JP6841355B2 - Release film for manufacturing ceramic green sheets - Google Patents

Release film for manufacturing ceramic green sheets Download PDF

Info

Publication number
JP6841355B2
JP6841355B2 JP2020027456A JP2020027456A JP6841355B2 JP 6841355 B2 JP6841355 B2 JP 6841355B2 JP 2020027456 A JP2020027456 A JP 2020027456A JP 2020027456 A JP2020027456 A JP 2020027456A JP 6841355 B2 JP6841355 B2 JP 6841355B2
Authority
JP
Japan
Prior art keywords
mass
film
coating layer
ceramic green
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020027456A
Other languages
Japanese (ja)
Other versions
JP2020111052A (en
Inventor
悠介 柴田
悠介 柴田
賢二 吉野
賢二 吉野
諒 堀川
諒 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60325235&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6841355(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JP2020111052A publication Critical patent/JP2020111052A/en
Application granted granted Critical
Publication of JP6841355B2 publication Critical patent/JP6841355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/20Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for coatings strippable as coherent films, e.g. temporary coatings strippable as coherent films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

本発明は、セラミックグリーンシート製造用離型フィルム に関する。更に詳しくは、セラミックグリーンシートを薄膜化させた場合でも、良好な巻取り性と、ピンホールや部分的な厚みばらつき等の防止を両立させることができるセラミックグリーンシート製造用離型フィルムに関する。 The present invention relates to a release film for manufacturing a ceramic green sheet. More specifically, the present invention relates to a release film for manufacturing a ceramic green sheet, which can achieve both good take-up property and prevention of pinholes and partial thickness variations even when the ceramic green sheet is thinned.

従来、基材フィルムの離型剤層が設けられている面とは反対の面(裏面)の表面粗度を比較的粗くすることによりセラミックグリーンシート製造用離型フィルムが巻かれた状態で保管されたときにセラミックグリーンシート製造用離型フィルムの表裏が貼り付く(ブロッキング)等の不具合を解消するという技術が開示されている(例えば、特許文献1参照)。しかし、かかる従来技術は突起が大きいため、ピンホールや部分的な厚みばらつきが生じるという問題点があった。 Conventionally, the release film for ceramic green sheet production is stored in a wound state by making the surface roughness of the surface (back surface) opposite to the surface on which the release agent layer of the base film is provided relatively rough. A technique has been disclosed for eliminating problems such as the front and back surfaces of a release film for producing a ceramic green sheet sticking (blocking) when the film is used (see, for example, Patent Document 1). However, such a conventional technique has a problem that pinholes and partial thickness variations occur because the protrusions are large.

そこで突起の高さを低減させるために裏面の突起を塗布層により埋めることによりセラミックグリーンシートにピンホールや部分的な厚みのばらつきが発生するのを防止しようとする技術が開示されている(例えば、特許文献2参照)。しかし、かかる従来技術によれば、突起高さは低くなるものの突起密度が低いため、突起にかかる圧力が大きく、セラミックグリーンシートをさらに薄膜化させた場合、ピンホールの発生が生じるという問題点があった。 Therefore, a technique has been disclosed that attempts to prevent pinholes and partial thickness variations from occurring in the ceramic green sheet by filling the protrusions on the back surface with a coating layer in order to reduce the height of the protrusions (for example). , Patent Document 2). However, according to the conventional technique, although the protrusion height is low, the protrusion density is low, so that the pressure applied to the protrusions is large, and when the ceramic green sheet is further thinned, pinholes are generated. there were.

特開2003−203822号公報Japanese Unexamined Patent Publication No. 2003-203822 特開2014−144636号公報Japanese Unexamined Patent Publication No. 2014-144636

本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、セラミックグリーンシートを薄膜化させた場合でも、良好な巻取り性と、ピンホールや部分的な厚みばらつき等の防止を両立させることができる優れたセラミックグリーンシート製造用離型フィルムを提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is for producing an excellent ceramic green sheet capable of achieving both good winding performance and prevention of pinholes and partial thickness variations even when the ceramic green sheet is thinned. The purpose is to provide a release film.

本発明者は、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。即ち、本発明は以下の構成よりなる。
1. 粒子を実質的に含有していないポリエステルフィルムを基材とし、前記ポリエステルフィルムが、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートから選ばれる少なくとも1種を含むポリエステルフィルムであり、前記基材の一方の表面上に離型塗布層を有し、かつ、もう一方の表面上に粒子を含有する易滑塗布層を有し、易滑塗布層の粗さ曲線要素の平均長さ(RSm)が10μm以下であることを特徴するセラミックグリーンシート製造用離型フィルム。
2. 易滑塗布層の領域表面平均粗さ(Sa)が1nm以上25nm以下、最大突起高さ(P)が60nm以上500nm以下であることを特徴とする上記第1に記載のセラミックグリーンシート製造用離型フィルム。
3. 離型塗布層の領域表面平均粗さ(Sa)が5nm以下、かつ最大突起高さ(P)が30nm以下であることを特徴とする上記第1または第2に記載のセラミックグリーンシート製造用離型フィルム。
4. 易滑塗布層の厚みが0.001μm以上2μm以下であることを特徴とする上記第1〜第3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
5. 上記第1〜第4のいずれかに記載のセラミックグリーンシート製造用離型フィルムを用いることを特徴とするセラミックグリーンシートの製造方法。
6. 製造するセラミックグリーンシートの厚みが、0.2μm以上2μm以下であることを特徴とする上記第5に記載のセラミックグリーンシートの製造方法。
7. 上記第5または第6に記載のセラミックグリーンシートの製造方法を採用することを特徴とするセラミックコンデンサの製造方法。
The present inventor has completed the present invention as a result of diligent studies to achieve such an object. That is, the present invention has the following configuration.
1. 1. The base material is a polyester film containing substantially no particles, and the polyester film is a polyester film containing at least one selected from polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. It has a release coating layer on one surface and an easy-slip coating layer containing particles on the other surface, and the average length (RSm) of the roughness curve elements of the easy-slip coating layer. A release film for producing a ceramic green sheet, characterized in that the thickness is 10 μm or less.
2. 2. The release for manufacturing a ceramic green sheet according to the first aspect, wherein the region surface average roughness (Sa) of the slippery coating layer is 1 nm or more and 25 nm or less, and the maximum protrusion height (P) is 60 nm or more and 500 nm or less. Mold film.
3. 3. The release for producing a ceramic green sheet according to the first or second above, wherein the region surface average roughness (Sa) of the release coating layer is 5 nm or less, and the maximum protrusion height (P) is 30 nm or less. Mold film.
4. The release film for producing a ceramic green sheet according to any one of the above 1 to 3, wherein the thickness of the easy-slip coating layer is 0.001 μm or more and 2 μm or less.
5. A method for producing a ceramic green sheet, which comprises using the release film for producing a ceramic green sheet according to any one of the first to fourth aspects.
6. The method for producing a ceramic green sheet according to the fifth aspect above, wherein the thickness of the ceramic green sheet to be produced is 0.2 μm or more and 2 μm or less.
7. A method for manufacturing a ceramic capacitor, which comprises adopting the method for manufacturing a ceramic green sheet according to the fifth or sixth method.

本発明によれば、セラミックグリーンシートを薄膜化させた場合でも、良好な巻取り性とピンホールや部分的な厚みばらつき等の防止を両立させることができるセラミックグリーンシート製造用離型フィルムの提供が可能となる。 According to the present invention, there is provided a release film for manufacturing a ceramic green sheet that can achieve both good take-up property and prevention of pinholes and partial thickness variations even when the ceramic green sheet is thinned. Is possible.

以下、本発明について詳細に説明する。
本発明のセラミックグリーンシート製造用離型フィルム(以下、単に離型フィルムということがある)は、基材フィルムである二軸配向ポリエステルフィルムの片面に離型塗布層、もう一方の面に粒子を含む易滑塗布層を有する離型フィルムである。
Hereinafter, the present invention will be described in detail.
The release film for producing a ceramic green sheet of the present invention (hereinafter, may be simply referred to as a release film) has a release coating layer on one side and particles on the other side of a biaxially oriented polyester film which is a base film. It is a release film having an easy-to-slip coating layer including.

(基材フィルム)
本発明において好ましく基材として用いられるフィルムとしては、ポリエステル樹脂より構成されるフィルムであり、主に、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートから選ばれる少なくとも1種を含むポリエステルフィルムが好ましい。また、前記のようなポリエステルのジカルボン酸成分、又は、ジオール成分の一部として、第三成分モノマーが共重合されたポリエステルからなるフィルムであってもよい。これらのポリエステルフィルムの中でも、物性とコストのバランスからポリエチレンテレフタレートフィルムが最も好ましい。
(Base film)
The film preferably used as a base material in the present invention is a film composed of a polyester resin, and a polyester film containing at least one selected from polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate is mainly used. preferable. Further, a film made of polyester in which a third component monomer is copolymerized as a part of the dicarboxylic acid component or the diol component of the polyester as described above may be used. Among these polyester films, polyethylene terephthalate film is most preferable from the viewpoint of the balance between physical properties and cost.

また、前記のポリエステルフィルムは、単層であっても複層であってもかまわない。また、本発明の効果を奏する範囲内であれば、これらの各層には、必要に応じて、ポリエステル樹脂中に各種添加剤を含有させることができる。添加剤としては、例えば、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、紫外線吸収剤などが挙げられる。 Further, the polyester film may be a single layer or a plurality of layers. Further, as long as the effects of the present invention are exhibited, each of these layers can contain various additives in the polyester resin, if necessary. Examples of the additive include antioxidants, lightfasteners, antigelling agents, organic wetting agents, antistatic agents, ultraviolet absorbers and the like.

(易滑塗布層)
本発明の離型フィルムは、上記のようなポリエステル製の基材フィルムの一方の表面上に易滑塗布層を有するものである。易滑塗布層中には、少なくともバインダー樹脂及び粒子が含まれていることが好ましい。
(Easy slip coating layer)
The release film of the present invention has an easy-slip coating layer on one surface of the polyester base film as described above. It is preferable that the slippery coating layer contains at least a binder resin and particles.

(易滑塗布層中のバインダー樹脂)
易滑塗布層を構成するバインダー樹脂としては特に限定されないが、ポリマーの具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル系樹脂(ポリビニルアルコール等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらの中でも粒子の保持、密着性の観点から、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂を使用することが好ましい。また、ポリエステルフィルムとのなじみを考慮した場合、ポリエステル樹脂が特に好ましい。溶剤への溶解性、分散性、さらには基材フィルムや他の層との接着性を達成させるため、バインダーのポリエステルは共重合ポリエステルであることが好ましい。なお、ポリエステル樹脂はポリウレタン変性されていても良い。また、ポリエステル基材フィルム上の易滑塗布層を構成する他の好ましいバインダー樹脂としてはウレタン樹脂が挙げられる。ウレタン樹脂としてはポリカーボネートポリウレタン樹脂が挙げられる。さらに、ポリエステル樹脂、ポリウレタン樹脂は併用しても良く、上記の他のバインダー樹脂を併用してもよい。
(Binder resin in the easy-slip coating layer)
The binder resin constituting the slippery coating layer is not particularly limited, but specific examples of the polymer include polyester resin, acrylic resin, urethane resin, polyvinyl resin (polyvinyl alcohol, etc.), polyalkylene glycol, polyalkyleneimine, and methyl cellulose. , Hydroxycellulose, polymers and the like. Among these, polyester resin, acrylic resin, and urethane resin are preferably used from the viewpoint of particle retention and adhesion. Further, a polyester resin is particularly preferable in consideration of compatibility with a polyester film. The polyester of the binder is preferably a copolymerized polyester in order to achieve solubility in a solvent, dispersibility, and adhesion to a base film and other layers. The polyester resin may be modified with polyurethane. Further, as another preferable binder resin constituting the I Ching coating layer on the polyester base film, urethane resin can be mentioned. Examples of the urethane resin include polycarbonate polyurethane resin. Further, the polyester resin and the polyurethane resin may be used in combination, or the other binder resin described above may be used in combination.

(架橋剤)
本発明において、易滑塗布層中に架橋構造を形成させるために、易滑塗布層は架橋剤が含まれて形成されていてもよい。架橋剤を含有させることにより、高温高湿下での密着性を更に向上させることが可能になる。具体的な架橋剤としては、尿素系、エポキシ系、メラミン系、イソシアネート系、オキサゾリン系、カルボジイミド系等が挙げられる。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用することができる。
(Crosslinking agent)
In the present invention, in order to form a crosslinked structure in the easy-slip coating layer, the easy-slip coating layer may be formed by containing a cross-linking agent. By containing a cross-linking agent, it becomes possible to further improve the adhesion under high temperature and high humidity. Specific examples of the cross-linking agent include urea-based, epoxy-based, melamine-based, isocyanate-based, oxazoline-based, and carbodiimide-based. Further, in order to promote the cross-linking reaction, a catalyst or the like can be appropriately used as needed.

