JP6839757B2 - How to make inorganic flakes and inorganic flakes - Google Patents

How to make inorganic flakes and inorganic flakes Download PDF

Info

Publication number
JP6839757B2
JP6839757B2 JP2019513232A JP2019513232A JP6839757B2 JP 6839757 B2 JP6839757 B2 JP 6839757B2 JP 2019513232 A JP2019513232 A JP 2019513232A JP 2019513232 A JP2019513232 A JP 2019513232A JP 6839757 B2 JP6839757 B2 JP 6839757B2
Authority
JP
Japan
Prior art keywords
particles
powder
particle size
inorganic
flake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019513232A
Other languages
Japanese (ja)
Other versions
JPWO2018193684A1 (en
Inventor
中村 浩一郎
浩一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JPWO2018193684A1 publication Critical patent/JPWO2018193684A1/en
Application granted granted Critical
Publication of JP6839757B2 publication Critical patent/JP6839757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/005Manufacture of flakes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

本発明は、無機物フレークを製造する方法及び無機物フレークに関する。 The present invention relates to a method for producing inorganic flakes and an inorganic flakes.

従来、効果顔料として使用される、ガラス又は鉱物等の無機物でできたフレークが知られている。 Conventionally, flakes made of inorganic substances such as glass or minerals used as effective pigments are known.

例えば、特許文献1には、ガラスフレークなどの合成小片基質から生成される効果顔料が示すきらめきを、9ミクロン未満の粒度の基質粒子及び85ミクロンを超える粒度の基質粒子の量を少なくすることで向上させる技術が記載されている。特許文献1には、スクリーンを通してフレークを分級することにより、必要な粒度及び粒度分布を得ることが記載されている。なお、「ガラスフレーク」は、日本板硝子株式会社の登録商標である。 For example, in Patent Document 1, the sparkle exhibited by an effect pigment produced from a synthetic small piece substrate such as glass flakes is reduced by reducing the amount of substrate particles having a particle size of less than 9 microns and substrate particles having a particle size of more than 85 microns. Techniques for improvement are described. Patent Document 1 describes that the required particle size and particle size distribution can be obtained by classifying flakes through a screen. "Glass flakes" is a registered trademark of Nippon Sheet Glass Co., Ltd.

特許文献2には、ガラス微小板又は合成マイカの微小板などの人工基材を含む効果顔料であって、所定の体積平均累積篩下分布曲線を有する効果顔料が記載されている。所定の体積平均累積篩下分布曲線は、人工基材について分級の操作を行うことによって実現されている。 Patent Document 2 describes an effect pigment containing an artificial base material such as a glass microplate or a microplate of synthetic mica, which has a predetermined volume average cumulative subsieving distribution curve. The predetermined volume average cumulative subsieving distribution curve is realized by performing a classification operation on the artificial base material.

特許文献3には、合成雲母フレーク等のフレーク状基材に基づく効果顔料が記載されている。フレーク状基材は1.2〜2の円形係数を有する。フレーク状基材は、1.8以上の屈折率を有する高屈折率層によってコーティングされている。 Patent Document 3 describes an effect pigment based on a flake-like substrate such as synthetic mica flakes. The flake-like substrate has a circular coefficient of 1.2 to 2. The flake-like substrate is coated with a high refractive index layer having a refractive index of 1.8 or more.

また、ガラス粒子等の無機物でできた粒子のエッジ部分を丸くする技術も知られている。例えば、特許文献4には、予熱した破砕ガラス粒子を所定の幅の火炎帯を通過させた後に冷却用空気中を通過させることにより、無エッジガラス粒子を製造する方法が記載されている。 Further, a technique for rounding the edge portion of particles made of an inorganic substance such as glass particles is also known. For example, Patent Document 4 describes a method for producing edgeless glass particles by passing preheated crushed glass particles through a flame zone having a predetermined width and then passing them through cooling air.

特許文献5には、破砕ガラス粒子のガラス軟化温度以上の所定の温度に昇温される加熱装置を備えた破砕ガラス粒子の丸め装置が記載されている。 Patent Document 5 describes a crushed glass particle rounding device including a heating device that raises the temperature to a predetermined temperature equal to or higher than the glass softening temperature of the crushed glass particles.

特許文献6には、原石を粉砕する際に生じた角(かど)を加熱処理で丸くしたシリカが記載されている。 Patent Document 6 describes silica in which the corners generated when the rough stone is crushed are rounded by heat treatment.

特許文献7には、ジェットミル等の装置を用いてフレーク状ガラスに衝撃を与えてフレーク状ガラスを粉砕すると同時にフレーク状ガラスのエッジ部を摩耗させる、エッジ部の角の取れたフレーク状ガラスの製造方法が記載されている。 In Patent Document 7, a device such as a jet mill is used to give an impact to the flake-shaped glass to crush the flake-shaped glass, and at the same time, the edge portion of the flake-shaped glass is abraded. The manufacturing method is described.

特許文献8には、フレーク状ガラスを、ガラスを腐食可能な液体で処理することを含む、エッジ部の角の取れたフレーク状ガラスの製造方法が記載されている。 Patent Document 8 describes a method for producing flaky glass having sharp edges, which comprises treating the flaky glass with a corrosive liquid.

