JP6844557B2 - How to operate the blast furnace - Google Patents

How to operate the blast furnace Download PDF

Info

Publication number
JP6844557B2
JP6844557B2 JP2018027619A JP2018027619A JP6844557B2 JP 6844557 B2 JP6844557 B2 JP 6844557B2 JP 2018027619 A JP2018027619 A JP 2018027619A JP 2018027619 A JP2018027619 A JP 2018027619A JP 6844557 B2 JP6844557 B2 JP 6844557B2
Authority
JP
Japan
Prior art keywords
blast furnace
distribution
furnace
coke
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027619A
Other languages
Japanese (ja)
Other versions
JP2019143190A (en
Inventor
光輝 照井
光輝 照井
佑介 柏原
佑介 柏原
深田 喜代志
喜代志 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018027619A priority Critical patent/JP6844557B2/en
Publication of JP2019143190A publication Critical patent/JP2019143190A/en
Application granted granted Critical
Publication of JP6844557B2 publication Critical patent/JP6844557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、高炉の操業方法に関する。 The present invention relates to a method of operating a blast furnace.

一般に、高炉では、炉頂部から原料である鉱石(鉱石にコークスの一部が混合される場合もある)とコークスが交互に装入され、炉内には鉱石層とコークス層が交互に堆積した状態で原料が充填される。高炉の操業では、炉頂部におけるこれら装入物の分布を適正な状態に維持することが重要であり、装入物分布が適正でないとガス流の分布の不均一化、ガス通気性の低下、還元効率の低下等の要因によって生産性の低下や高炉操業の不安定化を招く。このような背景から、炉頂部から原料を装入する手段として、旋回シュート(分配シュート)を備えたベルレス装入装置が広く用いられている。この装入装置は、旋回シュートの傾動角及び旋回数を制御することによって炉半径方向の原料の落下位置と堆積量を調整することにより装入物分布を制御する。 Generally, in a blast furnace, raw material ore (sometimes a part of coke is mixed with the ore) and coke are alternately charged from the top of the furnace, and the ore layer and the coke layer are alternately deposited in the furnace. The raw material is filled in the state. In the operation of the blast furnace, it is important to maintain the distribution of these charges at the top of the furnace in an appropriate state. Factors such as a decrease in reduction efficiency lead to a decrease in productivity and destabilization of blast furnace operation. Against this background, a bellless charging device equipped with a swivel chute (distribution chute) is widely used as a means for charging raw materials from the top of the furnace. This charging device controls the charge distribution by adjusting the drop position and the amount of deposit of the raw material in the radial direction of the furnace by controlling the tilt angle and the number of turns of the swivel chute.

鉄と鋼、清水他、69(12)、S726、1983Iron and Steel, Shimizu et al., 69 (12), S726, 1983 加納学の公式ウェブサイト、“独立成分分析”、[online]、平成30年1月30日検索、インターネット<URL:http://manabukano.brilliant-future.net/document/text-ICA.pdf>Kano Gaku's official website, "Independent component analysis", [online], January 30, 2018 search, Internet <URL: http://manabukano.brilliant-future.net/document/text-ICA.pdf>

銑鉄を製造する高炉(「溶鉱炉」ともいう)では、通常、原料である鉄鉱石(単に「鉱石」とも記す)と還元材であるコークスとをそれぞれが交互に層状となるように炉頂部から装入し、炉内に鉱石層とコークス層とを交互に形成している。そして、図1(a)に示す高炉1の概略縦断面図における炉半径方向(炉口径方向)の鉱石層及びコークス層の堆積後の分布(装入物分布)を調整することにより、炉内のガス流を制御している。高炉の安定操業を維持するためには、高炉内で良好な通気性(ガスの流れやすさ)を確保し、炉下部の羽口(図1に示す符号2)と呼ばれる孔から炉内に供給される高温の空気の流れを安定化させることが重要である。高炉内における通気性は、装入される鉱石及びコークスの性状や粒度、炉頂部からの装入物の装入方法による影響を大きく受ける。高炉内に装入される装入物は、通常、図1(b)に示すように鉱石OとコークスCが層状になるように交互に装入される。また、高炉中のガスの流れは、通常、図1(b),(c)に示される高炉の半径方向の鉱石層やコークス層の厚みLo,Lcの分布やこれらの厚みの比(Lo/(Lo+Lc))を調整することにより制御される。 In a blast furnace that produces pig iron (also called a "melting furnace"), iron ore (also simply referred to as "ore") as a raw material and coke as a reducing material are usually loaded from the top of the furnace so that they are alternately layered. The ore layer and the coke layer are alternately formed in the furnace. Then, by adjusting the distribution (charge distribution) of the ore layer and the coke layer in the furnace radial direction (furnace diameter direction) in the schematic vertical sectional view of the blast furnace 1 shown in FIG. 1A, the inside of the furnace is adjusted. Controls the gas flow. In order to maintain stable operation of the blast furnace, it is necessary to ensure good air permeability (easiness of gas flow) in the blast furnace and supply it into the furnace through a hole called a tuyere (reference numeral 2 shown in FIG. 1) at the bottom of the furnace. It is important to stabilize the flow of hot air that is produced. The air permeability in the blast furnace is greatly affected by the properties and particle size of the ore and coke to be charged, and the method of charging the charged material from the top of the furnace. The charge to be charged into the blast furnace is usually charged alternately so that the ore O and the coke C are layered as shown in FIG. 1 (b). Further, the gas flow in the blast furnace is usually the distribution of the thickness Lo and Lc of the ore layer and the coke layer in the radial direction of the blast furnace shown in FIGS. 1 (b) and 1 (c) and the ratio of these thicknesses (Lo /). (Lo + Lc)) is adjusted.