(易滑塗布層中の粒子)
易滑塗布層は、表面にすべり性を付与するために、滑剤粒子を含むことが好ましい。粒子は、無機粒子であっても、有機粒子であってもよく、特に限定されるものではないが、(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、酸化ジルコニウム、二酸化チタン、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、水酸化マグネシウム、硫酸バリウム等の無機粒子、(2)アクリルあるいはメタアクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられるが、塗布層に適度な滑り性を与えるために、シリカが特に好ましく使用される。
(Particles in the easy-to-slip coating layer)
The slippery coating layer preferably contains lubricant particles in order to impart slipperiness to the surface. The particles may be inorganic particles or organic particles, and are not particularly limited. (1) Silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, etc. Barium Sulfate, Carbon Black, Zinc Oxide, Zinc Sulfate, Zinc Carbonate, Zinc Oxide, Titanium Dioxide, Satin White, Aluminum Silate, Kaiso Soil, Calcium Sirate, Aluminum Hydroxide, Hydrate Halloysite, Calcium Carbonate, Magnesium Carbonate, Calcium Phosphate, Hydroxide Inorganic particles such as magnesium and barium sulfate, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene / acrylic, styrene / butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / Organic particles such as isoprene-based, methyl methacrylate / butyl methacrylate-based, melamine-based, polycarbonate-based, urea-based, epoxy-based, urethane-based, phenol-based, diallyl phthalate-based, and polyester-based are examples, but are suitable for the coating layer. Silica is particularly preferably used to provide slipperiness.

粒子の平均粒径は10nm以上であることが好ましく、より好ましくは20nm以上であり、さらに好ましくは30nm以上である。粒子の平均粒径は10nm以上であると、凝集しにくく、滑り性が確保できて好ましい。 The average particle size of the particles is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more. It is preferable that the average particle size of the particles is 10 nm or more because it is difficult to aggregate and slipperiness can be ensured.

粒子の平均粒径は1000nm以下であることが好ましく、より好ましくは800nm以下であり、さらに好ましくは600nm以下である。粒子の平均粒径が1000nm以下であると、透明性が保たれ、また、粒子が脱落することがなく好ましい。 The average particle size of the particles is preferably 1000 nm or less, more preferably 800 nm or less, still more preferably 600 nm or less. When the average particle size of the particles is 1000 nm or less, transparency is maintained and the particles do not fall off, which is preferable.

また、例えば、平均粒径が10〜200nm程度の小さい粒子と、平均粒径が300〜1000nm程度の大きい粒子を混用することも、後述の領域表面平均粗さ(Sa)、最大突起高さ(P)を小さく保ちながら、粗さ曲線要素の平均長さ(RSm)を小さくして、すべり性と平滑性を両立させる上で好ましく、特に好ましくは、30nm以上150nm以下の小さい粒子と、平均粒径が350〜600nmの大きい粒子を併用することである。小さい粒子と大きい粒子を混用する場合、塗布層固形分全体に対して、小さい粒子の質量含有率を大きい粒子の質量含有率より大きくしておくことが好ましい。 Further, for example, it is also possible to mix small particles having an average particle size of about 10 to 200 nm and large particles having an average particle size of about 300 to 1000 nm, which will be described later in terms of region surface average roughness (Sa) and maximum protrusion height (Sa). It is preferable to reduce the average length (RSm) of the roughness curve element while keeping P) small to achieve both slipperiness and smoothness, and particularly preferably, small particles of 30 nm or more and 150 nm or less and average particles. Large particles having a diameter of 350 to 600 nm are used in combination. When small particles and large particles are mixed, it is preferable that the mass content of the small particles is larger than the mass content of the large particles with respect to the total solid content of the coating layer.

粒子の平均粒径の測定方法は、加工後のフィルムの断面の粒子を透過型電子顕微鏡または走査型電子顕微鏡で観察を行い、凝集していない粒子100個を観察し、その平均値をもって平均粒径とする方法で行った。 The average particle size of the particles is measured by observing the particles in the cross section of the processed film with a transmission electron microscope or a scanning electron microscope, observing 100 non-aggregated particles, and using the average value as the average particle size. The method was to use the diameter.

本発明の目的を満たすものであれば、粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒子径は円相当径として計算することができる。円相当径は、観察された粒子の面積をπで除し、平方根を算出し2倍した値である。 The shape of the particles is not particularly limited as long as it satisfies the object of the present invention, and spherical particles and amorphous non-spherical particles can be used. The particle size of the amorphous particles can be calculated as the equivalent circle diameter. The equivalent circle diameter is a value obtained by dividing the observed particle area by π, calculating the square root, and doubling it.

粒子の易滑塗布層の全固形分に対する比率は、50質量%以下であることが好ましく、より好ましくは40質量%以下であり、さらに好ましくは30質量%以下である。粒子の易滑塗布層の全固形分に対する比率が50質量%以下であれば、透明性が保たれ、易滑塗布層からの粒子の脱落が顕著に発生せず、好ましい。 The ratio of the particles to the total solid content of the slippery coating layer is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less. When the ratio of the particles to the total solid content of the easy-slip coating layer is 50% by mass or less, the transparency is maintained and the particles do not significantly fall off from the easy-slip coating layer, which is preferable.

粒子の易滑塗布層の全固形分に対する比率は、1質量%以上であることが好ましく、より好ましくは1.5質量%以上であり、さらに好ましくは2質量%以上である。粒子の易滑塗布層の全固形分に対する比率が1質量%以上であれば、滑り性が確保できて好ましい。 The ratio of the particles to the total solid content of the slippery coating layer is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more. When the ratio of the particles to the total solid content of the easy-slip coating layer is 1% by mass or more, slipperiness can be ensured, which is preferable.

易滑塗布層に含まれる粒子の含有率を測定する方法としては、例えば、易滑塗布層に有機成分の樹脂と無機粒子が含まれる場合、次の方法を用いることができる。まず加工フィルムに設けられた易滑塗布層を、溶剤などを用いて加工フィルムより抽出し乾固することで易滑塗布層取り出す。次に得られた易滑塗布層に熱をかけ、易滑塗布層に含まれる有機成分を熱により燃焼留去させることで無機成分のみを得ることができる。得られた無機成分と燃焼留去前の易滑塗布層の重量を測定することで、易滑塗布層に含まれる粒子の質量%を測定することができる。このとき、市販の示差熱・熱重量同時測定装置を用いることで精度良く測定することができる。 As a method for measuring the content of particles contained in the easy-slip coating layer, for example, when the easy-slip coating layer contains an organic component resin and inorganic particles, the following method can be used. First, the easy-slip coating layer provided on the processed film is extracted from the processed film using a solvent or the like and dried to dryness to take out the easy-slip coating layer. Next, heat is applied to the obtained easy-slip coating layer, and the organic component contained in the easy-slip coating layer is burned and distilled off by heat, whereby only the inorganic component can be obtained. By measuring the weights of the obtained inorganic component and the easy-slip coating layer before combustion distillation, the mass% of the particles contained in the easy-slip coating layer can be measured. At this time, accurate measurement can be performed by using a commercially available differential thermal / thermogravimetric simultaneous measuring device.

(易滑塗布層中の添加剤)
易滑塗布層に他の機能性を付与するために、塗布外観を損なわない程度の範囲で、各種の添加剤を含有させても構わない。前記添加剤としては、例えば、蛍光染料、蛍光増白剤、可塑剤、紫外線吸収剤、顔料分散剤、抑泡剤、消泡剤、防腐剤等が挙げられる。
(Additives in the easy-to-slip coating layer)
In order to impart other functionality to the slippery coating layer, various additives may be contained within a range that does not impair the coating appearance. Examples of the additive include fluorescent dyes, fluorescent whitening agents, plasticizing agents, ultraviolet absorbers, pigment dispersants, defoaming agents, defoaming agents, preservatives and the like.

易滑塗布層には、塗布時のレベリング性の向上、塗布液の脱泡を目的に界面活性剤を含有させることもできる。界面活性剤は、カチオン系、アニオン系、ノニオン系などいずれのものでも構わないが、シリコーン系、アセチレングリコール系又はフッ素系界面活性剤が好ましい。これらの界面活性剤は、過剰に添加することで塗布外観の異常が発生しない程度の範囲で塗布層に含有させることが好ましい。 The easy-slip coating layer may contain a surfactant for the purpose of improving the leveling property at the time of coating and defoaming the coating liquid. The surfactant may be any of a cationic type, an anion type, nonionic type and the like, but a silicone type, acetylene glycol type or fluorine type surfactant is preferable. It is preferable that these surfactants are contained in the coating layer within a range that does not cause an abnormality in the coating appearance when added excessively.

塗布方法としては、ポリエステル基材フィルム製膜時に同時に塗布する所謂インラインコーティング法、及び、ポリエステル基材フィルムを製膜後、別途コーターで塗布する所謂オフラインコーティング法のいずれも適用できるが、インラインコーティング法が効率的でより好ましい。 As the coating method, either a so-called in-line coating method in which the polyester base film is applied at the same time as the film is formed and a so-called offline coating method in which the polyester base film is separately applied with a coater after the film is formed can be applied. Is more efficient and more preferable.

塗布方法として塗布液をポリエチレンテレフタレート(以下、PETと略記する場合がある)フィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗布する。 As a coating method, any known method can be used as a method for coating the coating liquid on a polyethylene terephthalate (hereinafter, may be abbreviated as PET) film. For example, reverse roll coating method, gravure coating method, kiss coating method, die coater method, roll brushing method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. Can be mentioned. These methods are applied alone or in combination.

本発明において、ポリエステルフィルム上に易滑塗布層を設ける方法としては、溶媒、粒子、樹脂を含有する塗布液をポリエステルフィルムに塗布、乾燥する方法が挙げられる。溶媒として、トルエン等の有機溶剤、水、あるいは水と水溶性の有機溶剤の混合系が挙げられるが、好ましくは、環境問題の点から水単独あるいは水に水溶性の有機溶剤を混合した所謂水系の溶媒が好ましい。 In the present invention, as a method of providing the easy-slip coating layer on the polyester film, a method of applying a coating liquid containing a solvent, particles and a resin to the polyester film and drying it can be mentioned. Examples of the solvent include an organic solvent such as toluene, water, or a mixed system of water and a water-soluble organic solvent. However, from the viewpoint of environmental problems, water alone or a so-called aqueous system obtained by mixing a water-soluble organic solvent with water is preferable. Solvent is preferred.

易滑塗布液の固形分濃度はバインダー樹脂の種類や溶媒の種類などにもよるが、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。塗布液の固
形分濃度は35質量%以下であることが好ましく、より好ましくは20質量%以下である。
The solid content concentration of the slippery coating liquid depends on the type of binder resin, the type of solvent, and the like, but is preferably 0.5% by mass or more, and more preferably 1% by mass or more. The solid content concentration of the coating liquid is preferably 35% by mass or less, more preferably 20% by mass or less.

塗布後の乾燥温度についても、バインダー樹脂の種類、溶媒の種類、架橋剤の有無、固形分濃度などにもよるが、70℃以上であることが好ましく、250℃以下であることが好ましい。 The drying temperature after coating also depends on the type of binder resin, the type of solvent, the presence or absence of a cross-linking agent, the solid content concentration, and the like, but is preferably 70 ° C. or higher, and preferably 250 ° C. or lower.

(ポリエステルフィルムの製造)
本発明において、基材フィルムとなるポリエステルフィルムは、一般的なポリエステルフィルムの製造方法に従って製造することができる。例えば、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施す方法が挙げられる。また、テンター内で縦横同時に二軸延伸する方法も挙げられる。
(Manufacturing of polyester film)
In the present invention, the polyester film to be the base film can be produced according to a general method for producing a polyester film. For example, a non-oriented polyester obtained by melting a polyester resin and extruding it into a sheet is stretched in the vertical direction by utilizing the speed difference of rolls at a temperature equal to or higher than the glass transition temperature, and then stretched in the horizontal direction by a tenter. A method of applying heat treatment can be mentioned. Further, there is also a method of biaxially stretching in the tenter at the same time in the vertical and horizontal directions.

本発明において、基材フィルムとなるポリエステルフィルムは、一軸延伸フィルムであっても、二軸延伸フィルムであっても構わないが、二軸延伸フィルムであることが好ましい。 In the present invention, the polyester film to be the base film may be a uniaxially stretched film or a biaxially stretched film, but is preferably a biaxially stretched film.

ポリエステルフィルム基材の厚みは5μm以上であることが好ましく、より好ましくは10μm以上であり、さらに好ましくは15μm以上である。厚みは5μm以上であると、フィルムの搬送時にシワが入りにくく好ましい。 The thickness of the polyester film base material is preferably 5 μm or more, more preferably 10 μm or more, and further preferably 15 μm or more. When the thickness is 5 μm or more, wrinkles are less likely to occur during film transportation, which is preferable.

