cooling were repeated 5 times to complete the nitration, and an unwashed n-NC gel was obtained.
(6) Water washing The unwashed n-NC gel obtained in (5) above is placed in a 3 L container, about 3 L of pure water is poured, and then stirred with a glass rod, until 30 minutes to 12 until the n-NC gel precipitates. The supernatant was discarded after standing for a period of time. These water injection, stirring, precipitation, and discarding the supernatant were repeated 3 to 4 times, and the n-NC gel was washed to pH 7.
The n-NC gel that had been washed to pH 7 was dehydrated with a centrifuge (Table Top Centrifuge 5420, manufactured by Kubota Corporation) for 5 minutes to obtain a water-washed n-NC gel.
(7) Boiling and washing After pouring water in an amount of 10 mL or more per 1 g of the water washing n-NC gel obtained in (6) above, performing boiling washing for 8 hours using a eggplant flask equipped with a reflux device, then centrifuge (Corporation) Centrifugal dehydration was performed using a table top centrifuge 5420) manufactured by Kubota Corporation. These water injection, boiling washing, and centrifugal dehydration were repeated several times until pH 7 was stabilized to obtain boiling washed n-NC gel (generated gel).
(8) Freeze-drying Add 1 mL of a lower alcohol having 1 to 4 carbon atoms to 1 g of boiling-washed n-NC gel obtained in (7) above, stir with a rotating / revolving mixer (ARE310, manufactured by THINKY), and then centrifuge. The centrifugal dehydration was performed with a machine (Table Top Centrifuge 5420, manufactured by Kubota Corporation). These addition, stirring, and centrifugal dehydration were repeated 3 to 4 times.
To 1 g of the obtained n-NC, 0.5 mL of lower alcohol was added, stirred with a rotating / revolving mixer (ARE310, manufactured by THINKY), cooled in a refrigerator, and completely frozen. After freezing, half-thaw and place in an eggplant flask in a vacuum dryer, freeze-dry until the lower alcohol and water with about 1 to 4 carbon atoms are completely volatilized, and add feather-shaped n-NC. Obtained.
(9) About n-NC produced When the n-NC of Experiment # 27 obtained in (8) above was observed with a scanning electron microscope (JSM-7400 manufactured by JEOL Ltd.), the average diameter was 20 nm. It had a nanofiber structure similar to that of n-C as a raw material. Further, the BET specific surface area was measured and found to be 103 m 2 / g, which was about the same as the n-C specific surface area of the raw material of 100 to 130 m 2 / g. The nitrogen content was about 13.7%.

Figure 2018090694
Figure 2018090694

エレクトロスピニング法で作製したNCの直径Xは90〜500nmであり、NCを、直径Xnm、長さYμm、密度ρ(g/cm3;通常1.65g/cm3程度)、表面積S(m2)、重量V(g)とすると、比表面積=S/V=[π・X・Y+π(X/2)^2・2]/[π(X/2)^2・Y・ρ]=4/(ρX)+2/(ρY)、ここでY≫Xであるため、比表面積≒4/(ρX)x103(m2/g)となる。該式により算出した比表面積は、4.8〜26.9m2/gであることから、本発明の実施例のn-NCは、エレクトロスピニング法で作製したn-NCよりも4倍程度以上の比表面積を有するものと言える。
なお、実施例1のn-NCについて、その平均直径20nmに基づいて同様に算出した比表面積は121m2/gである。上記実測値103m2/gは、平均直径に基づく比表面積より少し低い値となっているが、これは繊維同士の多少の重なりによるものと考えられる。
下記の実施例4〜7のn-NCについてはBET比表面積を測定していないが、その繊維の直径はn-Cと同等か又はそれより僅かに小さくなっている。それ故、凍結乾燥などの凝集が防止される乾燥方法を採用することにより、実施例1と同様のBET比表面積が得られると言える。
また、n-Cゲルとしては繊維直径が3〜100nmのものが得られるので、それらの繊維直径のn-Cゲルを用いれば、BET比表面積が50〜900m2/gの範囲内のn-NCを合成することも可能である。
The diameter X of the NC manufactured by electrospinning is 90~500Nm, the NC, diameter X nm, length Ymyuemu, density ρ (g / cm 3; usually 1.65 g / cm 3 or so), surface area S (m 2) of , Weight V (g), specific surface area = S / V = [π ・ X ・ Y + π (X / 2) ^ 2 ・ 2] / [π (X / 2) ^ 2 ・ Y ・ ρ] = 4 / (ρX) + 2 / (ρY), where Y >> X, so that the specific surface area≈4 / (ρX) × 10 3 (m 2 / g). Since the specific surface area calculated by this formula is 4.8 to 26.9 m 2 / g, the n-NC in the examples of the present invention is about 4 times or more the specific surface area than n-NC produced by the electrospinning method. It can be said that it has.
In addition, about n-NC of Example 1, the specific surface area calculated similarly based on the average diameter of 20 nm is 121 m < 2 > / g. The measured value 103 m 2 / g is a value slightly lower than the specific surface area based on the average diameter, which is considered to be due to a slight overlap between the fibers.
Although the BET specific surface area was not measured for the n-NC of Examples 4 to 7 below, the diameter of the fiber was equal to or slightly smaller than that of n-C. Therefore, it can be said that a BET specific surface area similar to that in Example 1 can be obtained by employing a drying method such as freeze-drying that prevents aggregation.
In addition, since n-C gels having a fiber diameter of 3 to 100 nm can be obtained, if n-C gels having those fiber diameters are used, n-C gels having a BET specific surface area in the range of 50 to 900 m 2 / g are used. It is also possible to synthesize NC.