従来、装入物分布が高炉の操業に及ぼす影響は、実機での実測データや模型を用いた実験により検討されている。例えば非特許文献1に示されているように、炉上部に装入された鉱石とコークスの装入量の比が高炉内の装入物の構造や炉内のガス流に及ぼす影響が模型による実験によって確認されており、この結果により得られた知見の一部を実操業に反映しようという試みがある。しかしながら、実際の高炉では操業指標に影響を及ぼす外乱が多数あるため、整理された条件下で実施された前述の模型実験によって得られた知見通りの結果とはならないことは往々にして起こりうる。このため、設定した装入物分布とその結果である操業指標との関連性を炉内現象の推定に基づいて明確化することは容易ではない。結果、所望の操業指標を実現するために必要な装入物分布を精度よく決定することは困難である。 Conventionally, the influence of the distribution of charged materials on the operation of the blast furnace has been investigated by actual measurement data on actual machines and experiments using models. For example, as shown in Non-Patent Document 1, the influence of the ratio of the amount of ore charged in the upper part of the furnace and the amount of coke charged on the structure of the charged material in the blast furnace and the gas flow in the furnace depends on the model. It has been confirmed by experiments, and there is an attempt to reflect some of the findings obtained from this result in actual operations. However, in an actual blast furnace, there are many disturbances that affect the operation index, so it is often possible that the results obtained by the above-mentioned model experiments conducted under organized conditions are not as obtained. Therefore, it is not easy to clarify the relationship between the set charge distribution and the resulting operation index based on the estimation of the in-core phenomenon. As a result, it is difficult to accurately determine the charge distribution required to realize the desired operation index.

本発明は、上記課題に鑑みてなされたものであって、所望の操業指標を実現するために必要な装入物分布を精度よく決定可能な高炉の操業方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for operating a blast furnace, which can accurately determine the distribution of charges necessary for realizing a desired operation index.

本発明に係る高炉の操業方法は、高炉内に鉱石とコークスを交互に層状に装入して高炉を操業する高炉の操業方法であって、炉半径方向の鉱石及びコークスの分布データを測定し、測定された分布データに対して独立成分分析を施すことにより分布データの特徴量を抽出する抽出ステップと、前記抽出ステップにおいて抽出された前記分布データの特徴量と高炉の操業指標との関係性に基づいて炉半径方向の鉱石及びコークスの分布を決定する決定ステップと、を含むことを特徴とする。 The blast furnace operating method according to the present invention is a blast furnace operating method in which ore and coke are alternately charged into the blast furnace in layers to operate the blast furnace, and distribution data of ore and coke in the radial direction of the furnace is measured. , The relationship between the extraction step of extracting the feature amount of the distribution data by performing independent component analysis on the measured distribution data, and the feature amount of the distribution data extracted in the extraction step and the operation index of the blast furnace. It is characterized by including a determination step of determining the distribution of ore and coke in the radial direction of the furnace based on.

本発明に係る高炉の操業方法は、上記発明において、前記分布データが、高炉の半径方向の位置と時間による鉱石及びコークスの分布データであることを特徴とする。 The method for operating a blast furnace according to the present invention is characterized in that, in the above invention, the distribution data is distribution data of ore and coke according to the position and time in the radial direction of the blast furnace.

本発明に係る高炉の操業方法は、上記発明において、前記分布データが、高炉の装入物堆積面上の位置と時間による鉱石及びコークスの分布データであることを特徴とする。 The method for operating a blast furnace according to the present invention is characterized in that, in the above invention, the distribution data is distribution data of ore and coke according to the position and time on the deposit surface of the blast furnace.