ポリエステルフィルム基材の厚みは50μm以下であることが好ましく、より好ましくは45μm以下であり、さらに好ましくは40μm以下である。厚みが40μm以下であると、単位面積当たりのコストが低下するため好ましい。 The thickness of the polyester film base material is preferably 50 μm or less, more preferably 45 μm or less, and further preferably 40 μm or less. When the thickness is 40 μm or less, the cost per unit area is reduced, which is preferable.

インラインコートの場合は縦方向の延伸前の未延伸フィルムに塗工しても、縦方向の延伸後で横方向の延伸前の一軸延伸フィルムに塗工しても良い。縦方向の延伸前に塗工する場合にはロール延伸前に乾燥工程を設けることが好ましい。横方向の延伸前の一軸延伸フィルムに塗工する場合はテンター内でのフィルム加熱工程で乾燥工程を兼ねることが出来るので、必ずしも別途乾燥工程を設ける必要はない。なお、同時二軸延伸する場合も同様である。 In the case of in-line coating, it may be applied to an unstretched film before stretching in the vertical direction, or may be applied to a uniaxially stretched film after stretching in the vertical direction and before stretching in the horizontal direction. When coating is applied before stretching in the longitudinal direction, it is preferable to provide a drying step before stretching the roll. When coating on a uniaxially stretched film before stretching in the lateral direction, the drying step can also be combined with the film heating step in the tenter, so it is not always necessary to provide a separate drying step. The same applies to the case of simultaneous biaxial stretching.

易滑塗布層の膜厚は0.001μm以上であることが好ましく、より好ましくは0.01μm以上であり、さらに好ましくは0.02μm以上であり、特に好ましくは0.03μm以上である。塗布層の膜厚が0.001μm以上であると、塗布膜の造膜性が維持され、均一な塗布膜が得られるため好ましい。 The film thickness of the slippery coating layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, still more preferably 0.02 μm or more, and particularly preferably 0.03 μm or more. When the thickness of the coating layer is 0.001 μm or more, the film-forming property of the coating film is maintained and a uniform coating film can be obtained, which is preferable.

易滑塗布層の膜厚は2μm以下であることが好ましく、より好ましくは1μm以下であり、さらに好ましくは0.8μm以下であり、特に好ましくは0.5μm以下である。塗布層の膜厚が2μm以下であると、ブロッキングが生じるおそれがなく好ましい。 The film thickness of the slippery coating layer is preferably 2 μm or less, more preferably 1 μm or less, further preferably 0.8 μm or less, and particularly preferably 0.5 μm or less. When the film thickness of the coating layer is 2 μm or less, blocking may not occur, which is preferable.

後述する離型塗布層上に、塗布、成型されるセラミックグリーンシートは、塗布、成型後に離型フィルムと共にロール状に巻き取られる。このとき、セラミックグリーンシート表面に離型フィルムの易滑塗布層が接触した状態で巻き取られることとなる。セラミックグリーンシート表面に欠陥を発生させないために、易滑塗布層の外表面(ポリエステルフィルムと接していない塗布フィルム全体の易滑塗布層表面)は、適度に平坦であることが必要であり、領域表面平均粗さ(Sa)が1nm以上25nm以下かつ最大突起高さ(P)が60nm以上500nm以下であることが好ましい。 The ceramic green sheet, which is coated and molded on the release coating layer described later, is wound into a roll together with the release film after coating and molding. At this time, the easy-slip coating layer of the release film is wound in contact with the surface of the ceramic green sheet. In order not to generate defects on the surface of the ceramic green sheet, the outer surface of the easy-slip coating layer (the surface of the easy-slip coating layer of the entire coating film that is not in contact with the polyester film) needs to be moderately flat, and the region. It is preferable that the surface average roughness (Sa) is 1 nm or more and 25 nm or less and the maximum protrusion height (P) is 60 nm or more and 500 nm or less.

易滑塗布層の外表面の領域表面平均粗さ(Sa)が1nm以上、最大突起高さ(P)が60nm以上であれば、易滑塗布面が平滑になりすぎず適度な滑り性が維持できるため好ましい。領域表面平均粗さ(Sa)が25nm以下、最大突起高さ(P)が500nm以下であれば、易滑塗布面が粗くなりすぎず突起によるセラミックグリーンシートの欠陥が発生せず好ましい。 If the region surface average roughness (Sa) of the outer surface of the easy-slip coating layer is 1 nm or more and the maximum protrusion height (P) is 60 nm or more, the easy-slip coating surface does not become too smooth and appropriate slipperiness is maintained. It is preferable because it can be done. When the region surface average roughness (Sa) is 25 nm or less and the maximum protrusion height (P) is 500 nm or less, the easy-slip coated surface is not too rough and defects of the ceramic green sheet due to protrusions do not occur, which is preferable.

本発明では、領域表面平均粗さ(Sa),最大突起高さ(P)を上記範囲にすることに加え、粗さ曲線要素の平均長さ(RSm)が10μm以下であることが好ましい。粗さ曲線要素の平均長さ(RSm)を10μm以下に制御することで、単位面積当たりの突起個数が増加する。突起個数が増加すると、突起一つ当たりにかかる圧力が分散され小さくなるため、ピンホールの発生を効果的に抑制できて好ましい。粗さ曲線要素の平均長さ(RSm)は、より好ましくは5μm以下であり、更に好ましくは3μm以下である。しかしながら、粗さ曲線要素の平均長さ(RSm)が小さ過ぎることは、易滑塗布層中の粒子の含有量が多過ぎることなどと関連し、領域表面平均粗さ(Sa)が大きくなることや、最大突起高さ(P)が大きくなることとも関連があるので、0.1μm以上であることが好ましく、0.5μm以上であっても構わず、1μm以上であっても構わない。 In the present invention, in addition to setting the region surface average roughness (Sa) and the maximum protrusion height (P) within the above ranges, the average length (RSm) of the roughness curve elements is preferably 10 μm or less. By controlling the average length (RSm) of the roughness curve elements to 10 μm or less, the number of protrusions per unit area increases. When the number of protrusions increases, the pressure applied to each protrusion is dispersed and becomes smaller, which is preferable because the occurrence of pinholes can be effectively suppressed. The average length (RSm) of the roughness curve element is more preferably 5 μm or less, still more preferably 3 μm or less. However, if the average length (RSm) of the roughness curve element is too small, it is related to the content of particles in the easy-to-slip coating layer being too large, and the region surface average roughness (Sa) becomes large. Since it is also related to the increase in the maximum protrusion height (P), it is preferably 0.1 μm or more, and may be 0.5 μm or more, or 1 μm or more.

本発明では、粗さ曲線要素の平均長さ(RSm)を所定の範囲にするために、易滑塗布層に含まれる粒子の平均粒径は1000nm以下であることが好ましい。より好ましくは800nm以下であり、さらに好ましくは600nm以下である。粒子径が1000nm以下であると、粒子間の距離が大きくなりすぎることがなく、RSmが所定の範囲に調節されて好ましい。 In the present invention, in order to keep the average length (RSm) of the roughness curve element within a predetermined range, the average particle size of the particles contained in the slippery coating layer is preferably 1000 nm or less. It is more preferably 800 nm or less, still more preferably 600 nm or less. When the particle diameter is 1000 nm or less, the distance between the particles does not become too large, and RSm is preferably adjusted to a predetermined range.

(離型塗布層)
本発明における離型塗布層を構成する樹脂には特に限定はなく、シリコーン樹脂、フッ素樹脂、アルキド樹脂、各種ワックス、脂肪族オレフィンなどを用いることができ、各樹脂を単独もしくは、2種類以上併用することもできる。
(Release coating layer)
The resin constituting the release coating layer in the present invention is not particularly limited, and silicone resin, fluororesin, alkyd resin, various waxes, aliphatic olefins and the like can be used, and each resin may be used alone or in combination of two or more. You can also do it.

本発明の離型塗布層として、例えばシリコーン樹脂とは、分子内にシリコーン構造を有する樹脂のことであり、硬化型シリコーン、シリコーングラフト樹脂、アルキル変性などの変性シリコーン樹脂などが挙げられるが、移行性などの観点から反応性の硬化シリコーン樹脂を用いることが好ましい。反応性の硬化シリコーン樹脂としては、付加反応系のもの、縮合反応系のもの、紫外線もしくは電子線硬化系のものなどを用いることができる。より好ましくは、低温で加工できる低温硬化性の付加反応系のもの、および紫外線もしくは、電子線硬化系のものがよい。これらのものを用いることで、ポリエステルフィルムへの塗工加工時に、低温で加工できる。そのため、加工時におけるポリエステルフィルムへの熱ダメージが少なく、平面性の高いポリエステルフィルムが得られ、0.2〜2μm厚みの超薄膜セラミックグリーンシート製造時にもピンホールなどの欠点を少なくすることができる。 As the release coating layer of the present invention, for example, the silicone resin is a resin having a silicone structure in the molecule, and examples thereof include curable silicone, silicone graft resin, and modified silicone resin such as alkyl-modified. From the viewpoint of properties and the like, it is preferable to use a reactive cured silicone resin. As the reactive cured silicone resin, an addition reaction type resin, a condensation reaction type resin, an ultraviolet ray or electron beam curing type resin, and the like can be used. More preferably, a low-temperature curable addition reaction system that can be processed at a low temperature, and an ultraviolet or electron beam-curable system are preferable. By using these, it is possible to process at a low temperature when coating the polyester film. Therefore, there is little heat damage to the polyester film during processing, a polyester film with high flatness can be obtained, and defects such as pinholes can be reduced even when manufacturing an ultra-thin ceramic green sheet having a thickness of 0.2 to 2 μm. ..

付加反応系のシリコーン樹脂としては、例えば末端もしくは側鎖にビニル基を導入したポリジメチルシロキサンとハイドロジエンシロキサンとを、白金触媒を用いて反応させて硬化させるものが挙げられる。このとき、120℃で30秒以内に硬化できる樹脂を用いる方が、低温での加工ができ、より好ましい。例としては、東レ・ダウコーニング社製の低温付加硬化型(LTC1006L、LTC1056L、LTC300B、LTC303E、LTC310、LTC314、LTC350G、LTC450A、LTC371G、LTC750A、LTC755、LTC760Aなど)および熱UV硬化型(LTC851、BY24−510、BY24−561、BY24−562など)、信越化学社製の溶剤付加+UV硬化型(X62−5040、X62−5065、X62−5072T、KS5508など)、デュアルキュア硬化型(X62−2835、X62−2834、X62−1980など)などが挙げられる。 Examples of the addition reaction type silicone resin include those in which polydimethylsiloxane having a vinyl group introduced at the terminal or side chain and hydrodienesiloxane are reacted with each other using a platinum catalyst to be cured. At this time, it is more preferable to use a resin that can be cured at 120 ° C. within 30 seconds because it can be processed at a low temperature. Examples include low temperature add-curing types manufactured by Toray Dow Corning (LCC1006L, LTC1056L, LTC300B, LTC303E, LTC310, LTC314, LTC350G, LTC450A, LTC371G, LTC750A, LTC245, LTC245A, LTC245A, LTC245A, etc.) -510, BY24-561, BY24-562, etc.), Shin-Etsu Chemical's solvent-added + UV curable type (X62-5040, X62-5065, X62-5072T, KS5508, etc.), Dual cure curable type (X62-2835, X62, etc.) -2834, X62-1980, etc.) and the like.

縮合反応系のシリコーン樹脂としては、例えば、末端にOH基をもつポリジメチルシロキサンと末端にH基をもつポリジメチルシロキサンを、有機錫触媒を用いて縮合反応させ、3次元架橋構造をつくるものが挙げられる。 As the silicone resin of the condensation reaction system, for example, a polydimethylsiloxane having an OH group at the terminal and a polydimethylsiloxane having an H group at the terminal are subjected to a condensation reaction using an organic tin catalyst to form a three-dimensional crosslinked structure. Can be mentioned.