特表2008−534753号公報Japanese Patent Publication No. 2008-534753 特表2011−515508号公報Japanese Patent Application Laid-Open No. 2011-515508 特開2013−129831号公報Japanese Unexamined Patent Publication No. 2013-129831 特開2000−119028号公報JP-A-2000-119028 特開2006−306642号公報Japanese Unexamined Patent Publication No. 2006-306642 特開2005−162593号公報Japanese Unexamined Patent Publication No. 2005-162593 国際公開第2010/067825号International Publication No. 2010/0678225 特開2010−138010号公報Japanese Unexamined Patent Publication No. 2010-138010

特許文献1及び2の記載によれば、分級を行って所定の粒度分布を有する効果顔料が製造されている。しかし、特許文献1〜3には、分級の前に原料を軟化温度以上に加熱することは記載も示唆もされていない。特許文献4及び5の技術によれば、破砕ガラス粒子が軟化温度以上に加熱されてはいるが、カレット等の破砕ガラス粒子が処理の対象であり、フレーク状のガラス粒子が処理の対象であるわけではない。特許文献6に記載の技術によれば、原石を粉砕する際に生じたシリカが処理の対象であり、フレーク状のシリカが処理の対象であるわけではない。特許文献7及び8に記載の技術は、フレーク状ガラスを処理対象とはしているが、フレーク状ガラスを軟化温度以上に加熱することは記載も示唆もされていない。 According to the description of Patent Documents 1 and 2, effective pigments having a predetermined particle size distribution are produced by classification. However, Patent Documents 1 to 3 do not describe or suggest that the raw material is heated above the softening temperature before classification. According to the techniques of Patent Documents 4 and 5, the crushed glass particles are heated to the softening temperature or higher, but the crushed glass particles such as cullet are the targets of treatment, and the flake-shaped glass particles are the targets of treatment. Do not mean. According to the technique described in Patent Document 6, the silica generated when crushing the rough stone is the target of the treatment, and the flake-shaped silica is not the target of the treatment. Although the techniques described in Patent Documents 7 and 8 target flake-shaped glass, there is no description or suggestion that the flake-shaped glass is heated to a temperature higher than the softening temperature.

上記の通り、特許文献1〜8には、無機物できたフレーク状粒子を含む粉体を無機物の軟化温度以上に加熱して得られた粉体にとって適切な分級操作について記載も示唆もされていない。そこで、本発明は、無機物でできたフレーク状粒子を含む粉体を無機物の軟化温度以上に加熱して得られた粉体を適切に分級して粒子径分布の狭い無機物フレークを製造できる新たな方法を提供する。また、本発明は、丸みを持った端部を有するフレーク状粒子を多く含み、狭い粒子径分布を有する無機物フレークを提供する。 As described above, Patent Documents 1 to 8 do not describe or suggest an appropriate classification operation for a powder obtained by heating a powder containing flake-like particles formed of an inorganic substance to a temperature higher than the softening temperature of the inorganic substance. .. Therefore, the present invention is a novel method capable of producing inorganic flakes having a narrow particle size distribution by appropriately classifying the powder obtained by heating a powder containing flaky particles made of an inorganic substance to a temperature equal to or higher than the softening temperature of the inorganic substance. Provide a method. The present invention also provides inorganic flakes having a large number of flaky particles having rounded ends and a narrow particle size distribution.

本発明は、
無機物でできた第一フレーク状粒子を含有する第一粉体を前記第一フレーク状粒子の表面の温度が前記無機物の軟化温度よりも高い温度になるように加熱して、第二フレーク状粒子及び前記第二フレーク状粒子の粒子径よりも小さい粒子径を有する球状粒子を含有する第二粉体を作製し、
流水とともに前記第二粉体を前記球状粒子の粒子径よりも大きい目開きを有する篩にかけて前記球状粒子を除去して、
無機物フレークを製造する方法を提供する。
The present invention
The first powder containing the first flake-like particles made of an inorganic substance is heated so that the surface temperature of the first flake-like particles is higher than the softening temperature of the inorganic substance, and the second flake-like particles are heated. And a second powder containing spherical particles having a particle size smaller than the particle size of the second flake-shaped particles was prepared.
The second powder is passed through a sieve having an opening larger than the particle size of the spherical particles together with running water to remove the spherical particles.
Provided is a method for producing inorganic flakes.

また、本発明は、
無機物フレークであって、
丸みを持った端部を有するフレーク状粒子を個数基準で50%以上含有し、
当該無機物フレークの体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd2(10)、d2(50)、及びd2(90)と表したときに、
10μm≦d2(50)≦1000μm、
1.1≦d2(90)/d2(10)≦20、及び
0.1≦{d2(90)−d2(10)}/d2(50)≦7の関係を満たす、
無機物フレークを提供する。
In addition, the present invention
Inorganic flakes
Contains 50% or more of flaky particles with rounded edges on a number basis.
The particle diameter corresponding to the cumulative distribution of 10%, the median diameter, and the particle diameter corresponding to the cumulative distribution of 90% in the volume-based particle size distribution of the inorganic flakes are d2 (10), d2 (50), and d2 (90), respectively. )
10 μm ≤ d2 (50) ≤ 1000 μm,
The relationship of 1.1 ≦ d2 (90) / d2 (10) ≦ 20 and 0.1 ≦ {d2 (90) −d2 (10)} / d2 (50) ≦ 7 is satisfied.
Provides inorganic flakes.

上記の方法によれば、丸みを持った端部を有するフレーク状粒子を多く含み、狭い粒子径分布を有する無機物フレークを製造できる。 According to the above method, it is possible to produce inorganic flakes containing a large amount of flaky particles having rounded ends and having a narrow particle size distribution.

図1は、実施例及び比較例の原料粉体の体積基準の粒子径分布を示すグラフである。FIG. 1 is a graph showing the volume-based particle size distribution of the raw material powders of Examples and Comparative Examples. 図2は、実施例及び比較例の中間粉体の体積基準の粒子径分布を示すグラフである。FIG. 2 is a graph showing the volume-based particle size distribution of the intermediate powders of Examples and Comparative Examples. 図3は、実施例に係る無機物フレークの体積基準の粒子径分布を示すグラフである。FIG. 3 is a graph showing the volume-based particle size distribution of the inorganic flakes according to the embodiment. 図4は、比較例に係る最終粉体の体積基準の粒子径分布を示すグラフである。FIG. 4 is a graph showing the volume-based particle size distribution of the final powder according to the comparative example. 図5は、中間粉体の走査型電子顕微鏡(SEM)写真である。FIG. 5 is a scanning electron microscope (SEM) photograph of the intermediate powder. 図6は、中間粉体のSEM写真である。FIG. 6 is an SEM photograph of the intermediate powder. 図7は、実施例に係る無機物フレークのSEM写真である。FIG. 7 is an SEM photograph of the inorganic flakes according to the example. 図8は、実施例に係る無機物フレークのSEM写真である。FIG. 8 is an SEM photograph of the inorganic flakes according to the example. 図9は、比較例に係る粉体のSEM写真である。FIG. 9 is an SEM photograph of the powder according to the comparative example. 図10は、原料粉体のSEM写真である。FIG. 10 is an SEM photograph of the raw material powder.

