JP6842008B2 - High withstand voltage evaluation method for high withstand voltage cable, high withstand voltage cable, and insulated lightning protection system - Google Patents

High withstand voltage evaluation method for high withstand voltage cable, high withstand voltage cable, and insulated lightning protection system Download PDF

Info

Publication number
JP6842008B2
JP6842008B2 JP2016246403A JP2016246403A JP6842008B2 JP 6842008 B2 JP6842008 B2 JP 6842008B2 JP 2016246403 A JP2016246403 A JP 2016246403A JP 2016246403 A JP2016246403 A JP 2016246403A JP 6842008 B2 JP6842008 B2 JP 6842008B2
Authority
JP
Japan
Prior art keywords
lightning
withstand voltage
high withstand
voltage cable
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016246403A
Other languages
Japanese (ja)
Other versions
JP2018101525A (en
Inventor
晋示 安井
晋示 安井
土田 崇
崇 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2016246403A priority Critical patent/JP6842008B2/en
Publication of JP2018101525A publication Critical patent/JP2018101525A/en
Application granted granted Critical
Publication of JP6842008B2 publication Critical patent/JP6842008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Elimination Of Static Electricity (AREA)

Description

本発明は、雷撃を受雷する受雷部及び雷電流を接地極へ流す引下げ導線を建物に対して絶縁した絶縁型雷保護システムに用いられる高耐圧ケーブルの耐電圧評価方法、高耐圧ケーブル、及び絶縁型雷保護システムに関する。 The present invention is a method for evaluating the withstand voltage of a high withstand voltage cable used in an insulated lightning protection system in which a lightning receiving portion that receives a lightning strike and a pulling lead wire that allows a lightning current to flow to a ground electrode are insulated from a building. And related to insulated lightning protection systems.

近年の高度電子化社会では、データセンター、大規模なシミュレーション施設、手術室などを備える病院、研究施設などの建物では極めて静的な電磁環境が望まれている。このような建物に落雷すると、雷電流の影響によって建物内の電気・電子機器に過電圧が誘導され、電気・電子機器の故障あるいは誤動作の原因となる。 In the highly electronic society of recent years, an extremely static electromagnetic environment is desired in buildings such as data centers, large-scale simulation facilities, hospitals equipped with operating rooms, and research facilities. When a lightning strike occurs on such a building, an overvoltage is induced in the electric / electronic equipment in the building due to the influence of the lightning current, which causes a failure or malfunction of the electric / electronic equipment.

建物の落雷の影響を抑制する方法として、雷保護システムの受雷部(避雷針、棟上げ導体など)及び受雷部で受雷した雷電流を大地の接地極へ流す引下げ導線とを建物構造体と絶縁した、いわゆる分離した雷保護システム(以下、絶縁型雷保護システムという)が採用されることがある。 As a method of suppressing the influence of lightning strikes on a building, a lightning receiving part (lightning rod, ridge-raising conductor, etc.) of the lightning protection system and a pull-down lead wire that allows lightning current received by the lightning receiving part to flow to the grounding electrode of the earth are used as the building structure. An insulated, so-called separate lightning protection system (hereinafter referred to as an insulated lightning protection system) may be adopted.

絶縁型雷保護システムとして、避雷針支持管に複数の傘状絶縁体を一体に取付けた絶縁パイプを用い、この絶縁パイプ支持管の中に絶縁電線を通し、絶縁電線を絶縁パイプ支持管の先端で、避雷突針、絶縁電線、壁雷針支持管を二分割型取付金具より機械的に接続すると共に、避雷突針と絶縁電線を電気的に接続し、これにより、建家内部の弱電機器に誘導電圧が生じにくく弱電機器の絶縁破壊を防止できるようにしたものがある(例えば、特許文献1参照)。 As an insulated lightning protection system, an insulated pipe with a plurality of lightning rod-shaped insulators integrally attached to the lightning rod support tube is used, an insulated wire is passed through the insulated pipe support tube, and the insulated wire is passed through the tip of the insulated pipe support tube. , The lightning rod, the insulated wire, and the wall lightning rod support tube are mechanically connected from the two-piece mounting bracket, and the lightning rod and the insulated wire are electrically connected. (For example, see Patent Document 1).

また、建屋の屋上に避雷針を建屋に対して絶縁して敷設し、避雷針から接地極までの間は、単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルから成る避雷ケーブルを接続し、予め建屋の内部に通した金属管路内に避雷ケーブルを通して建屋の上から下に引下げ、避雷針に雷が誘導された際、避雷ケーブルに流れる雷電流と逆向きの誘導電流が金属管路に流れることにより、雷撃電流による避雷ケーブルの外部磁場の発生を抑制させ、落雷時に特定パスを通して雷電流を地中に流すとともに建屋内部に誘導雷による電磁場を発生させないようにしたものがある(例えば、特許文献2参照)。 In addition, a lightning rod is laid on the roof of the building insulated from the building, and a lightning rod consisting of one or more shielded power cables or a high-frequency coaxial cable for power is connected in advance between the lightning rod and the ground electrode. When a lightning rod is pulled down from the top of the building through a lightning cable through the metal pipeline that passes through the inside of the building and a lightning rod is guided by the lightning rod, the induced current that flows in the opposite direction to the lightning current that flows through the lightning rod flows through the metal pipeline. As a result, the generation of the external magnetic field of the lightning rod due to the lightning rod is suppressed, the lightning current is passed through the ground through a specific path at the time of a lightning rod, and the electromagnetic field due to the induced lightning is not generated inside the building (for example, Patent Documents). 2).

特開平11−40390号公報Japanese Unexamined Patent Publication No. 11-40390 特開2011−28920号公報Japanese Unexamined Patent Publication No. 2011-288920

しかし、このような絶縁型避雷システムにおいては、引下げ導線に用いる高耐圧ケーブルの耐電圧性能について、簡易に評価できなかった。従来においては、高耐圧ケーブルの耐電圧を、高耐圧ケーブルのケーブル導体のインダクタンスによる電圧降下で評価していた。すなわち、ケーブル導体のインダクタンスLと雷電流の波頭峻度di/dtとの積で評価していたが、雷撃には、第一正極短時間雷撃(以降、第一雷撃という)と後続短時間雷撃(以降、後続雷撃)の2つの雷撃があり、後続雷撃の場合は雷電流の波頭峻度di/dtが第一雷撃の10倍と計算されるため、後続雷撃に対する雷過電圧は、現実的な値にならないことから十分に評価されていなかった。 However, in such an insulated lightning rod, the withstand voltage performance of the high withstand voltage cable used for the pull-down lead wire could not be easily evaluated. Conventionally, the withstand voltage of a high withstand voltage cable has been evaluated by the voltage drop due to the inductance of the cable conductor of the high withstand voltage cable. That is, it was evaluated by the product of the inductance L of the cable conductor and the wave front steepness di / dt of the lightning current. There are two types of lightning strikes (hereinafter referred to as subsequent lightning strikes), and in the case of subsequent lightning strikes, the wave front steepness di / dt of the lightning current is calculated to be 10 times that of the first lightning strike, so the lightning overvoltage for the subsequent lightning strike is realistic. It was not fully evaluated because it was not a value.

JIS Z9290−1(2014)「雷保護 第一部一般原則」には、雷保護レベルとそのレベルに応じた雷電流パラメータが規定されている。標準的な雷保護レベルはIVであり、このときの第一雷撃の電流パラメータは電流波高値100kA(波頭長10μs/波尾長350μs)であり、波頭峻度(波高値/波頭長)は100kA/10μs=10kA/μsである。後続雷撃では、電流波高値25kA(波頭長0.25μs/波尾長100μs)であり、波頭峻度(波高値/波頭長)は25kA/0.25μs=100kA/μsである。このように、後続雷撃の場合は雷電流の波頭峻度di/dtが第一雷撃の10倍と計算される。 JIS Z9290-1 (2014) "Lightning Protection Part 1 General Principles" defines lightning protection levels and lightning current parameters according to those levels. The standard lightning protection level is IV, and the current parameter of the first lightning strike at this time is a current peak value of 100 kA (wave head length 10 μs / wave tail length 350 μs), and a wave head steepness (wave height value / wave head length) of 100 kA /. 10 μs = 10 kA / μs. In the subsequent lightning stroke, the current crest value is 25 kA (wave crest length 0.25 μs / crest length 100 μs), and the crest steepness (crest value / crest length) is 25 kA / 0.25 μs = 100 kA / μs. Thus, in the case of a subsequent lightning strike, the wave front steepness di / dt of the lightning current is calculated to be 10 times that of the first lightning strike.

第一雷撃は、放電電荷量が大きく落雷のエネルギーが大きいのが特徴であり、一方、後続雷撃は、第一雷撃に続き落雷するものであり、後続雷撃を伴う落雷は60〜70%を占めると言われている。この後続雷撃は前述のように波頭峻度が大きいことが特徴である。具体的には第一雷撃の波頭峻度が10kA/μsであるのに対して、後続雷撃では100kA/μsである。波頭峻度が大きいほど、インダクタンスLに起因する雷過電圧が大きくなる。このように、後続雷撃に対する雷過電圧は、現実的な値にならないことから十分に評価されていなかった。 The first lightning strike is characterized by a large amount of discharge charge and a large amount of lightning energy, while the subsequent lightning strike is a lightning strike following the first lightning strike, and lightning strikes accompanied by subsequent lightning strikes account for 60 to 70%. Is said to be. This subsequent lightning strike is characterized by a large crest steepness as described above. Specifically, the wave front steepness of the first lightning stroke is 10 kA / μs, whereas that of the subsequent lightning stroke is 100 kA / μs. The larger the crest steepness, the larger the lightning overvoltage caused by the inductance L. Thus, the lightning overvoltage for subsequent lightning strikes has not been fully evaluated because it is not a realistic value.

