JP6839598B2 - Air separation deceleration system - Google Patents

Air separation deceleration system Download PDF

Info

Publication number
JP6839598B2
JP6839598B2 JP2017084154A JP2017084154A JP6839598B2 JP 6839598 B2 JP6839598 B2 JP 6839598B2 JP 2017084154 A JP2017084154 A JP 2017084154A JP 2017084154 A JP2017084154 A JP 2017084154A JP 6839598 B2 JP6839598 B2 JP 6839598B2
Authority
JP
Japan
Prior art keywords
air separation
inner cylinder
separation device
air
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017084154A
Other languages
Japanese (ja)
Other versions
JP2017128452A (en
Inventor
栄一 成川
栄一 成川
敏晴 田中
敏晴 田中
武雄 堀
武雄 堀
功次 能島
功次 能島
Original Assignee
株式会社タイワ精機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タイワ精機 filed Critical 株式会社タイワ精機
Publication of JP2017128452A publication Critical patent/JP2017128452A/en
Application granted granted Critical
Publication of JP6839598B2 publication Critical patent/JP6839598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Description

本発明は、空気分離減速システムに関するものである。そして空気分離減速システムは、搬送路の空気を吸い込むことにより気流を発生させ、その気流により搬送物を搬送する空気吸引式搬送機の空気分離装置を用いたものである。 The present invention relates to an air separation deceleration system. The air separation / deceleration system uses an air separation device of an air suction type transporter that generates an air flow by sucking air in a transport path and transports the transported object by the air flow.

空気吸引式搬送機の一例として、エア搬送路と、エア搬送路の二次側の開口端に対して一次側の開口端を接続する空気分離装置としての搬送物回収部と、空気分離装置のうち空気の排気口側に接続する吸引機構とを備えるものが知られている(特許文献1)。なお、一次側とは空気や搬送物が入ってくる側であり、二次側とは空気や搬送物が出ていく側である。 As an example of an air suction type carrier, an air transport path, a transported object recovery unit as an air separation device for connecting the opening end on the primary side to the opening end on the secondary side of the air transfer path, and an air separation device. Among them, those provided with a suction mechanism connected to the air exhaust port side are known (Patent Document 1). The primary side is the side where air and the transported object enter, and the secondary side is the side where the air and the transported object exit.

特許文献1での空気分離装置は、エア搬送路の二次側の開口端に対して一次側の開口端を接続する回収ガイドと、回収ガイドを収容する大容量の受容ホッパーと、受容ホッパーの内部空間を回収ガイドの上側で上下に仕切る流出防止フィルタと、受容ホッパーの下端側に接続するロータリーバルブとを備えるものである。 The air separation device in Patent Document 1 includes a recovery guide for connecting the opening end on the primary side to the opening end on the secondary side of the air transport path, a large-capacity receiving hopper for accommodating the recovery guide, and a receiving hopper. It includes an outflow prevention filter that divides the internal space up and down on the upper side of the recovery guide, and a rotary valve that connects to the lower end side of the receiving hopper.

特開2006−232546号公報Japanese Unexamined Patent Publication No. 2006-232546

空気分離装置は、搬送物と空気の分離をすることが主目的であるが、特許文献1に開示された空気分離装置は、搬送物と空気の分離を主目的とした上で、搬送物の損傷防止(=搬送物の減速)を主目的と同程度に重要な目的としている。そのため特許文献1に開示された空気分離装置は、回収ガイドを水平方向から下方へ向かって円弧状に湾曲させると共に、円弧状の回収ガイドの内周面部分を主に下方に開口する構成を採用しており、搬送物の損傷を防止するためには、回収ガイドを大型化せねばならなかった。そのうえ回収ガイドとは別に流出防止フィルタを上側に配置してあるので、回収ガイドに比べて受容ホッパーを何倍も大容量にしなければならなかった。このような大容量、つまり大型の受容ホッパーは、大きな空間を占めるので、設置する際の制約が大きい。 The main purpose of the air separation device is to separate the transported object from the air, but the air separation device disclosed in Patent Document 1 mainly aims to separate the transported object from the air, and then the transported object. Damage prevention (= deceleration of transported objects) is as important as the main purpose. Therefore, the air separation device disclosed in Patent Document 1 adopts a configuration in which the recovery guide is curved in an arc shape from the horizontal direction downward and the inner peripheral surface portion of the arc-shaped recovery guide is mainly opened downward. Therefore, in order to prevent damage to the transported items, the collection guide had to be enlarged. Moreover, since the outflow prevention filter is placed on the upper side separately from the recovery guide, the capacity of the receiving hopper had to be many times larger than that of the recovery guide. Since such a large capacity, that is, a large receiving hopper occupies a large space, there are many restrictions on installation.

本発明は上記実情を考慮してなされたもので、その目的は、搬送物と空気を分離するための空気分離装置をできるだけ小型化できるようにし、設置し易くすることである。 The present invention has been made in consideration of the above circumstances, and an object of the present invention is to make the air separation device for separating a transported object and air as small as possible and to make it easy to install.

本発明の第一の空気分離減速システムは、空気分離装置と、空気分離装置の内筒の二次側の開口端に接続する第二減速管路と、空気分離装置の内筒の一次側の開口端に接続する第一減速管路を備えるものである。
空気分離装置は、内筒と、内筒をその口径方向外側に間隔をあけて取り囲む外筒と、外筒の長さ方向の両側で外筒と内筒の口径方向の間を閉鎖する一対の閉鎖部と、外筒の長さ方向の中間部から分岐すると共に吸引装置側へ接続する排気筒とを備える。
内筒は、その一次側の開口端を搬送物と空気の入口とし、その二次側の開口端を搬送物の排出口とし、その側面には空気の排気口となる複数の空気孔を備えると共に、その内部空間を搬送物が慣性で通過する通過空間にするものである。
そして第二減速管路は、内筒の長さ方向に対して湾曲する方向に延長する第1の曲がり管路と、第1の曲がり管路の長さ方向に対して湾曲する方向に延長する第2の曲がり管路とを備える。
第1の曲がり管路における一次側の開口端の内径は、搬送物を減速させるために内筒の二次側の開口端の内径よりも大きいものである。
空気分離装置の一次側及び二次側の開口端に、口径方向の外側に張り出す内フランジ部を備え、各々の内フランジ部は、空気分離装置の閉鎖部としても機能する。
The first air separation / reduction system of the present invention includes an air separation device, a second reduction line connected to an opening end on the secondary side of the inner cylinder of the air separation device, and a primary side of the inner cylinder of the air separation device. It is provided with a first reduction line connected to the open end.
The air separation device consists of an inner cylinder, an outer cylinder that surrounds the inner cylinder at intervals on the outer side in the radial direction, and a pair that closes between the outer cylinder and the inner cylinder in the radial direction on both sides in the length direction of the outer cylinder. It is provided with a closed portion and an exhaust cylinder that branches from the intermediate portion in the length direction of the outer cylinder and connects to the suction device side.
The inner cylinder is provided with a plurality of air holes serving as air outlets on the side surface thereof, with the opening end on the primary side serving as an inlet for the transported object and air, and the opening end on the secondary side serving as an exhaust port for the transported object. At the same time, the internal space is made into a passing space through which the conveyed object passes by inertia.
Then, the second reduction pipe extends in the direction of bending with respect to the length direction of the first curved pipe and the first bent pipe extending in the direction of bending with respect to the length direction of the inner cylinder. Ru and a second curved line.
The inner diameter of the primary side of the opening end of the first curved conduit, Ru der larger than the inner diameter of the secondary side of the open end of the inner cylinder in order to decelerate the conveyed object.
The opening ends on the primary and secondary sides of the air separation device are provided with inner flange portions that project outward in the radial direction, and each inner flange portion also functions as a closing portion of the air separation device.