以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。 Hereinafter, embodiments of the present invention will be described. The following description relates to an example of the present invention, and the present invention is not limited thereto.

本発明者は、無機物でできたフレーク状粒子を含有する粉体である原料から、丸みを持った端部を有するフレーク状粒子を多く含み、かつ、狭い粒子径分布を有する無機物フレークを製造する方法について日夜検討を行った。その結果、本発明者は、原料である粉体をフレーク状粒子の表面の温度が無機物の軟化温度よりも高い温度になるように加熱すると、原料である粉体に含有される比較的小さい粒子径の粒子が球状粒子になることを新たに見出した。狭い粒子径分布を有する無機物フレークを製造する観点から、このような球状粒子を除去するために球状粒子を含有する粉体を球状粒子の粒子径よりも大きい目開きを有する篩にかけることが考えられる。しかし、発明者は、球状粒子を含有する粉体を単にそのような篩にかけても球状粒子を適切に除去できないことを新たに見出した。そこで、本発明者は、球状粒子を適切に除去できる分級操作についてさらに検討を重ね、本発明に係る無機物フレークの製造方法を案出した。なお、本明細書において、「球状粒子」とは、SEMで観察したときに最小径Diに対する最大径Dxの比(Dx/Di)が1.5以下である粒子を意味する。 The present inventor produces inorganic flakes containing a large amount of flaky particles having rounded ends and having a narrow particle size distribution from a raw material which is a powder containing flaky particles made of an inorganic substance. We examined the method day and night. As a result, the present inventor heats the raw material powder so that the surface temperature of the flake-like particles is higher than the softening temperature of the inorganic substance, and the relatively small particles contained in the raw material powder are contained. We have newly found that particles with a diameter become spherical particles. From the viewpoint of producing inorganic flakes having a narrow particle size distribution, it is conceivable to put a powder containing the spherical particles on a sieve having a size larger than the particle size of the spherical particles in order to remove such spherical particles. Be done. However, the inventor has newly found that the spheroidal particles cannot be properly removed by simply sieving the powder containing the spheroidal particles. Therefore, the present inventor has further studied the classification operation capable of appropriately removing spherical particles, and devised a method for producing inorganic flakes according to the present invention. In the present specification, the “spherical particle” means a particle in which the ratio (Dx / Di) of the maximum diameter Dx to the minimum diameter Di is 1.5 or less when observed by SEM.

本発明に係る無機物フレークは、典型的には、以下の工程(i)及び(ii)を含む方法によって製造される。
(i)無機物でできた第一フレーク状粒子を含有する第一粉体を第一フレーク状粒子の表面の温度が無機物の軟化温度よりも高い温度になるように加熱して、第二粉体を作製する。ここで、第二粉体は、第二フレーク状粒子及び第二フレーク状粒子の粒子径よりも小さい粒子径を有する球状粒子を含有する。
(ii)流水とともに第二粉体を球状粒子の粒子径よりも大きい目開きを有する篩にかけて球状粒子を除去する。
The inorganic flakes according to the present invention are typically produced by a method including the following steps (i) and (ii).
(I) The first powder containing the first flake-like particles made of an inorganic substance is heated so that the temperature of the surface of the first flake-like particles is higher than the softening temperature of the inorganic substance, and the second powder To make. Here, the second powder contains the second flake-shaped particles and spherical particles having a particle diameter smaller than the particle size of the second flake-shaped particles.
(Ii) Along with running water, the second powder is passed through a sieve having an opening larger than the particle size of the spherical particles to remove the spherical particles.

第一粉体を上記のように加熱することにより、第一フレーク状粒子の表面が無機物の軟化温度よりも高い温度になり、第一フレーク状粒子の端部が軟化する。これにより、第二フレーク状粒子が丸みを持った端部を有する。また、第一粉体の加熱により、第一粉体に含まれる比較的小さい粒子径を有する粒子の全体が軟化しやすい。全体が軟化した粒子は表面張力により球状粒子になりやすい。このため、第二粉体は、第二フレーク状粒子に加えて、球状粒子を含有する。球状粒子同士の相互作用又は球状粒子と第二フレーク状粒子との相互作用により、第二粉体を単に篩にかけても球状粒子が除去されにくいと考えられる。しかし、流水が篩を通過する状態で第二粉体を篩にかけると流水とともに球状粒子の多くが篩を通過して球状粒子が除去される。その結果、丸みを持った端部を有するフレーク状粒子を多く含み、かつ、狭い粒子径分布を有する無機物フレークを製造できる。 By heating the first powder as described above, the surface of the first flake-shaped particles becomes a temperature higher than the softening temperature of the inorganic substance, and the end portion of the first flake-shaped particles is softened. As a result, the second flake-like particles have rounded ends. Further, the heating of the first powder tends to soften the entire particles having a relatively small particle size contained in the first powder. Particles that are softened as a whole tend to become spherical particles due to surface tension. Therefore, the second powder contains spherical particles in addition to the second flake-like particles. It is considered that it is difficult to remove the spherical particles even if the second powder is simply sieved due to the interaction between the spherical particles or the interaction between the spherical particles and the second flake-shaped particles. However, when the second powder is sieved while the running water passes through the sieve, most of the spherical particles pass through the sieve together with the running water and the spherical particles are removed. As a result, it is possible to produce inorganic flakes containing a large amount of flaky particles having rounded ends and having a narrow particle size distribution.

例えば、無機物フレークは、丸みを持った端部を有するフレーク状粒子を個数基準で50%以上含有する。これにより、無機物フレークが良好な触感を有する。 For example, inorganic flakes contain 50% or more of flaky particles having rounded ends on a number basis. As a result, the inorganic flakes have a good tactile sensation.