そこで、厳密に雷過電圧を評価する場合には、電磁界解析や過渡解析など高度な解析技術を用いていた。電磁界解析によって雷過電圧を評価することは可能であるが、電磁界解析は、広い空間(例えば100m四方のエリア)にある細かな回路空間(例えば数ミリm)を扱わなければならないので、コンピュータの計算量が膨大になり現実的でない。また、汎用的な過渡現象解析手法があるが、この手法では等価回路を構築する必要があり、十分な知識や高度なレベルの計算スキルを要することから、一般の設計者が扱えるものでない。 Therefore, in order to strictly evaluate the lightning overvoltage, advanced analysis techniques such as electromagnetic field analysis and transient analysis were used. Although it is possible to evaluate lightning overvoltage by electromagnetic field analysis, since electromagnetic field analysis has to deal with a small circuit space (for example, several millimeters) in a large space (for example, an area of 100 m square), a computer The amount of calculation is enormous and unrealistic. In addition, there is a general-purpose transient phenomenon analysis method, but this method requires the construction of an equivalent circuit and requires sufficient knowledge and a high level of calculation skill, so it cannot be handled by general designers.

こうしたことから、簡便に適切な耐電圧性能の高耐圧ケーブルを選定することが難しく、結果として、落雷に耐えられない高耐圧ケーブルを採用したり、耐電圧の裕度を過剰に見込み過ぎた高耐圧ケーブルを採用したりすることがあった。 For these reasons, it is difficult to easily select a high withstand voltage cable with appropriate withstand voltage performance, and as a result, a high withstand voltage cable that cannot withstand lightning strikes is adopted, or the withstand voltage margin is overestimated. In some cases, a pressure resistant cable was used.

本発明の目的は、簡易で正確に高耐圧ケーブルの耐電圧を評価できる高耐圧ケーブルの耐電圧評価方法、高耐圧ケーブル、及び絶縁型雷保護システムを提供することである。 An object of the present invention is to provide a high withstand voltage evaluation method for a high withstand voltage cable, a high withstand voltage cable, and an insulated lightning protection system that can easily and accurately evaluate the withstand voltage of the high withstand voltage cable.

請求項1の発明に係る高耐圧ケーブルの耐電圧評価方法は、ケーブル導体とシールド導体とが共通接地される高耐圧ケーブルの受雷部側に加わる雷過電圧Vcsを下記の(1)式及び(2)式により計算し、前記高耐圧ケーブル耐電圧が落雷に耐えられる耐電圧であることを評価することを特徴とする。 In the method for evaluating the withstand voltage of a high withstand voltage cable according to the invention of claim 1, the lightning overvoltage Vcs applied to the light receiving portion side of the high withstand voltage cable in which the cable conductor and the shield conductor are commonly grounded is the following equation (1) and (1). It is characterized in that it is calculated by the equation 2) and it is evaluated that the withstand voltage of the high withstand voltage cable is a withstand voltage that can withstand a lightning strike.

2D/v0<trのとき、Vcs=Ist・Z0・2D/v0 …(1)
2D/v0≧trのとき、Vcs=Imax・Z0 …(2)
ただし、D:高耐圧ケーブル長、v0:雷電流の伝搬速度、tr:雷電流の立ち上がり時間、Ist:雷電流の波頭峻度、Z0:高耐圧ケーブルのケーブル導体とシールド導体との間の特性インピーダンス、Imax:雷電流のピーク値。
When 2D / v0 <tr, Vcs = Ist · Z0 · 2D / v0… (1)
When 2D / v0 ≧ tr, Vcs = Imax · Z0… (2)
However, D: high withstand voltage cable length, v0: lightning current propagation speed, tr: lightning current rise time, Ist: lightning current crest steepness, Z0: characteristics between the cable conductor and shield conductor of the high withstand voltage cable. Impedance, Imax: Peak value of lightning current.

請求項2の発明に係る高耐圧ケーブルは、請求項1で評価した高耐圧ケーブルの耐電圧、または前記評価した耐電圧に裕度を見込んだ耐電圧を満たすことを特徴とする高耐圧ケーブル。 The high withstand voltage cable according to the invention of claim 2 is a high withstand voltage cable that satisfies the withstand voltage of the high withstand voltage cable evaluated in claim 1 or the withstand voltage that is expected to have a margin in the evaluated withstand voltage.

請求項3の発明に係る高耐圧ケーブルを用いた絶縁型雷保護システムは、雷撃を受雷する受雷部及び前記受雷部で受雷した雷電流を大地の接地極へ流す引下げ導線を建物に対して絶縁した絶縁型雷保護システムにおいて、前記引下げ導線として、請求項2に記載の高耐圧ケーブルを用いたことを特徴とする。 The insulated lightning protection system using the high-voltage cable according to the invention of claim 3 has a lightning receiving portion that receives a lightning strike and a pull-down lead wire that allows a lightning current received by the lightning receiving portion to flow to a grounding electrode of the earth. In an insulated lightning protection system that is insulated from the above, the high withstand voltage cable according to claim 2 is used as the pull-down lead wire.

請求項1の発明によれば、ケーブル導体とシールド導体とが共通接地される高耐圧ケーブルのケーブル長D、雷電流の伝搬速度v0、雷電流の立ち上がり時間tr、雷電流の波頭峻度Ist、高耐圧ケーブルのケーブル導体とシールド導体との間の特性インピーダンスZ0、雷電流のピーク値Imaxとしたとき、雷撃に対して高耐圧ケーブルの受雷部側に加わる雷過電圧Vcsを、2D/v0<trのときは、Vcs=Ist・Z0・2D/v0により計算し、2D/v0≧trのときは、Vcs=Imax・Z0により計算し、前記高耐圧ケーブル耐電圧が落雷に耐えられる耐電圧であることを評価するので、簡易に正確に高耐圧ケーブルの受雷部側に加わる雷過電圧を評価できる。 According to the invention of claim 1, the cable length D of the high withstand voltage cable in which the cable conductor and the shield conductor are commonly grounded , the propagation speed of the lightning current v0, the rise time tr of the lightning current, the wave front steepness Ist of the lightning current, When the characteristic impedance Z0 between the cable conductor and the shield conductor of the high withstand voltage cable and the peak value Imax of the lightning current are set, the lightning overvoltage Vcs applied to the light receiving part side of the high withstand voltage cable in response to a lightning strike is 2D / v0 < When tr, it is calculated by Vcs = Ist ・ Z0 ・ 2D / v0, and when 2D / v0 ≧ tr, it is calculated by Vcs = Imax ・ Z0, and the withstand voltage of the high withstand voltage cable is the withstand voltage that can withstand lightning. Therefore, it is possible to easily and accurately evaluate the lightning overvoltage applied to the light receiving portion side of the high withstand voltage cable.

請求項2の発明によれば、請求項1で評価した高耐圧ケーブルの受雷部側に加わる雷過電圧、またはその評価した雷過電圧に裕度を見込んだ耐電圧を満たす高耐圧ケーブルとするので、耐電圧の裕度を過剰に見込み過ぎることがなく、落雷に耐え得る適切な高耐圧ケーブルとすることができる。 According to the invention of claim 2, the high withstand voltage cable satisfying the lightning overvoltage applied to the lightning receiving portion side of the high withstand voltage cable evaluated in claim 1 or the withstand voltage expected to be marginal to the evaluated lightning overvoltage. It is possible to obtain an appropriate high withstand voltage cable that can withstand lightning strikes without excessively expecting the withstand voltage margin.

請求項3の発明によれば、雷撃を受雷する受雷部、及び受雷部で受雷した雷電流を大地の接地極へ流す引下げ導線を建物に対して絶縁した絶縁型雷保護システムに、引下げ導線として、請求項2に記載の高耐圧ケーブルを用いるので、落雷に耐え得る適切な絶縁型雷保護システムを構築できる。 According to the invention of claim 3, it is an insulated lightning protection system in which a lightning receiving part that receives a lightning strike and a pulling lead wire that causes a lightning current received by the lightning receiving part to flow to a grounding electrode of the earth are insulated from the building. Since the high withstand voltage cable according to claim 2 is used as the pull-down lead wire, an appropriate insulated lightning protection system capable of withstanding lightning strikes can be constructed.

高耐圧ケーブルの受雷部側に流れ込む雷電流I(t)の波形の一例を示す波形図。The waveform diagram which shows an example of the waveform of the lightning current I (t) flowing into the lightning receiving part side of a high withstand voltage cable. 高耐圧ケーブルの受雷部側に加わる雷過電圧Vcs(t)の波形の一例を示す波形図。The waveform diagram which shows an example of the waveform of the lightning overvoltage Vcs (t) applied to the lightning receiving part side of a high withstand voltage cable. 高耐圧ケーブルの受雷部側に加わる雷過電圧Vcs(t)の進行波及び反射波のイメージ図。The image figure of the traveling wave and the reflected wave of the lightning overvoltage Vcs (t) applied to the lightning receiving part side of a high withstand voltage cable. 高耐圧ケーブルの受雷部で反射する反射波電圧V2(t)がt<trのとき(雷過電圧がピーク値Imax・Z0まで立ち上がっていないとき)に発生した場合の高耐圧ケーブルの受雷部の雷過電圧Vcs(t)の電圧波形図。When the reflected wave voltage V2 (t) reflected by the lightning receiving part of the high withstand voltage cable is t <tr (when the lightning overvoltage does not rise to the peak value Imax · Z0), the lightning receiving part of the high withstand voltage cable The voltage waveform diagram of the lightning overvoltage Vcs (t) of. 高耐圧ケーブルの受雷部で反射する反射波電圧V2(t)がt≧trのとき(雷過電圧がピーク値Imax・Z0に達した後のとき)に発生した場合の高耐圧ケーブルの受雷部の雷過電圧Vcs(t)の電圧波形図。Lightning reception of the high withstand voltage cable when the reflected wave voltage V2 (t) reflected by the lightning receiving part of the high withstand voltage cable is t ≧ tr (after the lightning overvoltage reaches the peak value Imax · Z0). The voltage waveform diagram of the lightning overvoltage Vcs (t) of the part. 高耐圧ケーブルの耐電圧の解析モデルのために使用した高耐圧ケーブルの一例を示す断面図。The cross-sectional view which shows an example of the high withstand voltage cable used for the analysis model of the withstand voltage of a high withstand voltage cable. 高耐圧ケーブルの耐電圧の解析モデルのために使用した実験回路の一例を示す回路図。The circuit diagram which shows an example of the experimental circuit used for the analysis model of the withstand voltage of a high withstand voltage cable. 表1の諸元を有する高耐圧ケーブルについて接地極を個別接地をした場合の高耐圧ケーブル長Dをパラメータとした第一雷撃及び後続雷撃の雷過電圧の解析結果のグラフ。The graph of the analysis result of the lightning overvoltage of the first lightning strike and the subsequent lightning stroke with the high withstand voltage cable length D as a parameter when the grounding electrode is individually grounded for the high withstand voltage cable having the specifications of Table 1. 表1の諸元を有する高耐圧ケーブルについて接地極を共通接地をした場合の高耐圧ケーブル長Dをパラメータとした第一雷撃及び後続雷撃の雷過電圧の解析結果のグラフ。The graph of the analysis result of the lightning overvoltage of the first lightning strike and the subsequent lightning stroke with the high withstand voltage cable length D as a parameter when the grounding electrode is commonly grounded for the high withstand voltage cable having the specifications of Table 1. 本発明の実施形態に係る高耐圧ケーブルの耐電圧評価方法の工程の一例を示すフローチャート。The flowchart which shows an example of the process of the withstand voltage evaluation method of the high withstand voltage cable which concerns on embodiment of this invention.

