JP6839616B2 - Ballast track repair method - Google Patents

Ballast track repair method Download PDF

Info

Publication number
JP6839616B2
JP6839616B2 JP2017117051A JP2017117051A JP6839616B2 JP 6839616 B2 JP6839616 B2 JP 6839616B2 JP 2017117051 A JP2017117051 A JP 2017117051A JP 2017117051 A JP2017117051 A JP 2017117051A JP 6839616 B2 JP6839616 B2 JP 6839616B2
Authority
JP
Japan
Prior art keywords
ballast
track
sleepers
repair method
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017117051A
Other languages
Japanese (ja)
Other versions
JP2019002185A (en
Inventor
尚嗣 桃谷
尚嗣 桃谷
貴久 中村
貴久 中村
卓也 伊地知
卓也 伊地知
一平 木次谷
一平 木次谷
秀平 吉川
秀平 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2017117051A priority Critical patent/JP6839616B2/en
Publication of JP2019002185A publication Critical patent/JP2019002185A/en
Application granted granted Critical
Publication of JP6839616B2 publication Critical patent/JP6839616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)

Description

本発明は、路盤の上の道床にバラストを敷いた鉄道のバラスト軌道における該バラストの補修工法に関し、特に、細粒土の混入し劣化したバラストを回復させる補修工法に関する。 The present invention relates to a method for repairing the ballast in a railroad ballast track in which ballast is laid on the trackbed on the roadbed, and more particularly to a method for repairing a deteriorated ballast mixed with fine-grained soil.

路盤の上の道床にバラストを敷いた鉄道のバラスト軌道では、列車の繰り返し載荷やタイタンパによるつき固め保守の繰返しによって、バラストが細粒化し、細粒土の混入率が高くなっていく。このように劣化した道床では、例えば、排水性が低下し、軌道を支える強度が低下してしまう。そこで、バラストを入れ替える工事が行われる。 In a railroad ballast track with ballast laid on the trackbed above the roadbed, the ballast becomes finer and the mixing rate of fine-grained soil increases due to repeated loading of trains and repeated compaction maintenance with Titampa. In such a deteriorated trackbed, for example, the drainage property is lowered and the strength for supporting the track is lowered. Therefore, construction work is carried out to replace the ballast.

例えば、特許文献1では、雨水等による流動化で泥化したバラスト軌道下の軟弱路盤を固化させて安定した改良土の路盤に回復させる工法について、線路下のバラストの一部を除去し、この箇所にバラストを埋め戻す際に、埋め戻すバラストの一部をセメントクリンカ等の水硬性組成物体で置換する工法を開示している。水硬性組成物体が破砕や摩耗して路盤に落下すると、泥中の水や雨水等の水によって固化して該路盤の土を改良するとしている。 For example, in Patent Document 1, a part of the ballast under the track is removed with respect to a method of solidifying a soft roadbed under a ballast track that has become muddy by fluidization with rainwater or the like and restoring it to a stable improved soil roadbed. Disclosed is a method of replacing a part of the ballast to be backfilled with a water-hard composition object such as cement clinker when the ballast is backfilled in a portion. When a hydraulic composition object is crushed or worn and falls on a roadbed, it is solidified by water such as mud water or rainwater to improve the soil of the roadbed.

また、特許文献2では、細粒化したバラストによる噴泥化現象などを防止すべく、充填材を使った工法を開示している。枕木の少なくとも外周のバラストを除去してレールをジャッキアップしつつレベル調整し、枕木の下にシートを挿入しながら液状樹脂系充填材を充填し、硬化後に枕木の回りにバラストを戻すとしている。充填材はシートによってバラストに接触せず、混入しないので、充填材を枕木下に確実に充填、硬化させ噴泥化などを防ぐとしている。 Further, Patent Document 2 discloses a construction method using a filler in order to prevent a phenomenon of fog formation due to finely divided ballast. The ballast at least on the outer circumference of the sleepers is removed to adjust the level while jacking up the rails, the liquid resin filler is filled while inserting a sheet under the sleepers, and the ballast is returned around the sleepers after curing. Since the filler does not come into contact with the ballast due to the sheet and does not mix, it is said that the filler is surely filled and hardened under the sleepers to prevent fog formation.

また、バラストの細粒化自体を抑制するようにあらかじめバラストに注入材を注入しておくことも提案されている。 It has also been proposed to inject an injection material into the ballast in advance so as to suppress the ballast granulation itself.

