JP6842079B2 - Method for producing reduced minerals and method for producing reduced minerals having intracellular sugar uptake activity - Google Patents

Method for producing reduced minerals and method for producing reduced minerals having intracellular sugar uptake activity Download PDF

Info

Publication number
JP6842079B2
JP6842079B2 JP2016165566A JP2016165566A JP6842079B2 JP 6842079 B2 JP6842079 B2 JP 6842079B2 JP 2016165566 A JP2016165566 A JP 2016165566A JP 2016165566 A JP2016165566 A JP 2016165566A JP 6842079 B2 JP6842079 B2 JP 6842079B2
Authority
JP
Japan
Prior art keywords
furnace
reduced
gas
minerals
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016165566A
Other languages
Japanese (ja)
Other versions
JP2018030820A (en
Inventor
白畑 實隆
實隆 白畑
武記 富川
武記 富川
Original Assignee
白畑 實隆
實隆 白畑
武記 富川
武記 富川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白畑 實隆, 實隆 白畑, 武記 富川, 武記 富川 filed Critical 白畑 實隆
Priority to JP2016165566A priority Critical patent/JP6842079B2/en
Publication of JP2018030820A publication Critical patent/JP2018030820A/en
Application granted granted Critical
Publication of JP6842079B2 publication Critical patent/JP6842079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、生体に必須なミネラル成分に水素由来の還元力を付加することで生体に有効な還元型ミネラルを作製する方法に関する。 The present invention relates to a method for producing a reduced mineral effective for a living body by adding a reducing power derived from hydrogen to a mineral component essential for the living body.

ミネラルは体をつくり、その機能を正常に保つために欠くことのできない基本的な物質である。ミネラルとして、一般的にはカルシウムや鉄が良く知られているが、亜鉛、フッ素、ナトリウム、カリウム、マグネシウムなど様々なミネラルがビタミンやホルモン、酵素とともに体づくり、機能維持のために働いている。現在我々に必要な栄養素として確認されているミネラル類は、主要ミネラル7種類であるカルシウム、リン、マグネシウム、硫黄、ナトリウム、カリウム、塩素と微量ミネラル9種類である鉄、亜鉛、銅、マンガン、ヨウ素、セレン、モリブデン、クロム、フッ素の計16種類であるが、その他のミネラル類についてもその必要性が報告されており、それらミネラルの欠乏によりさまざまな障害が生じることが指摘されている。 Minerals are the basic substances that are indispensable for building the body and keeping its function normal. Calcium and iron are generally well known as minerals, but various minerals such as zinc, fluorine, sodium, potassium, and magnesium work together with vitamins, hormones, and enzymes to build the body and maintain its function. Currently, the minerals that have been confirmed as necessary nutrients for us are calcium, phosphorus, magnesium, sulfur, sodium, potassium, chlorine, which are seven major minerals, and iron, zinc, copper, manganese, and iodine, which are nine trace minerals. , Selene, molybdenum, chromium, and fluorine, a total of 16 types, but the need for other minerals has also been reported, and it has been pointed out that deficiency of these minerals causes various disorders.

また、体内で産生され、あるいは外的由来で生体内に存在する過剰な活性酸素やフリーラジカルは体内の様々な物質に対して非特異的な化学反応をもたらし、細胞に損傷を与え得るために、その有害性が指摘されている。
そして、抗酸化物質は活性酸素やラジカルを非活性化することからその摂取により生体内で生じている過剰なラジカルを消去することが期待されている。
In addition, excess active oxygen and free radicals that are produced in the body or are externally derived and exist in the body cause non-specific chemical reactions to various substances in the body and can damage cells. , Its harmfulness has been pointed out.
Since antioxidants inactivate active oxygen and radicals, they are expected to eliminate excess radicals generated in the living body by their ingestion.

上記事情から、近年、ミネラルを豊富に含み、抗酸化作用を有する様々な物質が開発されている。
特許文献1には、塩化ナトリウム(NaCl)を主成分とする塩を炭素源により温度500℃〜1100℃で0.5〜4時間還元焼成して得られる熱処理塩からなる遺伝子酸化損傷抑制作用のある塩について記載されている。
Due to the above circumstances, various substances containing abundant minerals and having an antioxidant effect have been developed in recent years.
Patent Document 1 describes a gene oxidative damage suppressing action consisting of a heat-treated salt obtained by reducing and firing a salt containing sodium chloride (NaCl) as a main component with a carbon source at a temperature of 500 ° C. to 1100 ° C. for 0.5 to 4 hours. It describes a salt.

そして、特許文献2には、還元力を有する植物エキスを混合した天然塩を700℃〜1600℃で3段階で焼成して得られる還元力が大きくアルカリ成分を多量に含有するアルカリ性健康食品及びその製造方法について記載されている。 Further, Patent Document 2 describes an alkaline health food having a large reducing power and containing a large amount of an alkaline component obtained by firing a natural salt mixed with a plant extract having a reducing power at 700 ° C. to 1600 ° C. in three steps. The manufacturing method is described.

特許文献3には、サンゴカルシウムの粉末と小麦粉とを含む原料に水を加えて混錬したものを酸化焼成と還元焼成の2段階の焼成を行って還元焼成体を得て微粉体とする食べるマイナス水素イオンの製造方法が記載されている。 In Patent Document 3, water is added to a raw material containing coral calcium powder and wheat flour and kneaded, and the mixture is fired in two stages of oxidation firing and reduction firing to obtain a reduced calcined product and obtained as a fine powder. A method for producing a negative hydrogen ion is described.

特開2003−313132号公報Japanese Unexamined Patent Publication No. 2003-313132 WO2003/024244号公報WO2003 / 024244 特許第4404657号公報Japanese Patent No. 4404657

しかしながら、従来の方法で作成された、ミネラル成分を有し、抗酸化作用も有する物質はその還元力や還元力の維持において、あるいは設備と時間を要する作成方法において問題があった。 However, a substance having a mineral component and also having an antioxidant effect, which is prepared by a conventional method, has a problem in maintaining its reducing power and reducing power, or in a preparation method that requires equipment and time.

本発明は、かかる事情に鑑みてなされたもので、不足すると生体にさまざまな障害がおこることの指摘されているミネラルを豊富に含有し、さらに、身体に有害な物質である活性酸素に対して高い還元力を有すると共に、その活性が安定な還元型ミネラルの製造方法を提供することを目的としている。ここで還元型ミネラルとは還元力を有するミネラルの意味である。 The present invention has been made in view of such circumstances, and contains abundant minerals that have been pointed out to cause various disorders in the living body if insufficient, and further, with respect to active oxygen, which is a substance harmful to the body. It is an object of the present invention to provide a method for producing a reduced mineral having high reducing power and stable activity. Here, the reduced mineral means a mineral having a reducing power.

上記目的のために、本発明者等は、生体に必須であるミネラルを還元させ抗酸化性を持たせることで生体に有用な物質を作製できるのではないかと考え、鋭意研究の結果、生体に必須なミネラル成分に水素由来の還元力を付加することで生体に有用な効果を示すことができる還元型ミネラルを作製する方法を確立した。
そして、本発明方法で製造された還元型ミネラルは、通常の抗酸化物質にはない極めて長期間活性酸素消去活性を維持すると共に、強い細胞内の活性酸素消去能力、すなわち、抗酸化能力を有している。
For the above purpose, the present inventors thought that it might be possible to produce a substance useful for the living body by reducing minerals essential for the living body to have antioxidant properties, and as a result of diligent research, the living body We have established a method for producing reduced minerals that can show useful effects on living organisms by adding hydrogen-derived reducing power to essential mineral components.
The reduced mineral produced by the method of the present invention maintains active oxygen scavenging activity for an extremely long period of time, which is not found in ordinary antioxidants, and has strong intracellular active oxygen scavenging ability, that is, antioxidant ability. doing.