以下、本発明に至った経緯を説明する。発明者らは、実験および数値解析を行い、得られる雷電流や雷過電圧の波形を繰り返し分析・検討することによって、以下に示す(1)式及び(2)式で表される計算式で、ケーブル導体とシールド導体とが共通接地される高耐圧ケーブルの受雷部側に加わる雷過電圧(高耐圧ケーブルのケーブル導体とシールド導体との間に必要とされる耐電圧)の最大値を算定できることを見出した。 Hereinafter, the background to the present invention will be described. By conducting experiments and numerical analysis, and repeatedly analyzing and examining the waveforms of the obtained lightning current and lightning overvoltage, the inventors use the calculation formulas represented by the following formulas (1) and (2). The maximum value of the lightning overvoltage (withstand voltage required between the cable conductor and shield conductor of the high withstand voltage cable) applied to the light receiving part side of the high withstand voltage cable where the cable conductor and shield conductor are commonly grounded can be calculated. I found.

高耐圧ケーブルの接地方式には、高耐圧ケーブルのケーブル導体とシールド導体とを同じ接地極を用いて共通に接地する共通接地と、ケーブル導体とシールド導体とを別の接地極を用いて個別に接地する個別接地とがあり、共通接地自体は高耐圧ケーブルを用いる際の一般的な接地方式であるが、発明者らは、高耐圧ケーブルの接地方式として共通接地を採用した場合に本発明が適用できることを知見した。 The grounding method for high-voltage cables includes common grounding in which the cable conductor and shield conductor of the high-voltage cable are commonly grounded using the same grounding electrode, and the cable conductor and shield conductor are individually grounded using different grounding electrodes. There is an individual grounding, and the common grounding itself is a general grounding method when using a high withstand voltage cable, but the inventors of the present invention can use the common grounding as the grounding method for the high withstand voltage cable. It was found that it can be applied.

まず、計算式について説明する。いま、高耐圧ケーブルの受雷部側に加わる雷過電圧をVcs[kV]、ケーブル長さをD[m]、雷電流の立ち上がり時間tr[s]、 雷電流のピーク値をImax[A]、 雷電流の波頭峻度Ist[kA/μs]、ケーブル導体とシールド導体との間の絶縁体の比誘電率をεr、真空中の光速をC0[m/s]、 ケーブル導体とシールド導体との間の伝搬速度v0[m/s]、 ケーブル導体の外径(半径)をr[m]、 シールド導体の外径(半径)をR[m]、ケーブル導体とシールド導体との間の特性インピーダンスをZ0[Ω]とする。
<計算式>
2D/v0<trのとき: Vcs=Ist・Z0・2D/v0 …(1)
2D/v0≧trのとき: Vcs=Imax・Z0 …(2)
なお、その他の関係式は以下の通りである。
First, the calculation formula will be described. Now, the lightning overvoltage applied to the light receiving part side of the high withstand voltage cable is Vcs [kV], the cable length is D [m], the lightning current rise time tr [s], the peak value of the lightning current is Imax [A], The wave front steepness Ist [kA / μs] of the lightning current, the relative dielectric constant of the insulator between the cable conductor and the shield conductor is εr, the light velocity in vacuum is C0 [m / s], and the cable conductor and the shield conductor Propagation speed v0 [m / s] between, outer diameter (radius) of cable conductor is r [m], outer diameter (radius) of shield conductor is R [m], characteristic impedance between cable conductor and shield conductor Is Z0 [Ω].
<Calculation formula>
When 2D / v0 <tr: Vcs = Ist ・ Z0 ・ 2D / v0… (1)
When 2D / v0 ≧ tr: Vcs = Imax · Z0… (2)
The other relational expressions are as follows.

v0=C0/√εr …(3)
Z0=60ln(R/r)/√εr …(4)
Ist=Imax/tr …(5)
(1)式〜(5)式から分かるように、高耐圧ケーブルの物理的な諸元(シールド導体外径寸法R、ケーブル導体の外径寸法r、絶縁体の比誘電率εr、高耐圧ケーブル長さD)と、対象とする雷電流パラメータ(ピーク値Imax、立ち上がり時間tr)が分かれば、高耐圧ケーブルに必要な雷過電圧(雷過電圧の最大値)を算定することが可能である。従って、簡易に高耐圧ケーブルに加わる雷過電圧を評価できる。
v0 = C0 / √εr… (3)
Z0 = 60ln (R / r) / √εr… (4)
Ist = Imax / tr ... (5)
As can be seen from equations (1) to (5), the physical specifications of the high withstand voltage cable (shield conductor outer diameter dimension R, cable conductor outer diameter dimension r, relative permittivity εr of insulator, high withstand voltage cable). If the length D) and the target lightning current parameter (peak value Imax, rise time tr) are known, it is possible to calculate the lightning overvoltage (maximum value of the lightning overvoltage) required for the high withstand voltage cable. Therefore, the lightning overvoltage applied to the high withstand voltage cable can be easily evaluated.

次に、(1)式及び(2)式で表される計算式で、高耐圧ケーブルの受雷部側に加わる雷過電圧(高耐圧ケーブルのケーブル導体とシールド導体との間に必要とされる耐電圧)を算定できることを説明する。 Next, in the calculation formulas expressed by equations (1) and (2), a lightning overvoltage applied to the lightning receiving portion side of the high withstand voltage cable (required between the cable conductor and the shield conductor of the high withstand voltage cable). Explain that the withstand voltage) can be calculated.

まず、雷電流I(t)は、下記の(6)式及び(7)式で表すことができる。ただし、落雷したタイミングをt=0とする。 First, the lightning current I (t) can be expressed by the following equations (6) and (7). However, the timing of the lightning strike is t = 0.

t<trのとき: I(t)=Ist・t …(6)
t≧trのとき: I(t)=Imax …(7)
すなわち、図1に示すように、雷電流がピーク値Imaxまで立ち上がっていないとき(t<trのとき)は雷電流I(t)は(6)式で示され、雷電流がピーク値Imaxに達した後のとき(t≧trのとき)は雷電流I(t)は(7)式で示される。
When t <tr: I (t) = Ist · t… (6)
When t ≧ tr: I (t) = Imax ... (7)
That is, as shown in FIG. 1, when the lightning current does not rise to the peak value Imax (when t <tr), the lightning current I (t) is represented by the equation (6), and the lightning current reaches the peak value Imax. After reaching (when t ≧ tr), the lightning current I (t) is expressed by Eq. (7).

図1は高耐圧ケーブルの受雷部側に流れ込む雷電流I(t)の波形の一例を示す波形図である。落雷した時点(t=0)からピーク値Imaxになる時点(t=tr)まで雷電流はその波頭峻度Istで増加し、時点(t=tr)になるとピーク値Imaxとなり、それ以降においては雷電流はピーク値Imaxで一定となる。 FIG. 1 is a waveform diagram showing an example of the waveform of the lightning current I (t) flowing into the lightning receiving portion side of the high withstand voltage cable. The lightning current increases at the crest steepness Ist from the point of lightning strike (t = 0) to the point of peak value Imax (t = tr), reaches the peak value Imax at the time point (t = tr), and thereafter. The lightning current is constant at the peak value Imax.