また本発明の第二の空気分離減速システムは、第一の空気分離減速システムを前提としたうえで、空気分離装置の内筒の一次側の開口端に接続する第一減速管路を備えるものである。そして第二減速管路の一次側部分、第一減速管路、空気分離装置の内筒は、一次側に対して二次側を低くしてあると共に、水平方向に対して傾斜してあるものである。そしてその傾斜角度は搬送物の安息角度よりも大きく、水平方向に対して30°以上90°未満の角度である。 Further, the second air separation / deceleration system of the present invention is premised on the first air separation / deceleration system, and includes a first reduction line connected to the opening end on the primary side of the inner cylinder of the air separation device. Is. The primary side portion of the second reduction pipe, the first reduction pipe, and the inner cylinder of the air separation device have the secondary side lowered with respect to the primary side and are inclined with respect to the horizontal direction. Is. The inclination angle is larger than the rest angle of the transported object, and is an angle of 30 ° or more and less than 90 ° with respect to the horizontal direction.

また本発明の第三の空気分離減速システムは、第二の空気分離減速システムと比べて、第二減速管路において第1の曲がり管路の特定と第2の曲がり管路の特定が何れもないことにおいて相違するものである。
つまり本発明の第三の空気分離減速システムは、上記した空気分離装置と、空気分離装置の内筒の一次側の開口端に接続する第一減速管路と、空気分離装置の内筒の二次側の開口端に接続する第二減速管路を備えるものである。そして空気分離装置は、第一の空気分離減速システムの空気分離装置と同じである。また第二減速管路の一次側部分、第一減速管路、空気分離装置の内筒は、第二の空気分離減速システムにおける第一減速管路、空気分離装置の内筒、第二減速管路の一次側部分と同じである。
Further, in the third air separation deceleration system of the present invention, as compared with the second air separation deceleration system, the identification of the first curved pipeline and the identification of the second curved pipeline in the second deceleration pipeline are both. It differs in that it does not.
That is, the third air separation / reduction system of the present invention includes the above-mentioned air separation device, the first reduction line connected to the opening end on the primary side of the inner cylinder of the air separation device, and the inner cylinder of the air separation device. It is provided with a second reduction line connected to the opening end on the next side. And the air separation device is the same as the air separation device of the first air separation reduction system. Further, the primary side portion of the second reduction pipe, the first reduction pipe, and the inner cylinder of the air separation device are the first reduction pipe in the second air separation reduction system, the inner cylinder of the air separation device, and the second reduction pipe. Same as the primary side of the road.

本発明の空気分離減速システムの空気分離装置によれば、内筒に突入した搬送物と空気のうち空気は、内筒の側面の排気口から、内筒と外筒の間の空間部、排気筒を順次へて吸引装置へ向かう。いっぽう搬送物は、内筒の側面から空気が吸引されることから減速して、その減速した勢い(慣性)で内筒の内部空間を通過する。本発明の空気分離装置はこのような構成であるから、外筒の内径(容量)を小さくして、外筒と内筒との口径方向の間隔を狭くしても、空気と搬送物を分離することができ、小型化に適し、設置し易いものである。また排気筒を外筒の長さ方向の中間部から分岐しているので、たとえば外筒が水平に設置されている場合に外筒の長さ方向(貫通方向)から視て排気筒の向きを360度、所望の向きに設置できるので、排気筒に接続する管を設置しやすい。 According to the air separation device of the air separation / deceleration system of the present invention, the air among the conveyed object and the air that has entered the inner cylinder is discharged from the exhaust port on the side surface of the inner cylinder to the space between the inner cylinder and the outer cylinder. The cylinders are sequentially moved toward the suction device. On the other hand, the transported object decelerates because air is sucked from the side surface of the inner cylinder, and passes through the internal space of the inner cylinder with the decelerated momentum (inertia). Since the air separation device of the present invention has such a configuration, even if the inner diameter (capacity) of the outer cylinder is reduced and the distance between the outer cylinder and the inner cylinder in the radial direction is narrowed, the air and the conveyed object are separated. It is suitable for miniaturization and easy to install. Also, since the exhaust stack is branched from the middle part in the length direction of the outer cylinder, for example, when the outer cylinder is installed horizontally, the direction of the exhaust stack can be viewed from the length direction (penetration direction) of the outer cylinder. Since it can be installed 360 degrees in a desired direction, it is easy to install a pipe connected to the exhaust stack.

また本発明の第一の空気分離減速システムの場合、第1、第2の曲がり管路のように曲り管路を複数備えることによって、搬送物を減速させることができるので、空気分離装置だけで所望の速度に搬送物を減速させる場合に比べて、空気分離装置を小型化することができる。
また第1の曲がり管路の一次側の開口端の内径を内筒の二次側の開口端の内径よりも大きくしてあれば、第1の曲がり管路の一次側の開口端の内径と内筒の二次側の開口端の内径を同じにしてある場合に比べて、搬送物を効果的に減速させることができ、空気分離装置を小型化することができる。
Further, in the case of the first air separation / deceleration system of the present invention, the conveyed object can be decelerated by providing a plurality of curved pipelines such as the first and second curved pipelines, so that only the air separation device can be used. The air separation device can be miniaturized as compared with the case where the conveyed object is decelerated to a desired speed.
Further, if the inner diameter of the opening end on the primary side of the first bent pipe is larger than the inner diameter of the opening end on the secondary side of the inner cylinder, it will be the inner diameter of the opening end on the primary side of the first bent pipe. Compared with the case where the inner diameter of the opening end on the secondary side of the inner cylinder is the same, the transported object can be effectively decelerated, and the air separation device can be miniaturized.

また本発明の第二、第三の空気分離減速システムの場合、吸引装置が停止するような不測の事態が生じても、第一減速管路と空気分離装置の内筒と第二減速管路の一次側部分に関して、二次側を一次側よりも低くしてあるので、搬送物は自然と落下し易くなり、特に貫通方向の傾斜角度を安息角よりも急にしてあるので、搬送物は必然的に落下することから、第一減速管路と空気分離装置の内筒と第二減速管路の一次側部分に搬送物が溜まり難くなる。 Further, in the case of the second and third air separation / deceleration systems of the present invention, even if an unexpected situation such as a stop of the suction device occurs, the first reduction line, the inner cylinder of the air separation device, and the second reduction line Regarding the primary side part, since the secondary side is lower than the primary side, the transported object naturally falls easily, and in particular, the inclination angle in the penetration direction is steeper than the rest angle, so that the transported object is Since it inevitably falls, it becomes difficult for the conveyed material to collect in the inner cylinder of the first reduction pipe, the inner cylinder of the air separation device, and the primary side portion of the second reduction pipe.