例えば、特許文献3では、累積列車荷重による枕木の沈下や軌道の狂いなどを防止するために道床バラスト間の隙間や枕木下に注入材を注入し、一種のコンクリートスラブ軌道へと転化させる軌道砕石部のグラウト材注入工法を開示している。セメントアスファルトモルタルに代え、一液性グラウト材を用いて養生することで、道床バラストの移動、破壊、粉状化を抑制するとしている。 For example, in Patent Document 3, in order to prevent the sinking of the sleepers and the deviation of the track due to the cumulative train load, an injection material is injected into the gap between the track ballasts and under the sleepers, and the track crushed stone is converted into a kind of concrete slab track. The grout material injection method of the part is disclosed. By curing with a one-component grout material instead of cement asphalt mortar, it is said that the movement, destruction, and powdering of track ballast will be suppressed.

特開2012−77452号公報Japanese Unexamined Patent Publication No. 2012-77452 特開2008−88735号公報Japanese Unexamined Patent Publication No. 2008-88735 特開2000−87301号公報Japanese Unexamined Patent Publication No. 2000-87301

上記したように、道床の細粒化によって細粒土の混入率が高くなり、排水性が低下するとともに、飽和度も高くなって軌道の支持強度が低下してしまう。そのため、タイタンパでのつき固めによる軌道整正を行っても沈下が生じやすく、保守量が増大してしまう。かかる場合、新品のバラストに交換すべきだが、これをせずともつき固め保守効果を生成し、持続させる工法が望まれた。 As described above, the fine graining of the trackbed increases the mixing rate of the fine-grained soil, lowers the drainage property, and also increases the saturation degree, which lowers the bearing strength of the track. Therefore, even if the track is rectified by compaction with a titamper, subsidence is likely to occur and the amount of maintenance increases. In such a case, it should be replaced with a new ballast, but a construction method that produces and sustains a compaction maintenance effect without doing this was desired.

本発明は、以上のような状況に鑑みてなされたものであって、その目的は、細粒土の混入し劣化したバラストを回復させ、つき固めによる保守効果を生成、持続させる補修工法の提供にある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a repair method for recovering a deteriorated ballast mixed with fine-grained soil and producing and sustaining a maintenance effect by compaction. It is in.

本発明は、レールを固定された枕木をバラストによって保持させたバラスト軌道の補修工法であって、前記枕木の下に液状充填材を含浸させ、前記バラスト及びこの間にある細粒土を前記液状充填材で一体に硬化させた後、前記細粒土部分を破砕し造粒させることを特徴とする。 The present invention is a method for repairing a ballast track in which a sleeper with a fixed rail is held by a ballast. A liquid filler is impregnated under the sleeper, and the ballast and the fine-grained soil between the ballasts are impregnated with the liquid filler. After being integrally cured with, the fine-grained soil portion is crushed and granulated.

かかる発明によれば、バラスト間の隙間を細粒土が埋め、排水性が低下したバラスト道床の該排水性を改善しつつ、バラスト間の隙間を造粒塊で回復させ、つき固めによる保守効果を生成、持続させるのである。 According to such an invention, the gap between ballasts is filled with fine-grained soil, and the drainage property of the ballast track bed with reduced drainage property is improved, and the gap between ballasts is restored by a granulated mass, and the maintenance effect by compaction is achieved. Is generated and sustained.

上記した発明において、周囲のバラストを除去するとともに前記枕木をはずして露出させた表面から前記液状充填材を含浸させることを特徴としてもよい。かかる発明によれば、バラスト間の隙間をより強固な造粒塊で回復させ、つき固めによる保守効果を生成、持続させるのである。 The invention described above may be characterized in that the surrounding ballast is removed and the liquid filler is impregnated from the surface exposed by removing the sleepers. According to such an invention, the gap between ballasts is restored by a stronger granulated mass, and the maintenance effect by compaction is generated and maintained.

上記した発明において、前記枕木をはずして露出した表面を掘削することを特徴としてもよい。かかる発明によれば、バラスト間の隙間をより強固な造粒塊で回復させ、つき固めによる保守効果を生成、持続させるのである。 The invention described above may be characterized in that the sleepers are removed and the exposed surface is excavated. According to such an invention, the gap between ballasts is restored by a stronger granulated mass, and the maintenance effect by compaction is generated and maintained.

上記した発明において、前記枕木に沿って前記液状充填材を与えて、少なくとも前記枕木の下部面よりも広い水平面で硬化層を与えることを特徴としてもよい。かかる発明によれば、バラスト間の隙間をより強固に造粒塊で回復させ、つき固めによる保守効果を生成、持続させるのである。 The invention described above may be characterized in that the liquid filler is given along the sleepers to provide a hardened layer at least in a horizontal plane wider than the lower surface of the sleepers. According to such an invention, the gap between the ballasts is more firmly restored by the granulated mass, and the maintenance effect by compaction is generated and maintained.