高耐圧ケーブルの受雷部側に加わる雷過電圧Vcs(t)(ケーブル導体とシールド導体との間に生じる雷過電圧Vcs(t))は、(6)式及び(7)式で示される雷電流I(t)に高耐圧ケーブルの特性インピーダンスZ0を乗算して求められ、下記の(8)式及び(9)式で表される。 The lightning overvoltage Vcs (t) applied to the lightning receiving portion side of the high withstand voltage cable (lightning overvoltage Vcs (t) generated between the cable conductor and the shield conductor) is the lightning current represented by equations (6) and (7). It is obtained by multiplying I (t) by the characteristic impedance Z0 of the high withstand voltage cable, and is represented by the following equations (8) and (9).

t<trのとき: Vcs(t)=Z0・Ist・t …(8)
t≧trのとき: Vcs(t)=Imax・Z0 …(9)
図2は高耐圧ケーブルの受雷部側に加わる雷過電圧Vcs(t)の波形の一例を示す波形図である。図1に示した高耐圧ケーブルの受雷部側に流れ込む雷電流I(t)と同様に、高耐圧ケーブルの受雷部側に加わる雷過電圧Vcs(t)は、落雷した時点(t=0)からピーク値Imax・Z0になる時点(t=tr)までZ0・Istの傾きで増加し、時点(t=tr)になるとピーク値Imax・Z0となり、それ以降においてはピーク値Imax・Z0で一定となる。
When t <tr: Vcs (t) = Z0 ・ Ist ・ t… (8)
When t ≧ tr: Vcs (t) = Imax · Z0… (9)
FIG. 2 is a waveform diagram showing an example of the waveform of the lightning overvoltage Vcs (t) applied to the lightning receiving portion side of the high withstand voltage cable. Similar to the lightning current I (t) flowing into the lightning receiving portion side of the high withstand voltage cable shown in FIG. 1, the lightning overvoltage Vcs (t) applied to the lightning receiving portion side of the high withstand voltage cable is the time when the lightning strikes (t = 0). ) To the peak value Imax ・ Z0 (t = tr), it increases with the slope of Z0 ・ Ist, and at the time point (t = tr), it becomes the peak value Imax ・ Z0, and after that, the peak value Imax ・ Z0 It becomes constant.

次に、高耐圧ケーブルの受雷部側に加わる雷過電圧Vcs(t)の反射について考える。図3は高耐圧ケーブルの受雷部側に加わる雷過電圧Vcs(t)の進行波及び反射波のイメージ図である。落雷があると高耐圧ケーブル11の受雷部12に雷過電圧Vcs(t)が誘起される。いま、雷過電圧Vcs(t)の最大値をVとする。 Next, consider the reflection of the lightning overvoltage Vcs (t) applied to the lightning receiving portion side of the high withstand voltage cable. FIG. 3 is an image diagram of a traveling wave and a reflected wave of a lightning overvoltage Vcs (t) applied to the lightning receiving portion side of the high withstand voltage cable. When there is a lightning strike, a lightning overvoltage Vcs (t) is induced in the lightning receiving portion 12 of the high withstand voltage cable 11. Now, let V be the maximum value of the lightning overvoltage Vcs (t).

雷過電圧Vcs(t)は、図3に示すように、高耐圧ケーブル11の受雷部12からケーブル導体を通って接地極13に向かって進行波として進行し(T1)、落雷からD/v0の時間が経過した後に、地面(接地極13)に到達する(T2)。 As shown in FIG. 3, the lightning overvoltage Vcs (t) travels as a traveling wave from the light receiving portion 12 of the high withstand voltage cable 11 through the cable conductor toward the ground electrode 13 (T1), and D / v0 from the lightning strike. After the lapse of time, the ground (grounding electrode 13) is reached (T2).

高耐圧ケーブル11の接地は共通接地であり、接地極13側では高耐圧ケーブル11のケーブル導体とシールド導体との間を接続していることから、雷過電圧Vcs(t)は接地極13で反射し、逆極性の反射波電圧V1(t)が高耐圧ケーブル11の受雷部12側に向かって進行する(T3)。すなわち、逆極性の反射波電圧V1(t)の大きさの絶対値は雷過電圧Vcs(t)と同じであるが逆極性であるので、逆極性の反射波電圧V1(t)のマイナス方向の大きさは−Vである。 Since the grounding of the high withstand voltage cable 11 is a common ground and the cable conductor of the high withstand voltage cable 11 and the shield conductor are connected on the grounding electrode 13 side, the lightning overvoltage Vcs (t) is reflected by the grounding electrode 13. Then, the reflected wave voltage V1 (t) having the opposite polarity travels toward the light receiving portion 12 side of the high withstand voltage cable 11 (T3). That is, the absolute value of the magnitude of the opposite polarity reflected wave voltage V1 (t) is the same as the lightning overvoltage Vcs (t), but since it has the opposite polarity, it is in the negative direction of the opposite polarity reflected wave voltage V1 (t). The magnitude is -V.

そして、この逆極性の反射波電圧V1(t)は、落雷してから2D/v0の時間が経過した後に高耐圧ケーブル11の受雷部12に到達する(T4)。高耐圧ケーブル11の受雷部12では、ケーブル導体とシールド導体とは非接続であり開放しているから、ここでは、電圧の極性は反転せずに反射する。従って、高耐圧ケーブル11の受雷部12で反射する反射波電圧V2(t)は、逆極性の反射波電圧V1(t)の2倍の大きさ(−2V)となって、再び接地極13側に向かって進行することになる。この場合、雷過電圧Vcs(t)に反射波電圧V2が加算された電圧が接地極13側に向かって進行することになる(T5)。 Then, the reflected wave voltage V1 (t) having the opposite polarity reaches the lightning receiving portion 12 of the high withstand voltage cable 11 after a time of 2D / v0 elapses after the lightning strike (T4). In the lightning receiving portion 12 of the high withstand voltage cable 11, since the cable conductor and the shield conductor are not connected and are open, the polarity of the voltage is reflected here without being inverted. Therefore, the reflected wave voltage V2 (t) reflected by the lightning receiving portion 12 of the high withstand voltage cable 11 becomes twice as large (-2V) as the reflected wave voltage V1 (t) of the opposite polarity, and the ground electrode is again grounded. It will proceed toward the 13th side. In this case, the voltage obtained by adding the reflected wave voltage V2 to the lightning overvoltage Vcs (t) travels toward the grounding electrode 13 side (T5).

ここで、高耐圧ケーブル11の受雷部12で反射する反射波電圧V2(t)は、下記の(10)式及び(11)式で表される。 Here, the reflected wave voltage V2 (t) reflected by the lightning receiving portion 12 of the high withstand voltage cable 11 is represented by the following equations (10) and (11).

t<2D/v0のとき:
V2(t)=0 …(10)
t≧2D/v0のとき:
V2(t)= −2・Z0・Ist・(t−2D/v0) …(11)
すなわち、t<2D/v0では、高耐圧ケーブル11の受雷部12で反射する反射波電圧V2(t)は存在しないので(10)式に示すように0であり、t=2D/v0になって初めて受雷部12で反射して(11)式に示す反射波電圧V2(t)が発生する。
When t <2D / v0:
V2 (t) = 0 ... (10)
When t ≧ 2D / v0:
V2 (t) = -2, Z0, Ist, (t-2D / v0) ... (11)
That is, when t <2D / v0, the reflected wave voltage V2 (t) reflected by the lightning receiving portion 12 of the high withstand voltage cable 11 does not exist, so it is 0 as shown in equation (10), and t = 2D / v0. Only then is it reflected by the lightning receiving unit 12 to generate the reflected wave voltage V2 (t) shown in Eq. (11).

従って、受雷部12で反射する反射波電圧V2(t)も考慮に入れた場合の高耐圧ケーブル11の受雷部の雷過電圧Vcs(t)は、(8)式及び(9)の右辺に反射波電圧V2(t)を加算した(12)式及び(13)式で示される。 Therefore, the lightning overvoltage Vcs (t) of the lightning receiving portion of the high withstand voltage cable 11 when the reflected wave voltage V2 (t) reflected by the lightning receiving portion 12 is also taken into consideration is the right side of the equations (8) and (9). It is shown by Eqs. (12) and (13) in which the reflected wave voltage V2 (t) is added to.

t<trのとき: Vcs(t)=Z0・Ist・t−V2(t) …(12)
t≧trのとき: Vcs(t)=Imax・Z0−V2(t) …(13)
When t <tr: Vcs (t) = Z0 · Ist · t-V2 (t) ... (12)
When t ≧ tr: Vcs (t) = Imax · Z0-V2 (t)… (13)

図4は、高耐圧ケーブル11の受雷部12で反射する反射波電圧V2(t)がt<trのとき(雷過電圧がピーク値Imax・Z0まで立ち上がっていないとき)に発生した場合の高耐圧ケーブル11の受雷部の雷過電圧Vcs(t)の電圧波形図である。すなわち、t<trのときにt=2D/v0となった場合であり、t=2D/v0のときにVcs(t)は最大値となり、t=2D/v0以降は減少する。この場合は、(12)式に(11)式を代入して得られる下記の(14)式で表される場合である。 FIG. 4 shows the height when the reflected wave voltage V2 (t) reflected by the lightning receiving portion 12 of the high withstand voltage cable 11 is t <tr (when the lightning overvoltage does not rise to the peak values Imax · Z0). It is a voltage waveform diagram of the lightning overvoltage Vcs (t) of the lightning receiving part of a pressure-resistant cable 11. That is, when t <tr, t = 2D / v0, when t = 2D / v0, Vcs (t) becomes the maximum value, and after t = 2D / v0, it decreases. In this case, it is represented by the following equation (14) obtained by substituting the equation (11) into the equation (12).

Vcs(t)=Z0・Ist・t−2・Z0・Ist・(t−2D/v0) …(14)
この(14)式において、Vcs(t)の最大値は、t=2D/v0のときに、Z0・Ist・2D/v0となり、(1)式で示す計算式(Vcs=Ist・Z0・2D/v0)となる。
Vcs (t) = Z0 ・ Ist ・ t-2 ・ Z0 ・ Ist ・ (t-2D / v0)… (14)
In this equation (14), the maximum value of Vcs (t) is Z0 · Ist · 2D / v0 when t = 2D / v0, and the calculation formula (Vcs = Ist · Z0.2D) shown in the formula (1). / V0).