第一粉体の体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd1(10)、d1(50)、及びd1(90)と表す。また、無機物フレークの体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd2(10)、d2(50)、及びd2(90)と表す。第一粉体及び無機物フレークの体積基準の粒子径分布は、例えば、レーザー回折式粒度分布測定装置によって測定できる。第一粉体及び無機物フレークにおいて、例えば以下の関係が満たされている。
10μm≦d1(50)≦1000μm
10μm≦d2(50)≦1000μm
d2(90)/d2(10)<d1(90)/d1(10)
{d2(90)−d2(10)}/d2(50)<{d(90)−d(10)}/d(50)
The particle diameter corresponding to the cumulative distribution of 10%, the median diameter, and the particle diameter corresponding to the cumulative distribution of 90% in the volume-based particle size distribution of the first powder are d1 (10), d1 (50), and d1 (, respectively. It is expressed as 90). Further, the particle diameter corresponding to the cumulative distribution of 10%, the median diameter, and the particle diameter corresponding to the cumulative distribution of 90% in the volume-based particle size distribution of the inorganic flakes are d2 (10), d2 (50), and d2 (, respectively. It is expressed as 90). The volume-based particle size distribution of the first powder and the inorganic flakes can be measured by, for example, a laser diffraction type particle size distribution measuring device. For example, the following relationships are satisfied in the first powder and the inorganic flakes.
10 μm ≤ d1 (50) ≤ 1000 μm
10 μm ≤ d2 (50) ≤ 1000 μm
d2 (90) / d2 (10) <d1 (90) / d1 (10)
{D2 (90) -d2 (10)} / d2 (50) << {d 1 (90) -d 1 (10)} / d 1 (50)

上記の通り、本発明の方法により製造された無機物フレークは、第一粉体に比べて、狭い粒子径分布を有する。無機物フレークの体積基準の粒子径分布は、例えば、1.1≦d2(90)/d2(10)≦20及び0.1≦{d2(90)−d2(10)}/d2(50)≦7の関係をさらに満たしている。 As described above, the inorganic flakes produced by the method of the present invention have a narrower particle size distribution than the first powder. The volume-based particle size distribution of the inorganic flakes is, for example, 1.1 ≦ d2 (90) / d2 (10) ≦ 20 and 0.1 ≦ {d2 (90) −d2 (10)} / d2 (50) ≦. The relationship of 7 is further satisfied.

無機物フレークの厚みは、例えば、0.2μm〜1000μmである。 The thickness of the inorganic flakes is, for example, 0.2 μm to 1000 μm.

上記(i)の工程における第一粉体の加熱の条件は、典型的には、比較的大きな粒子径を有する第一フレーク状粒子の全体的な形状が維持されつつ端部が軟化するように定められている。加えて、上記(i)の工程における第一粉体の加熱の条件は、第二粉体に所定の粒子径(例えば、100μm以下)の球状粒子が含まれるように、第一粉体に含まれる比較的小さい粒子径を有する粒子の全体を軟化させることができるように定められている。例えば、上記(i)の工程における第一粉体の加熱の条件は、第一フレーク状粒子の表面の温度が無機物の軟化温度よりも50℃〜250℃高い温度になるように定められている。 The conditions for heating the first powder in the step (i) above are typically such that the ends are softened while maintaining the overall shape of the first flake-like particles having a relatively large particle size. It has been decided. In addition, the heating condition of the first powder in the step (i) above is included in the first powder so that the second powder contains spherical particles having a predetermined particle size (for example, 100 μm or less). It is defined so that the entire particles having a relatively small particle size can be softened. For example, the conditions for heating the first powder in the step (i) above are set so that the temperature of the surface of the first flake-like particles is 50 ° C. to 250 ° C. higher than the softening temperature of the inorganic substance. ..

上記(i)の工程における第一粉体の加熱は、例えば、バーナーによって形成された火炎に第一粉体を通過させることにより行われる。例えば、火炎が水平方向に形成されており、火炎を通過するように第一粉体を落下させる。この場合、望ましくは、火炎に第一粉体を通過させる前に、第一粉体を無機物の軟化温度よりも低い所定の温度になるように予熱する。例えば、第一粉体は無機物の軟化温度よりも20℃〜100℃低い温度になるように予熱される。例えば、バーナーによって形成された火炎によって加熱された空気に第一粉体を接触させることにより第一粉体を予熱できる。上記(i)の工程において、望ましくは、第一粉体の加熱後に、加熱された第一粉体が冷却空気によって急冷される。これにより、第二粉体に含まれる粒子の形状が適切な形状に定まりやすい。第一粉体の急冷は、例えば、火炎を通過した第一粉体が移動する空間にブロアによって冷却空気(外気)を送り込むことによって行われる。 The heating of the first powder in the step (i) is performed, for example, by passing the first powder through a flame formed by a burner. For example, the flame is formed in the horizontal direction, and the first powder is dropped so as to pass through the flame. In this case, preferably, the first powder is preheated to a predetermined temperature lower than the softening temperature of the inorganic material before passing the first powder through the flame. For example, the first powder is preheated to a temperature 20 ° C. to 100 ° C. lower than the softening temperature of the inorganic material. For example, the first powder can be preheated by bringing the first powder into contact with the air heated by the flame formed by the burner. In the step (i) above, preferably, after heating the first powder, the heated first powder is rapidly cooled by cooling air. As a result, the shape of the particles contained in the second powder can be easily determined to be an appropriate shape. The quenching of the first powder is performed, for example, by sending cooling air (outside air) by a blower into the space where the first powder that has passed through the flame moves.

第一粉体において、第一フレーク状粒子をなす無機物は、所定の温度で軟化する無機物である限り特定の無機物に制限されないが、例えば、ガラス又は鉱物である。第一フレーク状粒子をなす鉱物は、例えば、マイカ又はタルクである。この場合、上記(i)の工程において、第一粉体に含有されている比較的小さい粒子径を有する粒子が球状粒子になりやすい。 In the first powder, the inorganic substance forming the first flake-like particles is not limited to a specific inorganic substance as long as it is an inorganic substance that softens at a predetermined temperature, but is, for example, glass or a mineral. The mineral forming the first flake-like particles is, for example, mica or talc. In this case, in the step (i) above, the particles contained in the first powder having a relatively small particle size tend to become spherical particles.