<実施例2:n-NCの示差走査熱量測定>
実施例1の実験#27のn-NCと同じ製造方法で得た、凍結乾燥n-NC、および、加熱乾燥以外は実施例1と同じ製造方法で得た加熱乾燥n-NC(比較例)について示差走査熱量測定を行った。測定結果を図3に示した。加熱乾燥n-NCについては、乾燥の際に凝集する。よって得られた試料は比表面積が小さいため、ピークが広がってしまい、火薬として性能が出せない。一方、凍結乾燥を行った凍結乾燥n-NCでは、鋭いピークが得られ、比表面積が大きく、火薬として性能が出せることが本結果から予想できる。
<Example 2: n-NC differential scanning calorimetry>
The freeze-dried n-NC obtained by the same production method as the n-NC of Experiment # 27 in Example 1 and the heat-dried n-NC obtained by the same production method as in Example 1 except for heat drying (Comparative Example) Was subjected to differential scanning calorimetry. The measurement results are shown in FIG. Heat-dried n-NC aggregates during drying. Therefore, since the obtained sample has a small specific surface area, the peak spreads and performance as a gunpowder cannot be achieved. On the other hand, with freeze-dried n-NC that has been freeze-dried, it can be predicted from this result that a sharp peak is obtained, the specific surface area is large, and performance as an explosive can be achieved.

<実施例3:n-NCの燃焼試験>
実施例1の実験#27のn-NC又は市販のNC(窒素量13.4%)0.2gを点火装置を備えた100ccの耐圧密閉容器に導入し、密閉後点火した。図3に点火後の時間経過に伴う容器内圧力変化を示す。n-NCはNCに比べ、最高圧力が高く、また、最高圧力に達するまでの時間が短かった。このことから、n-NCは、NCに比べ燃焼性能が向上していると考えられる。
<Example 3: n-NC combustion test>
The n-NC of Experiment # 27 of Example 1 or 0.2 g of commercially available NC (nitrogen amount 13.4%) was introduced into a 100 cc pressure-resistant airtight container equipped with an ignition device, and ignited after sealing. FIG. 3 shows a change in pressure in the container with time after ignition. n-NC had a higher maximum pressure than NC and a shorter time to reach the maximum pressure. From this, it is considered that n-NC has improved combustion performance compared to NC.

<実施例4:n-NCの製造例2、硫酸前処理条件の影響調査>
硫酸前処理の条件およびニトロ化の条件を表2のとおり変更し、実施例1の実験#27と同様にしてn-NCを製造した。硫酸濃度が65%で1回処理した場合にみかけの収率(=煮沸洗浄n-NCゲル(生成ゲル)/脱水n-Cゲル(原料ゲル))が最も高く210%となった。同濃度で2回処理した場合には、窒素含有率が11.6%と高くなった。
これらの実施例からみて、硫酸前処理後の水分濃度51〜60%がみかけの収率の点で好ましいと言える。また、窒素濃度を高くする点では2回処理することが好ましい。
<Example 4: Production example 2 of n-NC, investigation of influence of sulfuric acid pretreatment conditions>
The conditions for sulfuric acid pretreatment and nitration were changed as shown in Table 2, and n-NC was produced in the same manner as in Experiment # 27 of Example 1. When the sulfuric acid concentration was treated once at 65%, the apparent yield (= boiling washed n-NC gel (generated gel) / dehydrated n-C gel (raw material gel)) was the highest, 210%. When treated twice at the same concentration, the nitrogen content increased to 11.6%.
From these examples, it can be said that a water concentration of 51 to 60% after sulfuric acid pretreatment is preferable in terms of apparent yield. Moreover, it is preferable to perform the treatment twice in terms of increasing the nitrogen concentration.