第一実施形態の空気吸引式搬送機を示す全体図である。It is an overall view which shows the air suction type conveyor of 1st Embodiment. 第一実施形態の空気吸引式搬送機の空気分離減速システムを示す正面方向から視た断面図である。It is sectional drawing seen from the front direction which shows the air separation deceleration system of the air suction type conveyor of 1st Embodiment. 図2のA−A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 第一実施形態の空気吸引式搬送機の空気分離減速システムの平面図である。It is a top view of the air separation deceleration system of the air suction type conveyor of 1st Embodiment. 第一実施形態の空気吸引式搬送機における空気分離減速システムの第二減速管路を示す側面図である。It is a side view which shows the 2nd reduction pipe of the air separation deceleration system in the air suction type conveyor of 1st Embodiment. 第二実施形態の空気吸引式搬送機を示す全体図である。It is an overall view which shows the air suction type conveyor of the 2nd Embodiment. 第二実施形態の空気吸引式搬送機の空気分離減速システムを示す正面方向から視た断面図である。It is sectional drawing seen from the front direction which shows the air separation deceleration system of the air suction type conveyor of the 2nd Embodiment.

本発明が適用された第一実施形態の空気吸引式搬送機は図1に示すように、搬送物を投入するホッパー1、搬送物を空気と共に通過させる搬送管路2、搬送管路2を通過させた搬送物を貯留する貯留タンク3、搬送管路2の中間部から搬送管路2の長さ方向とは別方向に空気を排気する排気管4、排気管4の中間部に接続する集塵装置5と、排気管4の末端に接続する吸引装置6を備える。中間部とは、物の長さ方向の両端以外の部分であり、両端のちょうど真ん中にという意味に限定されない。 As shown in FIG. 1, the air suction type transporter of the first embodiment to which the present invention is applied passes through a hopper 1 for loading a transported object, a transport line 2 for passing the transported object together with air, and a transport line 2. A collection tank 3 for storing the transported material, an exhaust pipe 4 for exhausting air from the intermediate portion of the transport pipeline 2 in a direction different from the length direction of the transport pipeline 2, and a collection connected to the intermediate portion of the exhaust pipe 4. A dust device 5 and a suction device 6 connected to the end of the exhaust pipe 4 are provided. The middle part is a part other than both ends in the length direction of the object, and is not limited to the meaning of being exactly in the middle of both ends.

ホッパー1は、下方に向けて内径が小さくなる漏斗形状の容器であって、上側の開口端が投入口、下側の開口端が出口になっている。 The hopper 1 is a funnel-shaped container whose inner diameter decreases downward, and the upper opening end is an inlet and the lower opening end is an outlet.

集塵装置5は、搬送物よりも小さな微粒子(ダスト)を空気から分離し、分離した微粒子をダストタンク(符号省略)に溜め、微粒子が除去された空気を吸引装置6に吸引させるものである。なお搬送物の吸引時にはダストタンクの出口は閉鎖されており、必要に応じて開放して、ダストを排出する。 The dust collector 5 separates fine particles (dust) smaller than the transported object from the air, stores the separated fine particles in a dust tank (reference numeral omitted), and causes the suction device 6 to suck the air from which the fine particles have been removed. .. The outlet of the dust tank is closed when the transported object is sucked, and is opened as necessary to discharge the dust.

吸引装置6は、たとえばブロワで、空気吸引側を排気管4に接続し、排気側を外気に開放してある。 The suction device 6 is, for example, a blower in which the air suction side is connected to the exhaust pipe 4 and the exhaust side is open to the outside air.

搬送管路2は、ホッパー1の出口に一次側の開口端を接続するシャッター装置11、シャッター装置11の二次側の開口端に対して一次側の開口端を接続する搬送管路本体12、搬送管路本体12の二次側の開口端に対して一次側の開口端を接続する空気分離減速システム13、空気分離減速システム13のうち搬送物を排出する二次側の開口端と貯留タンク3の入口との間に接続するロータリーバルブ14を備える。なお接続には、たとえば本実施形態では後述するフランジ部同士の接合が用いられるが、接続箇所の気密が保てれば、それ以外の接合を用いても良い。 The transport pipeline 2 includes a shutter device 11 that connects the opening end on the primary side to the outlet of the hopper 1, and a transport pipeline main body 12 that connects the opening end on the primary side to the opening end on the secondary side of the shutter device 11. The air separation / deceleration system 13 that connects the primary side opening end to the secondary side opening end of the transport pipeline main body 12, the secondary side opening end of the air separation / deceleration system 13 that discharges the transported material, and the storage tank. A rotary valve 14 connected to the inlet of 3 is provided. For the connection, for example, in the present embodiment, joining of the flange portions described later is used, but other joining may be used as long as the airtightness of the connecting portion is maintained.

シャッター装置11は、Y字状の分岐管11aと、分岐管11aの支管11cに対してその長さ方向に往復動可能に案内される調整操作部材11pとを備える。 The shutter device 11 includes a Y-shaped branch pipe 11a and an adjustment operation member 11p that is guided so as to be reciprocally movable in the length direction with respect to the branch pipe 11c of the branch pipe 11a.

分岐管11aは、搬送物を通過させる本管11bと、本管11bの長さ方向の中間部から分岐すると共に空気を取り入れる支管11cとを備える。なお分岐管11aは、本管11bに支管11cが合流した合流管とも言える。本管11bは、その一次側の開口端をホッパー1の出口に接続すると共に、その二次側の開口端を搬送管路本体12の一次側の開口端に接続するものである。なお支管11cは、調整操作部材11pの一部(後述する外気導入管11q)を収納する管、つまり外気導入部収納管とも言える。 The branch pipe 11a includes a main pipe 11b through which a transported object is passed, and a branch pipe 11c that branches from an intermediate portion in the length direction of the main pipe 11b and takes in air. The branch pipe 11a can be said to be a merging pipe in which the branch pipe 11c joins the main pipe 11b. The main pipe 11b connects the opening end on the primary side to the outlet of the hopper 1 and connects the opening end on the secondary side to the opening end on the primary side of the transport line main body 12. The branch pipe 11c can also be said to be a pipe for accommodating a part of the adjustment operation member 11p (outside air introduction pipe 11q described later), that is, an outside air introduction portion accommodating pipe.

調整操作部材11pは、支管11cの内側に接する状態で収容される外気導入管11qであって支管11cの長さ方向に往復動可能に案内されると共に長さ方向の一端部で本管11bの内部を開閉可能な外気導入管11qと、外気導入管11qをその長さ方向の他端部で塞ぐ板状の塞ぎ部11rと、塞ぎ部11rから外気導入管11qの外側に突出する調整ツマミ11sとを備える。 The adjustment operation member 11p is an outside air introduction pipe 11q housed in a state of being in contact with the inside of the branch pipe 11c, and is guided to reciprocate in the length direction of the branch pipe 11c, and at one end in the length direction of the main pipe 11b. An outside air introduction pipe 11q that can open and close the inside, a plate-shaped closing portion 11r that closes the outside air introduction pipe 11q at the other end in the length direction thereof, and an adjustment knob 11s that projects from the closing portion 11r to the outside of the outside air introduction pipe 11q. And.