図5は、高耐圧ケーブル11の受雷部12で反射する反射波電圧V2(t)がt≧trのとき(雷過電圧がピーク値Imax・Z0に達した後のとき)に発生した場合の高耐圧ケーブル11の受雷部の雷過電圧Vcs(t)の電圧波形図である。すなわち、t≧trのときにt=2D/v0となった場合であり、時点(t=tr)〜時点(t=2D/v0)まではVcs(t)はピーク値Imax・Z0であり、t=2D/v0以降は減少する。すなわち、この場合は、(13)式に(11)式を代入して得られる下記の(15)式で表される場合である。 FIG. 5 shows a case where the reflected wave voltage V2 (t) reflected by the lightning receiving portion 12 of the high withstand voltage cable 11 occurs when t ≧ tr (after the lightning overvoltage reaches the peak values Imax · Z0). It is a voltage waveform diagram of the lightning overvoltage Vcs (t) of the lightning receiving part of a high withstand voltage cable 11. That is, when t ≧ tr, t = 2D / v0, and from the time point (t = tr) to the time point (t = 2D / v0), Vcs (t) has a peak value of Imax · Z0. It decreases after t = 2D / v0. That is, in this case, it is represented by the following equation (15) obtained by substituting the equation (11) into the equation (13).

Vcs(t)=Imax・Z0−2・Z0・Ist・(t−2D/v0) …(15)
この(15)式において、Vcs(t)の最大値は、時点(t=tr)〜時点(t=2D/v0)のときのピーク値Imax・Z0であり、(2)式で示す計算式(Vcs=Imax・Z0)となる。
Vcs (t) = Imax, Z0-2, Z0, Ist, (t-2D / v0) ... (15)
In the formula (15), the maximum value of Vcs (t) is the peak value Imax · Z0 from the time point (t = tr) to the time point (t = 2D / v0), and the calculation formula shown in the formula (2). (Vcs = Imax · Z0).

以上の説明では、雷過電圧の進行波が高耐圧ケーブル11の受雷部12側および地面側(接地極13側)でいずれも全反射するとしているが、全反射でない場合にも、逆極性の反射波が受雷部に到達したタイミングで決定されるので、雷過電圧の最大値は(1)式、(2)式によって算定できる。このように、雷電流の波形と高耐圧ケーブルの長さ等の諸元が分かれば、簡易に高耐圧ケーブルに必要とされる耐電圧仕様を決定できる。 In the above explanation, it is assumed that the traveling wave of the lightning overvoltage is totally reflected on the lightning receiving portion 12 side and the ground side (grounding electrode 13 side) of the high withstand voltage cable 11, but even if it is not totally reflected, it has the opposite polarity. Since the reflected wave is determined when it reaches the lightning receiving portion, the maximum value of the lightning overvoltage can be calculated by the equations (1) and (2). In this way, if the specifications such as the waveform of the lightning current and the length of the high withstand voltage cable are known, the withstand voltage specifications required for the high withstand voltage cable can be easily determined.

次に、(1)式及び(2)式の妥当性について説明する。高耐圧ケーブルの解析モデルを検討するために、高耐圧ケーブルに生じる雷過電圧をインパルス実験で調べることとした。図6は高耐圧ケーブルの耐電圧の解析モデルのために使用した高耐圧ケーブルの一例を示す断面図である。高耐圧ケーブル11は、中芯部の円柱状の絶縁体14aの周囲に円筒状のケーブル導体15を有し、ケーブル導体15の外側に半導電層16aを介して円筒状の絶縁体14bを設け、さらに円筒状の絶縁体14bの外側に半導電層16bを介してシールド導体17を設け、シールド導体17の外側を絶縁体14cで覆って構成されている。この場合、ケーブル導体15とシールド導体17との間の絶縁体14bの比誘電率はεrである。 Next, the validity of equations (1) and (2) will be described. In order to examine the analysis model of the high withstand voltage cable, we decided to investigate the lightning overvoltage generated in the high withstand voltage cable by impulse experiment. FIG. 6 is a cross-sectional view showing an example of the high withstand voltage cable used for the analysis model of the withstand voltage of the high withstand voltage cable. The high withstand voltage cable 11 has a cylindrical cable conductor 15 around a cylindrical insulator 14a in the core portion, and a cylindrical insulator 14b is provided on the outside of the cable conductor 15 via a semiconductive layer 16a. Further, a shield conductor 17 is provided on the outside of the cylindrical insulator 14b via a semi-conductive layer 16b, and the outside of the shield conductor 17 is covered with the insulator 14c. In this case, the relative permittivity of the insulator 14b between the cable conductor 15 and the shield conductor 17 is εr.

図7は高耐圧ケーブル11の耐電圧の解析モデルのために使用した実験回路の一例を示す回路図である。高耐圧ケーブル長がDである高耐圧ケーブル11の受雷側にインパルス装置18から雷過電圧の電圧波形を入力し、接地極側において切換スイッチ19により接地抵抗Rの接続を共通接地と個別接地とで切り換えるようにした。 FIG. 7 is a circuit diagram showing an example of an experimental circuit used for the analysis model of the withstand voltage of the high withstand voltage cable 11. The voltage waveform of the lightning overvoltage is input from the impulse device 18 to the lightning receiving side of the high withstand voltage cable 11 having the high withstand voltage cable length D, and the grounding resistance R is connected to the common ground and individual ground by the changeover switch 19 on the grounding electrode side. I tried to switch with.

高耐圧ケーブル11の解析モデルは、瞬時値解析プログラムXTAP(電中研)を用いて作成した。XTAPに含まれる分布定数線路を解析できるプログラムXTLCの中の解析モデルを用い、高耐圧ケーブル11の仕様を反映させた。表1に解析モデルに使用した高耐圧ケーブル11の諸元(パラメータ)を示す。 The analysis model of the high withstand voltage cable 11 was created by using the instantaneous value analysis program XTAP (Central Research Institute of Electric Power Industry). The specifications of the high withstand voltage cable 11 were reflected by using the analysis model in the program XTLC that can analyze the distributed constant lines included in XTAP. Table 1 shows the specifications (parameters) of the high withstand voltage cable 11 used in the analysis model.

Figure 0006842008

そして、高耐圧ケーブル長Dを変化させて雷過電圧の解析をした。図8及び図9に雷過電圧の解析結果を示す。図8は、表1の諸元を有する高耐圧ケーブルについて接地極を個別接地をした場合の高耐圧ケーブル長Dをパラメータとした第一雷撃及び後続雷撃の雷過電圧の解析結果のグラフであり、図8(a)は第一雷撃を印加したときの高耐圧ケーブルのケーブル導体とシールド導体との間に生じる雷過電圧Vのグラフ、図8(b)は後続雷撃を印加したときの高耐圧ケーブルのケーブル導体とシールド導体との間に生じる雷過電圧Vのグラフである。接地抵抗Rは100Ω、第一雷撃は電流波高値100kA(波頭長10μs/波尾長350μs)、後続雷撃は電流波高値25kA(波頭長0.25μs/波尾長100μs)、高耐圧ケーブル長Dは、10m、20m、50m、100mの場合を示している。
Figure 0006842008

Then, the lightning overvoltage was analyzed by changing the high withstand voltage cable length D. 8 and 9 show the analysis results of the lightning overvoltage. FIG. 8 is a graph of the analysis results of the lightning overvoltage of the first lightning strike and the subsequent lightning strike with the high withstand voltage cable length D as a parameter when the grounding electrode is individually grounded for the high withstand voltage cable having the specifications shown in Table 1. FIG. 8 (a) is a graph of the lightning overvoltage V generated between the cable conductor and the shield conductor of the high withstand voltage cable when the first lightning strike is applied, and FIG. 8 (b) is the high withstand voltage cable when the subsequent lightning strike is applied. It is a graph of the lightning overvoltage V generated between the cable conductor and the shield conductor of. The ground resistance R is 100Ω, the first lightning stroke has a current wave height of 100 kA (wave crest length 10 μs / wave tail length 350 μs), the subsequent lightning stroke has a current wave height of 25 kA (wave crest length 0.25 μs / wave tail length 100 μs), and the high withstand voltage cable length D is. The cases of 10 m, 20 m, 50 m, and 100 m are shown.

第一雷撃を印加したときの図8(a)において、曲線C1は高耐圧ケーブル長Dが10mのときの雷過電圧Vのグラフ、曲線C2は高耐圧ケーブル長Dが20mのときの雷過電圧Vのグラフ、曲線C3は高耐圧ケーブル長Dが50mのときの雷過電圧Vのグラフ、曲線C4は高耐圧ケーブル長Dが100mのときの雷過電圧Vのグラフである。図8(a)からわかるように、第一雷撃の場合は、高耐圧ケーブルのケーブル導体とシールド導体との間に生じる雷過電圧Vの電圧のピーク値は10,000kVであり、高耐圧ケーブル長Dが短い程、ピーク値に到達する時間が短くなる。 In FIG. 8A when the first lightning strike is applied, the curve C1 is a graph of the lightning overvoltage V when the high withstand voltage cable length D is 10 m, and the curve C2 is the lightning overvoltage V when the high withstand voltage cable length D is 20 m. The graph, curve C3 is a graph of lightning overvoltage V when the high withstand voltage cable length D is 50 m , and curve C4 is a graph of lightning overvoltage V when the high withstand voltage cable length D is 100 m. As can be seen from FIG. 8A, in the case of the first lightning strike, the peak value of the lightning overvoltage V generated between the cable conductor and the shield conductor of the high withstand voltage cable is 10,000 kV, and the high withstand voltage cable length. The shorter D, the shorter the time to reach the peak value.