第二粉体は、例えば、球状粒子を個数基準で1%〜49%含有している。また、第二粉体に含有される球状粒子の粒子径は、例えば100μm以下である。第二粉体から球状粒子を除去することにより、狭い粒子径分布を有する無機物フレークが得られる。 The second powder contains, for example, 1% to 49% of spherical particles on a number basis. The particle size of the spherical particles contained in the second powder is, for example, 100 μm or less. By removing the spherical particles from the second powder, inorganic flakes having a narrow particle size distribution can be obtained.

上記(ii)の工程において使用する篩は、球状粒子の粒子径よりも大きい目開きを有する。この篩は、望ましくは第二粉体に含有される第二フレーク状粒子の大部分の粒子径よりも小さい目開きを有する。篩の目開きは、例えば2μm〜1000μmである。 The sieve used in the step (ii) above has a mesh size larger than the particle size of the spherical particles. This sieve preferably has an opening smaller than most of the particle size of the second flake-like particles contained in the second powder. The mesh size of the sieve is, for example, 2 μm to 1000 μm.

上記(ii)の工程において、流水とともに球状粒子が篩を通過すると考えられる。このため、第二粉体から多くの球状粒子を除去するために、第二粉体の全体が満遍なく流水に接触することが望ましい。そこで、上記(ii)の工程において、流水の流れ方向と垂直な方向に篩を動かすことが望ましい。 In the step (ii) above, it is considered that spherical particles pass through the sieve together with running water. Therefore, in order to remove many spherical particles from the second powder, it is desirable that the entire second powder comes into contact with running water evenly. Therefore, in the step (ii) above, it is desirable to move the sieve in a direction perpendicular to the flow direction of running water.

上記(ii)の工程における流水の流量は、球状粒子を除去できるとともに、第二フレーク状粒子を砕かないように定められている。例えば、上記(ii)の工程における流水の流量は、1cm3/秒〜1000cm3/秒である。The flow rate of running water in the step (ii) is set so that the spherical particles can be removed and the second flake-shaped particles are not crushed. For example, running water flow rate in the step (ii) above is 1 cm 3 / sec ~1000cm 3 / sec.

上記(ii)の工程においてより多くの球状粒子を除去する観点から、望ましくは、第二粉体を篩にかける前に液中に添加して所定期間攪拌する。第二粉体を添加する液体は、第二粉体を変質させず、第二粉体を分散可能な液体である限り特に制限されないが、例えば、水である。また、攪拌時間は、特定の時間に制限されず、例えば0.1分間〜60分間である。 From the viewpoint of removing more spherical particles in the step (ii), preferably, the second powder is added to the liquid and stirred for a predetermined period before sieving. The liquid to which the second powder is added is not particularly limited as long as it is a liquid that does not change the quality of the second powder and can disperse the second powder, and is, for example, water. The stirring time is not limited to a specific time, and is, for example, 0.1 minutes to 60 minutes.

上記(ii)の工程において、篩を通過しなかった粉体を回収することにより、本発明に係る無機物フレークが得られる。この場合、無機物フレークに付着した水分は、自然乾燥処理又は乾燥炉における乾燥処理によって除去される。なお、無機物フレークには、所定のコーティングが施されてもよい。 By recovering the powder that has not passed through the sieve in the step (ii) above, the inorganic flakes according to the present invention can be obtained. In this case, the moisture adhering to the inorganic flakes is removed by a natural drying treatment or a drying treatment in a drying oven. The inorganic flakes may be coated with a predetermined coating.

本発明に係る無機物フレークは、第二フレーク状粒子の多くが丸みを持った端部を有することにより、良好な触感を発揮する。本発明に係る無機物フレークは、例えば、固定された粘着テープの粘着面に無機物フレークを付着させて形成された摩擦面に、0.9以下の静摩擦係数及び0.7以下の動摩擦係数の少なくともいずれか1つを付与する。 The inorganic flakes according to the present invention exhibit a good tactile sensation because most of the second flake-like particles have rounded ends. The inorganic flakes according to the present invention are, for example, at least one of a static friction coefficient of 0.9 or less and a dynamic friction coefficient of 0.7 or less on a friction surface formed by adhering inorganic flakes to the adhesive surface of a fixed adhesive tape. Or give one.

実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.

<実施例>
原料粉体(日本板硝子社製、製品名:ガラスフレークMTD160FY)を準備した。原料粉体に含まれるフレーク状粒子の平均厚みは0.4μmであり、原料粉体の真密度は2.7g/cm3であり、原料粉体のかさ密度は、0.03g/cm3であった。また、原料粉体をなすガラスの軟化温度Tsは870℃〜880℃であり、原料粉体をなすガラスのガラス転移温度Tgは約700℃であった。レーザー回折式粒度分布測定装置(日機装社製、製品名:マイクロトラックMT3500)を用いて原料粉体の体積基準の粒子径分布を測定した。結果を図1及び表1に示す。原料粉体のSEM写真を図10に示す。図10に示す通り、原料粉体は鋭い端部を有していた。
<Example>
Raw material powder (manufactured by Nippon Sheet Glass Co., Ltd., product name: glass flake MTD160FY) was prepared. The average thickness of the flaky particles contained in the raw material powder is 0.4 μm, the true density of the raw material powder is 2.7 g / cm 3 , and the bulk density of the raw material powder is 0.03 g / cm 3 . there were. The softening temperature Ts of the glass forming the raw material powder was 870 ° C. to 880 ° C., and the glass transition temperature Tg of the glass forming the raw material powder was about 700 ° C. The volume-based particle size distribution of the raw material powder was measured using a laser diffraction type particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., product name: Microtrac MT3500). The results are shown in FIG. 1 and Table 1. An SEM photograph of the raw material powder is shown in FIG. As shown in FIG. 10, the raw material powder had sharp edges.