外気導入管11qの側面には吸気口(図示略)が形成されており、外気導入管11qの側面をその口径方向外側から支管11cが覆うことにより、吸気口を隠蔽するようになっている。ただし吸気口の全部を支管11cが覆うのではなく、その一部である。
より詳しく言えば、外気導入管11qを支管11cの中に深く突入すると、外気導入管11qが本管11bの内面に衝突して、本管11bの内部空間が一次側と二次側で隔離され、シャッター装置11が全閉状態になる。このとき吸気口の大部分は外気導入管11qに覆われるが、吸気口の一部は外気導入管11qに覆われることなく、外気に通じている。また外気は吸気口から支管11cの内部、本管11bの内部空間の二次側部分を経て、搬送管路本体12に取り込まれるようになっている。そして調整操作部材11pを操作して、往復動可能な外気導入管11qが支管11cに対する位置を変えることによって、外気導入管11qが本管11bの内面から離れ、調整操作部材11pの操作量に応じてシャッター装置11が所定量開き、ホッパー1の出口を通過する搬送物の量が変化すると共に、吸気口が支管11cに覆われる面積が変わり、外気導入管11qの外部と内部が通じる吸気口の開口面積(閉鎖面積)が変化するようになっている。
An intake port (not shown) is formed on the side surface of the outside air introduction pipe 11q, and the side surface of the outside air introduction pipe 11q is covered with a branch pipe 11c from the outside in the radial direction so as to conceal the intake port. However, the branch pipe 11c does not cover the entire intake port, but is a part thereof.
More specifically, when the outside air introduction pipe 11q is deeply inserted into the branch pipe 11c, the outside air introduction pipe 11q collides with the inner surface of the main pipe 11b, and the internal space of the main pipe 11b is isolated on the primary side and the secondary side. , The shutter device 11 is fully closed. At this time, most of the intake port is covered with the outside air introduction pipe 11q, but a part of the intake port is not covered with the outside air introduction pipe 11q and is connected to the outside air. Further, the outside air is taken into the transport pipeline main body 12 from the intake port through the inside of the branch pipe 11c and the secondary side portion of the internal space of the main pipe 11b. Then, by operating the adjustment operation member 11p to change the position of the reciprocating outside air introduction pipe 11q with respect to the branch pipe 11c, the outside air introduction pipe 11q is separated from the inner surface of the main pipe 11b according to the operation amount of the adjustment operation member 11p. The shutter device 11 is opened by a predetermined amount, the amount of the transported material passing through the outlet of the hopper 1 is changed, the area where the intake port is covered by the branch pipe 11c is changed, and the outside and the inside of the outside air introduction pipe 11q are communicated with each other. The opening area (closed area) is designed to change.

搬送管路本体12は、搬送物を上昇させてから所望の位置に搬送するもので、複数の管を接続したものである。 The transport line main body 12 is for raising the transported object and then transporting it to a desired position, and connects a plurality of pipes.

ロータリーバルブ14は図2または図4に示すように、ケーシング14aと、ケーシング14a内に回転可能に支持される繰出し羽根14bと、繰出し羽根14bの回転軸14cを回転させるモータ14mとを備えるものである。また繰出し羽根14bは、回転軸14cと、回転軸14cの周囲から放射状に突出する複数枚の羽根14dとを備える。ロータリーバルブ14は、ケーシング14aの内部を一次側と二次側に分断するように繰出し羽根14bが配置されており、密閉性の高いものである。そして繰出し羽根14bを回転させることによって、ケーシング14aの一次側の開口端から内部に入った搬送物が定量ずつ二次側の開口端に排出される。なおロータリーバルブ14には貯留タンク3の一次側の開口端が接続されており、貯留タンク3の二次側の開口端は、必要に応じて開閉可能となっている。 As shown in FIG. 2 or 4, the rotary valve 14 includes a casing 14a, a feeding blade 14b rotatably supported in the casing 14a, and a motor 14m for rotating the rotation shaft 14c of the feeding blade 14b. is there. Further, the feeding blade 14b includes a rotating shaft 14c and a plurality of blades 14d protruding radially from the periphery of the rotating shaft 14c. The rotary valve 14 has a feeding blade 14b arranged so as to divide the inside of the casing 14a into a primary side and a secondary side, and is highly airtight. Then, by rotating the feeding blade 14b, the conveyed material that has entered the inside from the opening end on the primary side of the casing 14a is discharged to the opening end on the secondary side in a fixed amount. The rotary valve 14 is connected to the opening end on the primary side of the storage tank 3, and the opening end on the secondary side of the storage tank 3 can be opened and closed as needed.

空気分離減速システム13は、搬送管路本体12の二次側の開口端に対して一次側の開口端を接続する接続する第一減速管路16と、第一減速管路16の二次側の開口端に対して一次側の開口端を接続すると共に空気を搬送物から分離させる空気分離装置17と、空気分離装置17のうち搬送物を排出する二次側の開口端に対して一次側の開口端を接続する第二減速管路18とを備える。また空気分離装置17のうち空気を排出する二次側の開口端に対して排気管4を接続してある。 The air separation / deceleration system 13 includes a first deceleration line 16 that connects the opening end on the primary side to the opening end on the secondary side of the transport line body 12, and a secondary side of the first deceleration line 16. An air separation device 17 that connects the opening end on the primary side to the opening end of the air separation device 17 and separates air from the conveyed object, and the primary side of the air separation device 17 with respect to the opening end on the secondary side that discharges the conveyed object. A second reduction line 18 for connecting the open ends of the above is provided. Further, the exhaust pipe 4 is connected to the open end on the secondary side of the air separation device 17 for discharging air.

第一減速管路16は、第一減速管路本体16aと、第一減速管路本体16aの長さ方向の両端から口径方向外側に張り出す一対のフランジ部16b,16cとを備える。 The first deceleration pipeline 16 includes a first deceleration pipeline main body 16a and a pair of flange portions 16b, 16c protruding outward in the radial direction from both ends in the length direction of the first deceleration pipeline main body 16a.

第一減速管路本体16aは、一次側の開口端の内径に比べて二次側の開口端の内径を大きくしてある。また第一減速管路本体16aは、その内面の上面側が水平に延長すると共に、内面の下面側が二次側の開口端に向かって徐々に低くなる傾斜面となっている。 The inner diameter of the opening end on the secondary side of the first reduction line main body 16a is larger than the inner diameter of the opening end on the primary side. Further, the first reduction line main body 16a has an inclined surface in which the upper surface side of the inner surface thereof extends horizontally and the lower surface side of the inner surface gradually becomes lower toward the opening end on the secondary side.