本発明に係る高炉の操業方法によれば、所望の操業指標を実現するために必要な装入物分布を精度よく決定することができる。 According to the operation method of the blast furnace according to the present invention, it is possible to accurately determine the distribution of charges required to realize a desired operation index.

図1は、高炉の概略縦断面図、高炉の装入物分布、及び層厚比の概略を説明するための図である。FIG. 1 is a diagram for explaining a schematic vertical cross-sectional view of a blast furnace, a distribution of charges in the blast furnace, and an outline of a layer thickness ratio. 図2は、実機で測定した高炉炉口部における層厚比の分布の一例を示す図である。FIG. 2 is a diagram showing an example of the distribution of the layer thickness ratio in the blast furnace mouth portion measured by the actual machine. 図3は、図2に示す層厚比に対して独立成分分析を実施した際の各基底の炉半径方向の分布を示す図である。FIG. 3 is a diagram showing the distribution in the furnace radial direction of each base when the independent component analysis was performed with respect to the layer thickness ratio shown in FIG. 図4は、独立成分分析によって算出した各基底の重みとコークス比の相関を示す図である。FIG. 4 is a diagram showing the correlation between the weight of each basis and the coke ratio calculated by the independent component analysis. 図5は、実機において測定した高炉炉口における無次元半径方向の層厚比の分布の30分毎の時系列推移データの一例を示す図である。FIG. 5 is a diagram showing an example of time-series transition data every 30 minutes of the distribution of the layer thickness ratio in the dimensionless radial direction at the blast furnace mouth measured in the actual machine. 図6は、図5に示す層厚比の分布の時系列推移データを独立成分分析の各基底に分解した結果を示す図である。FIG. 6 is a diagram showing the results of decomposing the time-series transition data of the layer thickness ratio distribution shown in FIG. 5 into each basis of the independent component analysis.

以下、図面を参照して、本発明に係る高炉の操業方法について説明する。 Hereinafter, a method of operating the blast furnace according to the present invention will be described with reference to the drawings.

まず、本発明に係る高炉の操業方法で用いる独立成分分析(Independent Component Analysis : ICA)の概略について説明する。独立成分分析とは、分布を有するある観測値を統計的に互いに独立である複数個の成分(以下、これを基底と呼称する)に分類することを意味する。具体的には、ある観測値Xに対して独立成分分析が可能である場合、観測値Xは基底S(i=1〜n)を用いて以下の数式(1)に示すような線形結合式で表される。ここで、基底Sは観測値Xの分布を特徴付ける量(特徴量)であり、a(i=1〜n)は各基底Sの重みを表す。また、基底Sの個数nは任意であり、基底S及び重みaは、例えば非特許文献2に記載の手法によって算出できる。 First, an outline of Independent Component Analysis (ICA) used in the operating method of the blast furnace according to the present invention will be described. Independent component analysis means classifying an observed value having a distribution into a plurality of components that are statistically independent of each other (hereinafter, this is referred to as a basis). Specifically, when an independent component analysis is possible for a certain observed value X, the observed value X is a linear combination as shown in the following mathematical formula (1) using the basis S i (i = 1 to n). It is represented by an expression. Here, the base S i is a value characterizing the distribution of the observed values X (feature quantity), a i (i = 1~n ) represents the weight of each basis S i. The number n of base S i is arbitrary, basal S i and weights a i can be calculated by the method described for example in Non-Patent Document 2.

Figure 0006844557
Figure 0006844557

本発明の発明者らは、数式(1)に示す観測値Xを高炉の炉上部における装入物の炉半径方向の装入物分布(又は装入物分布の比率)のデータとして独立成分分析を実施して特徴量を抽出した。装入物分布は通常、一回に装入された全装入物の厚さに対する鉱石層の厚さの比で表されることが多い。炉半径方向の装入物の厚さの分布において、鉱石層の厚さをLo、コークス層の厚さをLcとした場合、装入物の全厚さLo+Lcに対する鉱石層の厚さLoの比率Lo/(Lo+Lc)の分布は図1(c)に示すようになる。 The inventors of the present invention use the observed value X shown in the equation (1) as data of the charge distribution (or the ratio of the charge distribution) of the charge in the furnace upper part of the blast furnace as independent component analysis. Was carried out to extract the feature amount. The charge distribution is usually expressed as the ratio of the thickness of the ore layer to the thickness of all the charges charged at one time. In the distribution of the thickness of the charge in the radial direction of the furnace, when the thickness of the ore layer is Lo and the thickness of the coke layer is Lc, the ratio of the thickness Lo of the ore layer to the total thickness Lo + Lc of the charge. The distribution of Lo / (Lo + Lc) is as shown in FIG. 1 (c).