Figure 2018090694
Figure 2018090694

<実施例5:n-NCの製造例3、ニトロ化条件の影響調査1>
ニトロ化条件における硫酸と硝酸の100%濃度換算での量比等を表3のとおりに変更し、実施例1の実験#27と同様にしてn-NCを製造した。混酸に用いる硫酸量の比を高くすると高い収率が得られた。混酸に用いる硫酸量の比が84(実験#6)の場合、みかけの収率と窒素含有率がバランス良く、高くなった。
<Example 5: Production example 3 of n-NC, influence investigation 1 of nitration conditions>
The amount ratio of sulfuric acid and nitric acid in nitration conditions in terms of 100% concentration was changed as shown in Table 3, and n-NC was produced in the same manner as in Experiment # 27 of Example 1. A higher yield was obtained when the ratio of the amount of sulfuric acid used in the mixed acid was increased. When the ratio of the amount of sulfuric acid used for the mixed acid was 84 (Experiment # 6), the apparent yield and the nitrogen content were well balanced and increased.

Figure 2018090694
Figure 2018090694

<実施例6:n-NCの製造例4、ニトロ化条件の影響調査2>
ニトロ化条件におけるn-Cゲル量の混酸(100%濃度換算)量に対する比等を表4のとおりに変更し、実施例1の実験#27と同様にしてn-NCを製造した。用いるn-Cの量を少なくすると、収率や窒素含有率が高くなった。その傾向は、n-Cゲル/混酸の比が0.2g/ml以下の場合に特に著しい。
<Example 6: Production example 4 of n-NC, investigation 2 of influence of nitration conditions>
The ratio of the amount of n-C gel to the amount of mixed acid (converted to 100% concentration) under nitration conditions was changed as shown in Table 4, and n-NC was produced in the same manner as in Experiment # 27 of Example 1. When the amount of n-C used was reduced, the yield and nitrogen content increased. This tendency is particularly remarkable when the ratio of n-C gel / mixed acid is 0.2 g / ml or less.

Figure 2018090694
Figure 2018090694

<実施例7:n-NCの製造例5、ニトロ化条件の影響調査3>
ニトロ化条件における反応時間を表5のとおりに変更し、実施例1の実験#27と同様にしてn-NCを製造した。反応時間が45分の場合に収率や窒素含有率が最も高くなった。反応時間が90分程度以上に長くなると、収率や窒素含有率が45分の場合よりも低くなった。これらのことから、高いみかけの収率を得るニトロ化処理時間は10〜30分(好ましくは10〜20分)であり、高い窒素含有率を得るニトロ化処理時間は30〜60分(好ましくは40〜50分)であると言える。
<Example 7: Production example 5 of n-NC, influence investigation 3 of nitration conditions>
The reaction time under nitration conditions was changed as shown in Table 5, and n-NC was produced in the same manner as in Experiment # 27 of Example 1. When the reaction time was 45 minutes, the yield and nitrogen content were the highest. When the reaction time was longer than about 90 minutes, the yield and nitrogen content were lower than in the case of 45 minutes. From these facts, the nitration time to obtain a high apparent yield is 10 to 30 minutes (preferably 10 to 20 minutes), and the nitration time to obtain a high nitrogen content is 30 to 60 minutes (preferably 40-50 minutes).

Figure 2018090694
Figure 2018090694

本発明のn-NCは、従来のものよりも高いBET比表面積を有するものであり、無煙火薬、塗料、医薬、接着剤、セルロイド等の分野において利用することが期待される。   The n-NC of the present invention has a higher BET specific surface area than conventional ones, and is expected to be used in the fields of smokeless explosives, paints, medicines, adhesives, celluloids and the like.

Claims (8)

BET比表面積が50〜900m2/gであるナノニトロセルロース。 Nano nitrocellulose having a BET specific surface area of 50 to 900 m 2 / g. 窒素量6.76〜14.14%である請求項1に記載のナノニトロセルロース。   The nano nitrocellulose according to claim 1, wherein the amount of nitrogen is 6.76 to 14.14%. 直径が14〜30nmの繊維状である請求項1又は2に記載のナノニトロセルロース。   The nano nitrocellulose according to claim 1 or 2, wherein the nano nitrocellulose is in a fibrous form having a diameter of 14 to 30 nm. ナノセルロースゲルを硫酸で前処理した後、硫酸と硝酸との混酸でニトロ化するナノニトロセルロースの製造方法。   A method for producing nanonitrocellulose, in which nanocellulose gel is pretreated with sulfuric acid and then nitrated with a mixed acid of sulfuric acid and nitric acid. 前記前処理の硫酸として濃度25〜75%のものを用いる請求項4に記載のナノニトロセルロースの製造方法。   The method for producing nanonitrocellulose according to claim 4, wherein the sulfuric acid having a concentration of 25 to 75% is used as the pretreatment sulfuric acid. 前記ニトロ化を自転・公転ミキサー内で行う請求項4又は5に記載のナノニトロセルロースの製造方法。   The method for producing nanonitrocellulose according to claim 4 or 5, wherein the nitration is carried out in a rotation / revolution mixer. 請求項4〜6のいずれか1項に記載のナノニトロセルロースの製造方法において、ニトロ化後の洗浄工程と乾燥工程を含むナノニトロセルロースの製造方法。   The method for producing nanonitrocellulose according to any one of claims 4 to 6, comprising a washing step after nitration and a drying step. 請求項1〜3のいずれか1項に記載のナノニトロセルロースを有効成分とする無煙火薬。