775℃〜855℃(代表温度:820℃)に予熱した原料粉体を、バーナーによって形成された火炎を通過させることによって加熱処理し、その後ブロアから吹き出された冷却空気に接触させることによって急冷処理を行った。火炎を通過する際の原料粉体の粒子の表面温度は、925℃〜1125℃(代表温度:1020℃)であり、原料粉体をなすガラスの軟化温度Tsよりも高かった。このようにして、中間粉体を得た。レーザー回折式粒度分布測定装置(日機装社製、製品名:マイクロトラックMT3500)を用いて中間粉体の体積基準の粒子径分布を測定した。結果を図2及び表1に示す。また、中間粉体のSEM写真を図5及び6に示す。図5に示す通り、中間粉体は、フレーク状粒子及び球状粒子を含有していた。中間粉体は、個数基準で約20%の球状粒子を含有していた。図2のヒストグラムに示す通り、中間粉体の粒子径分布は、相対的に大きい粒子径で単一のピークを有する粒子径分布と、相対的に小さい粒子径で単一のピークを有する粒子径分布とを重ね合せたような分布を有していた。中間粉体の粒子径分布は、相対的に大きい粒子径を有するフレーク状粒子と、相対的に小さい粒子径を有する球状粒子とが混在している状態を反映していたと考えられる。図6に示す通り、中間粉体のフレーク状粒子の多くは丸みを持った端部を有していた。中間粉体のフレーク状粒子のうち、個数基準で約90%以上のフレーク状粒子が丸みを持った端部を有していた。 The raw material powder preheated to 775 ° C. to 855 ° C. (typical temperature: 820 ° C.) is heat-treated by passing it through a flame formed by a burner, and then rapidly cooled by contacting it with the cooling air blown from the blower. Was done. The surface temperature of the particles of the raw material powder when passing through the flame was 925 ° C. to 1125 ° C. (representative temperature: 1020 ° C.), which was higher than the softening temperature Ts of the glass forming the raw material powder. In this way, an intermediate powder was obtained. The volume-based particle size distribution of the intermediate powder was measured using a laser diffraction type particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., product name: Microtrac MT3500). The results are shown in FIG. 2 and Table 1. In addition, SEM photographs of the intermediate powder are shown in FIGS. 5 and 6. As shown in FIG. 5, the intermediate powder contained flake-like particles and spherical particles. The intermediate powder contained about 20% spherical particles on a number basis. As shown in the histogram of FIG. 2, the particle size distribution of the intermediate powder has a particle size distribution having a single peak with a relatively large particle size and a particle size having a single peak with a relatively small particle size. It had a distribution that seemed to overlap with the distribution. It is considered that the particle size distribution of the intermediate powder reflected a state in which flaky particles having a relatively large particle size and spherical particles having a relatively small particle size were mixed. As shown in FIG. 6, most of the flaky particles of the intermediate powder had rounded ends. Of the flake-shaped particles of the intermediate powder, about 90% or more of the flake-shaped particles on a number basis had rounded ends.

室温において中間粉体を水中で30分間撹拌した。その後、水道水を流しながら中間粉体を106μmの目開きを有する篩にかけた。この期間に、篩を、水平方向に数回往復するように動かした。水道水の流量は、10cm3/秒であった。The intermediate powder was stirred in water for 30 minutes at room temperature. Then, the intermediate powder was sieved with a mesh opening of 106 μm while running tap water. During this period, the sieve was moved to reciprocate several times in the horizontal direction. The flow rate of tap water was 10 cm 3 / sec.

篩に残留した粉体を乾燥炉において100℃で30分間乾燥させ、実施例に係る無機物フレークを得た。レーザー回折式粒度分布測定装置(日機装社製、製品名:マイクロトラックMT3500)を用いて実施例に係る無機物フレークの体積基準の粒子径分布を測定した。結果を図3及び表1に示す。図3及び表1に示す通り、実施例に係る無機物フレークは狭い粒子径分布を有することが示唆された。無機物フレークのSEM写真を図7及び図8に示す。図7に示す通り、無機物フレークには、球状粒子はほとんど含まれておらず、中間粉体における球状粒子がほとんど除去されていることが示唆された。図8に示す通り、無機物フレークの粒子の多くは丸みを持った端部を有していた。 The powder remaining on the sieve was dried at 100 ° C. for 30 minutes in a drying oven to obtain inorganic flakes according to Examples. A volume-based particle size distribution of the inorganic flakes according to the examples was measured using a laser diffraction type particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., product name: Microtrack MT3500). The results are shown in FIG. 3 and Table 1. As shown in FIG. 3 and Table 1, it was suggested that the inorganic flakes according to the examples had a narrow particle size distribution. SEM photographs of the inorganic flakes are shown in FIGS. 7 and 8. As shown in FIG. 7, it was suggested that the inorganic flakes contained almost no spherical particles, and most of the spherical particles in the intermediate powder were removed. As shown in FIG. 8, many of the particles of the inorganic flakes had rounded ends.

<比較例>
水道水を流さずに乾燥した中間粉体を106μmの目開きを有する篩にかけた。篩に残留した粉体を回収して比較例に係る粉体を得た。レーザー回折式粒度分布測定装置(日機装社製、製品名:マイクロトラックMT3500)を用いて比較例に係る粉体の体積基準の粒子径分布を測定した。結果を図4及び表1に示す。比較例に係る粉体のSEM写真を図9に示す。図9に示す通り、比較例に係る粉体には、多くの球状粒子が含まれていた。
<Comparison example>
The intermediate powder dried without running tap water was sieved through a sieve having a mesh size of 106 μm. The powder remaining on the sieve was recovered to obtain the powder according to the comparative example. A volume-based particle size distribution of the powder according to the comparative example was measured using a laser diffraction type particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., product name: Microtrack MT3500). The results are shown in FIG. 4 and Table 1. An SEM photograph of the powder according to the comparative example is shown in FIG. As shown in FIG. 9, the powder according to the comparative example contained many spherical particles.