紫外線硬化系のシリコーン樹脂としては、例えば最も基本的なタイプとして通常のシリコーンゴム架橋と同じラジカル反応を利用するもの、不飽和基を導入して光硬化させるもの、紫外線でオニウム塩を分解して強酸を発生させ、これでエポキシ基を開裂させて架橋させるもの、ビニルシロキサンへのチオールの付加反応で架橋するもの等が挙げられる。また、前記紫外線の代わりに電子線を用いることもできる。電子線は紫外線よりもエネルギーが強く、紫外線硬化の場合のように開始剤を用いなくても、ラジカルによる架橋反応を行うことが可能である。使用する樹脂の例としては、信越化学社製のUV硬化系シリコーン(X62−7028A/B、X62−7052、X62−7205、X62−7622、X62−7629、X62−7660など)、モメンティブ・パフォーマンス・マテリアルズ社製のUV硬化系シリコーン(TPR6502、TPR6501、TPR6500、UV9300、UV9315、XS56−A2982、UV9430など)、荒川化学社製のUV硬化系シリコーン(シリコリースUV POLY200、POLY215、POLY201、KF−UV265AMなど)が挙げられる。 As the most basic type of UV-curable silicone resin, for example, one that uses the same radical reaction as normal silicone rubber cross-linking, one that introduces an unsaturated group and photo-cures, and one that decomposes onium salts with UV light. Examples thereof include those in which a strong acid is generated and the epoxy group is cleaved and crosslinked by this, and those in which the epoxy group is crosslinked by an addition reaction of thiol to vinylsiloxane. Further, an electron beam can be used instead of the ultraviolet ray. The electron beam has stronger energy than ultraviolet rays, and it is possible to carry out a radical cross-linking reaction without using an initiator as in the case of ultraviolet curing. Examples of resins used include UV curable silicones manufactured by Shin-Etsu Chemical Co., Ltd. (X62-7028A / B, X62-7052, X62-7205, X62-7622, X62-7629, X62-7660, etc.), Momentary Performance. UV curable silicones manufactured by Materials (TPR6502, TPR6501, TPR6500, UV9300, UV9315, XS56-A2982, UV9430, etc.), UV curable silicones manufactured by Arakawa Chemical (Silicollies UV POLY200, POLY215, POLY201, KF-UV265AM, etc.) ).

上記、紫外線硬化系のシリコーン樹脂としては、アクリレート変性や、グリシドキシ変性されたポリジメチルシロキサンなどを用いることもできる。これら変性されたポリジメチルシロキサンを、多官能のアクリレート樹脂やエポキシ樹脂などと混合し、開始剤存在下で使用することでも良好な離型性能を出すことができる。 As the ultraviolet curable silicone resin, acrylate-modified or glycidoxy-modified polydimethylsiloxane can also be used. Good mold release performance can also be obtained by mixing these modified polydimethylsiloxanes with a polyfunctional acrylate resin, epoxy resin, or the like and using them in the presence of an initiator.

その他用いられる樹脂の例としては、ステアリル変性、ラウリル変性などをしたアルキド樹脂やアクリル樹脂、またはメチル化メラミンの反応などで得られるアルキド系樹脂、アクリル系樹脂なども好適である。 As examples of other resins used, alkyd resins and acrylic resins that have been stearyl-modified or lauryl-modified, or alkyd-based resins and acrylic-based resins obtained by the reaction of methylated melamine are also suitable.

上記、メチル化メラミンの反応などで得られるアミノアルキド樹脂としては、日立化成社製のテスファイン303、テスファイン305、テスファイン314などが挙げられる。メチル化メラミンの反応などで得られるアミノアクリル樹脂としては、日立化成社製のテスファイン322などが挙げられる。 Examples of the aminoalkyd resin obtained by the above-mentioned reaction of methylated melamine include Tessfine 303, Tessfine 305, and Tessfine 314 manufactured by Hitachi Kasei Co., Ltd. Examples of the amino acrylic resin obtained by the reaction of methylated melamine include Tessfine 322 manufactured by Hitachi Kasei Co., Ltd.

本発明の離型塗布層に上記樹脂を用いる場合は、1種類で使用してもよいし、2種類以上を混合して用いてもよい。また、剥離力を調整するために、軽剥離添加剤や、重剥離添加剤といった添加剤を混合することも可能である。 When the above resin is used for the release coating layer of the present invention, one type may be used, or two or more types may be mixed and used. It is also possible to mix additives such as a light peeling additive and a heavy peeling additive in order to adjust the peeling force.

本発明の離型塗布層には、粒径が1μm以下の粒子などを含有することができるが、ピンホール発生の観点から粒子などの突起を形成するものは、実質的に含有しないほうが好ましい。 The release coating layer of the present invention may contain particles having a particle size of 1 μm or less, but from the viewpoint of pinhole generation, it is preferable that the release coating layer does not substantially contain particles or the like that form protrusions.

本発明の離型塗布層には、密着向上剤や、帯電防止剤などの添加剤などを添加してもよい。また、基材との密着性を向上させるために、離型塗布層を設ける前にポリエステルフィルム表面に、アンカーコート、コロナ処理、プラズマ処理、大気圧プラズマ処理等の前処理をすることも好ましい。 Additives such as an adhesion improver and an antistatic agent may be added to the release coating layer of the present invention. Further, in order to improve the adhesion to the base material, it is also preferable to perform pretreatment such as anchor coating, corona treatment, plasma treatment, atmospheric pressure plasma treatment, etc. on the surface of the polyester film before providing the release coating layer.

本発明において、離型塗布層の厚みは、その使用目的に応じて設定すれば良く、特に限定されないが、好ましくは、硬化後の離型塗布層の厚みが0.005〜2μmとなる範囲がよい。離型塗布層の厚みが0.005μm以上であると、剥離性能が保たれて好ましい。また、離型塗布層の厚みが2μm以下であると、硬化時間が長くなり過ぎず、離型フィルムの平面性の低下によるセラミックグリーンシートの厚みムラを生じおそれがなく好ましい。また、硬化時間が長くなり過ぎないので、離型塗布層を構成する樹脂が凝集するおそれがなく、突起を形成するおそれがないため、セラミックグリーンシートのピンホール欠点が生じにくく好ましい。 In the present invention, the thickness of the release coating layer may be set according to the purpose of use and is not particularly limited, but preferably, the thickness of the release coating layer after curing is in the range of 0.005 to 2 μm. Good. When the thickness of the release coating layer is 0.005 μm or more, the peeling performance is maintained, which is preferable. Further, when the thickness of the release coating layer is 2 μm or less, the curing time does not become too long, and there is no possibility of uneven thickness of the ceramic green sheet due to the deterioration of the flatness of the release film, which is preferable. Further, since the curing time does not become too long, there is no possibility that the resin constituting the release coating layer will aggregate and there is no possibility of forming protrusions, so that pinhole defects of the ceramic green sheet are less likely to occur, which is preferable.

離型塗布層を形成させたフィルム外表面(ポリエステルフィルムと接していない塗布フィルム全体の離型塗布層表面)は、その上で塗布、成型するセラミックグリーンシートに欠陥を発生させないために、平坦であることが望ましく、領域表面平均粗さ(Sa)が5nm以下かつ最大突起高さ(P)が30nm以下であることが好ましい。さらには領域表面平均粗さ(Sa)が5nm以下、かつ最大突起高さ(P)が20nm以下がより好ましい。特に好ましくは、領域表面平均粗さ(Sa)が3nm以下、かつ最大突起高さ(P)が17nm以下である。領域表面粗さ(Sa)が5nm以下、且つ、最大突起高さ(P)が30nm以下であれば、セラミックグリーンシート形成時に、ピンホールなどの欠点の発生がなく、歩留まりが良好で好ましい。領域表面平均粗さ(Sa)は小さいほど好ましいと言えるが、0.1nm以上であっても構わず、0.3nm以上であっても構わない。最大突起高さ(P)も小さいほど好ましいと言えるが、1nm以上でも構わず、3nm以上であっても構わない。 The outer surface of the film on which the release coating layer is formed (the surface of the release coating layer of the entire coating film that is not in contact with the polyester film) is flat so as not to cause defects in the ceramic green sheet coated and molded on it. It is preferable that the region surface average roughness (Sa) is 5 nm or less and the maximum protrusion height (P) is 30 nm or less. Further, it is more preferable that the region surface average roughness (Sa) is 5 nm or less and the maximum protrusion height (P) is 20 nm or less. Particularly preferably, the region surface average roughness (Sa) is 3 nm or less, and the maximum protrusion height (P) is 17 nm or less. When the region surface roughness (Sa) is 5 nm or less and the maximum protrusion height (P) is 30 nm or less, defects such as pinholes do not occur when the ceramic green sheet is formed, and the yield is good, which is preferable. It can be said that the smaller the region surface average roughness (Sa) is, the more preferable it is, but it may be 0.1 nm or more, or 0.3 nm or more. It can be said that the smaller the maximum protrusion height (P) is, the more preferable it is, but it may be 1 nm or more, or 3 nm or more.

本発明において、離型塗布層を形成させたフィルム表面を所定の粗さ範囲に調節するためには、PETフィルムには実質的に粒子を含有しないことが好ましい。なお、本発明でいう「実質的に粒子を含有しない」とは、基材フィルム及び離型塗布層の両者について、例えば、無機粒子の場合、蛍光X線分析で粒子に由来する元素を定量分析した際に、50ppm以下であることで定義され、好ましくは10ppm以下、最も好ましくは検出限界以下である。これは積極的に粒子を基材フィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。 In the present invention, in order to adjust the surface of the film on which the release coating layer is formed to a predetermined roughness range, it is preferable that the PET film contains substantially no particles. The term "substantially free of particles" as used in the present invention means that for both the base film and the release coating layer, for example, in the case of inorganic particles, the elements derived from the particles are quantitatively analyzed by fluorescent X-ray analysis. When it is used, it is defined as 50 ppm or less, preferably 10 ppm or less, and most preferably the detection limit or less. This means that even if particles are not actively added to the base film, contamination components derived from foreign substances and stains attached to the raw material resin or the line or device in the manufacturing process of the film are peeled off and mixed in the film. This is because it may be done.

本発明において、離型塗布層の形成方法は、特に限定されず、離型性の樹脂を溶解もしくは分散させた塗液を、基材のポリエステルフィルムの一方の面に塗布等により展開し、溶媒等を乾燥により除去後、加熱乾燥、熱硬化または紫外線硬化させる方法が用いられる。このとき、溶媒乾燥、熱硬化時の乾燥温度は、180℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることがもっとも好ましい。その加熱時間は、30秒以下が好ましく、20秒以下がより好ましい。180℃以下の場合、フィルムの平面性が保たれ、セラミックグリーンシートの厚みムラを引き起こすおそれが小さく好ましい。120℃以下であるとフィルムの平面性を損なうことなく加工することができ、セラミックグリーンシートの厚みムラを引き起こすおそれが更に低下するので特に好ましい。 In the present invention, the method for forming the release coating layer is not particularly limited, and a coating liquid in which a releaseable resin is dissolved or dispersed is developed by coating on one surface of a polyester film of a base material, and a solvent is used. After removing the above by drying, a method of heat drying, thermosetting or ultraviolet curing is used. At this time, the drying temperature during solvent drying and thermosetting is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and most preferably 120 ° C. or lower. The heating time is preferably 30 seconds or less, more preferably 20 seconds or less. When the temperature is 180 ° C. or lower, the flatness of the film is maintained and the possibility of causing uneven thickness of the ceramic green sheet is small, which is preferable. When the temperature is 120 ° C. or lower, the film can be processed without impairing the flatness of the film, and the possibility of causing uneven thickness of the ceramic green sheet is further reduced, which is particularly preferable.

本発明において、離型塗布層を塗布するときの塗液の表面張力は、特に限定されないが30mN/m以下であることが好ましい。表面張力を前記のようにすることで、塗工後の塗れ性が向上し、乾燥後の塗膜表面の凹凸を低減することができる。 In the present invention, the surface tension of the coating liquid when the release coating layer is applied is not particularly limited, but is preferably 30 mN / m or less. By setting the surface tension as described above, the coatability after coating can be improved, and the unevenness of the coating film surface after drying can be reduced.

本発明において、離型塗布層を塗布するときの塗液には、特に限定されないが、沸点が90℃以上の溶剤を添加することが好ましい。沸点が90℃以上の溶剤を添加することで、乾燥時の突沸を防ぎ、塗膜をレベリングさせることができ、乾燥後の塗膜表面の平滑性を向上させることができる。その添加量としては、塗液全体に対し、10〜80質量%程度添加することが好ましい。 In the present invention, the coating liquid for applying the release coating layer is not particularly limited, but it is preferable to add a solvent having a boiling point of 90 ° C. or higher. By adding a solvent having a boiling point of 90 ° C. or higher, bumping during drying can be prevented, the coating film can be leveled, and the smoothness of the coating film surface after drying can be improved. The amount to be added is preferably about 10 to 80% by mass with respect to the entire coating liquid.

上記塗液の塗布法としては、公知の任意の塗布法が適用出来、例えばグラビアコート法やリバースコート法などのロールコート法、ワイヤーバーなどのバーコート法、ダイコート法、スプレーコート法、エアーナイフコート法、等の従来から知られている方法が利用できる。 Any known coating method can be applied as the coating method, for example, a roll coating method such as a gravure coating method or a reverse coating method, a bar coating method such as a wire bar, a die coating method, a spray coating method, or an air knife. Conventionally known methods such as the coating method can be used.