第二減速管路18は、空気分離装置17のうち搬送物の通過方向(後述する内筒21の長さ方向)に対して湾曲する方向に延長する第1の管路40としての曲がり管路40と、第1の曲がり管路40の長さ方向に対して湾曲する方向に延長する第2の管路42としての曲がり管路42とを備える。図示の例では第1、第2の曲がり管路40,42は、一本の管路である。第1の曲がり管路40は、その一次側開口端に口径方向外側に張り出すフランジ部18aを備えている。 The second reduction pipe 18 is a curved pipe 40 as the first pipe 40 of the air separation device 17 that extends in a direction curved with respect to the passage direction of the conveyed object (the length direction of the inner cylinder 21 described later). 40 and a curved pipeline 42 as a second pipeline 42 extending in a direction curved with respect to the length direction of the first curved pipeline 40. In the illustrated example, the first and second curved pipes 40 and 42 are one pipe. The first curved pipeline 40 is provided with a flange portion 18a projecting outward in the radial direction at the primary opening end thereof.

第1の曲がり管路40は図4に示すように二本の直管部40a,40aと、二本の直管部40a,40aを接続する湾曲管部40bとを備えるものである。
二本の直管部40a,40aは、互いの長さ方向の延長線上で交差するように配置され、互いの内部空間が湾曲管部40bの内部空間によって連絡している。また二本の直管部40a,40aの交差角度は、35度以上90度以内の範囲であり、図示の例では90度である。
湾曲管部40bは、二本の直管部40a,40aを滑らかに繋ぐように湾曲している。
As shown in FIG. 4, the first curved pipe line 40 includes two straight pipe portions 40a and 40a and a curved pipe portion 40b connecting the two straight pipe portions 40a and 40a.
The two straight pipe portions 40a and 40a are arranged so as to intersect each other on an extension line in the length direction, and the internal spaces of the two straight pipe portions 40a and 40a are connected by the internal space of the curved pipe portion 40b. The crossing angle of the two straight pipe portions 40a and 40a is in the range of 35 degrees or more and 90 degrees or less, and is 90 degrees in the illustrated example.
The curved pipe portion 40b is curved so as to smoothly connect the two straight pipe portions 40a and 40a.

第2の曲がり管路42も、第1の曲がり管路40と同じ構成であり、図5に示すように二本の直管部42a、42aと、二本の直管部42a,42aを接続する湾曲管部42bとを備えるものである。 The second curved pipe line 42 has the same configuration as the first bent pipe line 40, and connects the two straight pipe portions 42a and 42a and the two straight pipe portions 42a and 42a as shown in FIG. It is provided with a curved pipe portion 42b to be formed.

空気分離装置17は図2、図3に示すように、第一減速管路16の二次側の開口端に対して一次側の開口端を接続する内筒部材20と、内筒部材20が貫通する状態で収容される外筒容器30とを備える。 As shown in FIGS. 2 and 3, the air separation device 17 includes an inner cylinder member 20 for connecting the opening end on the primary side to the opening end on the secondary side of the first reduction pipe line 16 and an inner cylinder member 20. It is provided with an outer cylinder container 30 that is housed in a penetrating state.

内筒部材20は、内筒21と、内筒21の長さ方向の両端から口径方向の外側に張り出す一対の内フランジ部21a、21bとを備える。内筒部材20は、内筒21の貫通方向に直交する方向から視ても(図2のように見ても)、貫通方向から視ても(図3のように見ても)、対称形状であり、貫通方向の向きがどちらであっても、外筒容器30に着脱可能となっている。 The inner cylinder member 20 includes an inner cylinder 21 and a pair of inner flange portions 21a and 21b protruding outward in the radial direction from both ends in the length direction of the inner cylinder 21. The inner cylinder member 20 has a symmetrical shape when viewed from a direction orthogonal to the penetrating direction of the inner cylinder 21 (even when viewed as shown in FIG. 2) or when viewed from a penetrating direction (when viewed as shown in FIG. 3). Therefore, it can be attached to and detached from the outer cylinder container 30 regardless of the direction of penetration.

内筒21は、真っ直ぐに延長する直管であり、角筒状または円筒状である。内筒21の内径は、内筒21の長さ方向の全長に亘って等しく、第一減速管路16の二次側の内径よりも大きくしてある。また内筒21は、その内部空間を搬送物が当該内部空間に突入したときの勢いを利用して慣性で通過する通過空間にすると共に、その一次側の開口端を搬送物と空気の入口22とし、その二次側の開口端を搬送物の排出口24とし、その側面には空気の排気口26を備えるものである。なお一対の内フランジ部21a、21bの詳細は外筒容器30の説明中で述べる。 The inner cylinder 21 is a straight pipe that extends straight, and has a square cylinder shape or a cylindrical shape. The inner diameter of the inner cylinder 21 is equal over the entire length of the inner cylinder 21 in the length direction, and is larger than the inner diameter of the secondary side of the first reduction pipe line 16. Further, the inner cylinder 21 makes the internal space a passage space through which the conveyed object passes by inertia by utilizing the momentum when the conveyed object rushes into the internal space, and the opening end on the primary side thereof is the inlet 22 of the conveyed object and the air. The opening end on the secondary side thereof is used as the discharge port 24 for the transported object, and the air exhaust port 26 is provided on the side surface thereof. The details of the pair of inner flange portions 21a and 21b will be described in the description of the outer cylinder container 30.

排気口26は、内筒21の側面にその口径方向に貫通して形成された多数の空気孔26aから構成されており、図示の例では多数の空気孔26aは長さ方向に間隔をあけると共に、周方向にも間隔をあけて行列状に配列されている。また空気孔26aは、内筒21の長さ方向に平行に延長する細孔としてある。 The exhaust port 26 is composed of a large number of air holes 26a formed on the side surface of the inner cylinder 21 so as to penetrate in the radial direction thereof. In the illustrated example, the large number of air holes 26a are spaced apart in the length direction. , They are arranged in a matrix with an interval in the circumferential direction. Further, the air holes 26a are pores extending in parallel with the length direction of the inner cylinder 21.

外筒容器30は、内筒21をその口径方向外側に等間隔をあけて取り囲む外筒32と、外筒32の長さ方向の両端から口径方向外側に張り出す一対の外フランジ部32a,32bと、外筒32の長さ方向の中間部から分岐すると共に吸引装置側へ接続する排気筒36とを備える。 The outer cylinder container 30 includes an outer cylinder 32 that surrounds the inner cylinder 21 outward at equal intervals in the radial direction, and a pair of outer flange portions 32a, 32b that project outward in the radial direction from both ends in the length direction of the outer cylinder 32. And an exhaust cylinder 36 that branches from the middle portion in the length direction of the outer cylinder 32 and is connected to the suction device side.