前記目的に沿う第1の発明に係る還元型ミネラルの製造方法は、窒素ガスで充填したガス炉内に複数のミネラルを含有する植物及び動物のいずれか一方又は双方由来の焼却灰若しくは該焼却灰と成分の同等な粉状無機物を入れる第1工程と、
前記第1工程の後に、前記ガス炉内を脱気し、前記ガス炉内に前記焼却灰又は前記粉状無機物1gに対して水素ガスを1〜1000mMの範囲で充填する第2工程と、
炉内温度が600〜1000℃の範囲になるように前記ガス炉を加熱し還元型ミネラルを作成する第3工程と、
前記第3工程の後、前記炉内温度を常温に下げて排気及び窒素置換を行って、前記還元型ミネラルを回収する第4工程を有している。
前記目的に沿う第2の発明に係る還元型ミネラルの製造方法は、複数のミネラルを含有する植物及び動物のいずれか一方又は双方由来の焼却灰若しくは該焼却灰と成分の同等な粉状無機物を入れたガス炉内に窒素ガスを充満する第1工程と、
前記第1工程の後に、前記ガス炉内を脱気し、前記ガス炉内に前記焼却灰又は前記粉状無機物1gに対して水素ガスを1〜1000mMの範囲で充填する第2工程と、
炉内温度が600〜1000℃の範囲になるように前記ガス炉を加熱し還元型ミネラルを作成する第3工程と、
前記第3工程の後、前記炉内温度を常温に下げて排気及び窒素置換を行って、前記還元型ミネラルを回収する第4工程を有している。
ここで、焼却灰と成分の同等な粉状無機物とは、焼却灰と成分を85%以上等しくする粉状無機物であ
The method for producing a reduced mineral according to the first invention according to the above object is incineration ash derived from one or both of plants and animals containing a plurality of minerals in a gas furnace filled with nitrogen gas, or the incineration ash. The first step of adding a powdery inorganic substance with the same composition as
After the first step, the gas furnace is degassed, and the gas furnace is filled with hydrogen gas in the range of 1 to 1000 mM for 1 g of the incineration ash or the powdery inorganic substance.
The third step of heating the gas furnace to produce reduced minerals so that the temperature inside the furnace is in the range of 600 to 1000 ° C.
After the third step, there is a fourth step of recovering the reduced mineral by lowering the temperature in the furnace to room temperature and performing exhaust gas and nitrogen substitution.
The method for producing a reduced mineral according to the second invention according to the above object is to use incinerated ash derived from one or both of plants and animals containing a plurality of minerals or a powdery inorganic substance having the same composition as the incinerated ash. The first step of filling the filled gas furnace with nitrogen gas,
After the first step, the gas furnace is degassed, and the gas furnace is filled with hydrogen gas in the range of 1 to 1000 mM for 1 g of the incineration ash or the powdery inorganic substance.
The third step of heating the gas furnace to produce reduced minerals so that the temperature inside the furnace is in the range of 600 to 1000 ° C.
After the third step, there is a fourth step of recovering the reduced mineral by lowering the temperature in the furnace to room temperature and performing exhaust gas and nitrogen substitution.
Here, the equivalent powdery inorganic ash and components, Ru powdery inorganic der to equalize the ash and component 85% or more.

ここで、植物及び/又は動物の焼却灰の材料には、動植物由来のものであれば、いずれも含まれ、動植物そのものでも加工品でも食品廃棄物、廃材などの廃棄物も含まれる。また、有機物が残存するものは事前に灰化処理を行って有機物を除去するのが望ましい。 Here, the material of the incineration ash of plants and / or animals includes any of those derived from animals and plants, and includes wastes such as food wastes and waste materials, whether they are animals or plants themselves or processed products. In addition, it is desirable to remove the organic matter by performing an ashing treatment in advance if the organic matter remains.

第1、第2の発明に係る還元型ミネラルの製造方法において、前記第1工程及び前記第2工程は常温かつ常圧で行うのが好ましい。 In the method for producing reduced minerals according to the first and second inventions, it is preferable that the first step and the second step are carried out at normal temperature and pressure.

第1、第2の発明に係る還元型ミネラルの製造方法において、前記第2工程では、前記水素ガスが炉容量に対して常温かつ常圧で1.4〜100容量%となるように、水素ガスのみ、又は水素ガスと窒素ガスを充填することが好ましい。
ここで、常温かつ常圧とは、第3工程で加熱を始める前の温度、圧力を意味し、常温とは例えば、マイナス1度から40度の間を意味し、また、常圧とは、特別に減圧も加圧もしないときの圧力を意味し、通常、大気圧に等しいを意味する。
また、ガス炉内に充填する水素ガスと窒素ガスは、予め、混合して炉内に挿入してもいいし、それぞれ別々に炉内に挿入することも可能である。さらに、一旦、炉内温度を下げて繰り返し水素ガスと窒素ガスを炉内に充填することも可能である。
In the method for producing reduced minerals according to the first and second inventions, in the second step, hydrogen is produced so that the hydrogen gas is 1.4 to 100% by volume at normal temperature and pressure with respect to the furnace capacity. It is preferable to fill only the gas or hydrogen gas and nitrogen gas.
Here, the normal temperature and the normal pressure mean the temperature and the pressure before starting the heating in the third step, the normal temperature means, for example, between -1 degree and 40 degrees, and the normal pressure means the normal pressure. It means the pressure when neither decompression nor pressurization is performed, and usually means equal to atmospheric pressure.
Further, the hydrogen gas and the nitrogen gas to be filled in the gas furnace may be mixed in advance and inserted into the furnace, or they may be separately inserted into the furnace. Further, it is also possible to once lower the temperature in the furnace and repeatedly fill the furnace with hydrogen gas and nitrogen gas.

第1、第2の発明に係る還元型ミネラルの製造方法において、前記第3工程における前記炉内温度は700〜900℃であるのが好ましい。
第1、第2の発明に係る還元型ミネラルの製造方法において、前記第3工程では、前記炉内温度を0.5〜6時間維持するのが好ましい。
ここで炉内温度を0.5〜6時間維持するには、一旦、温度を下げ、再度、温度を上げて0.5〜6時間維持することを繰り返すことも含まれる。
In the method for producing reduced minerals according to the first and second inventions, the temperature inside the furnace in the third step is preferably 700 to 900 ° C.
In the method for producing reduced minerals according to the first and second inventions, it is preferable to maintain the temperature in the furnace for 0.5 to 6 hours in the third step.
Here, in order to maintain the temperature in the furnace for 0.5 to 6 hours, it is also included to repeat the process of lowering the temperature once, raising the temperature again, and maintaining the temperature for 0.5 to 6 hours.

前記目的に沿う第の発明に係る細胞内糖取り込み活性を有する還元型ミネラルの製造方法は、窒素ガスで充填したガス炉内に複数のミネラルを含有する植物及び動物のいずれか一方又は双方由来の焼却灰を入れて脱気した後、焼却灰1gに対して水素ガスを1〜1000mMの範囲で充填し、炉内温度が600〜1000℃の範囲になるように前記ガス炉を加熱し還元型ミネラルを作成し、常温に下げて排気及び窒素置換を行って還元型ミネラルを回収している。 The method for producing a reduced mineral having an intracellular sugar uptake activity according to the third invention according to the above object is derived from one or both of a plant and an animal containing a plurality of minerals in a gas furnace filled with nitrogen gas. after degassing put ash, hydrogen gas to ash 1g packed in the range of 1 to 1000 mm, the furnace temperature is heating the gas furnace to be in the range of 600 to 1000 ° C. reduction A type mineral is prepared, lowered to room temperature, exhausted and replaced with nitrogen to recover the reduced type mineral.