本発明では、図1(c)に示す鉱石層の層厚比Lo/(Lo+Lc)を装入物分布の観測値Xとし、層厚比Lo/(Lo+Lc)に対して独立成分分析を実施する。なお、装入物の厚さLo,Lcは日々の操業において高炉の炉上部に設置されている非接触式の測定機によって通常定期的に測定され、随時測定データが蓄積されている。数式(1)に示す各基底Sの重みaと高炉操業における種々の指標(操業指標)との相関を調べることで、高炉操業に及ぼす各基底Sの影響度合いが明らかとなる。また、相関の高い重みaを有する基底Sが作用するような装入物分布を決定することにより、高炉を安定的に操業して操業の改善が見込まれる。 In the present invention, the layer thickness ratio Lo / (Lo + Lc) of the ore layer shown in FIG. 1 (c) is set as the observed value X of the charge distribution, and the independent component analysis is performed for the layer thickness ratio Lo / (Lo + Lc). .. The thickness Lo and Lc of the charged material are usually measured regularly by a non-contact measuring machine installed in the upper part of the blast furnace in daily operation, and the measurement data is accumulated as needed. By examining the correlation between various indicators (operation indicator) in the weight a i and blast furnace operation for each basis S i shown in equation (1), the degree of influence each basis S i on the blast furnace operation becomes apparent. Moreover, by determining the charge distribution as acting basal S i having a high correlation weight a i, improvement in operation by operating blast furnace stably expected.

なお、炉半径方向の装入物の厚さの分布、例えば装入された全装入物の厚さに対する鉱石層の厚さの比の炉半径方向の分布は、旋回シュートの傾動角と旋回速度、ならびに装入物の装入速度から装入物の落下位置と落下量を推定することにより求めることができる。しかしながら、この方法では、装入物が落下して着地する場所の堆積面の傾斜や、装入物の安息角、すなわち転がり難さが変化した場合に推定精度が低下する。このため、送風量や微粉炭吹込み量等の操業条件ならびに銘柄や粒度等の原料条件が変動する局面での適用は困難である。しかしながら、操業条件や原料条件が変動し不安定となりがちな局面でこそ本発明による操業の改善が望まれるため、本発明の発明者らは操業条件や原料条件が変動する局面でも装入物の厚さの分布を精度良く把握できる方法を模索した。 The distribution of the thickness of the charged material in the radial direction of the furnace, for example, the distribution of the ratio of the thickness of the ore layer to the thickness of all the charged materials in the radial direction of the furnace is the tilt angle of the swivel chute and the swivel. It can be obtained by estimating the drop position and the amount of the charge from the speed and the charge speed of the charge. However, in this method, the estimation accuracy is lowered when the inclination of the sedimentary surface at the place where the charge falls and lands or the angle of repose of the charge, that is, the rolling difficulty changes. For this reason, it is difficult to apply it when the operating conditions such as the amount of air blown and the amount of pulverized coal blown and the raw material conditions such as the brand and particle size fluctuate. However, since it is desired to improve the operation by the present invention only when the operating conditions and the raw material conditions tend to fluctuate and become unstable, the inventors of the present invention have the charges even when the operating conditions and the raw material conditions fluctuate. We sought a method that could accurately grasp the thickness distribution.

本発明の発明者らはまず、旋回シュートの旋回の間隙で測定が可能な非接触式のレベル計によって、コークスと鉱石のそれぞれ1回の装入の前後で炉半径方向の装入物堆積面の高さの分布を測定した。そして、1回の装入前後の堆積面高さの差の分布と予め準備しておいた堆積物の下降速度の分布とを足し合わせることで、コークスと鉱石のそれぞれ1回の装入での全装入物の厚さに対する鉱石層の厚さの比の分布を得た。この方法によれば、装入物が堆積面に着地した後の転がり距離が変化しても、装入物が転がった後の堆積面を測定するので原料条件が変動してもノイズと思われる基底や基底の影響度合いの変動は減少する。 First, the inventors of the present invention use a non-contact level meter capable of measuring in the swirling gap of the swirl chute, and the charge deposit surface in the radial direction of the furnace before and after each charge of coke and ore. The height distribution of was measured. Then, by adding the distribution of the difference in the height of the sedimentary surface before and after one charge and the distribution of the descending velocity of the sediment prepared in advance, coke and ore can be charged once each. The distribution of the ratio of the thickness of the ore layer to the thickness of the total charge was obtained. According to this method, even if the rolling distance after the charge has landed on the deposit surface changes, the deposit surface after the charge has rolled is measured, so even if the raw material conditions fluctuate, it is considered to be noise. Fluctuations in the basis and the degree of influence of the basis are reduced.