上記した発明において、前記液状充填材は前記細粒土に浸透するよう選択されることを特徴としてもよい。また、前記液状充填材は平均粒径5μm以下の超微粒子からなるセメントであることを特徴としてもよい。かかる発明によれば、バラスト間の隙間をより強固な造粒塊で回復させ、つき固めによる保守効果を生成、持続させるのである。 In the above invention, the liquid filler may be selected to penetrate the fine-grained soil. Further, the liquid filler may be characterized by being a cement composed of ultrafine particles having an average particle size of 5 μm or less. According to such an invention, the gap between ballasts is restored by a stronger granulated mass, and the maintenance effect by compaction is generated and maintained.

上記した発明において、埋め戻しとともに、タイタンパでつき固めて軌道整正することを特徴としてもよい。かかる発明によれば、バラスト間の隙間をより強固な造粒塊で回復させ、つき固めによる保守効果を生成、持続させるのである。 The invention described above may be characterized in that it is backfilled and then compacted with a tie tamper to rectify the trajectory. According to such an invention, the gap between ballasts is restored by a stronger granulated mass, and the maintenance effect by compaction is generated and maintained.

本発明による造粒化工法を示す図である。ここで、(a)施工前、(b)施工後を示す。It is a figure which shows the granulation method by this invention. Here, (a) before construction and (b) after construction are shown. 本発明による造粒化工法を示す図である。It is a figure which shows the granulation method by this invention. 本発明による造粒化工法において、部分道床交換工程を含む工法を示す図である。It is a figure which shows the construction method including the partial track bed exchange process in the granulation construction method by this invention. 試験方法を示す図である。ここで、(a)断面図、(b)平面図である。It is a figure which shows the test method. Here, it is (a) a cross-sectional view and (b) a plan view. バラストの粒度分布を示すグラフである。It is a graph which shows the particle size distribution of a ballast. ケース1での枕木変位の推移を示すグラフである。It is a graph which shows the transition of the sleeper displacement in case 1. ケース2での枕木変位の推移を示すグラフである。It is a graph which shows the transition of the sleeper displacement in case 2.

以下、本発明の1つの実施例による造粒化工法によるバラスト軌道の補修工法について図面に沿って説明する。まず、概要を説明する。 Hereinafter, a ballast track repair method by the granulation method according to one embodiment of the present invention will be described with reference to the drawings. First, an outline will be described.

図1(a)に示すように、バラスト軌道1において、レール10を固定された枕木12の周囲のバラスト道床14において、特に、枕木12の下では、バラスト16の隙間を該バラスト16が崩壊するなどして形成された細粒土18が埋めてしまう。かかる細粒土18が強固に踏み固められると、水の浸透を妨げ排水性が低下し、枕木12の下に滞水層17が形成され得る。また、飽和度が高くなってレール10及び枕木12の軌道を支える機械強度が低下してしまう。 As shown in FIG. 1A, in the ballast track 1, the ballast 16 collapses in the gap of the ballast 16 in the ballast track 14 around the sleepers 12 to which the rail 10 is fixed, especially under the sleepers 12. The fine-grained soil 18 formed by such means is buried. When the fine-grained soil 18 is firmly compacted, the permeation of water is hindered and the drainage property is lowered, and a water retention layer 17 can be formed under the sleepers 12. Further, the degree of saturation becomes high, and the mechanical strength supporting the tracks of the rail 10 and the sleepers 12 decreases.

そこで、図1(b)に示すように、枕木12の下のバラスト道床14の表面から、超微粒子セメントからなるグラウト材20を浸透させ、バラスト16及び細粒土18を一体化し硬化させ硬化層20aを形成後、これをハンマードリル30で破砕するのである。これにより、細粒土18がバラスト16とともに造粒化し、かかる造粒塊18aが排水性を改善させるとともに、強固な噛み合いによって軌道を支えるための機械強度を回復させ、バラストを入れ替えずとも、つき固めによる保守効果を生成、持続させるのである。 Therefore, as shown in FIG. 1 (b), a grout material 20 made of ultrafine cement is infiltrated from the surface of the ballast track bed 14 under the sleepers 12, and the ballast 16 and the fine grained soil 18 are integrated and cured to form a hardened layer. After forming 20a, it is crushed with a hammer drill 30. As a result, the fine-grained soil 18 is granulated together with the ballast 16, and the granulated mass 18a improves the drainage property and restores the mechanical strength for supporting the track by strong meshing, so that the ballast does not need to be replaced. It produces and sustains the maintenance effect of consolidation.