第1、第2の発明に係る還元型ミネラルの製造方法は、ミネラル豊富な焼却灰又は焼却灰と成分の同等な粉状無機物に水素由来の還元力を付加しているので、生体に必須のミネラル成分を含有すると同時に生体に有害な活性酸素に対する抗酸化作用を有する物質を製造することができる。
また、本発明方法によって、嫌気条件下ではない通常の状態で保存しても1ケ月は十分に活性を保ち、冷蔵保存の場合には半年後においてもその活性が残存し、また、水溶液中でも安定した還元活性を保持しているという極めて優れた特性を有した還元型ミネラルを製造することができるようになった。
特に第1、第2の発明に係る還元型ミネラルの製造方法、植物及び/又は動物の焼却灰を使用するので、材料を簡単に調達することができ、廃棄物処理にも役立つ。
さらに、第の発明に係る細胞内糖取り込み活性を有する還元型ミネラルの製造方法によって、細胞の糖取り込みを促し、糖尿病患者内で生じているインスリン抵抗性の軽減が期待できるという糖尿病治療に有効な還元型ミネラルを提供できることになった。
The method for producing reduced minerals according to the first and second inventions is essential for living organisms because it adds hydrogen-derived reducing power to mineral-rich incinerated ash or powdery inorganic substances having the same composition as incinerated ash. It is possible to produce a substance containing a mineral component and at the same time having an antioxidant action against active oxygen harmful to the living body.
Further, according to the method of the present invention, the activity is sufficiently maintained for one month even when stored under normal conditions not under anaerobic conditions, and in the case of refrigerated storage, the activity remains even after half a year and is stable even in an aqueous solution. It has become possible to produce a reduced mineral having an extremely excellent property of retaining the reduced reducing activity.
In particular, the first method of reduced mineral according to the second invention, because it uses the ash of plant and / or animal, can easily raise the material, also help waste treatment.
Furthermore, the method for producing a reduced mineral having intracellular sugar uptake activity according to the third invention is effective in treating diabetes, which promotes cellular sugar uptake and can be expected to reduce insulin resistance occurring in diabetic patients. It has become possible to provide a variety of reduced minerals.

本発明に係る還元型ミネラルの製造方法によって作成された実施例1における還元型ミネラルのDPPHラジカル消去活性を示すグラフである。It is a graph which shows the DPPH radical scavenging activity of the reduced mineral in Example 1 produced by the manufacturing method of the reduced mineral which concerns on this invention. 実施例2において作成温度を変えて作成された還元型ミネラルの活性力の変化を示すグラフである。It is a graph which shows the change of the activity of the reduced minerals prepared by changing the making temperature in Example 2. FIG. 実施例3において作成温度を変えて作成された還元型ミネラルの活性力の変化を、ORAC測定法によって測定した結果を示すグラフである。It is a graph which shows the result of having measured the change of the activity of the reduced mineral prepared by changing the making temperature in Example 3 by the ORAC measuring method. 実施例4において炉内水素濃度を変化させて作成された還元型ミネラルの還元力の変化を示すグラフである。It is a graph which shows the change of the reducing power of the reduced minerals produced by changing the hydrogen concentration in a furnace in Example 4. 実施例5において水素反応時間を変化させて作成された還元型ミネラルの還元力の変化を示すグラフである。It is a graph which shows the change of the reducing power of the reduced mineral prepared by changing the hydrogen reaction time in Example 5. 実施例6において作成された還元型ミネラルの保存状態における還元力の変化を示すグラフである。It is a graph which shows the change of the reducing power in the storage state of the reduced minerals prepared in Example 6. 実施例7において還元型ミネラルの還元性が生体に与える影響についての、生体細胞を用いた細胞内抗酸化活性の確認試験の工程図である。It is a process diagram of the confirmation test of the intracellular antioxidant activity using a living cell about the influence which the reducing property of a reducing mineral has on a living body in Example 7. FIG. 同還元型ミネラルの生体細胞内の抗酸化活性を示すグラフである。It is a graph which shows the antioxidant activity in a living cell of the reduced mineral. 実施例8における細胞内糖取り込み活性の確認試験の工程図である。It is a process diagram of the confirmation test of the intracellular sugar uptake activity in Example 8. 同確認試験の結果を示すグラフである。It is a graph which shows the result of the confirmation test. 食塩原料、岩塩原料、植物由来、動物由来の各原料を使用し、本発明方法で作成した還元型ミネラルのDPPHラジカル消去活性を示すグラフである。It is a graph which shows the DPPH radical scavenging activity of the reduced mineral prepared by the method of this invention using each raw material of salt raw material, rock salt raw material, plant origin, and animal origin. 本発明方法で製造された還元型ミネラルの構造についての推測図である。It is a speculation diagram about the structure of the reduced mineral produced by the method of this invention. 同推測図の他の例である。This is another example of the same speculation diagram. 同推測図の他の例である。This is another example of the same speculation diagram.

続いて、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る還元型ミネラルの製造方法においては、焼却灰として、雑草と市販のマングローブ木炭とを約900℃で焼成して作った植物の焼却灰(以下、植物焼却灰という)を使用した。
装置として4リットル容量のガス炉を使用し、窒素ガス、水素ガスを用意した。
本実施の形態に係る還元型ミネラルの製造方法は、以下の通りである。
ガス炉内を窒素ガスで充填し、焼却灰をガス炉に入れた後、 ガス炉内を脱気し、 焼却灰1gあたり水素ガス量が1〜1000mMの範囲になるように、かつ、炉体積に対する水素ガスの容量が常温かつ常圧で1.4〜100%となるように、ガス炉内を水素ガスと窒素ガスとで充満した。ここまでの処置を常温かつ常圧で行った後、温度が600〜1000℃(好ましくは、700〜900℃、より好ましくは、700〜800℃)の範囲になるようにガス炉を加熱し、0.5〜6時間温度を維持して反応させて還元型ミネラルを作成した。温度が常温に下がったのち排気、窒素置換し、焼却灰の還元焼成物を還元型ミネラルのサンプルとして回収した。
また、焼却灰を窒素ガス雰囲気で加熱し、回収したものをコントロールとした。溶解に使用した水はミリポア社の超純粋作成装置を用いて作成されたMQ水を使用した。なお、DPPH法に使用するDPPHは本実施の形態ではエタノールに溶解して使用したが、アセトニトリルに溶解しても構わない。
なお、本実施の形態では、窒素ガスを充填したガス炉に焼却灰を入れたが、焼却灰を入れたガス炉に窒素ガスを充満させてもよい。
以下に、添付した図面を参照しながら更に具体的な実施例をあげて説明する。
Subsequently, an embodiment embodying the present invention will be described for understanding the present invention.
In the method for producing reduced minerals according to an embodiment of the present invention, as incineration ash, incineration ash of a plant produced by firing weeds and commercially available mangrove charcoal at about 900 ° C. (hereinafter referred to as plant incineration ash). )It was used.
A gas furnace with a capacity of 4 liters was used as an apparatus, and nitrogen gas and hydrogen gas were prepared.
The method for producing the reduced mineral according to the present embodiment is as follows.
After filling the gas furnace with nitrogen gas and putting the incineration ash into the gas furnace, the inside of the gas furnace is degassed so that the amount of hydrogen gas per 1 g of incineration ash is in the range of 1 to 1000 mM and the volume of the furnace. The gas furnace was filled with hydrogen gas and nitrogen gas so that the capacity of the hydrogen gas was 1.4 to 100% at room temperature and normal pressure. After performing the above treatments at room temperature and normal pressure, the gas furnace is heated so that the temperature is in the range of 600 to 1000 ° C. (preferably 700 to 900 ° C., more preferably 700 to 800 ° C.). Reduced minerals were prepared by reacting at a temperature maintained for 0.5 to 6 hours. After the temperature dropped to room temperature, exhaust gas was replaced with nitrogen, and the reduced calcined product of incinerated ash was recovered as a sample of reduced minerals.
In addition, the incinerated ash was heated in a nitrogen gas atmosphere, and the recovered ash was used as a control. As the water used for dissolution, MQ water prepared using an ultrapure water preparation device manufactured by Millipore was used. Although the DPPH used in the DPPH method was dissolved in ethanol in the present embodiment, it may be dissolved in acetonitrile.
In the present embodiment, the incineration ash is put into a gas furnace filled with nitrogen gas, but the gas furnace containing the incineration ash may be filled with nitrogen gas.
Hereinafter, more specific examples will be described with reference to the attached drawings.