外筒32は、真っ直ぐに延長する直管であり、内筒21の形状と相似形状の角筒状または円筒状である。そして外筒32の側面には排気筒36に通じる出口が外筒32の口径方向に貫通して形成されている。外筒32の内径は、外筒32の長さ方向の全長に亘って等しく、内筒21の外径よりも大きく形成されると共に、内筒部材20の一対の内フランジ部21a、21bの外径よりも僅かに大きく形成される。そして内筒部材20を外筒32に対してその長さ方向に差し込むと、外筒32の内周面に内筒部材20の一対の内フランジ部21a,21bが嵌り込み、内筒部材20はその口径方向に移動不能に位置決めされ、内筒21は外筒32を貫通する状態となり、内筒21と外筒32とは同心状、つまり互いの口径方向の中心が一致する。また外筒32の内面の断面形状と一対の内フランジ部21a,21bの外形が相似形状であると共に、一対の内フランジ部21a、21bが板状であるので、一対の内フランジ部21a,21bは、外筒32の長さ方向の両側で外筒32と内筒21の口径方向の間をほぼ閉鎖する。つまり一対の内フランジ部21a,21bは、一対の閉鎖部34,34としての機能をも発揮する。 The outer cylinder 32 is a straight pipe that extends straight, and has a square cylinder shape or a cylindrical shape similar to the shape of the inner cylinder 21. An outlet leading to the exhaust cylinder 36 is formed on the side surface of the outer cylinder 32 so as to penetrate in the radial direction of the outer cylinder 32. The inner diameter of the outer cylinder 32 is equal over the entire length in the length direction of the outer cylinder 32, is formed larger than the outer diameter of the inner cylinder 21, and is formed outside the pair of inner flange portions 21a and 21b of the inner cylinder member 20. It is formed slightly larger than the diameter. Then, when the inner cylinder member 20 is inserted into the outer cylinder 32 in the length direction thereof, the pair of inner flange portions 21a and 21b of the inner cylinder member 20 are fitted into the inner peripheral surface of the outer cylinder 32, and the inner cylinder member 20 is formed. The inner cylinder 21 is positioned so as not to be movable in the caliber direction, the inner cylinder 21 penetrates the outer cylinder 32, and the inner cylinder 21 and the outer cylinder 32 are concentric, that is, the centers in the caliber direction coincide with each other. Further, since the cross-sectional shape of the inner surface of the outer cylinder 32 and the outer shape of the pair of inner flange portions 21a and 21b are similar to each other and the pair of inner flange portions 21a and 21b are plate-shaped, the pair of inner flange portions 21a and 21b Closes between the outer cylinder 32 and the inner cylinder 21 in the radial direction on both sides of the outer cylinder 32 in the length direction. That is, the pair of inner flange portions 21a and 21b also function as a pair of closing portions 34 and 34.

排気筒36は、外筒32の内部空間に対して分岐するように外筒32の側面から突出している。図示の例では、排気筒36の一次側部分は、一次側から二次側に向かって徐々に内径が狭くなる形状となっている。 The exhaust stack 36 projects from the side surface of the outer cylinder 32 so as to branch off from the internal space of the outer cylinder 32. In the illustrated example, the primary side portion of the exhaust stack 36 has a shape in which the inner diameter gradually narrows from the primary side to the secondary side.

一対の外フランジ部32a,32bのうち一次側の外フランジ部32aと、第一減速管路16の二次側のフランジ部16cの口径方向外側部分とは、例えばボルト、ナットで接合される。また一対の外フランジ部32a,32bのうち二次側の外フランジ部32bと、第二減速管路18の一次側のフランジ部18aの口径方向外側部分とは、同様にボルト、ナットで接合される。このように接合されることにより空気分離装置17は、第一、第二減速管路16、18と一体化される。この一体化された状態において、第一減速管路16の二次側のフランジ部16cと、第二減速管路18の一次側のフランジ部18aとの間に、内筒部材20の一対の内フランジ部21a、21bが挟まれ、内筒21が外筒32の口径方向内側においてその長さ方向に移動不能に位置決めされると共に、外筒32の長さ方向の両側で外筒32と内筒21の口径方向の間(空間部)を高気密に閉鎖され、第一減速管路16の二次側のフランジ部16cと、第二減速管路18の一次側のフランジ部18aとは、一対の閉鎖部34,34として機能する。 Of the pair of outer flange portions 32a and 32b, the outer flange portion 32a on the primary side and the outer portion in the radial direction of the flange portion 16c on the secondary side of the first reduction pipe line 16 are joined by, for example, bolts and nuts. Further, of the pair of outer flange portions 32a and 32b, the outer flange portion 32b on the secondary side and the outer portion in the radial direction of the flange portion 18a on the primary side of the second reduction line 18 are similarly joined with bolts and nuts. To. By being joined in this way, the air separation device 17 is integrated with the first and second reduction pipes 16 and 18. In this integrated state, between the flange portion 16c on the secondary side of the first reduction pipe line 16 and the flange portion 18a on the primary side of the second reduction pipe line 18, a pair of inner cylinder members 20 are inside. The flange portions 21a and 21b are sandwiched, and the inner cylinder 21 is positioned immovably in the length direction inside the outer cylinder 32 in the radial direction, and the outer cylinder 32 and the inner cylinder are positioned on both sides of the outer cylinder 32 in the length direction. The space between the caliber directions of 21 is closed with high airtightness, and the flange portion 16c on the secondary side of the first reduction line 16 and the flange portion 18a on the primary side of the second reduction line 18 are paired. It functions as a closed portion 34, 34 of.

一対の閉鎖部34、34のうち第一減速管路16側の閉鎖部34は、内筒部材20の一次側の内フランジ部21aと、第一減速管路16の二次側のフランジ部16cにおける口径方向内側部分とから構成される。また一対の閉鎖部34、34のうち第二減速管路18側の閉鎖部34は、内筒部材20の二次側の内フランジ部21bと、第二減速管路18の一次側のフランジ部18aとから構成される。したがって本実施形態では空気分離装置17は、第一、第二減速管路16,18の一部を含むものである。各閉鎖部34は、二枚の板である、各フランジ部が重なり合う二重壁構造である。 Of the pair of closed portions 34, 34, the closed portion 34 on the first reduction line 16 side is the inner flange portion 21a on the primary side of the inner cylinder member 20 and the flange portion 16c on the secondary side of the first reduction line 16. It is composed of the inner part in the radial direction in. Of the pair of closed portions 34, 34, the closed portion 34 on the second reduction line 18 side is the inner flange portion 21b on the secondary side of the inner cylinder member 20 and the flange portion on the primary side of the second reduction line 18. It is composed of 18a. Therefore, in the present embodiment, the air separation device 17 includes a part of the first and second reduction pipes 16 and 18. Each closing portion 34 has a double wall structure in which each flange portion overlaps, which is two plates.