一方、後続雷撃を印加したときの図8(b)において、曲線C11は高耐圧ケーブル長Dが10mのときの雷過電圧Vのグラフ、曲線C12は高耐圧ケーブル長Dが20mのときの雷過電圧Vのグラフ、曲線C13は高耐圧ケーブル長Dが50mのときの雷過電圧Vのグラフ、曲線C14は高耐圧ケーブル長Dが100mのときの雷過電圧Vのグラフである。図8(b)からわかるように、後続雷撃の場合は、高耐圧ケーブルのケーブル導体とシールド導体との間に生じる雷過電圧Vの電圧のピーク値は2,500kVであり、第一雷撃の場合よりは小さいが、第一雷撃の場合と同様に、高耐圧ケーブル長Dが短い程、ピーク値に到達する時間が短くなっている。 On the other hand, in FIG. 8B when the subsequent lightning strike is applied, the curve C11 is a graph of the lightning overvoltage V when the high withstand voltage cable length D is 10 m, and the curve C12 is the lightning overvoltage when the high withstand voltage cable length D is 20 m. The graph of V, the curve C13 is a graph of the lightning overvoltage V when the high withstand voltage cable length D is 50 m , and the curve C14 is a graph of the lightning overvoltage V when the high withstand voltage cable length D is 100 m. As can be seen from FIG. 8B, in the case of a subsequent lightning strike, the peak value of the lightning overvoltage V generated between the cable conductor and the shield conductor of the high withstand voltage cable is 2,500 kV, and in the case of the first lightning strike. However, as in the case of the first lightning strike, the shorter the high withstand voltage cable length D, the shorter the time to reach the peak value.

個別の接地の場合は、第一雷撃及び後続雷撃の雷過電圧Vは、概ねケーブル導体を流れる電流のピーク値と接地抵抗Rとの積であることが分かる。すなわち、高耐圧ケーブルのインピーダンスによる過電圧よりも、接地抵抗Rによる過電圧が支配的であることが分かる。なお、実際の施工においては、2本の接地極間の電位干渉があるため、この解析結果よりも雷過電圧は小さくなることが想定される。 In the case of individual grounding, it can be seen that the lightning overvoltage V of the first lightning stroke and the subsequent lightning stroke is approximately the product of the peak value of the current flowing through the cable conductor and the grounding resistance R. That is, it can be seen that the overvoltage due to the ground resistance R is dominant over the overvoltage due to the impedance of the high withstand voltage cable. In actual construction, since there is potential interference between the two grounding electrodes, it is assumed that the lightning overvoltage will be smaller than this analysis result.

次に、図9は、表1の諸元を有する高耐圧ケーブルについて接地極を共通接地をした場合の高耐圧ケーブル長Dをパラメータとした第一雷撃及び後続雷撃の雷過電圧の解析結果のグラフであり、図9(a)は第一雷撃を印加したときの高耐圧ケーブルのケーブル導体とシールド導体との間に生じる雷過電圧Vのグラフ、図9(b)は後続雷撃を印加したときの高耐圧ケーブルのケーブル導体とシールド導体との間に生じる雷過電圧Vのグラフである。個別接地の場合と同様に、接地抵抗Rは100Ω、第一雷撃は電流波高値100kA(波頭長10μs/波尾長350μs)、後続雷撃は電流波高値25kA(波頭長0.25μs/波尾長100μs)、高耐圧ケーブル長Dは、10m、20m、50m、100mの場合を示している。 Next, FIG. 9 is a graph of the analysis results of the lightning overvoltage of the first lightning strike and the subsequent lightning strike with the high withstand voltage cable length D as a parameter when the grounding electrode is commonly grounded for the high withstand voltage cable having the specifications shown in Table 1. 9 (a) is a graph of the lightning overvoltage V generated between the cable conductor and the shield conductor of the high withstand voltage cable when the first lightning strike is applied, and FIG. 9 (b) is the graph when the subsequent lightning strike is applied. It is a graph of the lightning overvoltage V generated between the cable conductor and the shield conductor of a high withstand voltage cable. As in the case of individual grounding, the ground resistance R is 100Ω, the first lightning strike has a current crest length of 100 kA (wave crest length 10 μs / crest length 350 μs), and the subsequent lightning strike has a current crest length of 25 kA (wave crest length 0.25 μs / crest length 100 μs). The high withstand voltage cable length D shows the cases of 10 m, 20 m, 50 m, and 100 m.

図9(a)において、曲線C1は高耐圧ケーブル長Dが10mのときのグラフ、曲線C2は高耐圧ケーブル長Dが20mのときのグラフ、曲線C3は高耐圧ケーブル長Dが50mのときのグラフ、曲線C4は高耐圧ケーブル長Dが100mのときのグラフである。図9(a)からわかるように、第一雷撃の場合は、雷過電圧のピーク値は高耐圧ケーブル長さDに比例して大きくなるが、高耐圧ケーブル長Dが100mの場合であっても雷過電圧のピーク値は200kV程度であり個別接地の場合に比べて十分に小さい。 In FIG. 9A, the curve C1 is a graph when the high withstand voltage cable length D is 10 m, the curve C2 is a graph when the high withstand voltage cable length D is 20 m, and the curve C3 is a graph when the high withstand voltage cable length D is 50 m . The graph and the curve C4 are graphs when the high withstand voltage cable length D is 100 m. As can be seen from FIG. 9A, in the case of the first lightning strike, the peak value of the lightning overvoltage increases in proportion to the high withstand voltage cable length D, but even when the high withstand voltage cable length D is 100 m. The peak value of the lightning overvoltage is about 200 kV, which is sufficiently smaller than that in the case of individual grounding.

さらに発明者らは図9(a)の波形についても着目した。先述のように、従来は、第一直撃雷における雷過電圧はLdi/dtで評価されてきた。図9(a)を見ると、時間経過とともに雷過電圧は振動している。このような振動は、単にLdi/dtや高耐圧ケーブルのインダクタンスだけでは説明できない。そこで発明者らは、第一雷撃においても、雷電流・電圧の反射が原因でこのような雷過電圧が生じると考えた。即ち、雷電流・電圧の反射が繰り返されることによって、雷過電圧の波形が振動すると説明できる。そして、雷過電圧の最大値は、反射波が高耐圧ケーブルの受雷部側に到達した時間と、雷電流の立ち上がり時間の関係によって決定されることを見出した。以上の考察から、(1)式によって高耐圧ケーブル雷過電圧を評価できることを知見した。 Furthermore, the inventors also paid attention to the waveform shown in FIG. 9 (a). As mentioned above, conventionally, the lightning overvoltage in the first direct lightning strike has been evaluated by Ldi / dt. Looking at FIG. 9A, the lightning overvoltage oscillates with the passage of time. Such vibration cannot be explained simply by the inductance of Ldi / dt or the high withstand voltage cable. Therefore, the inventors thought that such a lightning overvoltage would occur due to the reflection of the lightning current and voltage even in the first lightning strike. That is, it can be explained that the waveform of the lightning overvoltage vibrates due to repeated reflections of the lightning current and voltage. Then, it was found that the maximum value of the lightning overvoltage is determined by the relationship between the time when the reflected wave reaches the lightning receiving portion side of the high withstand voltage cable and the rising time of the lightning current. From the above consideration, it was found that the high withstand voltage cable lightning overvoltage can be evaluated by the equation (1).

一方、図9(b)において、曲線C11は高耐圧ケーブル長Dが10mのときのグラフ、曲線C12は高耐圧ケーブル長Dが20mのときのグラフ、曲線C13は高耐圧ケーブル長Dが50mのときのグラフ、曲線C14は高耐圧ケーブル長Dが100mのときのグラフである。 On the other hand, in FIG. 9B, the curve C11 is a graph when the high withstand voltage cable length D is 10 m, the curve C12 is a graph when the high withstand voltage cable length D is 20 m, and the curve C13 is a graph when the high withstand voltage cable length D is 50 m . The graph at the time, the curve C14 is a graph when the high withstand voltage cable length D is 100 m.

後続雷撃の場合は、高耐圧ケーブル長Dが20mまでは高耐圧ケーブル長さDに対して雷過電圧のピーク値が高くなるものの、高耐圧ケーブル長Dが50m、100mの場合は、いずれも雷過電圧のピーク値は約450kVで頭打ちになる。共通接地では、個別接地のように接地抵抗への配慮が無くても、耐電圧を低く抑えることができることが分かる。 In the case of a subsequent lightning strike, the peak value of the lightning overvoltage is higher than the high withstand voltage cable length D until the high withstand voltage cable length D is 20 m, but when the high withstand voltage cable length D is 50 m or 100 m, lightning strikes. The peak value of overvoltage reaches a plateau at about 450 kV. It can be seen that with common grounding, the withstand voltage can be suppressed to a low level without consideration for grounding resistance as with individual grounding.

ここで、高耐圧ケーブルに加わる雷過電圧が、高耐圧ケーブルのインダクタンスに依存したものであれば、高耐圧ケーブルの長さに比例した雷過電圧が出ることが考えられるが、図9(b)から分かるように、高耐圧ケーブルが長くなっても雷過電圧のピーク値が頭打ちになっている。このように、雷過電圧が頭打ちになるのは、雷電圧がピーク値に立ち上がった後に、反射波が到達したためである。 Here, if the lightning overvoltage applied to the high withstand voltage cable depends on the inductance of the high withstand voltage cable, it is conceivable that a lightning overvoltage proportional to the length of the high withstand voltage cable will be generated. As you can see, the peak value of lightning overvoltage has peaked even if the high-voltage cable is long. In this way, the lightning overvoltage leveled off because the reflected wave arrived after the lightning voltage rose to its peak value.

図9(a)及び(b)の考察から、雷過電圧のピーク値が雷電流の反射によって現れるものと発明者らは知見した。そして、雷過電圧の最大値は、反射波が高耐圧ケーブルの受雷部側に到達した時間と、雷電流の立ち上がり時間の関係によって決定される、即ち(1)式(2)式によって評価できることを発明者らは知見した。 From the consideration of FIGS. 9A and 9B, the inventors have found that the peak value of the lightning overvoltage appears due to the reflection of the lightning current. The maximum value of the lightning overvoltage is determined by the relationship between the time when the reflected wave reaches the lightning receiving part side of the high withstand voltage cable and the rising time of the lightning current, that is, it can be evaluated by the equations (1) and (2). The inventors found out.

このように、個別接地の場合は図8で示したように、雷過電圧は極めて大きく高耐圧ケーブル選定上は個別接地は現実的でないと判断できるので本発明では共通接地を採用する。 As described above, in the case of individual grounding, as shown in FIG. 8, since the lightning overvoltage is extremely large and it can be judged that individual grounding is not realistic in selecting a high withstand voltage cable, common grounding is adopted in the present invention.