更に、図2に沿って劣化したバラスト道床における造粒化工法の工程を説明する。 Further, the process of the granulation method in the deteriorated ballast trackbed will be described with reference to FIG.

バラスト道床14において、枕木12の周囲のバラスト16を除去し枕木12をはずす(S1、図2(a)参照)。後述するように、枕木12に沿って液状充填材20を与えたときに、少なくとも枕木12の下部面よりも広い水平面で硬化層20aを与えられるようにバラスト16の除去を行うことが好ましい。 In the ballast track bed 14, the ballast 16 around the sleepers 12 is removed and the sleepers 12 are removed (see S1, FIG. 2A). As will be described later, when the liquid filler 20 is given along the sleepers 12, it is preferable to remove the ballast 16 so that the hardened layer 20a can be given at least on a horizontal plane wider than the lower surface of the sleepers 12.

枕木12をはずして露出させた表面から液状充填材20をバラスト道床14に含浸させる(S2、図2(b)参照)。細粒土18を含むバラスト16にバラスト道床14の表面からグラウト材20を浸透させるため、グラウト材20には、浸透性の高い超微粒子セメントを用いることが好適である。超微粒子セメントは、例えば、平均粒径5μm程度以下、好ましくは平均粒径4μm程度以下の超微粒子注入材であり、軟弱地盤の改良工事や亀裂性岩盤の止水工事等に用いられているものである。 The ballast track bed 14 is impregnated with the liquid filler 20 from the surface exposed by removing the sleepers 12 (see S2 and FIG. 2B). In order to allow the grout material 20 to permeate the ballast 16 containing the fine-grained soil 18 from the surface of the ballast track bed 14, it is preferable to use highly permeable ultrafine cement for the grout material 20. The ultrafine particle cement is, for example, an ultrafine particle injection material having an average particle size of about 5 μm or less, preferably an average particle size of about 4 μm or less, and is used for improvement work of soft ground, water stoppage work of cracked rock, and the like. Is.

バラスト16及びこの間にある細粒土18を液状充填材20で一体に硬化させた後、この硬化層20aの細粒土部分をハンマードリル30で破砕し、造粒する(S3、図2(c)参照)。液状充填材20によりバラスト16及び細粒土18を一体に硬化層20aとして硬化させることで、破砕後、特に、造粒塊18a同士が強固に噛み合って軌道を支持する機械強度が回復するのである。 After the ballast 16 and the fine-grained soil 18 between them are integrally cured with the liquid filler 20, the fine-grained soil portion of the hardened layer 20a is crushed with a hammer drill 30 to granulate (S3, FIG. 2 (c). )reference). By integrally curing the ballast 16 and the fine-grained soil 18 as a cured layer 20a with the liquid filler 20, after crushing, the granulated lumps 18a are firmly meshed with each other to recover the mechanical strength of supporting the track. ..

枕木12を戻してバラスト16で埋め戻すともに、タイタンパでつき固めて軌道整正する(S4、図2(d)参照)。埋め戻しのための新しいバラスト16が硬化層20a内の造粒塊18a(図1参照)とともに機械強度を回復させるとともに、排水性を改善するのである。 The sleepers 12 are returned and backfilled with ballast 16, and the sleepers 12 are compacted with a tie tamper to correct the trajectory (see S4, FIG. 2 (d)). The new ballast 16 for backfilling restores the mechanical strength together with the granulated mass 18a (see FIG. 1) in the hardened layer 20a and improves the drainage property.

また、図3に示すように、上記工程に加え、枕木12の下のバラスト16の部分を新品のバラストに交換することも考慮される(部分道床交換)。踏み固められた細粒土18が混入した枕木12下にグラウト材20をより充填しやすくできて、バラスト軌道1の補修工程を省力化できるのである。 Further, as shown in FIG. 3, in addition to the above steps, it is also considered to replace the part of the ballast 16 under the sleepers 12 with a new ballast (partial trackbed replacement). The grout material 20 can be more easily filled under the sleepers 12 mixed with the compacted fine-grained soil 18, and the repair process of the ballast track 1 can be saved.