上記した実施形態の空気分離減速システム13は、以下のようにして空気と搬送物の分離と搬送物の搬送速度の減速を行う。この例では、搬送物に粒状物や粉状物として、穀物の種子(より具体的には米粒)を用いるものとする。
1)シャッター装置11を全閉状態にしておき、ホッパー1に米粒を投入する。そうすると、ホッパー1内に米粒は収容されたままであり、シャッター装置11の本管11bの内部空間の二次側部分には米粒がない。また外気導入管11qの内部空間は本管11bの内部空間の二次側部分に通じ、吸気口の一部が外気に通じている。
2)吸引装置6を駆動させて搬送管路2内を負圧にし、シャッター装置11の外気導入管11qの吸気口から外気を搬送管路本体12内に取り込み、気流を発生させる。そうすると空気は、搬送管路本体12から空気分離装置17を経て排気管4へ向かい、その後、集塵装置5を経て吸引装置6の吸引側へ向かい、排気側から排出される。また吸引装置6の駆動と相前後させて、ロータリーバルブ14のモータ14mを駆動させる。
3)所定時間経過後にシャッター装置11をたとえば全開状態にして、搬送管路2へ米粒を流し込む。
4)ホッパー1から搬送管路本体12内に吸引された米粒は、気流により空気分離装置17へ向かう。
5)搬送管路本体12から第一減速管路16に米粒と空気が突入し、第一減速管路16では二次側の開口端の内径が一次側の開口端の内径に比べて広がっているので、吸引された空気と米粒が減速する。
6)第一減速管路16から内筒21に米粒と空気が突入する。内筒21の一次側の開口端の内径が第一減速管路16の二次側の開口端よりも大きいことから、空気と米粒は、内筒21の中で減速する。
空気は、内筒21の側面の排気口26を経て外筒32と内筒21の口径方向の間の内部空間に突入する。外筒32の内周面と内筒21の外周面とは互いの周方向の全周に亘って等間隔をあけてあるので、空気は外筒32と内筒21との口径方向の間における周方向の全周からほぼ均等に吸われ、排気筒36へ向かう。
いっぽう米粒は、内筒21の側面から空気が吸引されることから減速して、その減速した勢い(慣性)で内筒21の内部空間を通過し、そのまま内筒21の排出口24から第二減速管路18へ向かう。
7−1)米粒は、第二減速管路18へ突入し、第二減速管路18では一次側の開口端の内径が内筒21の二次側の開口端の内径に比べて広がっているので、米粒が減速する。第二減速管路18の第1、第2の曲がり管路40,42を通過する毎に米粒が減速し、米粒はロータリーバルブ14に向かう。ロータリーバルブ14の繰出し羽根14bの回転によって所定量ずつ米粒が貯留タンク3に排出される。
7−2)いっぽう空気は空気分離装置17の排気筒36から排気管4、集塵装置5を順次経て吸引装置6へ向かい、吸引装置6の外へ排出される。
The air separation / deceleration system 13 of the above-described embodiment separates the air and the transported object and decelerates the transport speed of the transported object as follows. In this example, grain seeds (more specifically, rice grains) are used as granules or powders for the transported material.
1) The shutter device 11 is kept fully closed, and rice grains are put into the hopper 1. Then, the rice grains are still housed in the hopper 1, and there are no rice grains in the secondary side portion of the internal space of the main tube 11b of the shutter device 11. Further, the internal space of the outside air introduction pipe 11q communicates with the secondary side portion of the internal space of the main pipe 11b, and a part of the intake port communicates with the outside air.
2) The suction device 6 is driven to make the inside of the transport line 2 negative pressure, and the outside air is taken into the transport line main body 12 from the intake port of the outside air introduction pipe 11q of the shutter device 11 to generate an air flow. Then, the air goes from the transport line main body 12 to the exhaust pipe 4 via the air separation device 17, then to the suction side of the suction device 6 via the dust collector 5, and is discharged from the exhaust side. Further, the motor 14 m of the rotary valve 14 is driven in phase with the drive of the suction device 6.
3) After a lapse of a predetermined time, the shutter device 11 is opened, for example, and rice grains are poured into the transport line 2.
4) The rice grains sucked from the hopper 1 into the transport line main body 12 are directed to the air separation device 17 by the air flow.
5) Rice grains and air rush into the first reduction line 16 from the main body 12 of the transport line, and in the first reduction line 16, the inner diameter of the opening end on the secondary side is wider than the inner diameter of the opening end on the primary side. Because of this, the sucked air and rice grains slow down.
6) Rice grains and air rush into the inner cylinder 21 from the first reduction pipe line 16. Since the inner diameter of the opening end on the primary side of the inner cylinder 21 is larger than the opening end on the secondary side of the first reduction pipe line 16, air and rice grains are decelerated in the inner cylinder 21.
Air enters the internal space between the outer cylinder 32 and the inner cylinder 21 in the radial direction through the exhaust port 26 on the side surface of the inner cylinder 21. Since the inner peripheral surface of the outer cylinder 32 and the outer peripheral surface of the inner cylinder 21 are equally spaced over the entire circumference in the circumferential direction of each other, air is provided between the outer cylinder 32 and the inner cylinder 21 in the radial direction. It is sucked almost evenly from the entire circumference in the circumferential direction and heads toward the exhaust stack 36.
On the other hand, the rice grain decelerates because air is sucked from the side surface of the inner cylinder 21, passes through the internal space of the inner cylinder 21 with the decelerated momentum (inertia), and is second from the discharge port 24 of the inner cylinder 21 as it is. Head to the deceleration line 18.
7-1) The rice grains rush into the second speed reduction pipe 18, and in the second speed reduction pipe 18, the inner diameter of the opening end on the primary side is wider than the inner diameter of the opening end on the secondary side of the inner cylinder 21. Therefore, the rice grain slows down. Each time the rice grains pass through the first and second curved lines 40 and 42 of the second speed reduction line 18, the rice grains decelerate and the rice grains go toward the rotary valve 14. A predetermined amount of rice grains is discharged to the storage tank 3 by the rotation of the feeding blade 14b of the rotary valve 14.
7-2) On the other hand, the air is discharged from the exhaust stack 36 of the air separation device 17 to the suction device 6 through the exhaust pipe 4 and the dust collector 5 in order, and is discharged to the outside of the suction device 6.