The smokeless explosive which uses the nano nitrocellulose of any one of Claims 1-3 as an active ingredient.


JP2016234914A 2016-12-02 2016-12-02 Nanonitrocellulose and its manufacturing method Active JP6845499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016234914A JP6845499B2 (en) 2016-12-02 2016-12-02 Nanonitrocellulose and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016234914A JP6845499B2 (en) 2016-12-02 2016-12-02 Nanonitrocellulose and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018090694A true JP2018090694A (en) 2018-06-14
JP6845499B2 JP6845499B2 (en) 2021-03-17

Family

ID=62565164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234914A Active JP6845499B2 (en) 2016-12-02 2016-12-02 Nanonitrocellulose and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6845499B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515525B1 (en) * 2022-01-10 2023-03-29 제이엔케이에너지 주식회사 The nitrocellous production method for reducing environmental pollution and isopropyl alcohol used nitrocellous production recycling method
WO2023070185A1 (en) * 2021-10-25 2023-05-04 Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais Porous foam for retaining organic and inorganic compounds, method for producing same and uses thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070185A1 (en) * 2021-10-25 2023-05-04 Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais Porous foam for retaining organic and inorganic compounds, method for producing same and uses thereof
KR102515525B1 (en) * 2022-01-10 2023-03-29 제이엔케이에너지 주식회사 The nitrocellous production method for reducing environmental pollution and isopropyl alcohol used nitrocellous production recycling method
WO2023132469A1 (en) * 2022-01-10 2023-07-13 제이엔케이에너지 주식회사 Preparation method for nitrocellulose for reducing environmental pollution and isopropyl alcohol recycling method used for preparation of nitrocellulose

Also Published As

Publication number Publication date
JP6845499B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
Guo et al. Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal
Ma et al. Facile, continuous and large-scale production of core–shell HMX@ TATB composites with superior mechanical properties by a spray-drying process
Zhang et al. Recent advances on the crystallization engineering of energetic materials
CN110590565B (en) Preparation method of highly-spheroidized 1,1-diamino-2,2-dinitroethylene crystal
JP6845499B2 (en) Nanonitrocellulose and its manufacturing method
Okada et al. Preparation and characterization of nitrocellulose nanofiber
CN103539800A (en) Preparation method of large-particle hexanitrohexaazaisowurtzitane explosive
Korchagina et al. Miscanthus× giganteus var. KAMIS as a new feedstock for cellulose nitrates
CN103752263A (en) Preparation method of nano attapulgite adsorbent
CN110550607B (en) alpha-AlH 3 flotation method and application thereof
US20100279102A1 (en) Homogeneous mesoporous nanoenergetic metal oxide composites and fabrication thereof
CN108997238B (en) Preparation method of fine particle NTO
CN108299324B (en) Preparation method of spherical 5,5 &#39;-bitetrazole-1, 1&#39; -dioxygen hydroxylammonium salt
Zhang et al. Rapid Assembly and Preparation of Energetic Microspheres LLM‐105/CL‐20
CN101857516B (en) Micro-pore firework powder capable with improved fire ignition and transfer properties and preparation method thereof
CN106518883B (en) Six azepine isoamyl of nanometer ε crystal form hexanitro hereby alkane explosive and its batch preparation
CN112299931A (en) Preparation method of multi-scale spherical FOX-7 explosive particles
CN112725917A (en) Preparation method of areca seed cellulose nanofibrils
Yang et al. Preparation and characteristic of NC/RDX nanofibers by electrospinning
Gao et al. Study of an energetic-oxidant co-crystal: Preparation, characterisation, and crystallisation mechanism
US20150299421A1 (en) Production of Boron Carbide Powder
Shi et al. Process optimization and characterization of an HMX/Viton Nanocomposite
Yang et al. Preparation and characterization of core–shell structured FOX-7/F2602 PBX with improved thermal stability and reduced sensitivity
RU2607206C2 (en) Method of producing plastic explosive compound
CHEN et al. Stable zirconium carbide fibers fabricated by centrifugal spinning technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200415

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6845499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250