ところが、この方法でも微粉炭吹込み量や送風量を変化させた場合にはノイズとみられる基底や基底の影響度合いの変動が認められた。そこで、本発明の発明者らは、堆積物の下降速度の分布を一定としたことがノイズの原因であると推定し、堆積物の下降速度の分布を直接測定することによってこの問題を解決することを想到した。具体的には、堆積物の下降速度の分布を直接測定するにあたっては、炉半径方向で非接触式のレベル計を走査させ、1回の装入の間に炉半径方向の各位置で少なくとも3回以上装入物上面(堆積面)のレベルを測定した。その結果、旋回シュートが通過した位置では通過後数秒間は装入物による堆積面の上昇だけでなく装入物の転がり等による堆積面の高速な変動が認められたが、その後は高速な変動は終息し、緩やかな堆積面の下降が観測できた。こうして装入物の着地による堆積面の上昇と共に装入物が着地しない間の堆積面の下降を測定することにより、堆積面の下降速度の変動によるノイズが解消された。 However, even with this method, changes in the base and the degree of influence of the base, which are considered to be noise, were observed when the amount of pulverized coal blown and the amount of air blown were changed. Therefore, the inventors of the present invention presume that the constant distribution of the descending velocity of the sediment is the cause of the noise, and solve this problem by directly measuring the distribution of the descending velocity of the sediment. I came up with that. Specifically, in directly measuring the distribution of the descending velocity of the sediment, a non-contact level meter is scanned in the radial direction of the furnace, and at least 3 at each position in the radial direction of the furnace during one charge. The level of the upper surface (deposit surface) of the charge was measured more than once. As a result, at the position where the swivel chute passed, not only the rise of the sedimentary surface due to the charge but also the high-speed fluctuation of the deposit surface due to the rolling of the charge was observed for several seconds after the passage, but after that, the high-speed fluctuation was observed. Has ended, and a gradual descent of the sedimentary surface can be observed. In this way, by measuring the rise of the sedimentary surface due to the landing of the charge and the descent of the sedimentary surface while the charge did not land, the noise due to the fluctuation of the descent speed of the deposit surface was eliminated.

これにより、上述した送風量や微粉炭吹込み量等の操業条件ならびに銘柄や粒度等の原料条件が変動する局面で適用しても基底や基底の影響度合いに関して異常な値が出力されることを抑制できる.結果、基底と操業指標との相関関係を評価し、評価結果に基づいて装入物分布を決定することにより、非定常期も含めて高炉を安定的に操業できる。 As a result, even if it is applied in a situation where the above-mentioned operating conditions such as the amount of air blown and the amount of pulverized coal blown and the raw material conditions such as the brand and particle size fluctuate, abnormal values regarding the base and the degree of influence of the base are output. It can be suppressed. As a result, by evaluating the correlation between the basis and the operation index and determining the charge distribution based on the evaluation result, the blast furnace can be operated stably even in the unsteady period.

以下、本発明に係る高炉の操業方法の実施例について説明する。 Hereinafter, examples of the operating method of the blast furnace according to the present invention will be described.

[実施例1]
図2は、実機において測定した高炉炉口における無次元半径(r/R:Rは高炉上部(炉口)の半径(図1(a)参照))方向の層厚比の分布データの一例を示す図である。図2に示す層厚比の分布データに対して独立成分分析を行い、図2に示す層厚比の分布データを独立成分分析の各基底に分解した結果を図3(a)〜(c)に示す。なお、独立成分分析における基底の数は任意であるが、本実施例では基底の数を3とした。すなわち、図2に示す層厚比の分布データは図3(a)〜(c)に示す基底1〜3を用いて以下に示す数式(2)のように表される。
[Example 1]
FIG. 2 shows the distribution data of the layer thickness ratio in the direction of the dimensionless radius (r / R 0 : R 0 is the radius of the upper part (furnace) of the blast furnace (see FIG. 1 (a))) at the blast furnace mouth measured in the actual machine. It is a figure which shows an example. Independent component analysis was performed on the layer thickness ratio distribution data shown in FIG. 2, and the results of decomposing the layer thickness ratio distribution data shown in FIG. 2 into each base of the independent component analysis are shown in FIGS. 3 (a) to 3 (c). Shown in. The number of bases in the independent component analysis is arbitrary, but in this example, the number of bases was set to 3. That is, the distribution data of the layer thickness ratio shown in FIG. 2 is expressed by the following mathematical formula (2) using the bases 1 to 3 shown in FIGS. 3 (a) to 3 (c).