つまり、バラスト道床14において、枕木12の周囲のバラスト16を除去し枕木12をはずすが、枕木12よりも下側にバラスト16を掘削するのである(S11、図3(a)参照)。この後、枕木12をはずして露出させた表面、つまり、掘削を与えられ表層を除去又は攪拌した表面から液状充填材20を含浸させるが(S12、図2(b)参照)、表層を掘削処理することで、細粒土18を含むバラスト16にバラスト道床14の表面からグラウト材20がより良好に浸透することになる。 That is, in the ballast track bed 14, the ballast 16 around the sleepers 12 is removed and the sleepers 12 are removed, but the ballast 16 is excavated below the sleepers 12 (see S11, FIG. 3A). After that, the liquid filler 20 is impregnated from the surface exposed by removing the sleepers 12, that is, the surface that has been excavated to remove or stir the surface layer (see S12, FIG. 2B), but the surface layer is excavated. By doing so, the grout material 20 is better permeated from the surface of the ballast track bed 14 into the ballast 16 containing the fine-grained soil 18.

そして、バラスト16及びこの間にある細粒土18を液状充填材20で一体に硬化させ、この硬化層20aの細粒土部分をハンマードリル30で破砕し造粒し(S13、図3(c)参照)、枕木12を戻してバラスト16で埋め戻すともに、タイタンパでつき固めて軌道整正するのである(S14、図3(d)参照)。 Then, the ballast 16 and the fine-grained soil 18 between them are integrally cured with the liquid filler 20, and the fine-grained soil portion of the hardened layer 20a is crushed and granulated with a hammer drill 30 (S13, FIG. 3C). (See), the sleepers 12 are returned and backfilled with ballast 16, and the track is adjusted by compacting with a titamper (see S14, FIG. 3 (d)).

上記したように、バラスト軌道1の補修工程を省力化できるとともに、細粒土18の比率を下げて硬化層20aを形成できるため、排水性を高め、軌道を支える機械強度をより大きく回復させ得るのである。 As described above, the repair process of the ballast track 1 can be labor-saving, and the ratio of the fine-grained soil 18 can be reduced to form the hardened layer 20a, so that the drainage property can be improved and the mechanical strength supporting the track can be greatly restored. It is.

なお、枕木12をはずして露出させた表面から液状充填材20をバラスト道床14に含浸させる例を上記したが、枕木12を除去せずとも、枕木12の脇からスカートのような器具で液状充填材20を枕木12の下部のバラスト道床14に含浸させ、且つ、ハンマードリル30を差し込み、硬化層20aの細粒土部分を破砕し、造粒できる場合もある。かかる工法によれば、工程を簡素化できるのである。 Although the ballast track bed 14 is impregnated with the liquid filler 20 from the surface exposed by removing the sleepers 12, the ballast track bed 14 is liquid-filled from the side of the sleepers 12 with an instrument such as a skirt without removing the sleepers 12. In some cases, the material 20 is impregnated into the ballast track bed 14 below the sleepers 12, and the hammer drill 30 is inserted to crush the fine-grained soil portion of the hardened layer 20a to granulate. According to such a construction method, the process can be simplified.

[実証試験例]
次に、実物大模型での試験について述べる。
[Demonstration test example]
Next, the test with a full-scale model will be described.

図4に示すように、実物大模型100は、1本の枕木12を与えたバラスト道床14からなり、該バラスト道床14には、細粒土18を混入させたバラスト16を用いている。なお、上記したような、造粒化工法(S1〜S4、ケース1)と、部分道床交換を含む工法(S11〜S14、ケース2)とを評価するものであり、仕切り板50で2つの軌道模型A及びBに区画を分けてそれぞれ評価した。 As shown in FIG. 4, the full-scale model 100 is composed of a ballast track 14 provided with one sleeper 12, and the ballast 16 mixed with fine-grained soil 18 is used for the ballast track 14. It should be noted that the above-mentioned granulation method (S1 to S4, case 1) and the method including partial track bed replacement (S11 to S14, case 2) are evaluated, and two trajectories are formed by the partition plate 50. The sections were divided into models A and B and evaluated respectively.

図5に用いたバラストの粒度分布を示した。実物大模型100では実際の軌道における道床交換を行うべき箇所からバラストを採取し(図4、黒四角印参照)、同じ粒度分布となるように新品バラストにクラッシャランを混合して用いた(図4、白四角印)。つまり、ここでは、乾燥重量比で新品バラスト:クラッシャラン=4.5:6.0の割合で混合し、含水比5%を加水して作製している。 The particle size distribution of the ballast used in FIG. 5 is shown. In the full-scale model 100, ballast was collected from the place where the track bed should be replaced in the actual track (see Fig. 4, black square mark), and crusher run was mixed with new ballast so that the same particle size distribution was used (Fig. 4). , White square mark). That is, here, a new ballast: crusher run = 4.5: 6.0 is mixed in a dry weight ratio, and a water content ratio of 5% is added to the mixture.