(セラミックグリーンシートとセラミックコンデンサ)
一般に、積層セラミックコンデンサは、直方体状のセラミック素体を有する。セラミック素体の内部には、第1の内部電極と第2の内部電極とが厚み方向に沿って交互に設けられている。第1の内部電極は、セラミック素体の第1の端面に露出している。第1の端面の上には第1の外部電極が設けられている。第1の内部電極は、第1の端面において第1の外部電極と電気的に接続されている。第2の内部電極は、セラミック素体の第2の端面に露出している。第2の端面の上には第2の外部電極が設けられている。第2の内部電極は、第2の端面において第2の外部電極と電気的に接続されている。
(Ceramic green sheet and ceramic capacitor)
Generally, a multilayer ceramic capacitor has a rectangular parallelepiped ceramic element. Inside the ceramic body, first internal electrodes and second internal electrodes are alternately provided along the thickness direction. The first internal electrode is exposed on the first end face of the ceramic body. A first external electrode is provided on the first end face. The first internal electrode is electrically connected to the first external electrode at the first end face. The second internal electrode is exposed on the second end face of the ceramic element. A second external electrode is provided on the second end face. The second internal electrode is electrically connected to the second external electrode at the second end face.

本発明のセラミックグリーンシート製造用離型フィルムは、このような積層セラミックコンデンサを製造するために用いられる。例えば、以下のようにして製造される。まず、本発明の離型フィルムをキャリアフィルムとして用い、セラミック素体を構成するためのセラミックスラリーを塗布、乾燥させる。塗布、乾燥したセラミックグリーンシートの上に、第1又は第2の内部電極を構成するための導電層を印刷する。セラミックグリーンシート、第1の内部電極を構成するための導電層が印刷されたセラミックグリーンシート及び第2の内部電極を構成するための導電層が印刷されたセラミックグリーンシートを適宜積層し、プレスすることにより、マザー積層体を得る。マザー積層体を複数に分断し、生のセラミック素体を作製する。生のセラミック素体を焼成することによりセラミック素体を得る。その後、第1及び第2の外部電極を形成することにより積層セラミックコンデンサを完成させることができる。 The release film for manufacturing a ceramic green sheet of the present invention is used for manufacturing such a multilayer ceramic capacitor. For example, it is manufactured as follows. First, the release film of the present invention is used as a carrier film, and a ceramic slurry for forming a ceramic element is applied and dried. A conductive layer for forming the first or second internal electrode is printed on the coated and dried ceramic green sheet. A ceramic green sheet, a ceramic green sheet on which a conductive layer for forming a first internal electrode is printed, and a ceramic green sheet on which a conductive layer for forming a second internal electrode is printed are appropriately laminated and pressed. As a result, a mother laminate is obtained. The mother laminate is divided into a plurality of pieces to prepare a raw ceramic body. A ceramic body is obtained by firing a raw ceramic body. After that, the multilayer ceramic capacitor can be completed by forming the first and second external electrodes.

次に、実施例、比較例を用いて本発明を詳細に説明するが、本発明は当然以下の実施例に限定されるものではない。また、本発明で用いた評価方法は以下の通りである。 Next, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is naturally not limited to the following Examples. The evaluation method used in the present invention is as follows.

(1)塗布フィルムの表面特性
非接触表面形状計測システム(VertScan R550H−M100)を用いて、下記の条件で測定した値である。領域表面平均粗さ(Sa)、粗さ曲線要素の平均長さ(RSm)は、5回測定の平均値を採用し、最大突起高さ(P)は5回測定の最大値を採用した。
(測定条件)
・測定モード:WAVEモード
・対物レンズ:50倍
・0.5×Tubeレンズ
・測定面積 187×139μm (Sa,P測定)
・測定長さ(Lr:基準長さ):187μm(RSm測定)
(1) Surface characteristics of coated film Values measured under the following conditions using a non-contact surface shape measurement system (VertScan R550H-M100). For the region surface average roughness (Sa) and the average length (RSm) of the roughness curve elements, the average value of 5 measurements was adopted, and for the maximum protrusion height (P), the maximum value of 5 measurements was adopted.
(Measurement condition)
-Measurement mode: WAVE mode-Objective lens: 50x-0.5 x Tube lens-Measurement area 187 x 139 μm (Sa, P measurement)
-Measurement length (Lr: reference length): 187 μm (RSm measurement)

(2)セラミックグリーンシートのピンホール、厚みばらつき評価
下記、材料からなる組成物を攪拌混合し、2.0mmのガラスビーズを分散媒とするペイントシェーカーを用いて2時間分散し、セラミックスラリーを得た。
トルエン 22.5質量%
エタノール 22.5質量%
チタン酸バリウム(富士チタン社製 HPBT−1) 50 質量%
ポリビニルブチラール(積水化学社製 エスレックBH−3)
5 質量%
次いで離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のスラリーが0.5μmの厚みになるように塗布し90℃で1分乾燥後、スラリー面と平滑化塗布層面を重ね合わせ、10分間、1kg/cmの加重を掛けたあと、離型フィルムを剥離し、セラミックグリーンシートを得た。
得られたセラミックグリーンシートのフィルム幅方向の中央領域において25cmの範囲でセラミックスラリーの塗布面の反対面から光を当て、光が透過して見えるピンホールの発生状況を観察し、下記基準で目視判定した。
○:ピンホールの発生なし、厚みばらつき特に問題なし
×:ピンホールの発生が僅かにあり、及び/又は、厚みばらつきが僅かに目立つ
××:ピンホールの発生が少しあり、及び、厚みばらつきが少し目立つ
×××:ピンホールの発生が多数あり、及び、厚みばらつき大きく目立つ
(2) Evaluation of pinholes and thickness variation of ceramic green sheet The composition consisting of the following materials is stirred and mixed, and dispersed for 2 hours using a paint shaker using 2.0 mm glass beads as a dispersion medium to obtain a ceramic slurry. It was.
Toluene 22.5% by mass
Ethanol 22.5% by mass
Barium titanate (HPBT-1 manufactured by Fuji Titanium Industry Co., Ltd.) 50% by mass
Polyvinyl butyral (Eslek BH-3 manufactured by Sekisui Chemical Co., Ltd.)
5 mass%
Next, the release surface of the release film sample was coated with an applicator so that the dried slurry had a thickness of 0.5 μm, dried at 90 ° C. for 1 minute, and then the slurry surface and the smoothing coating layer surface were overlapped with each other. After applying a load of 1 kg / cm 2 for 1 minute, the release film was peeled off to obtain a ceramic green sheet.
In the central region of the obtained ceramic green sheet in the film width direction, shine light from the opposite surface of the coated surface of the ceramic slurry within a range of 25 cm 2, observe the occurrence of pinholes through which light appears, and use the following criteria. It was judged visually.
◯: No pinholes, thickness variation No particular problem ×: Pinholes are slightly generated and / or thickness variation is slightly noticeable ××: Pinholes are slightly generated and thickness variation Slightly noticeable XXX: There are many pinholes, and the thickness variation is large and noticeable.

(ポリエチレンテレフタレートペレット(PET(I))の調製)
エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取出口を有する3段の完全混合槽よりなる連続エステル化反応装置を用いた。TPA(テレフタル酸)を2トン/時とし、EG(エチレングリコール)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間、255℃で反応させた。次いで、第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成PETに対して8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウム四水塩を含むEG溶液と、生成PETに対してP原子が40ppmのとなる量のTMPA(リン酸トリメチル)を含むEG溶液を添加し、常圧にて平均滞留時間1時間、260℃で反応させた。次いで、第2エステル化反応缶の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、高圧分散機(日本精機社製)を用いて39MPa(400kg/cm)の圧力で平均処理回数5パスの分散処理をした平均粒径が0.9μmの多孔質コロイダルシリカ0.2質量%と、ポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒径が0.6μmの合成炭酸カルシウム0.4質量%とを、それぞれ10%のEGスラリーとして添加しながら、常圧にて平均滞留時間0.5時間、260℃で反応させた。第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、95%カット径が20μmのステンレススチール繊維を焼結したフィルターで濾過を行ってから、限外濾過を行って水中に押出し、冷却後にチップ状にカットして、固有粘度0.60dl/gのPETチップを得た(以後、PET(I)と略す)。PETチップ中の滑剤含有量は0.6質量%であった。
(Preparation of polyethylene terephthalate pellets (PET (I)))
As the esterification reaction device, a continuous esterification reaction device consisting of a stirrer, a splitter, a raw material charging port, and a three-stage complete mixing tank having a raw material charging port and a product outlet was used. TPA (terephthalic acid) was set to 2 tons / hour, EG (ethylene glycol) was set to 2 mol per 1 mol of TPA, antimony trioxide was set to an amount of 160 ppm of Sb atoms with respect to the PET produced, and these slurries were esterified. It was continuously supplied to the first esterification reaction can of the chemical reaction apparatus and reacted at normal pressure for an average residence time of 4 hours and 255 ° C. Next, the reaction products in the first esterification reaction can are continuously taken out of the system and supplied to the second esterification reaction can, and distilled off from the first esterification reaction can in the second esterification reaction can. EG is supplied in an amount of 8% by mass with respect to the produced PET, and an EG solution containing an amount of magnesium tetrahydrate having an amount of Mg atoms of 65 ppm with respect to the produced PET and 40 ppm of P atoms with respect to the produced PET. An EG solution containing an amount of TMPA (trimethyl phosphate) was added, and the reaction was carried out at normal pressure for an average residence time of 1 hour and 260 ° C. Next, the reaction product of the second esterification reaction can is continuously taken out of the system and supplied to the third esterification reaction can, and 39 MPa (400 kg / cm 2 ) using a high-pressure disperser (manufactured by Nippon Seiki Co., Ltd.). 0.2% by mass of porous colloidal silica having an average particle size of 0.9 μm and 1% by mass of ammonium salt of polyacrylic acid attached per calcium carbonate after dispersion treatment with an average number of treatments of 5 passes under the pressure of 0.4% by mass of synthetic calcium carbonate having a diameter of 0.6 μm was added as an EG slurry of 10% each, and the reaction was carried out at normal pressure for an average residence time of 0.5 hours and at 260 ° C. The esterification reaction product produced in the third esterification reaction can was continuously supplied to a three-stage continuous polycondensation reaction apparatus to carry out polycondensation, and a stainless steel fiber having a 95% cut diameter of 20 μm was sintered. After filtering with a filter, ultrafiltration was performed, extruded into water, cooled, and then cut into chips to obtain PET chips having an intrinsic viscosity of 0.60 dl / g (hereinafter abbreviated as PET (I)). .. The lubricant content in the PET chip was 0.6% by mass.

(ポリエチレンテレフタレートペレット(PET(II))の調製)
一方、上記PETチップの製造において、炭酸カルシウム、シリカ等の粒子を全く含有しない固有粘度0.62dl/gのPETチップを得た(以後、PET(II)と略す。)。
(Preparation of polyethylene terephthalate pellets (PET (II)))
On the other hand, in the production of the PET chip, a PET chip having an intrinsic viscosity of 0.62 dl / g containing no particles such as calcium carbonate and silica was obtained (hereinafter, abbreviated as PET (II)).

(積層フィルムZの製造)
これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流させ、PET(I)を反離型面側層、PET(II)を離型面側層となるように積層し、シート状に45m/分のスピードで押出(キャステイング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算でPET(I)/PET(II)=60%/40%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムZを得た。得られた積層フィルムZの離型面側層のSaは2nm、反離型面側層のSaは28nmであった。
(Manufacturing of laminated film Z)
After drying these PET chips, they were melted at 285 ° C., melted at 290 ° C. by a separate melt extruder extruder, and a filter obtained by sintering stainless steel fibers having a 95% cut diameter of 15 μm and a 95% cut diameter were obtained. Two-stage filtration of a filter obtained by sintering 15 μm stainless steel particles is performed and merged in the feed block, and PET (I) becomes the anti-separation surface side layer and PET (II) becomes the release surface side layer. It is laminated in this way, extruded (casting) into a sheet at a speed of 45 m / min, electrostatically adhered and cooled on a casting drum at 30 ° C. by the electrostatic adhesion method, and unstretched with an intrinsic viscosity of 0.59 dl / g. A polyethylene terephthalate sheet was obtained. The layer ratio was adjusted so that PET (I) / PET (II) = 60% / 40% in the discharge amount calculation of each extruder. Next, the unstretched sheet was heated with an infrared heater and then stretched 3.5 times in the vertical direction at a roll temperature of 80 ° C. due to the speed difference between the rolls. Then, it was guided to a tenter and stretched 4.2 times in the lateral direction at 140 ° C. Then, in the heat fixing zone, heat treatment was performed at 210 ° C. Then, a 2.3% relaxation treatment was carried out in the transverse direction at 170 ° C. to obtain a biaxially stretched polyethylene terephthalate film Z having a thickness of 31 μm. The Sa of the release surface side layer of the obtained laminated film Z was 2 nm, and the Sa of the release surface side layer of the obtained laminated film Z was 28 nm.