Figure 0006844557
Figure 0006844557

数式(2)に示す基底1〜3の重みa,a,aと操業指標との相関を図4(a)〜(c)に示す。本実施例では、操業指標としてコークス比を選択した。ここで、コークス比とは、溶銑1トン当たりを生産するために必要なコークスの重量(kg)であり、コークス比が低い程操業は安定しているとされる。また、コークス比及び重みのデータは日毎の平均値とし、データの量は3か月分とした。また、重みのデータは、日々実測している炉口の装入物分布から計算した層厚比の分布データから算出される値とした。図4(a)〜(c)に示すように、基底1,3の重みa,aとコークス比の相関は低い(相関係数Rの値が相対的に小さい)が、基底2の重みaとコークス比の相関は高く(相関係数Rの値が相対的に大きい)、基底2の重みaが正側へ移行する程コークス比が低下することが確認された。 The correlation between weight a 1, a 2, a 3 of the base 1-3 shown in Equation (2) and the operation indicator shown in FIG. 4 (a) ~ (c). In this example, the coke ratio was selected as the operation index. Here, the coke ratio is the weight (kg) of coke required to produce 1 ton of hot metal, and it is said that the lower the coke ratio, the more stable the operation. The coke ratio and weight data were averaged daily, and the amount of data was for 3 months. In addition, the weight data was a value calculated from the distribution data of the layer thickness ratio calculated from the charge distribution of the furnace mouth measured daily. As shown in FIGS. 4A to 4C, the correlation between the weights a1 and a3 of the bases 1 and 3 and the coke ratio is low (the value of the correlation coefficient R is relatively small), but that of the base 2 It was confirmed that the correlation between the weight a 2 and the coke ratio is high (the value of the correlation coefficient R is relatively large), and the coke ratio decreases as the weight a 2 of the base 2 shifts to the positive side.

従って、基底2の重みaが正側に移行する、換言すれば基底2の影響が正に作用するような装入物分布を設定すれば、コークス比の低減が見込めることになる。なお、図3(b)に示すように、基底2は、元データである層厚比の炉半径方向の分布データに対して炉半径方向の中間部の値を低減させる方向に作用する。すなわち、基底2の重みが正側に移行するということは、炉半径方向の中間部の層厚比が低下すること、つまり炉半径方向の中間部のコークス層厚が増加する、及び/又は、炉半径方向の中間部の鉱石層厚が減少する装入物分布に移行することに等しい。 Therefore, the weight a 2 of the base 2 is moved to the positive side, by setting the charge distribution as the influence of the base 2 in other words, acts positively, so that the reduction of coke ratio is expected. As shown in FIG. 3B, the base 2 acts in a direction of reducing the value in the middle portion in the furnace radial direction with respect to the distribution data of the layer thickness ratio in the furnace radial direction, which is the original data. That is, when the weight of the base 2 shifts to the positive side, the layer thickness ratio of the intermediate portion in the radial direction of the furnace decreases, that is, the coke layer thickness of the intermediate portion in the radial direction of the furnace increases, and / or. It is equivalent to shifting to a charge distribution in which the ore layer thickness in the middle part in the radial direction of the furnace decreases.

そこで、装入物分布を特に変更せずに操業を続けた場合(比較例)と、上記知見に基づき基底2の影響を正に作用させる、つまり炉半径方向の中間部の鉱石層厚を低減させる方向へと装入物分布を変更した場合(実施例)とにおける操業指標を比較した。比較結果を以下の表1に示す。表1に示すように、実施例によれば、比較例と比較して、高炉内の通気性を表す通気抵抗指数が低下し、コークス比が低減した。以上のことから、基底と操業指標との相関関係を評価し、評価結果に基づいて装入物分布を決定することにより、高炉を安定的に操業できることが確認された。 Therefore, when the operation is continued without changing the charge distribution (comparative example), the influence of the base 2 is made to act positively based on the above findings, that is, the ore layer thickness in the middle part in the radial direction of the furnace is reduced. The operation indexes in the case where the charge distribution was changed in the direction of making the charge (Example) were compared. The comparison results are shown in Table 1 below. As shown in Table 1, according to the examples, the ventilation resistance index indicating the air permeability in the blast furnace was lowered and the coke ratio was reduced as compared with the comparative example. From the above, it was confirmed that the blast furnace can be operated stably by evaluating the correlation between the basis and the operation index and determining the charge distribution based on the evaluation result.