再び、図4を参照すると、幅3.5m×長さ7.0m×深さ2.5mの試験土槽に、その底部より1850mmの位置まで礫質砂を締め固めて路盤構築し、その上にEPS層250mmを設置して、さらにその上に粒度調整砕石を300mmの深さで締め固めて路盤構築した。なお、EPS層は地盤反力係数を小さくするために設置した。構築された路盤の地盤反力係数K30値は、50MN/m程度であった。 Again, referring to FIG. 4, a roadbed was constructed by compacting gravel sand to a position 1850 mm from the bottom of a test soil tank having a width of 3.5 m, a length of 7.0 m, and a depth of 2.5 m. An EPS layer of 250 mm was installed in the plant, and a particle size-adjusted crushed stone was further compacted to a depth of 300 mm to construct a roadbed. The EPS layer was installed to reduce the ground reaction force coefficient. Ground reaction force coefficient K 30 value of the constructed roadbed was about 50 MN / m 3.

構築した路盤上に遮水シートPを敷き、厚さ300mmのバラスト道床14を構築する。なお、列車の繰返し通過により締め固まった道床状態を模擬するため、振動バイブレーターを用いて、バラスト道床14を厚さ280mm、密度2.12t/m(締固め度=95%)まで締め固めた。この上に枕木12を設置し、20mmこう上して道床厚300mmとした上でタイタンパによるつき固め保守を行った。予備載荷として2万回の繰返し載荷を行い、再度タイタンパによるつき固めを行い、軌道模型A及びBを構築した。載荷荷重は最小荷重5kN及び最大荷重85kN(荷重振幅80kN)であり、載荷周波数5Hzの正弦波で載荷回数30万回の繰返し載荷を行った。 A water-impervious sheet P is laid on the constructed roadbed to construct a ballast track 14 having a thickness of 300 mm. The ballast track bed 14 was compacted to a thickness of 280 mm and a density of 2.12 t / m 3 (compacting degree = 95%) using a vibration vibrator in order to simulate the state of the track bed compacted by the repeated passage of trains. .. A sleeper 12 was installed on this, and the trackbed was raised by 20 mm to a thickness of 300 mm, and then compacted and maintained by a tie tamper. The orbital models A and B were constructed by repeatedly loading 20,000 times as a preliminary load and then compacting with a titamper again. The loading load was a minimum load of 5 kN and a maximum load of 85 kN (load amplitude 80 kN), and repeated loading was performed 300,000 times with a sine wave having a loading frequency of 5 Hz.

試験手順としては、ケース1では、軌道模型A部分(図4参照)をつき固め、散水して30万回の繰返し載荷後、枕木12下のバラスト道床14の部分を上記したように造粒化し、再度、散水して30万回の繰返し載荷後の評価を行った。また、ケース2では、軌道模型B部分(図4参照)をつき固め、散水して30万回の繰返し載荷後、枕木12下のバラスト道床14の部分を深さ150mm位置まで新品バラストに交換して密度1.6t/mで締め固めてからつき固めを行った。更に、散水して30万回の繰返し載荷後、枕木12下のバラスト道床14の部分を深さ150mm位置まで掘削してその下で造粒化を行った後、新品バラストを投入して密度1.6t/mで締め固めてからつき固めを行った。そして、散水して30万回の繰返し載荷後の評価を行った。なお、両ケースともタイタンパ保守後の散水量は30L/mであり、その後の散水量は30L/mを散水した後の道床の含水比(5%程度)と同様となるようにした。 As a test procedure, in Case 1, the track model A part (see FIG. 4) was compacted, sprinkled with water, repeatedly loaded 300,000 times, and then the part of the ballast track bed 14 under the sleepers 12 was granulated as described above. , Water was sprinkled again, and evaluation was performed after repeated loading 300,000 times. In case 2, the track model B (see FIG. 4) was compacted, sprinkled with water, and repeatedly loaded 300,000 times, and then the ballast track 14 under the sleepers 12 was replaced with a new ballast to a depth of 150 mm. After compacting at a density of 1.6 t / m 3 , compaction was performed. Further, after watering and repeatedly loading 300,000 times, the part of the ballast track bed 14 under the sleepers 12 is excavated to a depth of 150 mm, granulation is performed under that, and then a new ballast is added to have a density of 1. After compacting at .6 t / m 3 , compaction was performed. Then, water was sprinkled and the evaluation was performed after repeated loading 300,000 times. In both cases, the amount of water sprinkled after maintenance of the Titamper was 30 L / m 2 , and the amount of water sprinkled thereafter was set to be the same as the water content ratio (about 5%) of the roadbed after sprinkling 30 L / m 2.