(ポリエステル樹脂A−1の重合)
攪拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート194.2質量部、ジメチルイソフタレート184.5質量部、ジメチルー5−ナトリウムスルホイソフタレート14.8質量部、エチレングリコール185.1質量部、ネオペンチルグリコール185.1質量部、およびテトラ−n−ブチルチタネート0.2質量部を仕込み、160℃から220℃の温度で4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(A−1)を得た。得られた共重合ポリエステル樹脂(A−1)は、淡黄色透明であった。共重合ポリエステル樹脂(A−1)の還元粘度を測定したところ,0.60dl/gであった。DSCによるガラス転移温度は65℃であった。
(Polyester resin A-1 polymerization)
In a stainless steel autoclave equipped with a stirrer, thermometer, and partial reflux cooler, 194.2 parts by mass of dimethyl terephthalate, 184.5 parts by mass of dimethyl isophthalate, 14.8 parts by mass of dimethyl 5-sodium sulfoisophthalate, 185.1 parts by mass of ethylene glycol, 185.1 parts by mass of neopentyl glycol, and 0.2 parts by mass of tetra-n-butyl titanate were charged, and a transesterification reaction was carried out at a temperature of 160 ° C. to 220 ° C. for 4 hours. .. Then, the temperature was raised to 255 ° C., the reaction system was gradually depressurized, and then the reaction was carried out under a reduced pressure of 30 Pa for 1 hour and 30 minutes to obtain a copolymerized polyester resin (A-1). The obtained copolymerized polyester resin (A-1) was pale yellow and transparent. The reduced viscosity of the copolymerized polyester resin (A-1) was measured and found to be 0.60 dl / g. The glass transition temperature by DSC was 65 ° C.

(ポリエステル水分散体Aw−1の製造)
攪拌機、温度計と還流装置を備えた反応器に、ポリエステル樹脂(A−1)30質量部、エチレングリコール−n−ブチルエーテル15質量部を入れ、110℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、水55質量部をポリエステル溶液に攪拌しつつ徐々に添加した。添加後、液を攪拌しつつ室温まで冷却して、固形分30質量%の乳白色のポリエステル水分散体(Aw−1)を作製した。
(Manufacture of polyester aqueous dispersion Aw-1)
30 parts by mass of polyester resin (A-1) and 15 parts by mass of ethylene glycol-n-butyl ether were placed in a reactor equipped with a stirrer, a thermometer and a reflux device, and heated and stirred at 110 ° C. to dissolve the resin. After the resin was completely dissolved, 55 parts by mass of water was gradually added to the polyester solution with stirring. After the addition, the liquid was cooled to room temperature with stirring to prepare a milky white polyester aqueous dispersion (Aw-1) having a solid content of 30% by mass.

(ポリエステル樹脂A−2の重合)
撹拌機、温度計、および部分還流式冷却器を具備したステンレススチール製オートクレーブに、ジメチルテレフタレート163質量部、ジメチルイソフタレート163質量部、1,4ブタンジオール169質量部、エチレングリコール324質量部、およびテトラ−n−ブチルチタネート0.5質量部を仕込み、160℃から220℃まで、4時間かけてエステル交換反応を行った。
次いで、フマル酸14質量部およびセバシン酸203質量部を加え、200℃から220℃まで1時間かけて昇温し、エステル化反応を行った。次いで、255℃まで昇温し、反応系を徐々に減圧した後、29Paの減圧下で1時間30分反応させ、疎水性共重合ポリエステル樹脂(A−2)を得た。得られた疎水性共重合ポリエステル樹脂(A−2)は、淡黄色透明であった。
(Polyester resin A-2 polymerization)
In a stainless steel autoclave equipped with a stirrer, thermometer, and partial reflux condenser, 163 parts by mass of dimethyl terephthalate, 163 parts by mass of dimethyl isophthalate, 169 parts by mass of 1,4 butanediol, 324 parts by mass of ethylene glycol, and 0.5 parts by mass of tetra-n-butyl titanate was charged, and a transesterification reaction was carried out from 160 ° C. to 220 ° C. over 4 hours.
Next, 14 parts by mass of fumaric acid and 203 parts by mass of sebacic acid were added, and the temperature was raised from 200 ° C. to 220 ° C. over 1 hour to carry out an esterification reaction. Then, the temperature was raised to 255 ° C., the reaction system was gradually depressurized, and then the reaction was carried out under a reduced pressure of 29 Pa for 1 hour and 30 minutes to obtain a hydrophobic copolymerized polyester resin (A-2). The obtained hydrophobic copolymerized polyester resin (A-2) was pale yellow and transparent.

(ポリエステル水分散体Aw−2の製造)
次いで、グラフト樹脂の製造撹拌機、温度計、還流装置と定量滴下装置を備えた反応器に、この共重合ポリエステル樹脂(A−2)60質量部、メチルエチルケトン45質量部およびイソプロピルアルコール15質量部を入れ、65℃で加熱、撹拌し、樹脂を溶解した。樹脂が完全に溶解した後、無水マレイン酸24質量部をポリエステル溶液に添加した。
次いで、スチレン16質量部、およびアゾビスジメチルバレロニトリル1.5質量部をメチルエチルケトン19質量部に溶解した溶液を、0.1ml/分でポリエステル溶液中に滴下し、さらに2時間撹拌を続けた。反応溶液から分析用のサンプリングを行った後、メタノール8質量部を添加した。次いで、水300質量部とトリエチルアミン24質量部を反応溶液に加え、1時間撹拌した。
その後、反応器の内温を100℃に上げ、メチルエチルケトン、イソプロピルアルコール、過剰のトリエチルアミンを蒸留により留去し、淡黄色透明のポリエステル系樹脂を得、固形分濃度25質量%の均一な水分散性ポリエステル系グラフト共重合体分散液(Aw−2)を調製した。得られたポリエステル系グラフト共重合体のガラス転移温度は68℃であった。
(Manufacture of polyester aqueous dispersion Aw-2)
Next, 60 parts by mass of the copolymerized polyester resin (A-2), 45 parts by mass of methyl ethyl ketone and 15 parts by mass of isopropyl alcohol were added to a reactor equipped with a stirrer for producing graft resin, a thermometer, a reflux device and a quantitative dropping device. The resin was dissolved by heating and stirring at 65 ° C. After the resin was completely dissolved, 24 parts by mass of maleic anhydride was added to the polyester solution.
Then, a solution prepared by dissolving 16 parts by mass of styrene and 1.5 parts by mass of azobisdimethylvaleronitrile in 19 parts by mass of methyl ethyl ketone was added dropwise to the polyester solution at 0.1 ml / min, and stirring was continued for another 2 hours. After sampling for analysis from the reaction solution, 8 parts by mass of methanol was added. Then, 300 parts by mass of water and 24 parts by mass of triethylamine were added to the reaction solution, and the mixture was stirred for 1 hour.
Then, the internal temperature of the reactor was raised to 100 ° C., methyl ethyl ketone, isopropyl alcohol, and excess triethylamine were distilled off by distillation to obtain a pale yellow transparent polyester resin, and uniform water dispersibility with a solid content concentration of 25% by mass. A polyester-based graft copolymer dispersion (Aw-2) was prepared. The glass transition temperature of the obtained polyester-based graft copolymer was 68 ° C.

(ポリウレタン水分散体Aw−3の製造)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジシクロヘキシルメタンジイソシアネート43.75質量部、ジメチロールブタン酸12.85質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min−1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分37質量%の水溶性ポリウレタン樹脂溶液Aw−3を調製した。得られたポリウレタン樹脂のガラス転移点温度は−30℃であった。
(Manufacture of polyurethane aqueous dispersion Aw-3)
In a four-necked flask equipped with a stirrer, Dimroth condenser, nitrogen introduction tube, silica gel drying tube, and thermometer, 43.75 parts by mass of 4,4-dicyclohexylmethanediiscetone, 12.85 parts by mass of dimethylolbutanoic acid, 153.41 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, and 84.00 parts by mass of acetone as a solvent were added, and the mixture was stirred at 75 ° C. for 3 hours under a nitrogen atmosphere for reaction. It was confirmed that the liquid reached a predetermined amine equivalent. Next, the reaction solution was cooled to 40 ° C., and then 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature was adjusted to 25 ° C., and the polyurethane prepolymer solution was added and dispersed in water while stirring and mixing at 2000 min-1. .. Then, under reduced pressure, acetone and a part of water were removed to prepare a water-soluble polyurethane resin solution Aw-3 having a solid content of 37% by mass. The glass transition temperature of the obtained polyurethane resin was −30 ° C.

(シリカ粒子B−1)
コロイダルシリカ(日産化学製、商品名スノーテックスOL、平均粒径40nm、固形分濃度20質量%)
(Silica particle B-1)
Colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name Snowtex OL, average particle size 40 nm, solid content concentration 20% by mass)

(シリカ粒子B−2)
コロイダルシリカ(日産化学製、商品名スノーテックスZL、平均粒径100nm、固形分濃度40質量%)
(Silica Particle B-2)
Colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name Snowtex ZL, average particle size 100 nm, solid content concentration 40% by mass)

(シリカ粒子B−3)
コロイダルシリカ(日産化学製、商品名MP2040、平均粒径200nm、固形分濃度40質量%)
(Silica Particle B-3)
Colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name MP2040, average particle size 200 nm, solid content concentration 40% by mass)

(シリカ粒子B−4)
コロイダルシリカ(日産化学製、商品名MP4540M、平均粒径450nm、固形分濃度40質量%)
(Silica particles B-4)
Colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name MP4540M, average particle size 450 nm, solid content concentration 40% by mass)

(アクリル粒子B−5)
アクリル粒子水分散体(日本触媒製、商品名MX100W、平均粒径150nm、固形分濃度10質量%)
(Acrylic particles B-5)
Acrylic particle aqueous dispersion (manufactured by Nippon Shokubai, trade name MX100W, average particle size 150 nm, solid content concentration 10% by mass)

(離型剤溶液X−1)
UV硬化型シリコーン樹脂(モメンティブ社製 UV9300、固形分濃度100質量%)100質量部と硬化触媒ビス(アルキルフェニル)ヨードニウムヘキサフルオロアンチモネート1質量部を、トルエン/メチルエチルケトン/ヘプタン(=3:5:2)溶液で希釈し、固形分2質量%の離型剤溶液を調製した。
(Release agent solution X-1)
100 parts by mass of UV curable silicone resin (UV9300 manufactured by Momentive, solid content concentration 100% by mass) and 1 part by mass of curing catalyst bis (alkylphenyl) iodonium hexafluoroantimonate, toluene / methyl ethyl ketone / heptane (= 3: 5:) 2) Dilute with a solution to prepare a release agent solution having a solid content of 2% by mass.

(離型剤溶液X−2)
熱硬化型アミノアルキド樹脂(日立化成社製 テスファイン314、固形分60質量%)100質量部と硬化触媒としてp−トルエンスルホン酸(日立化成社製、ドライヤー900、固形分50質量%)1.2質量部を、トルエン/メチルエチルケトン/ヘプタン(=3:5:2)溶液で希釈し、固形分2質量%の離型剤溶液を調製した。
(Release agent solution X-2)
Thermo-curable aminoalkyd resin (Tessfine 314 manufactured by Hitachi Kasei Co., Ltd., solid content 60% by mass) and p-toluenesulfonic acid (Hitachi Kasei Co., Ltd., dryer 900, solid content 50% by mass) as a curing catalyst 1. 2 parts by mass was diluted with a toluene / methyl ethyl ketone / heptane (= 3: 5: 2) solution to prepare a release agent solution having a solid content of 2% by mass.

(背面平滑化塗布液Y)
活性エネルギー線化合物としての、ジペンタエリスリトールヘキサアクリレート[固形分100質量%]94質量部と、ポリオルガノシロキサンとしての、ポリエーテル変性アクリロイル基を有するポリジメチルシロキサン[ビッグケミー・ジャパン株式会社製、商品名「BYK−3500」、固形分100質量%]1質量部と、光重合開始剤としての、α−アミノアルキルフェノン系光重合開始剤[BASF社製、商品名「IRGACURE907」、2−メチル−1[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、固形分100質量%]5質量部を、イソプロピルアルコール/メチルエチルケトン混合溶剤(質量比3/1)で希釈して、固形分20質量%の背面平滑化コート層形成用材料を得た。
(Back surface smoothing coating liquid Y)
Polydimethylsiloxane having 94 parts by mass of dipentaerythritol hexaacrylate [solid content 100% by mass] as an active energy ray compound and a polyether-modified acryloyl group as a polyorganosiloxane [manufactured by Big Chemie Japan Co., Ltd., trade name "BYK-3500", solid content 100% by mass] 1 part by mass and α-aminoalkylphenone-based photopolymerization initiator as a photopolymerization initiator [BASF, trade name "IRGACURE907", 2-methyl-1 [4- (Methylthio) phenyl] -2-morpholinopropane-1-one, solid content 100% by mass] 5 parts by mass is diluted with an isopropyl alcohol / methyl ethyl ketone mixed solvent (mass ratio 3/1) to obtain a solid content. A material for forming a back surface smoothing coat layer of 20% by mass was obtained.