次に、(1)式及び(2)式の妥当性について、(1)式及び(2)式で得られた耐電圧と、解析により得られた解析結果とを比較する。 Next, regarding the validity of the equations (1) and (2), the withstand voltage obtained by the equations (1) and (2) is compared with the analysis result obtained by the analysis.

比較条件は、雷電流のパラメータ(第一雷撃と後続雷撃)の2通りと、高耐圧ケーブルの長さD(10m、20m、50m、100m)の4通りの組み合わせの8通りとする。また、高耐圧ケーブルの諸元は表1に示したものとする。 The comparison conditions are eight combinations of two lightning current parameters (first lightning strike and subsequent lightning strike) and four high-voltage cable lengths D (10 m, 20 m, 50 m, 100 m). The specifications of the high withstand voltage cable are as shown in Table 1.

表1の高耐圧ケーブルの諸元と(3)式及び(4)式より、以下の値が得られる。高耐圧ケーブルのケーブル導体とシールド導体との間の伝搬速度v0は、(3)式より、
v0=1.73×108[m/s] …(16)
高耐圧ケーブルの特性インピーダンスZ0は、(4)式より、
Z0=17.8[Ω] …(17)
また、雷電流パラメータ(第一雷撃:電流波高値100kA(波頭長10μs/波尾長350μs)、後続雷撃:25kA(波頭長0.25μs/波尾長100μs))から、以下の値が得られる。
The following values can be obtained from the specifications of the high withstand voltage cable shown in Table 1 and the equations (3) and (4). The propagation speed v0 between the cable conductor and the shield conductor of the high withstand voltage cable is determined by Eq. (3).
v0 = 1.73 × 108 [m / s]… (16)
The characteristic impedance Z0 of the high withstand voltage cable is determined by Eq. (4).
Z0 = 17.8 [Ω]… (17)
Further, the following values can be obtained from the lightning current parameters (first lightning strike: current wave height value 100 kA (wave head length 10 μs / wave tail length 350 μs), subsequent lightning strike: 25 kA (wave head length 0.25 μs / wave tail length 100 μs)).

第一雷撃のとき: Ist=10[kA/μs] …(18)
後続雷撃のとき: Ist=100[kA/μs] …(19)
これら(16)式〜(19)式を(1)式及び(2)式に代入して求めた雷過電圧の計算値と図9に示した解析結果のグラフから得られた解析結果の雷過電圧の値とを表2に示す。
At the time of the first lightning strike: Ist = 10 [kA / μs]… (18)
At the time of subsequent lightning strike: Ist = 100 [kA / μs]… (19)
The calculated value of the lightning overvoltage obtained by substituting these equations (16) to (19) into the equations (1) and (2) and the lightning overvoltage of the analysis result obtained from the graph of the analysis result shown in FIG. The values of are shown in Table 2.

Figure 0006842008
表2から分かるように、(1)式及び(2)式の計算式から求めた雷過電圧の計算値と解析結果から求めた雷過電圧の値との誤差は、最大で5.3%であることから、実用的に問題のない精度で評価が可能であることが分かる。
Figure 0006842008
As can be seen from Table 2, the error between the calculated value of the lightning overvoltage obtained from the formulas (1) and (2) and the value of the lightning overvoltage obtained from the analysis result is 5.3% at the maximum. From this, it can be seen that the evaluation can be performed with an accuracy that does not cause any practical problems.

次に、図10は本発明の実施形態に係る高耐圧ケーブルの耐電圧評価方法の工程の一例を示すフローチャートである。まず、高耐圧ケーブル長D、雷電流の伝搬速度v0、雷電流の立ち上がり時間tr、高耐圧ケーブルのケーブル導体とシールド導体との間の特性インピーダンスZ0、雷電流のピーク値Imaxを取得する(S1)。 Next, FIG. 10 is a flowchart showing an example of the process of the withstand voltage evaluation method of the high withstand voltage cable according to the embodiment of the present invention. First, the high withstand voltage cable length D, the lightning current propagation speed v0, the lightning current rise time tr, the characteristic impedance Z0 between the cable conductor and the shield conductor of the high withstand voltage cable, and the lightning current peak value Imax are acquired (S1). ).

高耐圧ケーブル長Dは高耐圧ケーブルの諸元から取得し、雷電流の伝搬速度v0は前述の(3)式から取得し、高耐圧ケーブルのケーブル導体とシールド導体との間の特性インピーダンスZ0は前述の(4)式から取得する。また、雷電流のピーク値Imaxは第一雷撃の電流パラメータ及び後続雷撃の電流パラメータから取得する。すなわち、第一雷撃の雷電流のピーク値Imaxは前述したように電流波高値100kAであり、後続雷撃の雷電流のピーク値Imaxは電流波高値25kAである。雷電流の立ち上がり時間trは前述の(5)式から取得する。第一雷撃の雷電流の波頭峻度Istは前述のように(波高値/波頭長)で取得できる。第一雷撃の波頭峻度Istは波高値100kVであり波頭長は10μsであるので(100kA/10μs)=10kA/μsである。後続雷撃の波頭峻度Istは波高値25kAであり波頭長は0.25μsであるので(25kA/0.25μs)=100kA/μsである。
The high withstand voltage cable length D is obtained from the specifications of the high withstand voltage cable, the propagation speed v0 of the lightning current is obtained from the above equation (3), and the characteristic impedance Z0 between the cable conductor and the shield conductor of the high withstand voltage cable is Obtained from the above equation (4). Further, the peak value Imax of the lightning current is obtained from the current parameter of the first lightning strike and the current parameter of the subsequent lightning strike. That is, the peak value Imax of the lightning current of the first lightning strike is the current peak value of 100 kA as described above, and the peak value Imax of the lightning current of the subsequent lightning strike is the current peak value of 25 kA. The rise time tr of the lightning current is obtained from the above equation (5). The crest steepness Ist of the lightning current of the first lightning strike can be obtained by (peak value / crest length) as described above. The crest steepness Ist of the first lightning stroke is a crest value of 100 kV and the crest length is 10 μs, so (100 kA / 10 μs) = 10 kA / μs. Since the crest steepness Ist of the subsequent lightning strike has a crest value of 25 kA and the crest length is 0.25 μs, (25 kA / 0.25 μs) = 100 kA / μs.

次に、2D/v0<trか否かを判定する(S2)。2D/v0<trを満たすときは、雷電流がピーク値Imaxまで立ち上がっていないときであり、このときは、Vcs=Ist・Z0・2D/v0で、ケーブル導体とシールド導体とが共通接地される高耐圧ケーブルの耐電圧を評価する(S3)。すなわち、前述の(1)式であり、図4のt=2D/v0のときの高耐圧ケーブルの受雷部側に加わる雷過電圧Vcsが最大値のときの電圧である。 Next, it is determined whether or not 2D / v0 <tr (S2). When 2D / v0 <tr is satisfied, it means that the lightning current has not risen to the peak value Imax. At this time, Vcs = Ist · Z0.2D / v0, and the cable conductor and the shield conductor are commonly grounded. The withstand voltage of the high withstand voltage cable is evaluated (S3). That is, it is the above-mentioned equation (1), and is the voltage when the lightning overvoltage Vcs applied to the lightning receiving portion side of the high withstand voltage cable when t = 2D / v0 in FIG. 4 is the maximum value.

一方、ステップS2の判定で、2D/v0<trでないとき、つまり2D/v0≧trであるときは、雷電流がピーク値Imaxまで立ち上がった後の状態であり、このときは、Vcs=Imax・Z0で、ケーブル導体とシールド導体とが共通接地される高耐圧ケーブルの耐電圧を評価する(S4)。すなわち、前述の(2)式であり、図5のt=2D/v0のときの高耐圧ケーブルの受雷部側に加わる雷過電圧Vcsが最大値のときの電圧である。 On the other hand, in the determination of step S2, when 2D / v0 <tr, that is, when 2D / v0 ≧ tr, it is the state after the lightning current has risen to the peak value Imax, and in this case, Vcs = Imax. At Z0, the withstand voltage of the high withstand voltage cable in which the cable conductor and the shield conductor are commonly grounded is evaluated (S4). That is, it is the above-mentioned equation (2), and is the voltage when the lightning overvoltage Vcs applied to the lightning receiving portion side of the high withstand voltage cable when t = 2D / v0 in FIG. 5 is the maximum value.

本発明の実施形態によれば、雷過電圧の波形が振動していること及び高耐圧ケーブルが長くなっても雷過電圧のピーク値が頭打ちになっていることに着目し、高耐圧ケーブルに加わる雷過電圧が高耐圧ケーブルのインダクタンスに依存するのではなく、雷過電圧のピーク値が雷電流の反射によって現れたものであることを知見した。これにより、高耐圧ケーブルの物理的な諸元(シールド導体外径寸法R、ケーブル導体の外径寸法r、絶縁体の比誘電率εr、高耐圧ケーブル長さD)と、対象とする雷電流パラメータ(ピーク値Imax、立ち上がり時間tr)が分かれば、高耐圧ケーブルに必要な雷過電圧(雷過電圧の最大値)を算定することが可能となり、計算式により、解析結果とほぼ同様の雷過電圧を得ることができた。従って、簡易に正確に高耐圧ケーブルに加わる雷過電圧を評価できる。 According to the embodiment of the present invention, attention is paid to the fact that the waveform of the lightning overvoltage is vibrating and that the peak value of the lightning overvoltage reaches a plateau even if the high withstand voltage cable is long, and the lightning applied to the high withstand voltage cable is applied. It was found that the overvoltage does not depend on the inductance of the high withstand voltage cable, but the peak value of the lightning overvoltage appears due to the reflection of the lightning current. As a result, the physical specifications of the high withstand voltage cable (shield conductor outer diameter dimension R, cable conductor outer diameter dimension r, relative permittivity εr of insulator, high withstand voltage cable length D) and the target lightning current If the parameters (peak value Imax, rise time tr) are known, it is possible to calculate the lightning overvoltage (maximum value of the lightning overvoltage) required for the high withstand voltage cable. I was able to get it. Therefore, the lightning overvoltage applied to the high withstand voltage cable can be easily and accurately evaluated.