(実施例1)
作成した還元型ミネラルのサンプルのDPPHラジカル消去活性(還元力)について調べた。
(方法)
サンプルは焼却灰を水素ガス雰囲気(水素100%)で炉内温度を800℃、4時間加熱して作成した。コントロールとして焼却灰を窒素ガス雰囲気(窒素100%)で700℃、4時間加熱して作成したものを使用した。そして、MQ水を比較とした。
サンプル及びコントロールを水に溶解させ60mg/mLのサンプル溶液、及びコントロール溶液を作製した。
表1の条件に示すように、サンプル、コントロールの各溶液及びMQ水のそれぞれ40μLを、500μMDPPHエタノール溶液50μL、100mM酢酸溶液10μLと混ぜ室温に30分放置した。吸光度は520nmにおいて測定した。捕捉率はサンプル溶液、コントロール溶液、MQ水の吸光度の比によって測定した。結果はサンプル4回の測定の平均値とした。得られた値はTroloxを測定した値を基にTrolox換算値措値(Trolox Eq)として算出した。
(Example 1)
The DPPH radical scavenging activity (reducing power) of the prepared reduced mineral sample was investigated.
(Method)
The sample was prepared by heating the incineration ash in a hydrogen gas atmosphere (100% hydrogen) at a temperature of 800 ° C. for 4 hours. As a control, an incinerated ash prepared by heating in a nitrogen gas atmosphere (100% nitrogen) at 700 ° C. for 4 hours was used. Then, MQ water was used as a comparison.
The sample and control were dissolved in water to prepare a 60 mg / mL sample solution and a control solution.
As shown in the conditions of Table 1, 40 μL of each of the sample and control solutions and MQ water were mixed with 50 μL of 500 μMDPPH ethanol solution and 10 μL of 100 mM acetic acid solution, and left at room temperature for 30 minutes. Absorbance was measured at 520 nm. The capture rate was measured by the ratio of the absorbances of the sample solution, the control solution, and the MQ water. The result was the average value of the measurement of 4 samples. The obtained value was calculated as a Trolox conversion value measure value (Tolox Eq) based on the value obtained by measuring Trolox.

Figure 0006842079
Figure 0006842079

結果を図1に示す。
図1に示すように、水素ガスによって還元された還元型ミネラル溶液(サンプル溶液)40μLはトロロックス換算で約2.5mMに相当する還元力を示した。つまり、作成した還元型ミネラル溶液はミネラル分を1mLあたり60mg含有している為、換算すると、ミネラル1mgあたり約1mM相当の還元量を示すという極めて多量の還元能力を含有していると言える。
The results are shown in FIG.
As shown in FIG. 1, 40 μL of the reduced mineral solution (sample solution) reduced by hydrogen gas showed a reducing power corresponding to about 2.5 mM in terms of Trolox. That is, since the prepared reduced mineral solution contains 60 mg of mineral content per 1 mL, it can be said that it contains an extremely large amount of reducing ability, which is equivalent to about 1 mM per 1 mg of mineral.

(実施例2)
作成温度による還元力の変化について調べた。
4時間水素ガス雰囲気下で各温度を変えた検討を行った結果が以下である。
(方法)
サンプルは植物焼却灰1gにおいて炉内温度500℃から1000℃まで100℃ずつ変え、水素ガス雰囲気下で4時間維持して作成した。
サンプルを水に溶解させ60mg/mLの溶液にした。溶液作成直後のサンプル溶液と、溶液作成後2週間後のサンプル溶液について、吸光度を測定した。また、MQ水をコントロール溶液とした。
(Example 2)
The change in reducing power with the preparation temperature was investigated.
The results of a study in which each temperature was changed in a hydrogen gas atmosphere for 4 hours are as follows.
(Method)
The sample was prepared by changing the temperature in the furnace from 500 ° C. to 1000 ° C. in 1 g of plant incineration ash by 100 ° C. and maintaining it in a hydrogen gas atmosphere for 4 hours.
The sample was dissolved in water to make a 60 mg / mL solution. The absorbance of the sample solution immediately after the solution was prepared and the sample solution 2 weeks after the solution was prepared were measured. Moreover, MQ water was used as a control solution.

表1に示す還元量測定の条件で、各サンプル溶液を500μMDPPHエタノール溶液と混ぜ室温に30分放置した。吸光度は520nmにおいて測定した。捕捉率はサンプル溶液とコントロール溶液の吸光度の比によって測定した。結果は各サンプル溶液4回の測定の平均値とした。得られた値はTroloxを測定した値を基にTrolox換算値措値として算出した。値は実測値の吸光度で示している。結果を図2に示す。なお、棒グラフの白色はサンプル溶液作成直後の測定値、斜線はサンプル溶液作成後2週間後の測定値を示す。 Under the conditions for measuring the amount of reduction shown in Table 1, each sample solution was mixed with a 500 μM DPPH ethanol solution and left at room temperature for 30 minutes. Absorbance was measured at 520 nm. The capture rate was measured by the ratio of the absorbances of the sample solution and the control solution. The result was the average value of 4 measurements of each sample solution. The obtained value was calculated as a Trolox conversion value measure value based on the measured value of Trolox. The value is shown by the absorbance of the measured value. The results are shown in FIG. The white color of the bar graph indicates the measured value immediately after the sample solution was prepared, and the diagonal line indicates the measured value 2 weeks after the sample solution was prepared.

図2に示すように、DPPHラジカル量は還元型ミネラルによって減少するが、作成された温度によって、還元型ミネラルによるDPPHラジカル消去量に差が生じた。500℃では還元性を持たず、600℃又は1000℃ではその活性は低く、700℃から900℃において高い還元量を持つことがわかる。また、サンプル溶液作成後2週間後の溶液についてもその活性は保持されることが確認された。 As shown in FIG. 2, the amount of DPPH radicals was reduced by the reduced minerals, but the amount of DPPH radicals scavenged by the reduced minerals was different depending on the temperature produced. It can be seen that it has no reducing property at 500 ° C., its activity is low at 600 ° C. or 1000 ° C., and it has a high reducing amount at 700 ° C. to 900 ° C. It was also confirmed that the activity was retained in the solution 2 weeks after the preparation of the sample solution.

(実施例3)
次にORAC測定法を用いて、温度別で作成したサンプルを測定した。
(方法)
還元型ミネラルのサンプルは実施例2と同じように、植物焼却灰1gにおいて炉内温度を500℃から1000℃まで100℃ずつ変え、水素ガス雰囲気下で4時間維持して作成した。サンプルを水に溶解させ60mg/mLの溶液にした。表2に示す基本条件でORAC測定法により測定した。
(Example 3)
Next, using the ORAC measurement method, samples prepared by temperature were measured.
(Method)
Similar to Example 2, the reduced mineral sample was prepared by changing the temperature in the furnace from 500 ° C. to 1000 ° C. in 1 g of plant incineration ash by 100 ° C. and maintaining it in a hydrogen gas atmosphere for 4 hours. The sample was dissolved in water to make a 60 mg / mL solution. It was measured by the ORAC measurement method under the basic conditions shown in Table 2.

Figure 0006842079
Figure 0006842079

図3に示す温度条件を用いて4時間水素ガス雰囲気下で反応させ作成した還元ミネラルのORAC活性の結果はDPPH法と同様の傾向を示した。500℃では還元性を持たず、600℃、900℃又は1000℃ではその活性は低く、700℃において高い還元量を持つことがわかる。また今回の結果では800℃が最も活性が高いことが示された。 The results of the ORAC activity of the reduced mineral prepared by reacting in a hydrogen gas atmosphere for 4 hours using the temperature conditions shown in FIG. 3 showed the same tendency as the DPPH method. It can be seen that it has no reducing property at 500 ° C., its activity is low at 600 ° C., 900 ° C. or 1000 ° C., and it has a high reducing amount at 700 ° C. In addition, this result shows that 800 ° C. has the highest activity.