表1に示す通り、実施例に係る無機物フレークは、比較例に係る粉体と比較すると、より小さいD90/D10の値及びより小さい(D90−D10)/D50の値を有し、より狭い粒子径分布を有していた。原料粉体における比較的小さい粒子径を有する粒子を加熱処理により球状粒子に変化させ、球状粒子を除去するための適切な分級操作を選択することによって狭い粒子径分布を有する無機物フレークを製造できることが示唆された。 As shown in Table 1, the inorganic flakes according to the examples have smaller D90 / D10 values and smaller (D90-D10) / D50 values as compared with the powders according to the comparative examples, and are narrower particles. It had a diameter distribution. Inorganic flakes having a narrow particle size distribution can be produced by changing particles having a relatively small particle size in the raw material powder into spherical particles by heat treatment and selecting an appropriate classification operation for removing the spherical particles. It was suggested.

<摩擦係数の評価>
摩擦感測定装置(トリニティーラボ社製、製品名:TL201Ts)の測定ステージに両面テープを貼り、両面テープの粘着面に0.1gの実施例に係る無機物フレークを万遍なくまぶした。その後、以下の条件で実施例に係る無機物フレークが付着した両面テープの粘着面の静摩擦係数及び動摩擦係数を測定した。結果を表2に示す。
測定子:指紋タイプ
両面テープの粘着面にかけた荷重:30g
測定距離:30mm
サンプリングピッチ:1ミリ秒
測定回数:3回
<Evaluation of coefficient of friction>
A double-sided tape was attached to the measurement stage of a friction feeling measuring device (manufactured by Trinity Lab, product name: TL201Ts), and 0.1 g of the inorganic flakes according to the example was evenly sprinkled on the adhesive surface of the double-sided tape. Then, the coefficient of static friction and the coefficient of dynamic friction of the adhesive surface of the double-sided tape to which the inorganic flakes of the examples were attached were measured under the following conditions. The results are shown in Table 2.
Meter: Fingerprint type Load applied to the adhesive surface of double-sided tape: 30 g
Measurement distance: 30 mm
Sampling pitch: 1 ms Number of measurements: 3 times

加熱処理を行っておらず、丸みを持たない(角張った)端部を有するフレーク状粒子からなる比較例に係るフレーク(D10:64μm、D50:149μm、D90:262μm)を準備した。実施例に係る無機物フレークの代わりに、比較例に係るフレークを用いた以外は同様にして、比較例に係るフレークが付着した両面テープの粘着面の静摩擦係数及び動摩擦係数を測定した。結果を表2に示す。表2に示す通り、実施例に係る無機物フレークが付着した両面テープの粘着面は、比較例に係るフレークが付着した両面テープの粘着面と比べて、低い静摩擦係数及び低い動摩擦係数を有した。このため、実施例に係る無機物フレークは、良好な触感を付与できることが示唆された。

Flakes (D10: 64 μm, D50: 149 μm, D90: 262 μm) according to a comparative example composed of flaky particles having non-rounded (squared) ends that were not heat-treated were prepared. The coefficient of static friction and the coefficient of dynamic friction of the adhesive surface of the double-sided tape to which the flakes of Comparative Example were attached were measured in the same manner except that the flakes of Comparative Example were used instead of the inorganic flakes of Examples. The results are shown in Table 2. As shown in Table 2, the adhesive surface of the double-sided tape to which the inorganic flakes of the examples were attached had a lower static friction coefficient and a lower dynamic friction coefficient than the adhesive surface of the double-sided tape to which the flakes of the comparative example were attached. Therefore, it was suggested that the inorganic flakes according to the examples could impart a good tactile sensation.

Figure 0006839757
Figure 0006839757

Figure 0006839757
Figure 0006839757

Claims (8)