(実施例1)
(易滑塗布液1の調整)
下記の組成の易滑塗布液1を調整した。
(易滑塗布液1)
水 48.33質量部
イソプロピルアルコール 35.00質量部
ポリエステル水分散体Aw−1 15.78質量部
(固形分濃度30質量%)
シリカ粒子B−3 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
(Example 1)
(Adjustment of easy slip coating liquid 1)
The I Ching coating liquid 1 having the following composition was adjusted.
(Easy slip coating liquid 1)
Water 48.33 parts by mass Isopropyl alcohol 35.00 parts by mass Polyester aqueous dispersion Aw-1 15.78 parts by mass (solid content concentration 30% by mass)
Silica particles B-3 0.59 parts by mass (average particle size 200 nm, solid content concentration 40% by mass)
Surfactant (fluorine-based, solid content concentration 10% by mass) 0.30 parts by mass

(ポリエステルフィルムの製造)
フィルム原料ポリマーとして、固有粘度(溶媒:フェノール/テトラクロロエタン=60/40)が0.62dl/gで、かつ粒子を実質的に含有していないPET樹脂ペレット(PET(II))を、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(Manufacturing of polyester film)
As a film raw material polymer, PET resin pellets (PET (II)) having an intrinsic viscosity (solvent: phenol / tetrachloroethane = 60/40) of 0.62 dl / g and substantially free of particles were used at 133 Pa. It was dried under reduced pressure at 135 ° C. for 6 hours. Then, it was supplied to an extruder, melt-extruded into a sheet at about 280 ° C., and rapidly cooled and solidified on a rotary cooled metal roll maintained at a surface temperature of 20 ° C. to obtain an unstretched PET sheet.

この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 This unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a peripheral speed difference to obtain a uniaxially stretched PET film.

次いで、上記易滑塗布液をバーコーターでPETフィルムの片面に塗布した後、80℃で15秒間乾燥した。なお、最終延伸、乾燥後の塗布量が0.1μmになるように調整した。引続いてテンターで、150℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに230℃で10秒間3%の幅方向の弛緩処理を行ない、厚さ31μmのインラインコーティングポリエステルフィルムを得た。 Next, the easy-slip coating solution was applied to one side of the PET film with a bar coater, and then dried at 80 ° C. for 15 seconds. The coating amount after final stretching and drying was adjusted to 0.1 μm. Subsequently, with a tenter, the film was stretched 4.0 times in the width direction at 150 ° C., and with the length of the film fixed in the width direction, heated at 230 ° C. for 0.5 seconds, and further at 230 ° C. for 10 seconds 3 A relaxation treatment in the width direction of% was carried out to obtain an in-line coated polyester film having a thickness of 31 μm.

(離型塗布層の形成)
上記で得たインラインコーティングポリエステルフィルムの、易滑塗布層積層面とは反対表面に、離型剤溶液X−1を乾燥後の厚みで0.1μmとなるようにリバースグラビアコーターにて塗布し、次いで、90℃の熱風で30秒間乾燥した後、直ちに無電極ランプ(フュージョン株式会社製Hバルブ)にて紫外線照射(300mJ/cm)を行い、離型塗布層を形成し超薄層セラミックグリーンシート製造用離型フィルムを得た。なお、巻き取り性等、工程通過性、ハンドリング性は特に問題なく優秀であった。
(Formation of release coating layer)
The release agent solution X-1 was applied to the surface of the in-line coated polyester film obtained above opposite to the laminated surface of the easy-to-slip coating layer with a reverse gravure coater so that the thickness after drying was 0.1 μm. Next, after drying with hot air at 90 ° C. for 30 seconds, immediately irradiate with ultraviolet rays (300 mJ / cm 2 ) with an electrodeless lamp (H valve manufactured by Fusion Co., Ltd.) to form a release coating layer and ultra-thin ceramic green. A release film for sheet production was obtained. In addition, the process passability and handleability such as take-up property were excellent without any particular problem.

(実施例2)
実施例1で使用した易滑塗布液1中のシリカ粒子B−3を、シリカ粒子B−4(平均粒径450nm、固形分濃度40質量%)に変更した易滑塗布液2を使用した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(Example 2)
Except for using the easy-slip coating solution 2 in which the silica particles B-3 in the easy-slip coating solution 1 used in Example 1 were changed to silica particles B-4 (average particle size 450 nm, solid content concentration 40% by mass). Obtained a release film for producing an ultra-thin ceramic green sheet in the same manner as in Example 1.

(実施例3)
易滑塗布液1を、下記の易滑塗布液3に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液3)
水 47.43質量部
イソプロピルアルコール 35.00質量部
ポリエステル水分散体Aw−1 14.92質量部
(固形分濃度30質量%)
シリカ粒子B−1 2.24質量部
(平均粒径40nm、固形分濃度20質量%)
シリカ粒子B−4 0.11質量部
(平均粒径450nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
(Example 3)
A release film for producing an ultra-thin ceramic green sheet was obtained in the same manner as in Example 1 except that the easy-slip coating liquid 1 was changed to the following easy-slip coating liquid 3.
(Easy slip coating liquid 3)
Water 47.43 parts by mass Isopropyl alcohol 35.00 parts by mass Polyester aqueous dispersion Aw-1 14.92 parts by mass (solid content concentration 30% by mass)
Silica particles B-1 2.24 parts by mass (average particle size 40 nm, solid content concentration 20% by mass)
Silica particles B-4 0.11 parts by mass (average particle size 450 nm, solid content concentration 40% by mass)
Surfactant (fluorine-based, solid content concentration 10% by mass) 0.30 parts by mass

(実施例4)
易滑塗布液1を、下記の易滑塗布液4に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液4)
水 48.54質量部
イソプロピルアルコール 35.00質量部
ポリエステル水分散体Aw−1 14.92質量部
(固形分濃度30質量%)
シリカ粒子B−2 1.12質量部
(平均粒径100nm、固形分濃度40質量%)
シリカ粒子B−4 0.11質量部
(平均粒径450nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
(Example 4)
A polyester film was obtained in the same manner as in Example 1 except that the easy-slip coating liquid 1 was changed to the following easy-slip coating liquid 4.
(Easy slip coating liquid 4)
Water 48.54 parts by mass Isopropyl alcohol 35.00 parts by mass Polyester aqueous dispersion Aw-1 14.92 parts by mass (solid content concentration 30% by mass)
Silica particles B-2 1.12 parts by mass (average particle size 100 nm, solid content concentration 40% by mass)
Silica particles B-4 0.11 parts by mass (average particle size 450 nm, solid content concentration 40% by mass)
Surfactant (fluorine-based, solid content concentration 10% by mass) 0.30 parts by mass

(実施例5)
易滑塗布液1を、下記の易滑塗布液5に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液5)
水 45.18質量部
イソプロピルアルコール 35.00質量部
ポリエステル水分散体Aw−2 18.93質量部
(固形分濃度25質量%)
シリカ粒子B−3 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
(Example 5)
A polyester film was obtained in the same manner as in Example 1 except that the easy-slip coating liquid 1 was changed to the following easy-slip coating liquid 5.
(Easy slip coating liquid 5)
Water 45.18 parts by mass Isopropyl alcohol 35.00 parts by mass Polyester aqueous dispersion Aw-2 18.93 parts by mass (solid content concentration 25% by mass)
Silica particles B-3 0.59 parts by mass (average particle size 200 nm, solid content concentration 40% by mass)
Surfactant (fluorine-based, solid content concentration 10% by mass) 0.30 parts by mass

(実施例6)
易滑塗布液1を、下記の易滑塗布液6に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液6)
水 51.32質量部
イソプロピルアルコール 35.00質量部
ポリウレタン樹脂水分散体Aw−3 12.79質量部
(固形分濃度37質量%)
シリカ粒子B−3 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
(Example 6)
A polyester film was obtained in the same manner as in Example 1 except that the easy-slip coating liquid 1 was changed to the following easy-slip coating liquid 6.
(Easy slip coating liquid 6)
Water 51.32 parts by mass Isopropyl alcohol 35.00 parts by mass Polyurethane resin aqueous dispersion Aw-3 12.79 parts by mass (solid content concentration 37% by mass)
Silica particles B-3 0.59 parts by mass (average particle size 200 nm, solid content concentration 40% by mass)
Surfactant (fluorine-based, solid content concentration 10% by mass) 0.30 parts by mass

(実施例7)
離型塗布層の形成を下記のように実施した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(離型塗布層の形成)
得たインラインコーティングポリエステルフィルムに離型剤溶液X−2を易滑塗布層とは逆面である表面層(a)に乾燥後の厚みで0.1μmとなるようにリバースグラビアコーターにて塗布し、次いで、130℃の熱風で30秒間乾燥することで離型塗布層を形成し超薄層セラミックグリーンシート製造用離型フィルムを得た。
(Example 7)
A release film for producing an ultra-thin ceramic green sheet was obtained in the same manner as in Example 1 except that the release coating layer was formed as follows.
(Formation of release coating layer)
The release agent solution X-2 was applied to the obtained in-line coated polyester film on the surface layer (a) opposite to the easy-slip coating layer with a reverse gravure coater so that the thickness after drying was 0.1 μm. Then, the release coating layer was formed by drying with hot air at 130 ° C. for 30 seconds to obtain a release film for producing an ultrathin ceramic green sheet.

(実施例8)
易滑塗布液1を、下記の易滑塗布液8に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液8)
水 46.56質量部
イソプロピルアルコール 35.00質量部
ポリエステル水分散体Aw−1 15.78質量部
(固形分濃度30質量%)
アクリル粒子B−5 2.37質量部
(平均粒径150nm、固形分濃度10質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
(Example 8)
A polyester film was obtained in the same manner as in Example 1 except that the easy-slip coating liquid 1 was changed to the following easy-slip coating liquid 8.
(Easy slip coating liquid 8)
Water 46.56 parts by mass Isopropyl alcohol 35.00 parts by mass Polyester aqueous dispersion Aw-1 15.78 parts by mass (solid content concentration 30% by mass)
Acrylic particles B-5 2.37 parts by mass (average particle size 150 nm, solid content concentration 10% by mass)
Surfactant (fluorine-based, solid content concentration 10% by mass) 0.30 parts by mass

(比較例1)
離型塗布層を形成するフィルムとして、実施例1で作成した一方の表面に易滑塗布層を有するインラインコーティングフィルムの代わりに、E5000−25μm(東洋紡製)に変更して使用した以外は、実施例1と同様の方法でセラミックグリーンシート製造用離型フィルムを得た。E5000はフィルム内部に粒子を含有しており、両表面のSaがともに0.031μmであった。
(Comparative Example 1)
As a film for forming a release coating layer, it was carried out except that it was changed to E5000-25 μm (manufactured by Toyobo) instead of the in-line coating film having an easy-slip coating layer on one surface prepared in Example 1. A release film for producing a ceramic green sheet was obtained in the same manner as in Example 1. E5000 contained particles inside the film, and Sa on both surfaces was 0.031 μm.

(比較例2)
離型層の塗布厚みを1.0μmに変更した以外は、比較例1と同様の方法でセラミックグリーンシート製造用離型フィルムを得た。
(Comparative Example 2)
A release film for producing a ceramic green sheet was obtained in the same manner as in Comparative Example 1 except that the coating thickness of the release layer was changed to 1.0 μm.

(比較例3)
離型塗布層を形成するフィルムとして、実施例1で作成した一方の表面に易滑塗布層を有するインラインコーティングフィルムの代わりに、積層フィルムZに変更して使用し、フィルムZの滑剤を含有していない側の表面に離型塗布層を形成させた以外は、実施例1と同様の方法でセラミックグリーンシート製造用離型フィルムを得た。
(Comparative Example 3)
As the film forming the release coating layer, instead of the in-line coating film having the easy-slip coating layer on one surface prepared in Example 1, the laminated film Z is used instead, and the lubricant of the film Z is contained. A release film for producing a ceramic green sheet was obtained in the same manner as in Example 1 except that a release coating layer was formed on the surface on the side not covered.