(実施例4)
処理水素濃度の変化による還元力の測定を行った。
次に作成時の低水素量と作成されるミネラル還元物との還元量の変化を検討した。
(方法)
サンプル作成は植物焼却灰1gを炉内に入れ温度を800℃で炉内水素ガス濃度を0.7%、1.4%、2.8%、5.5%、11%、100%にした状態を4時間維持して作成した。サンプルを水に溶解させ60mg/mLのサンプル溶液にした。また、コントロール溶液としてMQ水を使用した。
還元量測定はサンプル溶液、及びMQ水を表1の条件でそれぞれ500μMDPPH溶液と混ぜ室温に30分放置した。吸光度は520nmにおいて測定した。捕捉率はサンプル溶液とコントロール溶液の吸光度の比によって測定した。結果はサンプル溶液4回の測定の平均値とした。得られた値はTroloxを測定した値を基にTrolox換算値措値として算出した。
(Example 4)
The reducing power due to the change in the treated hydrogen concentration was measured.
Next, the change in the amount of reduction between the low hydrogen amount at the time of preparation and the mineral reduced product produced was examined.
(Method)
To prepare the sample, 1 g of incinerated plant ash was placed in a furnace, the temperature was set to 800 ° C., and the hydrogen gas concentration in the furnace was set to 0.7%, 1.4%, 2.8%, 5.5%, 11%, and 100%. It was created by maintaining the state for 4 hours. The sample was dissolved in water to make a 60 mg / mL sample solution. Moreover, MQ water was used as a control solution.
For the measurement of the amount of reduction, the sample solution and MQ water were mixed with a 500 μMDPPH solution under the conditions shown in Table 1 and left at room temperature for 30 minutes. Absorbance was measured at 520 nm. The capture rate was measured by the ratio of the absorbances of the sample solution and the control solution. The result was the average value of four measurements of the sample solution. The obtained value was calculated as a Trolox conversion value measure value based on the measured value of Trolox.

図4は、還元型ミネラルの炉内水素濃度を変化させた時の還元力の変化を示す図である。
今回、還元型ミネラルとして、800℃温度条件を用いて4時間表記濃度の水素ガス雰囲気下で反応させ作成した還元型ミネラルを使用し、値は吸光度で示している。
今回使用しているガス炉容量は約4Lなので1%水素ガス条件にした場合、炉内に水素分子は約2mM存在していることになる。
今回の結果から水素濃度を1.4%とするだけでも還元物が作成されていることが確認できた。さらに、ガス濃度依存的に還元量が増加していくことが確認できた。
FIG. 4 is a diagram showing a change in the reducing power when the hydrogen concentration in the furnace of the reducing mineral is changed.
This time, as the reduced mineral, a reduced mineral prepared by reacting in a hydrogen gas atmosphere at a concentration indicated for 4 hours using a temperature condition of 800 ° C. was used, and the value is shown by absorbance.
Since the capacity of the gas furnace used this time is about 4 L, when the condition of 1% hydrogen gas is set, about 2 mM of hydrogen molecules are present in the furnace.
From this result, it was confirmed that a reduced product was produced even if the hydrogen concentration was set to 1.4%. Furthermore, it was confirmed that the amount of reduction increases depending on the gas concentration.

今回の結果から以下のことが推察される。
還元ミネラルの原子量を10〜100程度とした場合(ほとんどのミネラル原子はこの範囲に入る)ミネラル1gあたりに必要な等モル量の水素は10〜100mMとなる。ミネラルを完全に還元化させたい場合は等モル水素が反応するとしても100mM程度必要になり今回使用しているガス炉では約50%の量が必要になることになる。必要であるならば水素ガスを交換又は供給することで完全に還元させたミネラルを得ることができるはずであるが、今回は約10%で還元活性が飽和しているように見える。本条件では11%以上の水素還元ができないか又はミネラルによる相互還元によって10%水素でも十分量の還元が生じる可能性がある。
The following can be inferred from this result.
When the atomic weight of the reducing mineral is about 10 to 100 (most mineral atoms fall within this range), the equimolar amount of hydrogen required per 1 g of mineral is 10 to 100 mM. If you want to completely reduce minerals, even if equimolar hydrogen reacts, about 100 mM is required, and the gas furnace used this time requires about 50% of the amount. It should be possible to obtain fully reduced minerals by exchanging or supplying hydrogen gas if necessary, but this time it appears that the reducing activity is saturated at about 10%. Under these conditions, hydrogen reduction of 11% or more is not possible, or mutual reduction with minerals may cause a sufficient amount of reduction even with 10% hydrogen.

(実施例5)
水素反応時間を変えて作成した還元ミネラルの還元力の変化を調べた。
水素反応時間を変更してサンプルを作成した。コントロール溶液としてMQ水を使用した。
(方法)
サンプル作成は植物焼却灰1gを炉内に入れ温度を800℃で炉内水素ガス濃度を100%にした状態を各時間維持して作成した。サンプルを水に溶解させ60mg/mL溶液にした。
還元量測定はサンプル溶液を表1の条件で500μMDPPH溶液と混ぜ室温に30分放置した。吸光度は520nmにおいて測定した。DPPHはエタノール(又はアセトニトリル)に溶かした。捕捉率はサンプル溶液とコントロール溶液の吸光度の比によって測定した。結果はサンプル4回の測定の平均値とした。得られた値はTroloxを測定した値を基にTrolox換算値措値として算出した。
(Example 5)
The change in the reducing power of the reducing minerals prepared by changing the hydrogen reaction time was investigated.
Samples were prepared by changing the hydrogen reaction time. MQ water was used as the control solution.
(Method)
The sample was prepared by putting 1 g of incinerated plant ash into the furnace and maintaining the temperature at 800 ° C. and the hydrogen gas concentration in the furnace at 100% for each time. The sample was dissolved in water to make a 60 mg / mL solution.
For the measurement of the amount of reduction, the sample solution was mixed with the 500 μMDPPH solution under the conditions shown in Table 1 and left at room temperature for 30 minutes. Absorbance was measured at 520 nm. DPPH was dissolved in ethanol (or acetonitrile). The capture rate was measured by the ratio of the absorbances of the sample solution and the control solution. The result was the average value of the measurement of 4 samples. The obtained value was calculated as a Trolox conversion value measure value based on the measured value of Trolox.

図5に800℃温度条件を用いて水素反応時間を表記時間として100%濃度水素ガス雰囲気下において反応させ作成した還元ミネラルのDPPH法で測定した結果を示す。
図5に示すように0.5時間の反応でも還元化はされているが1〜4時間で高い値を示している。また6時間では若干活性が落ちていることが確認できた。
FIG. 5 shows the results measured by the DPPH method of the reduced mineral prepared by reacting in a 100% concentration hydrogen gas atmosphere with the hydrogen reaction time as the notation time using the 800 ° C. temperature condition.
As shown in FIG. 5, the reduction was carried out even in the reaction for 0.5 hours, but the value was high in 1 to 4 hours. It was also confirmed that the activity was slightly reduced in 6 hours.