図6には、ケース1の枕木12の変位(枕木変位)を枕木12に設置した変位計60(図4参照)で測定した変位と載荷回数の関係を示した。繰返し載荷5千回で枕木変位は2mm程度であり、その後はなだらかに枕木変位が増加している。一方、参考例として、「つき固めのみ」を行った場合には、繰返し載荷5千回で5mm程度の枕木変位が生じ、その後は載荷回数とともに枕木変位が増加する傾向を示した。繰返し載荷30万回後で比較すると、「つき固めのみ」に比べて、造粒化工法により、枕木変位を36%まで低減できた。 FIG. 6 shows the relationship between the displacement of the sleepers 12 in the case 1 (the displacement of the sleepers) measured by the displacement meter 60 (see FIG. 4) installed on the sleepers 12 and the number of loads. The displacement of the sleepers is about 2 mm after repeated loading of 5,000 times, and the displacement of the sleepers gradually increases thereafter. On the other hand, as a reference example, when "consolidation only" was performed, the sleeper displacement of about 5 mm occurred after 5,000 times of repeated loading, and thereafter, the sleeper displacement tended to increase with the number of loadings. Comparing after 300,000 repeated loadings, the displacement of sleepers could be reduced to 36% by the granulation method as compared with "only compaction".

図7には、ケース2の枕木変位と載荷回数の関係を示した。まず、参考例として、つき固めのみの場合は、繰返し載荷5千回で2.5mm程度の枕木変位が生じ、部分道床交換を行うことで、繰返し載荷5千回の枕木変位は変わらないものの、沈下の進み程度は低減していた。これに対し、造粒化を行うことで沈下進みがより低減することが判る。繰返し載荷30万回後で比較すると、「つき固めのみ」に比べて、部分道床交換を行うことで枕木変位を76%に低減でき、さらに造粒化で66%に低減できた。 FIG. 7 shows the relationship between the displacement of the sleepers in Case 2 and the number of loads. First, as a reference example, in the case of only compaction, the displacement of the sleepers of about 2.5 mm occurs after 5,000 times of repeated loading, and the displacement of the sleepers of 5,000 times of repeated loading does not change by replacing the partial trackbed. The degree of subsidence was reduced. On the other hand, it can be seen that the settlement progress is further reduced by performing granulation. Comparing after 300,000 repeated loadings, the displacement of sleepers could be reduced to 76% by replacing the partial trackbed, and further reduced to 66% by granulation, as compared with "only compaction".

以上、本発明による代表的な実施例及びこれに伴う変形例について述べたが、本発明は必ずしもこれに限定されるものではなく、適宜、当業者によって変更され得る。すなわち、当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。 Although the typical examples according to the present invention and the modified examples accompanying the present invention have been described above, the present invention is not necessarily limited to these, and can be appropriately modified by those skilled in the art. That is, a person skilled in the art will be able to find various alternative examples and modifications without departing from the attached claims.

1 バラスト軌道
10 レール
12 枕木
14 バラスト道床
16 バラスト
17 滞水層
18 細粒土
18a 造粒塊
20 液状充填材
20a 硬化層
30 ハンマードリル
40 タイタンパ
50 仕切り版
60 変位計
100 実物大模型

1 Ballast track 10 Rail 12 Sleepers 14 Ballast trackbed 16 Ballast 17 Stagnant layer 18 Fine-grained soil 18a Granulated mass 20 Liquid filler 20a Hardened layer 30 Hammer drill 40 Titamper 50 Partition plate 60 Displacement meter 100 Full-scale model

Claims (7)