Figure 0006844557
Figure 0006844557

[実施例2]
図5は、実機において測定した高炉炉口における無次元半径(r/R0:R0は高炉上部(炉口)の半径(図1(a)参照))方向の層厚比の分布の30分毎の時系列推移データの一例を示す図である。図5に示す層厚比の分布の時系列推移データに対して独立成分分析を行い、図5に示す層厚比の分布の時系列推移データを独立成分分析の各基底に分解した。独立成分分析における基底の数は前述のように任意であり、基底の数を増やすほど多様な特徴量を抽出することができる。しかしながら、基底の数が多すぎると層厚比の測定誤差や外乱に起因する統計ノイズの影響が高まるので、重みが操業指標と高い相関を示す基底が見つかることを目安として基底の数を決定することが望ましい。本実施例では無次元半径方向の位置と層厚比の2次元データを扱った実施例1に対して時間が加わった3次元データを扱うので、基底の数は実施例1よりも多い4とした。図5に示す層厚比の分布の時系列推移データを独立成分分析の各基底に分解した結果を図6(a)〜(d)に示す。このように、無次元半径方向の位置と層厚比の2次元データに時間を加えて3次元データに対して独立成分分析を行うことにより、送風量や微粉炭吹込み量等の操業条件、及び/又は、銘柄や粒度等の原料条件の変動が、遅れ時間を伴ってコークス比等の操業指標に影響を与える場合にも、実施例1に示した高炉を安定的に操業できる効果を享受することができた。
[Example 2]
FIG. 5 shows the distribution of the layer thickness ratio in the dimensionless radius (r / R0: R0 is the radius of the upper part of the blast furnace (furnace) (see FIG. 1A)) at the blast furnace mouth measured in the actual machine every 30 minutes. It is a figure which shows an example of the time-series transition data of. Independent component analysis was performed on the time-series transition data of the layer thickness ratio distribution shown in FIG. 5, and the time-series transition data of the layer thickness ratio distribution shown in FIG. 5 was decomposed into each base of the independent component analysis. The number of bases in the independent component analysis is arbitrary as described above, and as the number of bases is increased, various features can be extracted. However, if the number of bases is too large, the influence of statistical noise due to the measurement error of the layer thickness ratio and disturbance increases, so the number of bases is determined based on finding a base whose weight has a high correlation with the operation index. Is desirable. In this embodiment, since the three-dimensional data in which time is added to the two-dimensional data in which the position in the dimensionless radial direction and the layer thickness ratio are dealt with is handled, the number of bases is 4, which is larger than that in the first embodiment. did. The results of decomposing the time-series transition data of the layer thickness ratio distribution shown in FIG. 5 into each basis of the independent component analysis are shown in FIGS. 6 (a) to 6 (d). In this way, by adding time to the two-dimensional data of the dimensionless radial position and layer thickness ratio and performing independent component analysis on the three-dimensional data, operating conditions such as the amount of air blown and the amount of pulverized coal blown can be determined. And / or, even when fluctuations in raw material conditions such as brand and particle size affect operation indicators such as coke ratio with a delay time, the effect of stable operation of the blast furnace shown in Example 1 can be enjoyed. We were able to.

以上、本発明の発明者らによってなされた発明を適用した実施例について説明したが、本実施例による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば本実施例では、分析対象として無次元半径方向の位置と層厚比の2次元の分布データ、ならびに、それに時間を加えた3次元の分布データを用いたが、本発明は本実施例に限定されることはなく、例えば装入物分布が高炉の中心軸を対象軸とした軸対称性が失われる状況では、装入物堆積面上の位置と層厚比と時間の4次元のデータに適用することもできる。このように、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 Although examples to which the invention made by the inventors of the present invention has been applied have been described above, the present invention is not limited by the description and drawings which form a part of the disclosure of the present invention according to the present embodiment. For example, in the present embodiment, two-dimensional distribution data of the position in the non-dimensional radial direction and the layer thickness ratio and three-dimensional distribution data to which time is added are used as analysis targets. It is not limited, for example, in a situation where the charge distribution loses the axial symmetry with respect to the central axis of the blast furnace, four-dimensional data of the position on the charge deposit surface, the layer thickness ratio, and the time. It can also be applied to. As described above, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 高炉
2 羽口
C コークス
O 鋼石
1 blast furnace 2 tuyere C coke O steel stone

Claims (3)