(実施例6)
還元型ミネラルの還元活性能力の維持についてDPPHラジカル消去活性で調べた。
植物焼却灰を水素ガス雰囲気下で800℃、4時間反応させて作成した還元型ミネラルを還元型ミネラルA、水素ガス雰囲気下で900℃、4時間反応させ作成した還元型ミネラルを還元型ミネラルBとした。また、コントロールとして、サンプルと同じ植物焼却灰を窒素ガス雰囲気で700℃、4時間反応させたものを使用し、サンプルと同条件でDPPHラジカル消去活性を調べた。また、比較として、MQ水についても同じ測定を行った。
サンプルを水に溶解させ60mg/mL溶液を作製した。
(方法)
サンプル溶液を表1の条件で500μMDPPH溶液と混ぜ室温に30分放置した。吸光度は520nmにおいて測定した。捕捉率はサンプル溶液とコントロール溶液の吸光度の比によって測定した。結果はサンプル溶液4回の測定の平均値とした。得られた値はTroloxを測定した値を基にTrolox換算値措値として算出した。また、各溶液作成後1日後、7日後及び1ヵ月後の溶液について同じ測定を行った。
(Example 6)
The maintenance of the reducing activity of reduced minerals was investigated by DPPH radical scavenging activity.
Reduced mineral A created by reacting plant incineration ash at 800 ° C for 4 hours in a hydrogen gas atmosphere, reduced mineral B created by reacting plant incineration ash at 900 ° C for 4 hours in a hydrogen gas atmosphere And said. As a control, the same plant incineration ash as the sample was reacted at 700 ° C. for 4 hours in a nitrogen gas atmosphere, and the DPPH radical scavenging activity was examined under the same conditions as the sample. For comparison, the same measurement was performed for MQ water.
The sample was dissolved in water to prepare a 60 mg / mL solution.
(Method)
The sample solution was mixed with a 500 μMDPPH solution under the conditions shown in Table 1 and left at room temperature for 30 minutes. Absorbance was measured at 520 nm. The capture rate was measured by the ratio of the absorbances of the sample solution and the control solution. The result was the average value of four measurements of the sample solution. The obtained value was calculated as a Trolox conversion value measure value based on the measured value of Trolox. In addition, the same measurement was performed on the solutions 1 day, 7 days, and 1 month after each solution was prepared.

還元型ミネラルのDPPH活性の結果を図6に示す。
図6において、表記1d、7d及び1Mはそれぞれ溶液作成後1日後、7日後及び1ヵ月後のサンプル溶液を指す。
図6に示すように、作成した還元型ミネラルは溶液作成後冷蔵保存した状態においてその還元量は少なくとも1ヵ月経過してもその値に変化は見られなかった。
The results of the DPPH activity of the reduced mineral are shown in FIG.
In FIG. 6, the notations 1d, 7d and 1M refer to the sample solutions 1 day, 7 days and 1 month after the solution preparation, respectively.
As shown in FIG. 6, the reduced amount of the prepared reduced mineral was not changed even after at least one month had passed in the state of refrigerating and storing the prepared solution.

すなわち、本発明方法で製造された還元型ミネラルは、嫌気条件下ではない通常の状態で保存しても1ケ月は十分に活性を保つことができ、さらに、冷蔵保存の場合には半年後においてもその活性が残存していることが分かった。 That is, the reduced mineral produced by the method of the present invention can maintain sufficient activity for one month even when stored under normal conditions not under anaerobic conditions, and further, in the case of refrigerated storage, after half a year. It was found that the activity remained.

本結果より以下のことが推察される。
通常、ミネラルを還元処理した場合ミネラルは水素化物や金属体となるがこれらは水溶液中では即時に水素を発生させイオン化してしまうため還元力は保たれない。しかし本発明方法で製造した還元型ミネラルは水溶液中でも安定した還元活性を保持することから全く新しいミネラル還元物が作成されていると推測される。
From this result, the following can be inferred.
Normally, when minerals are reduced, they become hydrides or metals, but these do not maintain their reducing power because they immediately generate hydrogen and ionize in an aqueous solution. However, since the reduced mineral produced by the method of the present invention retains stable reducing activity even in an aqueous solution, it is presumed that a completely new mineral reduced product is produced.

(実施例7)
還元型ミネラルの細胞内抗酸化活性を調べた。
還元ミネラルの持つ還元性が生体に影響を与えることができるかどうかを確認するために、細胞内活性酸素消去活性について培養細胞としてHT1080細胞(人由来繊維芽肉腫細胞株)を使用して検討した。還元型ミネラルは800度、4時間水素ガス雰囲気下で反応させ作成したものをサンプルとし、サンプルを水に溶解させ60mg/mL溶液を作製してサンプル溶液とした。
(方法)
HT1080細胞を0.5×10 5cells/mLの濃度で100μLずつ96ウェルプレートに2回撒き24時間培養の後40uM過酸化水素入り培地で30分培養し細胞に障害を与える。次に、サンプル溶液含有培地に交換し、一時間培養後、蛍光試薬を処理し、細胞内ROS(活性酸素種)を検出した。なお、サンプル溶液含有培地の代わりに、還元型ミネラルを含有しない水培地を使用し、他はサンプルと同じ処置をしたものをコントロールとした。詳細を図7に示す。
結果を図8に示す。なお、MEMはイーグル最小必須培地(Eagle(1959年)による細胞培養培地)、PBSはリン酸緩衝生理食塩水、BESは平衡電解液を示す。
(Example 7)
The intracellular antioxidant activity of reduced minerals was investigated.
In order to confirm whether the reducing property of the reducing mineral can affect the living body, the intracellular active oxygen scavenging activity was examined using HT1080 cells (human-derived fibroblastoma cell line) as cultured cells. .. The reduced mineral was prepared by reacting at 800 ° C. for 4 hours in a hydrogen gas atmosphere to prepare a sample, and the sample was dissolved in water to prepare a 60 mg / mL solution to prepare a sample solution.
(Method)
HT1080 cells are sprinkled twice in 96-well plates at a concentration of 0.5 × 105 cells / mL in 100 μL units, cultured for 24 hours, and then cultured in a medium containing 40 uM hydrogen peroxide for 30 minutes to damage the cells. Next, the medium was replaced with a sample solution-containing medium, and after culturing for 1 hour, a fluorescent reagent was treated to detect intracellular ROS (reactive oxygen species). In addition, instead of the sample solution-containing medium, an aqueous medium containing no reduced mineral was used, and the other medium treated in the same manner as the sample was used as a control. Details are shown in Fig. 7.
The results are shown in FIG. MEM is Eagle's minimum essential medium (cell culture medium by Eagle (1959)), PBS is phosphate buffered saline, and BES is equilibrium electrolyte.

図8に示すように生体細胞株を用いて細胞内に生じる活性酸素をサンプルが抑制できるかどうかを検討した結果では過酸化水素処理を行わない通常の培養(A)では還元型ミネラルを処理しても変化は見られないが、(B)40μM過酸化水素処理,(C)60μM過酸化水素処理によって細胞内活性酸素量を上昇させた場合では、還元型ミネラルを処理すると還元型ミネラル量依存的に細胞内活性酸素量が抑制されることが確認できた。この結果から還元型ミネラルは生体内で生じる過剰な活性酸素を消去することができることが示唆される。 As shown in FIG. 8, as a result of examining whether or not the sample can suppress the active oxygen generated in the cell using a living cell line, the reduced mineral was treated in the normal culture (A) without hydrogen peroxide treatment. However, when the amount of intracellular active oxygen is increased by (B) 40 μM hydrogen peroxide treatment and (C) 60 μM hydrogen peroxide treatment, treatment with reduced minerals depends on the amount of reduced minerals. It was confirmed that the amount of intracellular active oxygen was suppressed. This result suggests that reduced minerals can eliminate excess active oxygen generated in vivo.

(実施例8)
細胞内糖取り込み活性について調べた。
還元型ミネラルの持つ還元力が生体に影響を与えることができるかどうかを確認するために、細胞糖取り込み活性について培養細胞を使用して検討した。
なお、還元型ミネラルは800℃、4時間水素ガス雰囲気下で反応させ作成したものをサンプルとして使用した。サンプルを水に溶かし、60mg/mL溶液を作製してサンプル溶液とした。また、サンプル溶液を細胞に処理する際に1/10及び1/100に希釈して処理をした。培養細胞(3T3−L1)を使用した細胞糖取り込み活性の確認試験の方法を図9に、結果を図10に示す。なお、DGはジアシルグリセロールを示す。
(Example 8)
The intracellular sugar uptake activity was investigated.
In order to confirm whether the reducing power of reduced minerals can affect the living body, the cell sugar uptake activity was examined using cultured cells.
As the reduced mineral, a sample prepared by reacting at 800 ° C. for 4 hours in a hydrogen gas atmosphere was used. The sample was dissolved in water to prepare a 60 mg / mL solution, which was used as a sample solution. In addition, when the sample solution was treated into cells, it was diluted to 1/10 and 1/100 for treatment. The method of the confirmation test of the cell glucose uptake activity using the cultured cells (3T3-L1) is shown in FIG. 9, and the results are shown in FIG. DG represents diacylglycerol.