無機物でできた第一フレーク状粒子を含有する第一粉体を前記第一フレーク状粒子の表面の温度が前記無機物の軟化温度よりも高い温度になるように加熱して、第二フレーク状粒子及び前記第二フレーク状粒子の粒子径よりも小さい粒子径を有する球状粒子を含有する第二粉体を作製し、
流水とともに前記第二粉体を前記球状粒子の粒子径よりも大きい目開きを有する篩にかけて前記球状粒子を除去して、
無機物フレークを製造する方法。
The first powder containing the first flake-like particles made of an inorganic substance is heated so that the surface temperature of the first flake-like particles is higher than the softening temperature of the inorganic substance, and the second flake-like particles are heated. And a second powder containing spherical particles having a particle size smaller than the particle size of the second flake-shaped particles was prepared.
The second powder is passed through a sieve having an opening larger than the particle size of the spherical particles together with running water to remove the spherical particles.
A method of producing inorganic flakes.
前記第一粉体の体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd1(10)、d1(50)、及びd1(90)と表し、
当該無機物フレークの体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd2(10)、d2(50)、及びd2(90)と表したときに、
10μm≦d1(50)≦1000μm、
10μm≦d2(50)≦1000μm、
d2(90)/d2(10)<d1(90)/d1(10)、及び
{d2(90)−d2(10)}/d2(50)<{d1(90)−d1(10)}/d1(50)の関係を満たす、
請求項1に記載の方法。
The particle diameter corresponding to the cumulative distribution of 10%, the median diameter, and the particle diameter corresponding to the cumulative distribution of 90% in the volume-based particle size distribution of the first powder are d1 (10), d1 (50), and d1 respectively. Expressed as (90)
The particle diameter corresponding to the cumulative distribution of 10%, the median diameter, and the particle diameter corresponding to the cumulative distribution of 90% in the volume-based particle size distribution of the inorganic flakes are d2 (10), d2 (50), and d2 (90), respectively. )
10 μm ≤ d1 (50) ≤ 1000 μm,
10 μm ≤ d2 (50) ≤ 1000 μm,
d2 (90) / d2 (10) <d1 (90) / d1 (10), and {d2 (90) -d2 (10)} / d2 (50) << {d1 (90) -d1 (10)} / Satisfy the relationship of d1 (50),
The method according to claim 1.
1.1≦d2(90)/d2(10)≦20及び0.1≦{d2(90)−d2(10)}/d2(50)≦7の関係をさらに満たす、請求項2に記載の方法。 The second aspect of claim 2, further satisfying the relationship of 1.1 ≦ d2 (90) / d2 (10) ≦ 20 and 0.1 ≦ {d2 (90) −d2 (10)} / d2 (50) ≦ 7. Method. 前記第二フレーク状粒子は、丸みを持った端部を有する、請求項1〜3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the second flake-like particles have rounded ends. 前記第二粉体を前記篩にかける前に液中に添加して所定期間攪拌する、請求項1〜4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the second powder is added to the liquid and stirred for a predetermined period before being sieved. 前記無機物は、ガラス又は鉱物である、請求項1〜5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the inorganic substance is glass or a mineral. 無機物フレーク(粒度分布において最大粒径が124.5μm以下である薄片状粒子を除く)であって、
丸みを持った端部を有するフレーク状粒子を個数基準で50%以上含有し、
当該無機物フレークの体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd2(10)、d2(50)、及びd2(90)と表したときに、
10μm≦d2(50)≦1000μm、
1.1≦d2(90)/d2(10)≦20、及び
0.1≦{d2(90)−d2(10)}/d2(50)≦7の関係を満たす、
無機物フレーク。
Inorganic flakes (excluding flaky particles having a maximum particle size of 124.5 μm or less in the particle size distribution) .
Contains 50% or more of flaky particles with rounded edges on a number basis.
The particle diameter corresponding to the cumulative distribution of 10%, the median diameter, and the particle diameter corresponding to the cumulative distribution of 90% in the volume-based particle size distribution of the inorganic flakes are d2 (10), d2 (50), and d2 (90), respectively. )
10 μm ≤ d2 (50) ≤ 1000 μm,
The relationship of 1.1 ≦ d2 (90) / d2 (10) ≦ 20 and 0.1 ≦ {d2 (90) −d2 (10)} / d2 (50) ≦ 7 is satisfied.
Inorganic flakes.
固定された粘着テープの粘着面に当該無機物フレークを付着させて形成された摩擦面に、0.9以下の静摩擦係数及び0.7以下の動摩擦係数の少なくともいずれか1つを付与する、請求項7に記載の無機物フレーク。 Claimed to impart at least one of a static friction coefficient of 0.9 or less and a dynamic friction coefficient of 0.7 or less to a friction surface formed by adhering the inorganic flakes to the adhesive surface of the fixed adhesive tape. 7. The inorganic flakes according to 7.
JP2019513232A 2017-04-21 2018-01-30 How to make inorganic flakes and inorganic flakes Active JP6839757B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017084529 2017-04-21
JP2017084529 2017-04-21
PCT/JP2018/003031 WO2018193684A1 (en) 2017-04-21 2018-01-30 Method for producing inorganic flakes and inorganic flakes

Publications (2)

Publication Number Publication Date
JPWO2018193684A1 JPWO2018193684A1 (en) 2019-11-07
JP6839757B2 true JP6839757B2 (en) 2021-03-10

Family

ID=63856290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513232A Active JP6839757B2 (en) 2017-04-21 2018-01-30 How to make inorganic flakes and inorganic flakes

Country Status (2)

Country Link
JP (1) JP6839757B2 (en)
WO (1) WO2018193684A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119028A (en) * 1998-10-13 2000-04-25 Union Corp Edgeless glass particle and its production
KR101552354B1 (en) * 2006-04-05 2015-09-10 니혼 이타가라스 가부시키가이샤 Flaky particle and brightening pigment and cosmetic preparation coating composition resin composition and ink composition each containing these
WO2010067825A1 (en) * 2008-12-10 2010-06-17 日本板硝子株式会社 Method for producing glass flakes having rounded corners
GB201011443D0 (en) * 2010-07-07 2010-08-25 Glassflake Ltd Glass flakes

Also Published As

Publication number Publication date
WO2018193684A1 (en) 2018-10-25
JPWO2018193684A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
TWI505985B (en) Boron nitride powder and a resin composition containing the same
EP2351709B1 (en) Zinc oxide particles, process for producing same, heat-releasing filler, resin composition, heat-releasing grease, and heat-releasing coating composition
EP3196167B1 (en) Spherical ferrite powder, resin composition containing said spherical ferrite powder, and molded article using said resin composition
WO2012057053A1 (en) Indium tin oxide powder, method for producing same, dispersion, paint, and functional thin film
CN106715334B (en) The spherical shape ferrite particle and its manufacturing method of nano-scale
Baia et al. Structural and morphological properties of silver nanoparticles–phosphate glass composites
Egorov et al. Effect of electromagnetic action on dispersed composition on milling ferromagnetic materials in a hammer mill.
JP6839757B2 (en) How to make inorganic flakes and inorganic flakes
Yuvaraj et al. Investigation on the behavioral difference in third order nonlinearity and optical limiting of Mn0. 55Cu0. 45Fe2O4 nanoparticles annealed at different temperatures
Bonda et al. Surface characterization of modified fly ash for polymer filler applications: a case study with polypropylene
TW201932416A (en) Zirconia based nanoparticles and method for producing same
JP2016193825A (en) Granule and method for producing the same
Kapoor et al. ZnS nanoparticles: role of Ga3+ ions substitution on the structural, morphological, optical, and dielectric properties
JP4932148B2 (en) Method for producing aluminum oxide powder
Nouri et al. Processing and optical properties of transparent GeO2-PbO-MgO-MgF2 glass-ceramics
JP6625308B1 (en) Hexagonal boron nitride powder
Radulović et al. Possibility of using limestone from “Gigovići”-Ulcinj deposit as filler in various industry branches
JP2011084444A (en) Dispersion of fluorinated carbon particulate
WO2010067825A1 (en) Method for producing glass flakes having rounded corners
Saini et al. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals
JPS60122734A (en) Tempered glass bead
Tan et al. Synchronous enhancement on the thermal stability and electric property of polyimide by introducing the hybrid of sericite and SiO2
KR20210028712A (en) Hexagonal boron nitride powder
WO2023008118A1 (en) Flaky particles and brilliant pigment
JP7208444B1 (en) Platelet-like particles and luster pigments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6839757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250