高炉内に鉱石とコークスを交互に層状に装入して高炉を操業する高炉の操業方法であって、
炉半径方向の鉱石及びコークスの分布データを測定し、測定された分布データに対して独立成分分析を施すことにより分布データの特徴量を抽出する抽出ステップと、
前記抽出ステップにおいて抽出された前記分布データの特徴量と高炉の操業指標との関係性に基づいて炉半径方向の鉱石及びコークスの分布状態変更する変更ステップと、
を含むことを特徴とする高炉の操業方法。
It is a method of operating a blast furnace in which ore and coke are alternately charged into a blast furnace in layers to operate the blast furnace.
An extraction step that measures the distribution data of ore and coke in the radial direction of the furnace and extracts the features of the distribution data by performing independent component analysis on the measured distribution data.
A change step of changing the distribution state of ore and coke in the radial direction of the furnace based on the relationship between the feature amount of the distribution data extracted in the extraction step and the operation index of the blast furnace, and a change step.
A method of operating a blast furnace, which is characterized by including.
前記分布データが、高炉の半径方向の位置と時間による鉱石及びコークスの分布データであることを特徴とする請求項1に記載の高炉の操業方法。 The method for operating a blast furnace according to claim 1, wherein the distribution data is distribution data of ore and coke according to the radial position and time of the blast furnace. 前記分布データが、高炉の装入物堆積面上の位置と時間による鉱石及びコークスの分布データであることを特徴とする請求項1に記載の高炉の操業方法。 The method for operating a blast furnace according to claim 1, wherein the distribution data is distribution data of ore and coke according to the position and time on the deposit surface of the blast furnace.
JP2018027619A 2018-02-20 2018-02-20 How to operate the blast furnace Active JP6844557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027619A JP6844557B2 (en) 2018-02-20 2018-02-20 How to operate the blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027619A JP6844557B2 (en) 2018-02-20 2018-02-20 How to operate the blast furnace

Publications (2)

Publication Number Publication Date
JP2019143190A JP2019143190A (en) 2019-08-29
JP6844557B2 true JP6844557B2 (en) 2021-03-17

Family

ID=67771986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027619A Active JP6844557B2 (en) 2018-02-20 2018-02-20 How to operate the blast furnace

Country Status (1)

Country Link
JP (1) JP6844557B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393636B2 (en) 2020-01-17 2023-12-07 日本製鉄株式会社 How to operate a blast furnace

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901462B2 (en) * 2006-12-27 2012-03-21 新日本製鐵株式会社 Gas flow state monitoring method, monitoring apparatus, and computer program for furnace top
JP2009242906A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method for operating blast furnace
JP5400555B2 (en) * 2009-03-31 2014-01-29 株式会社神戸製鋼所 Blast furnace operating condition deriving method and blast furnace operating condition deriving apparatus using this method
JP5728164B2 (en) * 2010-04-07 2015-06-03 株式会社神戸製鋼所 Blast furnace charge target distribution conversion apparatus, blast furnace charge target distribution conversion method used in the apparatus, and blast furnace charge target distribution conversion program
JP6206368B2 (en) * 2014-09-24 2017-10-04 Jfeスチール株式会社 Blast furnace state estimation apparatus and blast furnace state estimation method
JP6311659B2 (en) * 2015-06-22 2018-04-18 Jfeスチール株式会社 Method for estimating layer thickness distribution in blast furnace, method for operating blast furnace, and apparatus for estimating layer thickness distribution in blast furnace

Also Published As

Publication number Publication date
JP2019143190A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
Bennett et al. Fluid and sediment dynamics of upper stage plane beds
Umbanhowar et al. Granular impact and the critical packing state
Kou et al. DEM simulation of burden distribution in the upper part of COREX shaft furnace
Teng et al. Mathematical model of burden distribution for the bell-less top of a blast furnace
Park et al. Mathematical modeling of the burden distribution in the blast furnace shaft
JP6844557B2 (en) How to operate the blast furnace
CN103966373A (en) Bell-less material distributing method capable of ensuring stable running of blast furnace
JP6311482B2 (en) Estimation method of gas flow rate and reduction load of blast furnace block.
Zhou et al. Evaluation of burden descent model for burden distribution in blast furnace
CN102864766A (en) Liquefaction judgment method based on standard penetration and static cone penetration test correlation
CN106521059A (en) Method for controlling blast furnace gas flow distribution by using phased array radar to measure ore coke ratio of blast furnace material surface
JP5585729B2 (en) Raw material charging apparatus for blast furnace and raw material charging method using the same
Zu et al. Discrete element method of coke accumulation: calibration of the contact parameter
Castberg et al. Erosion of hardmetals: Dependence of WC grain size and distribution, and binder composition
CN106548028A (en) A kind of method for calculating furnace charge drop point
JP2015086461A (en) Blast furnace operation method
You et al. Experimental study of burden distribution in the COREX melter gasifier
JP6331598B2 (en) Blast furnace raw material powder rate estimation method and blast furnace operation method
JP6361334B2 (en) Emission behavior estimation method and emission behavior estimation system for blast furnace top bunker
JPS5910963B2 (en) Blast furnace operating method
JP6627718B2 (en) Raw material charging method for blast furnace
JP7436831B2 (en) Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program
Kravchenko et al. Development of a Mathematical Model to Monitoring the Velocity of Subsidence of Charge Material Column in the Blast Furnace Based on the Parameters of Gas Pressure in the Furnace Tract
Soleymani et al. Experimental observations of mill operation parameters on kinematic of the tumbling mill contents
Liu et al. Hierarchical packing model: Estimating the overall particle size distribution from surface images and permeability properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6844557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250