図10に示すように、MQ水においてインスリン刺激を行うと糖取り込み速度の明らかな上昇が確認できる。1/10倍希釈した還元型ミネラルを処理するとインスリン刺激を行っていないにもかかわらずその糖取り込み速度の上昇が確認された。また希釈を1/100にまで薄めると効果が無くなっている。なお、図中、MQはMQ水を示し、−insはインスリン刺激無、+insはインスリン刺激処理を行ったことを示している。
これらの結果から、還元型ミネラルは糖取り込みを促す効果があり、還元型ミネラルを使用することによって糖尿病患者内で生じているインスリン抵抗性の軽減が期待できる。
As shown in FIG. 10, when insulin stimulation is performed in MQ water, a clear increase in the glucose uptake rate can be confirmed. Treatment of reduced minerals diluted 1/10 times confirmed an increase in the glucose uptake rate even though insulin stimulation was not performed. Moreover, when the dilution is diluted to 1/100, the effect is lost. In the figure, MQ indicates MQ water, -ins indicates no insulin stimulation, and + ins indicates that insulin stimulation treatment was performed.
From these results, reduced minerals have the effect of promoting sugar uptake, and the use of reduced minerals can be expected to reduce insulin resistance occurring in diabetic patients.

次に本発明方法をさらに詳細に説明するために、本実施例で使用した雑草と市販のマングローブ木炭を材料とした植物焼却灰の成分を分析した結果を表3に示す。 Next, in order to explain the method of the present invention in more detail, Table 3 shows the results of analyzing the components of the plant incineration ash made from the weeds used in this example and commercially available mangrove charcoal.

Figure 0006842079
Figure 0006842079

測定は原料の元素情報で測定している範囲について行った。ロット差があるため、ある程度の幅は存在する。
さらに、作成された還元型ミネラル溶液の成分を分析した結果を表4に示す。
The measurement was performed in the range measured by the elemental information of the raw material. Due to lot differences, there is some width.
Further, Table 4 shows the results of analyzing the components of the prepared reduced mineral solution.

Figure 0006842079
Figure 0006842079

表4に示すとおり、還元型ミネラル溶液の成分は生体含有ミネラルに準じる構成となる。なお、ロット差があるためある程度の幅がある。 As shown in Table 4, the components of the reduced mineral solution have a structure similar to that of bio-containing minerals. Since there are lot differences, there is a certain range.

さらに、食塩原料、岩塩原料、植物由来、及び動物(魚類)由来の各焼却灰を本発明方法で水素処理して作成した物質についてのDPPHラジカル消去活性について測定した。
その結果を図11に示す。なお、()内はサンプルの希釈倍率である。
Furthermore, the DPPH radical scavenging activity of the substance prepared by hydrogenating each incinerated ash derived from salt raw material, rock salt raw material, plant-derived, and animal (fish) by the method of the present invention was measured.
The result is shown in FIG. The numbers in parentheses are the dilution ratios of the samples.

図11に示すように、岩塩や食塩を同様に水素処理したものではDPPHラジカルの減少は見られず、植物や魚類を灰化し作成した還元ミネラルでは消去活性が確認できた。(Troloxはポジティブコントロールである。)
上記より、本発明方法による還元型ミネラルを作成するためには、焼成材料として、複数のミネラル条件下で作成することが必須であると思われる。
なお、本発明方法では、還元型ミネラルの原料として、生体由来、つまり、動物及び/又は植物由来の焼却灰を用いたが、焼却灰と85%以上成分の同等な粉状無機物材料を使用することも可能である。
As shown in FIG. 11, the DPPH radicals were not reduced in the hydrogen-treated rock salt and salt, and the scavenging activity was confirmed in the reduced minerals produced by ashing plants and fish. (Tolox is a positive control.)
From the above, in order to prepare the reduced mineral by the method of the present invention, it is considered essential to prepare the reduced mineral as a calcining material under a plurality of mineral conditions.
In the method of the present invention, incineration ash derived from a living body, that is, animal and / or plant is used as a raw material for the reduced mineral, but a powdery inorganic material having 85% or more of the components equivalent to the incineration ash is used. It is also possible.

さらに、本発明方法の理解のために、本発明方法で作成された還元型ミネラルの構造について研究した。現在、構造については情報は全くない状況であり、推測としては、これらミネラルが複数あることが重要であると思われる。
現在、推測される構造物として以下の図12、図13、図14が考えられる。
Furthermore, in order to understand the method of the present invention, the structure of the reduced mineral produced by the method of the present invention was studied. Currently, there is no information on the structure, and it is speculated that it is important to have multiple of these minerals.
Currently, the following FIGS. 12, 13, and 14 can be considered as the inferred structures.

図12に示すように、金属が還元されると電子によって微小の金属体(ナノ粒子)が生成され、さらに水素化物が作成される。しかしこれらは水中では即座に溶解し存在することはできないと考えられている。そのため図13に示す水素を内包するような構造が考えられ、この構造を有する化合物の存在は知られているが、還元活性を持たないという問題がある。また、本発明方法における還元型ミネラルについては、複数のミネラルが重要であることから図14に示すような水素貯蔵合金のナノ粒子が作成されている、あるいは、反応性の低い新規水素化物が生成されている、などが推測される。
As shown in FIG. 12, when a metal is reduced, a minute metal body (nanoparticle) is generated by an electron, and a hydride is further produced. However, it is believed that they cannot be immediately dissolved and present in water. Therefore, a structure containing hydrogen as shown in FIG. 13 is conceivable, and the existence of a compound having this structure is known, but there is a problem that it does not have reducing activity. As for the reduced minerals in the method of the present invention, since a plurality of minerals are important, nanoparticles of a hydrogen storage alloy as shown in FIG. 14 are produced, or a novel hydride having low reactivity is generated. It is presumed that it has been done.

Claims (7)