レールを固定された枕木をバラストによって保持させたバラスト軌道における該バラストの細粒化した細粒土の混入による劣化した該バラストを回復させる補修工法であって、前記枕木の下前記バラスト及びこの間にある細粒土の間にグラウト材からなる液状充填材を含浸させこれらを一体に硬化させた後、前記細粒土部分を破砕し前記バラストに造粒させることを特徴とするバラスト軌道の補修工法。 It is a repair method for recovering the ballast deteriorated due to the mixing of fine-grained soil of the ballast in the ballast track in which the rail-fixed sleeper is held by the ballast , and is a repair method for recovering the ballast under the sleeper and between the ballasts. after these impregnated with liquid filler consisting of grout is cured together during a certain fine soil, repairing method of track ballast, characterized in that to granulating said ballast crushing the fine soil portion .. 前記枕木の側周囲の前記バラストを除去するとともに前記枕木をはずして露出させた表面から前記液状充填材を含浸させることを特徴とする請求項1記載のバラスト軌道の補修工法。 The ballast track repair method according to claim 1, wherein the ballast around the side of the sleeper is removed and the liquid filler is impregnated from the surface exposed by removing the sleeper. 前記枕木をはずして露出した表面を掘削することを特徴とする請求項2記載のバラスト軌道の補修工法。 The ballast track repair method according to claim 2, wherein the exposed surface is excavated by removing the sleepers. 前記枕木に沿って前記液状充填材を与えて、少なくとも前記枕木の下部面よりも広い水平面で硬化層を与えることを特徴とする請求項1記載のバラスト軌道の補修工法。 Giving the liquid filler along the sleepers, at least the repair method of the track ballast of claim 1 Symbol mounting, characterized in that a cured layer in a broad horizontal plane than the lower surface of the sleepers. 前記液状充填材は前記細粒土に浸透するよう選択されることを特徴とする請求項1乃至のうちの1つに記載のバラスト軌道の補修工法。 The ballast track repair method according to any one of claims 1 to 4 , wherein the liquid filler is selected to permeate the fine-grained soil. 前記液状充填材は平均粒径5μm以下の超微粒子からなるセメントであることを特徴とする請求項5記載のバラスト軌道の補修工法。 The ballast track repair method according to claim 5, wherein the liquid filler is a cement composed of ultrafine particles having an average particle size of 5 μm or less. はずした前記枕木をもとの位置に戻し、除去された前記バラストを埋め戻とともに、タイタンパでつき固めて軌道整正することを特徴とする請求項記載のバラスト軌道の補修工法。
Remove the sleepers back to the original positions, with to back fill said ballast removed, repaired method of track ballast according to claim 2, characterized in that the track lining and tamped in Taitanpa.
JP2017117051A 2017-06-14 2017-06-14 Ballast track repair method Active JP6839616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017117051A JP6839616B2 (en) 2017-06-14 2017-06-14 Ballast track repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017117051A JP6839616B2 (en) 2017-06-14 2017-06-14 Ballast track repair method

Publications (2)

Publication Number Publication Date
JP2019002185A JP2019002185A (en) 2019-01-10
JP6839616B2 true JP6839616B2 (en) 2021-03-10

Family

ID=65006801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017117051A Active JP6839616B2 (en) 2017-06-14 2017-06-14 Ballast track repair method

Country Status (1)

Country Link
JP (1) JP6839616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7497323B2 (en) 2021-04-28 2024-06-10 公益財団法人鉄道総合技術研究所 Construction method of filled ballast track and filled ballast track

Also Published As

Publication number Publication date
JP2019002185A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
Lazorenko et al. Dynamic behavior and stability of soil foundation in heavy haul railway tracks: A review
AU2016358214B2 (en) Method for forming a stable foundation ground
JP6839616B2 (en) Ballast track repair method
CN107190758A (en) A kind of slope construction method
JP4009275B2 (en) Roadbed repair method and roadbed
JP6445572B2 (en) Construction, reinforcement, widening, and raising methods for embankments for passing vehicles
CN110804939A (en) Reinforced structure of abutment jump car
JP7497323B2 (en) Construction method of filled ballast track and filled ballast track
JP2020147906A (en) Roadbed improvement method and improved roadbed
CN110792010A (en) Roadbed reinforcing structure for preventing vehicle bump at bridge head and construction method thereof
JPH10227003A (en) Construction of base course
JP6523980B2 (en) Construction method of Tenchudo floor track
Lenart et al. Geogrid reinforced railway embankment on soft soil–Experiences from 5 years of field monitoring
JP5156900B2 (en) Foundation of structure made of single-grain aggregate and construction method
JP2007131805A (en) Improved ground material
JP4928218B2 (en) Road bed repair method for road bed track
JP2023010571A (en) Ballast track repair method, repair material thereof, and ballast track
CN210238176U (en) Road subgrade settlement treatment device
JP3769521B2 (en) Civil engineering groundwork, civil engineering methods using this civil engineering groundwork
CN217517274U (en) Road reconstruction and extension barricade widening section roadbed splicing structure
JPH0449315A (en) Effective use of construction surplus soil
JP2005113651A (en) Reinforced embankment construction method
CN117188212A (en) Process and method for closed construction of railway roadbed foundation bed
KR20240057807A (en) Embankment structure using gap filler for injecting in large sized rock and soil mixture, and construction method for the same
Lin et al. Ground Improvements for Georgia Ports’ Mason Mega Rail Project

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6839616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150