また、評価した高耐圧ケーブルの受雷部側に加わる雷過電圧、またはその評価した雷過電圧に裕度を見込んだ耐電圧を満たす高耐圧ケーブルを採用することにより、耐電圧の裕度を過剰に見込み過ぎることがなく、落雷に耐え得る適切な高耐圧ケーブルとすることができる。 In addition, by adopting a high withstand voltage that satisfies the lightning overvoltage applied to the lightning receiving part side of the evaluated high withstand voltage cable or the withstand voltage that is expected to have a margin for the evaluated lightning overvoltage, the withstand voltage margin is excessively increased. It can be an appropriate high-voltage cable that can withstand lightning strikes without being over-predicted.

さらには、雷撃を受雷する受雷部、及び受雷部で受雷した雷電流を大地の接地極へ流す引下げ導線を建物に対して絶縁した絶縁型雷保護システムに、引下げ導線として、評価された高耐圧ケーブルを用いることにより、落雷に耐え得る適切な絶縁型雷保護システムを構築できる。 Furthermore, the lightning receiving part that receives lightning strikes and the insulated lightning protection system that insulates the lightning current received by the lightning receiving part from the grounding electrode of the earth to the grounding electrode of the earth are evaluated as a pulling wire. By using the high withstand voltage cable, it is possible to construct an appropriate insulated lightning protection system that can withstand lightning strikes.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

11…高耐圧ケーブル、12…受雷部、13…接地極、14…絶縁体、15…ケーブル導体、16…半導電層、17…シールド導体、18…インパルス装置、19…切換スイッチ
11 ... High withstand voltage cable, 12 ... Lightning receiving part, 13 ... Ground electrode, 14 ... Insulator, 15 ... Cable conductor, 16 ... Semi-conductive layer, 17 ... Shield conductor, 18 ... Impulse device, 19 ... Changeover switch

Claims (3)

ケーブル導体とシールド導体とが共通接地される高耐圧ケーブルの受雷部側に加わる雷過電圧Vcsを下記の(1)式及び(2)式により計算し、前記高耐圧ケーブル耐電圧が落雷に耐えられる耐電圧であることを評価することを特徴とする高耐圧ケーブルの耐電圧評価方法。
2D/v0<trのとき、Vcs=Ist・Z0・2D/v0 …(1)
2D/v0≧trのとき、Vcs=Imax・Z0 …(2)
ただし、D:高耐圧ケーブル長、v0:雷電流の伝搬速度、tr:雷電流の立ち上がり時間、Ist:雷電流の波頭峻度、Z0:高耐圧ケーブルのケーブル導体とシールド導体との間の特性インピーダンス、Imax:雷電流のピーク値。
The lightning overvoltage Vcs applied to the lightning receiving part side of the high withstand voltage cable in which the cable conductor and the shield conductor are commonly grounded is calculated by the following equations (1) and (2), and the withstand voltage of the high withstand voltage cable becomes a lightning strike. A method for evaluating the withstand voltage of a high withstand voltage cable, which is characterized by evaluating that the withstand voltage can be withstood.
When 2D / v0 <tr, Vcs = Ist · Z0 · 2D / v0… (1)
When 2D / v0 ≧ tr, Vcs = Imax · Z0… (2)
However, D: high withstand voltage cable length, v0: lightning current propagation speed, tr: lightning current rise time, Ist: lightning current crest steepness, Z0: characteristics between the cable conductor and shield conductor of the high withstand voltage cable. Impedance, Imax: Peak value of lightning current.
請求項1で評価した高耐圧ケーブルの耐電圧、または前記評価した耐電圧に裕度を見込んだ耐電圧を満たすことを特徴とする高耐圧ケーブル。 A high withstand voltage cable characterized by satisfying the withstand voltage of the high withstand voltage cable evaluated in claim 1 or the withstand voltage expected to be marginal in the evaluated withstand voltage. 雷撃を受電する受雷部及び前記受雷部で受電した雷電流を大地の接地極へ流す引下げ導線を建物に対して絶縁した絶縁型雷保護システムにおいて、前記引下げ導線として、請求項2に記載の高耐圧ケーブルを用いたことを特徴とする絶縁型雷保護システム。 The reduction lead wire is described in claim 2 in an insulated lightning protection system in which a lightning receiving portion that receives a lightning strike and a pulling wire that allows a lightning current received by the lightning receiving portion to flow to a grounding electrode of the earth are insulated from a building. Insulated lightning protection system characterized by using the high withstand voltage cable of.
JP2016246403A 2016-12-20 2016-12-20 High withstand voltage evaluation method for high withstand voltage cable, high withstand voltage cable, and insulated lightning protection system Active JP6842008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016246403A JP6842008B2 (en) 2016-12-20 2016-12-20 High withstand voltage evaluation method for high withstand voltage cable, high withstand voltage cable, and insulated lightning protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246403A JP6842008B2 (en) 2016-12-20 2016-12-20 High withstand voltage evaluation method for high withstand voltage cable, high withstand voltage cable, and insulated lightning protection system

Publications (2)

Publication Number Publication Date
JP2018101525A JP2018101525A (en) 2018-06-28
JP6842008B2 true JP6842008B2 (en) 2021-03-17

Family

ID=62715592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246403A Active JP6842008B2 (en) 2016-12-20 2016-12-20 High withstand voltage evaluation method for high withstand voltage cable, high withstand voltage cable, and insulated lightning protection system

Country Status (1)

Country Link
JP (1) JP6842008B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109444688B (en) * 2018-11-15 2020-11-06 国网山西省电力公司大同供电公司 10kV distribution network insulated conductor and tree obstacle's thunderbolt analogue test platform
CN109444687B (en) * 2018-11-15 2020-11-06 国网山西省电力公司大同供电公司 10kV distribution network insulated conductor lightning stroke broken string simulation test platform
CN109856490A (en) * 2019-01-28 2019-06-07 芜湖佳宏新材料股份有限公司 A kind of heating cable electric property detection device and its detection method
CN110231553B (en) * 2019-07-12 2024-04-09 电子科技大学 Motor slot insulation electric field impact evaluation method and evaluation device
CN112666433A (en) * 2020-12-29 2021-04-16 全球能源互联网研究院有限公司 Cable accessory insulation composite interface breakdown voltage testing device
CN112821339B (en) * 2021-01-06 2022-12-06 南方电网科学研究院有限责任公司 Lightning protection measure transformation method for operating power distribution network
CN112803344B (en) * 2021-01-06 2022-10-28 南方电网科学研究院有限责任公司 Lightning protection configuration method for newly-built power distribution network
CN113884789B (en) * 2021-09-13 2023-11-10 湖州电力设计院有限公司 Lightning protection grounding performance evaluation method for steel structure transformer substation
CN115267308B (en) * 2022-09-06 2023-05-09 中国科学院大气物理研究所 Direct lightning strike induced overvoltage measurement and electronic equipment tolerance performance test device and method

Also Published As

Publication number Publication date
JP2018101525A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6842008B2 (en) High withstand voltage evaluation method for high withstand voltage cable, high withstand voltage cable, and insulated lightning protection system
CN104850738B (en) Lightning induced voltage computational methods at overhead power transmission line line pole tower
JP2010045927A (en) Device and method for calculating distribution line direct lightning stroke occurring rate, device and method for calculating distribution line lightning accident occurring rate, and program
Abd Halim et al. Lightning back flashover tripping patterns on a 275/132 kV quadruple circuit transmission line in Malaysia
Permal et al. Review of substation grounding system behavior under high frequency and transient faults in uniform soil
Rezinkina et al. Influence of corona on strike probability of grounded electrodes by high voltage discharges
Tossani et al. Estimation of the influence of direct strokes on the lightning performance of overhead distribution lines
Yi et al. Time-domain performance of audible noise for positive dc corona: Numerical simulations and measurements
Xiao et al. Dielectric strength of atmosphere air
Mamiş et al. Lightning surge analysis of faraday cage using alternative transient program‐electromagnetic transients program
Metwally et al. Computation of transient overvoltages in low-voltage installations during direct strikes to different lightning protection systems
Rabbani et al. Electromagnetic effect of lightning return stroke to buried energy pipelines
Diaz et al. Lightning transient voltages in cables of a large industrial site using a FDTD thin wire model
Sekioka et al. Lightning overvoltages in low-voltage circuit for various lightning striking points
Zischank et al. Laboratory simulation of direct lightning strokes to a modeled building: measurement of magnetic fields and induced voltages
Fallah et al. Minimum separation between lightning protection system and non-integrated metallic structures
Ametani et al. An empirical formula for the surge impedance of a grounding conductor along a reinforced concrete pole in a distribution line
Mestriner Analysis of the impact of the lightning return stroke models on overhead transmission lines induced voltages
Liu et al. Two-dimensional simulation on the glow to streamer transition from horizontal conductors
Metwally et al. Mitigation of the produced voltages in AC overhead power‐lines/pipelines parallelism during power frequency and lightning conditions
ANANE et al. Electromagnetic Transient Analysis of Corona characteristics under damped impulses
JP7078930B2 (en) Insulated lightning protection system
Andreotti et al. A Comparison Between Analytical Solutions for Lightning-Induced Voltages Calculation
Pokryvailo et al. Behavior of HV cable of power supply at short circuit and related phenomena
Masłowski et al. Overvoltage induced in overhead power lines by nearby lightning stroke

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210106

R150 Certificate of patent or registration of utility model

Ref document number: 6842008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250