窒素ガスで充填したガス炉内に複数のミネラルを含有する植物及び動物のいずれか一方又は双方由来の焼却灰若しくは該焼却灰と成分の同等な粉状無機物を入れる第1工程と、
前記第1工程の後に、前記ガス炉内を脱気し、前記ガス炉内に前記焼却灰又は前記粉状無機物1gに対して水素ガスを1〜1000mMの範囲で充填する第2工程と、
炉内温度が600〜1000℃の範囲になるように前記ガス炉を加熱し還元型ミネラルを作成する第3工程と、
前記第3工程の後、前記炉内温度を常温に下げて排気及び窒素置換を行って、前記還元型ミネラルを回収する第4工程を有することを特徴とする還元型ミネラルの製造方法。
The first step of putting incineration ash derived from one or both of plants and animals containing a plurality of minerals or a powdery inorganic substance having the same composition as the incineration ash into a gas furnace filled with nitrogen gas.
After the first step, the gas furnace is degassed, and the gas furnace is filled with hydrogen gas in the range of 1 to 1000 mM for 1 g of the incineration ash or the powdery inorganic substance.
The third step of heating the gas furnace to produce reduced minerals so that the temperature inside the furnace is in the range of 600 to 1000 ° C.
A method for producing a reduced mineral, which comprises a fourth step of recovering the reduced mineral by lowering the temperature in the furnace to room temperature, performing exhaust and nitrogen substitution after the third step.
複数のミネラルを含有する植物及び動物のいずれか一方又は双方由来の焼却灰若しくは該焼却灰と成分の同等な粉状無機物を入れたガス炉内に窒素ガスを充満する第1工程と、
前記第1工程の後に、前記ガス炉内を脱気し、前記ガス炉内に前記焼却灰又は前記粉状無機物1gに対して水素ガスを1〜1000mMの範囲で充填する第2工程と、
炉内温度が600〜1000℃の範囲になるように前記ガス炉を加熱し還元型ミネラルを作成する第3工程と、
前記第3工程の後、前記炉内温度を常温に下げて排気及び窒素置換を行って、前記還元型ミネラルを回収する第4工程を有することを特徴とする還元型ミネラルの製造方法。
The first step of filling a gas furnace containing incineration ash derived from one or both of plants and animals containing a plurality of minerals or a powdery inorganic substance having the same composition as the incineration ash, and nitrogen gas.
After the first step, the gas furnace is degassed, and the gas furnace is filled with hydrogen gas in the range of 1 to 1000 mM for 1 g of the incineration ash or the powdery inorganic substance.
The third step of heating the gas furnace to produce reduced minerals so that the temperature inside the furnace is in the range of 600 to 1000 ° C.
A method for producing a reduced mineral, which comprises a fourth step of recovering the reduced mineral by lowering the temperature in the furnace to room temperature, performing exhaust and nitrogen substitution after the third step.
請求項1又は2記載の還元型ミネラルの製造方法において、前記第1工程及び前記第2工程は常温かつ常圧で行うことを特徴とする還元型ミネラルの製造方法。 The method for producing a reduced mineral according to claim 1 or 2, wherein the first step and the second step are carried out at normal temperature and pressure. 請求項1〜3のいずれか1記載の還元型ミネラルの製造方法において、前記第2工程では、前記水素ガスが炉容量に対して常温かつ常圧で1.4〜100容量%となるように、水素ガスのみ、又は水素ガスと窒素ガスを充填することを特徴とする還元型ミネラルの製造方法。 In the method for producing a reduced mineral according to any one of claims 1 to 3, in the second step, the hydrogen gas is adjusted to 1.4 to 100% by volume at normal temperature and pressure with respect to the furnace capacity. , A method for producing a reduced mineral, which comprises filling only hydrogen gas or hydrogen gas and nitrogen gas. 請求項1〜4のいずれか1記載の還元型ミネラルの製造方法において、前記第3工程における前記炉内温度は700〜900℃であることを特徴とする還元型ミネラルの製造方法。 The method for producing a reduced mineral according to any one of claims 1 to 4, wherein the temperature inside the furnace in the third step is 700 to 900 ° C. 請求項1〜5のいずれか1記載の還元型ミネラルの製造方法において、前記第3工程では、前記炉内温度を0.5〜6時間維持することを特徴とする還元型ミネラルの製造方法。 The method for producing a reduced mineral according to any one of claims 1 to 5, wherein in the third step, the temperature inside the furnace is maintained for 0.5 to 6 hours. 窒素ガスで充填したガス炉内に複数のミネラルを含有する植物及び動物のいずれか一方又は双方由来の焼却灰を入れて脱気した後、焼却灰1gに対して水素ガスを1〜1000mMの範囲で充填し、炉内温度が600〜1000℃の範囲になるように前記ガス炉を加熱し還元型ミネラルを作成し、常温に下げて排気及び窒素置換を行って還元型ミネラルを回収することを特徴とする細胞内糖取り込み活性を有する還元型ミネラルの製造方法。 After incineration ash derived from one or both of plants and animals containing multiple minerals is placed in a gas furnace filled with nitrogen gas and degassed, hydrogen gas is added in the range of 1 to 1000 mM per 1 g of incineration ash. The gas furnace is heated so that the temperature inside the furnace is in the range of 600 to 1000 ° C. to prepare a reduced mineral, and the gas furnace is lowered to room temperature to be exhausted and replaced with nitrogen to recover the reduced mineral. A method for producing a reduced mineral having a characteristic intracellular sugar uptake activity.
JP2016165566A 2016-08-26 2016-08-26 Method for producing reduced minerals and method for producing reduced minerals having intracellular sugar uptake activity Active JP6842079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016165566A JP6842079B2 (en) 2016-08-26 2016-08-26 Method for producing reduced minerals and method for producing reduced minerals having intracellular sugar uptake activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165566A JP6842079B2 (en) 2016-08-26 2016-08-26 Method for producing reduced minerals and method for producing reduced minerals having intracellular sugar uptake activity

Publications (2)

Publication Number Publication Date
JP2018030820A JP2018030820A (en) 2018-03-01
JP6842079B2 true JP6842079B2 (en) 2021-03-17

Family

ID=61304491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165566A Active JP6842079B2 (en) 2016-08-26 2016-08-26 Method for producing reduced minerals and method for producing reduced minerals having intracellular sugar uptake activity

Country Status (1)

Country Link
JP (1) JP6842079B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268749A (en) * 1975-12-03 1977-06-07 Chugai Ro Kogyo Kaisha Ltd Reduction treating method for sludge containing chrome component
JP2001012719A (en) * 1999-06-29 2001-01-19 Japan Steel Works Ltd:The Method for reducing and melting ash with high temperature hydrogen, method for generating high temperature hydrogen and reducing and melting device
DE10332033A1 (en) * 2003-07-15 2005-02-03 Chemetall Gmbh Process for the preparation of metal powders or of metal hydride powders of the elements Ti, Zr, Hf, V, Nb, Ta and Cr
JP4404657B2 (en) * 2004-03-03 2010-01-27 株式会社創造的生物工学研究所 Eating minus hydrogen ion production method
DE102008000433A1 (en) * 2008-02-28 2009-09-03 Chemetall Gmbh Process for the production of alloy powders based on titanium, zirconium and hafnium alloyed with the elements Ni, Cu, Ta, W, Re, Os and Ir

Also Published As

Publication number Publication date
JP2018030820A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6653858B2 (en) Method for extracting fulvic acid and humic acid, and method for fractionating humic substances
Su et al. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge
US9162219B2 (en) Fenton reaction catalyst produced using reducing organic substance as raw material
EP2654940B1 (en) Method for producing an aqueous stable chlorine dioxide solution
Bhattacharya et al. Antibacterial properties of doped nanoparticles
CN101522231A (en) Water for preparing dialysate and dialysate and method of producing dialysate using the same, and dialyzer
Fakra et al. Correlative cryogenic spectromicroscopy to investigate selenium bioreduction products
JPWO2010107121A1 (en) New soil diagnosis method
JP2009142261A (en) Method for producing coral powder
Zhou et al. The enhanced survival of submerged macrophyte Potamogeton malaianus by sediment microbial fuel cells
Zhu et al. Phosphate-suppressed selenite biotransformation by Escherichia coli
Nielsen Evolutionary events culminating in specific minerals becoming essential for life
JP6842079B2 (en) Method for producing reduced minerals and method for producing reduced minerals having intracellular sugar uptake activity
CN100411518C (en) Antiseptics for improving hydrogen peroxide sterilizing activity and preparing process thereof
Chen et al. Environmental implication of MoS2 nanosheets: effects on maize plant growth and soil microorganisms
WO2017060794A1 (en) Method of disinfection of drinking water using ozone and silver cations
Nzengung et al. Mechanistic changes during phytoremediation of perchlorate under different root-zone conditions
Tang et al. Evaluating the potential of charred bone as P hotspot assisted by phosphate-solubilizing bacteria
JP2014028363A (en) Acidic electrolytic water and method for producing the same
Wei et al. Rice seedlings and microorganisms mediate biotransformation of Se in CdSe/ZnS quantum dots to volatile alkyl selenides
Ye et al. Synthesis and enhanced electrochemical property of Au-doped cerium phosphate nanowires
Sanjay et al. Elementals Profile of Traditional Some Important Medicinal Plants of Uttarakhand State, India
Wedeen et al. Lanthanum
JP6090665B2 (en) Sediment improvement and fertilizer and its usage
JPH062047B2 (en) Spirulina containing high concentration of trace elements in human body and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R150 Certificate of patent or registration of utility model

Ref document number: 6842079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350