(比較例4)
比較例3で得たセラミックグリーンシート製造用離型フィルムの離型塗布層を形成した面とは反対面の表面に背面平滑化塗布液Yを乾燥後厚みで0.5μmとなるようにリバースグラビアコーターにて塗布し、次いで、90℃の熱風で30秒間乾燥した後、直ちに無電極ランプ(フュージョン株式会社製Hバルブ)にて紫外線照射(300mJ/cm)を行い、背面平滑化層を形成し、セラミックグリーンシート製造用離型フィルムを得た。
(Comparative Example 4)
Reverse gravure so that the back surface smoothing coating liquid Y has a thickness of 0.5 μm after drying on the surface opposite to the surface on which the release coating layer of the release film for manufacturing the ceramic green sheet obtained in Comparative Example 3 is formed. The film is applied with a coater, then dried with hot air at 90 ° C. for 30 seconds, and then immediately irradiated with ultraviolet rays (300 mJ / cm 2 ) with an electrodeless lamp (H valve manufactured by Fusion Co., Ltd.) to form a back smoothing layer. Then, a release film for manufacturing a ceramic green sheet was obtained.

(比較例5)
背面平滑化層を0.7μmとなるよう塗工した以外は、比較例4と同様の方法でセラミックグリーンシート製造用離型フィルムを得た。
(Comparative Example 5)
A release film for producing a ceramic green sheet was obtained in the same manner as in Comparative Example 4 except that the back surface smoothing layer was coated to a thickness of 0.7 μm.

(比較例6)
背面平滑化層を1.0μmとなるよう塗工した以外は、比較例4と同様の方法でセラミックグリーンシート製造用離型フィルムを得た。
(Comparative Example 6)
A release film for producing a ceramic green sheet was obtained in the same manner as in Comparative Example 4 except that the back surface smoothing layer was coated to a thickness of 1.0 μm.

各実施例及び比較例の評価結果を表1に示す。なお、各実施例の巻き取り性等、工程通過性、ハンドリング性は、実施例1と同様に、特に問題なく優秀であった。 Table 1 shows the evaluation results of each Example and Comparative Example. As with Example 1, the take-up property, process passability, and handleability of each example were excellent without any particular problem.

実施例1〜8においては、易滑塗布層表面のSa,P、RSmすべてのパラメーターが適切な範囲にあるため、ピンホールの発生がないセラミックグリーンシートを得ることができた。比較例1〜3においては、易滑面のSa,P、RSmすべてのパラメーターが大きいため、ピンホールの発生がみられた。比較例4〜6においては、易滑面の凹凸を平滑化層で埋めることで、Sa,Pを適切な範囲に収めることができるがRSmが大きいため、ピンホールの発生を抑制するには不十分であった。RSmが大きいことは突起間隔が広く単位面積当たりの突起数が少ないことを意味し、突起1つあたりにかかる圧力が大きくなり、ピンホールが生じたと考えられる。 In Examples 1 to 8, since all the parameters of Sa, P, and RSm on the surface of the easy-to-slip coating layer were in an appropriate range, a ceramic green sheet without pinholes could be obtained. In Comparative Examples 1 to 3, pinholes were observed because all the parameters of Sa, P, and RSm on the easy-slip surface were large. In Comparative Examples 4 to 6, Sa and P can be kept in an appropriate range by filling the unevenness of the easy-slip surface with a smoothing layer, but since RSm is large, it is not possible to suppress the occurrence of pinholes. It was enough. It is considered that a large RSm means that the protrusion spacing is wide and the number of protrusions per unit area is small, and the pressure applied to each protrusion is large, resulting in pinholes.

本発明によれば、セラミックグリーンシートを薄膜化させた場合でも、良好な巻取り性とピンホールや部分的な厚みばらつき等の防止を両立させることができるセラミックグリーンシート製造用離型フィルムの提供が可能となる。また、本発明のセラミックグリーンシート製造用離型フィルムを用いることにより、極薄膜のセラミックグリーンシートが得られ、微小なセラミックコンデンサを効率的に製造することができる。 According to the present invention, there is provided a release film for manufacturing a ceramic green sheet that can achieve both good take-up property and prevention of pinholes and partial thickness variations even when the ceramic green sheet is thinned. Is possible. Further, by using the release film for producing a ceramic green sheet of the present invention, an ultrathin ceramic green sheet can be obtained, and a minute ceramic capacitor can be efficiently produced.

Claims (7)

粒子を実質的に含有していないポリエステルフィルムを基材と、前記基材の一方の表面上に易滑塗布層とを有し、
前記ポリエステルフィルムが、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートから選ばれる少なくとも1種を含むポリエステルフィルムであり、
記易滑塗布層の粗さ曲線要素の平均長さ(RSm)が10μm以下である、
コーティングポリエステルフィルム。
A polyester film containing substantially no particles is provided as a base material, and an easy-slip coating layer is provided on one surface of the base material.
The polyester film is a polyester film containing at least one selected from polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
Average length of roughness curve element before Kieki lubricating coating layer (RSm) is 10μm or less,
Coated polyester film.
易滑塗布層の領域表面平均粗さ(Sa)が1nm以上25nm以下、最大突起高さ(P)が60nm以上500nm以下である請求項1に記載のコーティングポリエステルフィルム。 Area average surface roughness of slipperiness coating layer (Sa) is 1nm or more 25nm or less, the coating polyester film according maximum projection height (P) is theMotomeko 1 Ru der least 500nm or less 60 nm. 易滑塗布層の厚みが0.001μm以上2μm以下である請求項1または2に記載のコーティングポリエステルフィルム。 Coating polyester film according toMotomeko 1 or 2 thick Ru der least 2μm or less 0.001μm the slipperiness coating layer. セラミックグリーンシート製造用の請求項1〜3のいずれかに記載のコーティングポリエステルフィルム。The coated polyester film according to any one of claims 1 to 3 for producing a ceramic green sheet. 請求項1〜4のいずれかに記載のコーティングポリエステルフィルムを用いるセラミックグリーンシートの製造方法。 A method for producing a ceramic green sheet using the coated polyester film according to any one of claims 1 to 4. 製造するセラミックグリーンシートの厚みが、0.2μm以上2μm以下である請求項5に記載のセラミックグリーンシートの製造方法。 Ceramic green sheet method according toMotomeko 5 the thickness of the ceramic green sheet, Ru der than 2μm below 0.2μm to manufacture. 請求項5または6に記載のセラミックグリーンシートの製造方法を採用するセラミックコンデンサの製造方法。 Producing a ceramic green sheet method Rousset La ceramic capacitor to adopt a manufacturing method according to claim 5 or 6.
JP2020027456A 2016-05-16 2020-02-20 Release film for manufacturing ceramic green sheets Active JP6841355B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016097894 2016-05-16
JP2016097894 2016-05-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017201565A Division JP6852644B2 (en) 2016-05-16 2017-10-18 Release film for manufacturing ceramic green sheets

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2021021578A Division JP7017184B2 (en) 2016-05-16 2021-02-15 Release film for manufacturing ceramic green sheets
JP2021021577A Division JP7017183B2 (en) 2016-05-16 2021-02-15 Release film for manufacturing ceramic green sheets

Publications (2)

Publication Number Publication Date
JP2020111052A JP2020111052A (en) 2020-07-27
JP6841355B2 true JP6841355B2 (en) 2021-03-10

Family

ID=60325235

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2017528866A Active JP6237964B1 (en) 2016-05-16 2017-05-08 Release film for manufacturing ceramic green sheets
JP2017201565A Active JP6852644B2 (en) 2016-05-16 2017-10-18 Release film for manufacturing ceramic green sheets
JP2020027456A Active JP6841355B2 (en) 2016-05-16 2020-02-20 Release film for manufacturing ceramic green sheets
JP2021021577A Active JP7017183B2 (en) 2016-05-16 2021-02-15 Release film for manufacturing ceramic green sheets
JP2021021578A Active JP7017184B2 (en) 2016-05-16 2021-02-15 Release film for manufacturing ceramic green sheets

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2017528866A Active JP6237964B1 (en) 2016-05-16 2017-05-08 Release film for manufacturing ceramic green sheets
JP2017201565A Active JP6852644B2 (en) 2016-05-16 2017-10-18 Release film for manufacturing ceramic green sheets

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021021577A Active JP7017183B2 (en) 2016-05-16 2021-02-15 Release film for manufacturing ceramic green sheets
JP2021021578A Active JP7017184B2 (en) 2016-05-16 2021-02-15 Release film for manufacturing ceramic green sheets

Country Status (5)

Country Link
JP (5) JP6237964B1 (en)
KR (1) KR102314397B1 (en)
CN (1) CN109070383B (en)
TW (1) TWI717515B (en)
WO (1) WO2017199774A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178106A (en) * 2017-04-06 2018-11-15 積水化学工業株式会社 Release film
SG11202000848PA (en) * 2017-08-24 2020-03-30 Toyo Boseki Release film for production of ceramic green sheet
JP6512378B1 (en) * 2017-09-29 2019-05-15 東洋紡株式会社 Release film for ceramic green sheet production
WO2019088184A1 (en) * 2017-11-02 2019-05-09 東洋紡株式会社 Release film for producing ceramic green sheet
JP7327602B2 (en) * 2017-11-10 2023-08-16 東洋紡株式会社 release film
JP7459461B2 (en) * 2019-08-02 2024-04-02 東洋紡株式会社 Release film for ceramic green sheet production
KR20220155987A (en) * 2020-03-26 2022-11-24 도요보 가부시키가이샤 Laminate for thin film layer transfer
CN114350260B (en) * 2022-01-18 2023-03-28 美氟新材料科技(常州)有限公司 Fluorine release coating with wear resistance and high stability and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239829A (en) * 1996-03-13 1997-09-16 Toray Ind Inc Biaxially oriented polyester film
JP3870785B2 (en) 2002-01-07 2007-01-24 株式会社村田製作所 Manufacturing method of multilayer ceramic electronic component
JP5485605B2 (en) * 2008-08-21 2014-05-07 帝人デュポンフィルム株式会社 Carrier film for green sheet molding
JP2012224011A (en) * 2011-04-21 2012-11-15 Lintec Corp Release film for ceramic green sheet manufacturing process
MY168308A (en) * 2012-04-23 2018-10-29 Lintec Corp Release film for producing green sheet
JP6186800B2 (en) * 2013-03-28 2017-08-30 東レ株式会社 Biaxially oriented polyester film
JP6205874B2 (en) * 2013-06-07 2017-10-04 東レ株式会社 Release film
KR20150075471A (en) * 2013-12-26 2015-07-06 코오롱인더스트리 주식회사 Polyester resin composition and polyester film using thereof
JP6414424B2 (en) * 2014-09-19 2018-10-31 東洋紡株式会社 Release film for ceramic sheet production
JP2016210041A (en) * 2015-05-01 2016-12-15 三菱樹脂株式会社 Release film

Also Published As

Publication number Publication date
CN109070383B (en) 2019-07-16
WO2017199774A1 (en) 2017-11-23
KR102314397B1 (en) 2021-10-19
JP6237964B1 (en) 2017-11-29
KR20190008201A (en) 2019-01-23
JP6852644B2 (en) 2021-03-31
TW201808568A (en) 2018-03-16
JP7017184B2 (en) 2022-02-08
TWI717515B (en) 2021-02-01
JP2020111052A (en) 2020-07-27
CN109070383A (en) 2018-12-21
JP2018052117A (en) 2018-04-05
JP2021088192A (en) 2021-06-10
JP7017183B2 (en) 2022-02-08
JP2021098369A (en) 2021-07-01
KR20210060671A (en) 2021-05-26
JPWO2017199774A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6841355B2 (en) Release film for manufacturing ceramic green sheets
CN111527136B (en) Release film for producing ceramic green sheet
TW200810924A (en) Hard-coated film and optical functional film
JP6512378B1 (en) Release film for ceramic green sheet production
WO2018159247A1 (en) Mold releasing film for manufacturing ceramic green sheet and method for manufacturing mold releasing film
JP6841375B1 (en) Release film for manufacturing ceramic green sheets
JP2024028476A (en) Release film for ceramic green sheet production
JP6593371B2 (en) Method for producing release film for producing ceramic green sheet
WO2020032007A1 (en) Release film for manufacturing ceramic green sheet
JP6950761B2 (en) Release film for manufacturing ceramic green sheets
JP7144715B2 (en) Release film roll for manufacturing ceramic green sheets
JP7106912B2 (en) Release film for manufacturing ceramic green sheets
KR102666579B1 (en) Release film
JP7327554B2 (en) Release film for manufacturing ceramic green sheets
JP7306515B2 (en) Release film for manufacturing ceramic green sheets
JP7306514B2 (en) Release film for manufacturing ceramic green sheets
JP7306516B2 (en) Release film for manufacturing ceramic green sheets
KR20240074885A (en) Release film
KR20240074884A (en) Release film
JP4391859B2 (en) Release film for thin film green sheet molding
WO2023276892A1 (en) Release film for molding resin sheets
KR20230144521A (en) Laminated polyester film, and method for producing polyester film
CN112770885A (en) Release film for producing ceramic green sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R151 Written notification of patent or utility model registration

Ref document number: 6841355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350