上記実施形態の空気分離装置17および空気分離減速システム13は以下の効果を有する。
空気分離装置17は、空気と搬送物を分離することを主目的とし、内筒21の側面から空気が吸引されるものなので、外筒32の内径(容量)を小さくして、外筒32と内筒21との口径方向の間隔を狭くしても、空気と搬送物を分離することができ、小型化に適し、設置し易いものである。しかも内筒21の側面から空気が吸引されることによって、内筒21の中で搬送物を減速させることもできる。
また空気孔26aを内筒21の長さ方向に延長する細孔にしてあるので、内筒21の内部空間を通過するときに米粒が空気孔26aの部分に触れたとしても、米粒が細孔に沿って移動するようになり、米粒が損傷しづらくなる。また搬送物とは相違する形状の物が搬送物の中に混入していることもあり、その破片等が細孔に刺さり難くなり、空気孔26aの目詰りの防止が出来る。
また内筒21の内部空間を米粒が慣性で通過する通過空間にしてあるので、空気と搬送物を分離するときに、米粒が損傷しづらくなり、ひいては米粒の損傷による粉状物が発生しづらくなり、排気筒36の内部を通過する粉状物の量が減量する。
また内筒21と一対の内フランジ部21a,21bとが一部品となった内筒部材20を、外筒32に対してその長さ方向に着脱可能(抜き差し可能)にしてあるので、組立や点検が容易になる。また内筒21と外筒32を同心状に配置してあるので、内筒21の側面からの空気の吸引力をその周方向の全周に亘って均等にでき、たとえば内筒21と外筒32とが偏心されて配置してある場合に比べて、吸引空気量が多くなり、吸引効率が向上する。
また排気筒36を外筒32の長さ方向の中間部から分岐しているので、たとえば外筒32が水平に設置されている場合に外筒の長さ方向(貫通方向)から視て排気筒36の向きを360度、所望の向きに設置できるので、排気筒36に接続する排気管4を設置しやすい。
The air separation device 17 and the air separation deceleration system 13 of the above embodiment have the following effects.
The main purpose of the air separation device 17 is to separate air from the transported object, and since air is sucked from the side surface of the inner cylinder 21, the inner diameter (capacity) of the outer cylinder 32 is reduced to form the outer cylinder 32. Even if the distance from the inner cylinder 21 in the radial direction is narrowed, the air and the transported object can be separated, which is suitable for miniaturization and easy to install. Moreover, by sucking air from the side surface of the inner cylinder 21, the conveyed object can be decelerated in the inner cylinder 21.
Further, since the air holes 26a are made into pores extending in the length direction of the inner cylinder 21, even if the rice grains touch the portion of the air holes 26a when passing through the internal space of the inner cylinder 21, the rice grains are the pores. It will move along the rice grain, making it harder for the rice grains to be damaged. In addition, an object having a shape different from that of the conveyed object may be mixed in the conveyed object, and the fragments and the like are less likely to pierce the pores, and clogging of the air hole 26a can be prevented.
Further, since the internal space of the inner cylinder 21 is provided as a passage space through which rice grains pass by inertia, the rice grains are less likely to be damaged when the air and the transported object are separated, and eventually powdery substances due to the damage of the rice grains are less likely to be generated. As a result, the amount of powdery material passing through the inside of the exhaust stack 36 is reduced.
Further, since the inner cylinder member 20 in which the inner cylinder 21 and the pair of inner flange portions 21a and 21b are one component is detachable (removable) with respect to the outer cylinder 32 in the length direction, it can be assembled. Easy to inspect. Further, since the inner cylinder 21 and the outer cylinder 32 are arranged concentrically, the suction force of air from the side surface of the inner cylinder 21 can be made uniform over the entire circumference in the circumferential direction, for example, the inner cylinder 21 and the outer cylinder. Compared with the case where the 32 is eccentrically arranged, the amount of suction air is increased and the suction efficiency is improved.
Further, since the exhaust stack 36 is branched from the middle portion in the length direction of the outer cylinder 32, for example, when the outer cylinder 32 is installed horizontally, the exhaust stack is viewed from the length direction (penetration direction) of the outer cylinder. Since the direction of 36 can be installed 360 degrees in a desired direction, it is easy to install the exhaust pipe 4 connected to the exhaust stack 36.

また空気分離減速システム13は、空気分離装置17と第一減速管路16とを備えるものであり、第一減速管路16では一次側の開口端の内径よりも二次側の開口端の内径を大きくすると共に、第一減速管路16の二次側の開口端の内径を内筒21の一次側の開口端の内径よりも小さくしてあるので、第一減速管路16の中で米粒と空気を減速させた上で、内筒21に送ることができ、そのうえ、内筒21に入った瞬間に米粒を減速させることができるので、空気分離装置17だけで所望の速度に空気と米粒を減速させる場合に比べて、空気分離装置17を小型化することができる。 Further, the air separation / deceleration system 13 includes an air separation device 17 and a first deceleration pipeline 16. In the first deceleration pipeline 16, the inner diameter of the opening end on the secondary side is larger than the inner diameter of the opening end on the primary side. The inner diameter of the opening end on the secondary side of the first deceleration pipe 16 is made smaller than the inner diameter of the opening end on the primary side of the inner cylinder 21, so that rice grains are formed in the first deceleration pipe 16. After decelerating the air, it can be sent to the inner cylinder 21, and the rice grains can be decelerated the moment they enter the inner cylinder 21, so that the air and rice grains can be sent to the desired speed with only the air separation device 17. The air separation device 17 can be downsized as compared with the case of decelerating.

また空気分離減速システム13は、第二減速管路18の第1、第2の曲がり管路40,42によって、米粒を減速させることができるので、空気分離装置17だけで所望の速度に米粒を減速させる場合に比べて、空気分離装置17および空気分離減速システム13全体を小型化することができる。なお空気分離装置17と第一、第二減速管路16、18によって米粒が減速されるので、米粒がロータリーバルブ14に衝突するときの衝撃が緩和され、米粒の損傷が防止できる。 Further, since the air separation / deceleration system 13 can decelerate the rice grains by the first and second curved pipes 40 and 42 of the second reduction line 18, the rice grains can be reduced to a desired speed only by the air separation device 17. Compared with the case of decelerating, the air separation device 17 and the air separation / deceleration system 13 as a whole can be miniaturized. Since the rice grains are decelerated by the air separation device 17 and the first and second reduction pipes 16 and 18, the impact when the rice grains collide with the rotary valve 14 is alleviated, and damage to the rice grains can be prevented.

また第1の曲がり管路40の一次側の開口端の内径を内筒21の二次側の開口端の内径よりも大きくしてあるので、たとえば第1の曲がり管路40の一次側の開口端の内径と内筒21の二次側の開口端の内径を同じにしてある場合に比べて、米粒を効果的に減速させることができ、空気分離装置17および空気分離減速システム13全体を小型化することができる。 Further, since the inner diameter of the opening end on the primary side of the first bent pipe 40 is made larger than the inner diameter of the opening end on the secondary side of the inner cylinder 21, for example, the opening on the primary side of the first bent pipe 40 Compared with the case where the inner diameter of the end and the inner diameter of the opening end on the secondary side of the inner cylinder 21 are the same, the rice grains can be effectively decelerated, and the air separation device 17 and the entire air separation deceleration system 13 can be made smaller. Can be transformed into.

上記した第一実施系形態の空気吸引式搬送機は、第一減速管路16、空気分離装置17、第二減速管路18の一次側部分を、搬送物の通過方向が水平になるように配置してあった。この場合、不測の事態、たとえば停電や運転の誤操作により、吸引装置6が停止するような事態、あるいは吸引装置6による吸引空気量が搬送物の搬送に必要な量よりも不足するような事態等が生じると、第一減速管路16、空気分離装置17、第二減速管路18の一次側部分で搬送物が溜まったままの状態になるおそれがある。この場合に、吸引装置6を駆動させても、搬送物の溜まりが解消せずに搬送不能に陥るおそれがある。そうなると、第一減速管路16、空気分離装置17、第二減速管路18を分解して、溜まった搬送物を除去しなければならない。このような事態をできるだけ避けるようにするには、次のようにすることが望ましい。 In the air suction type conveyor of the first embodiment described above, the primary side portions of the first reduction pipe line 16, the air separation device 17, and the second reduction speed pipe line 18 are set so that the passing direction of the conveyed object is horizontal. It was placed. In this case, an unexpected situation, for example, a situation in which the suction device 6 is stopped due to a power failure or an erroneous operation, or a situation in which the amount of suction air by the suction device 6 is insufficient for transporting the transported object, etc. If this occurs, there is a risk that the conveyed items will remain accumulated in the primary side portions of the first speed reduction line 16, the air separation device 17, and the second speed reduction line 18. In this case, even if the suction device 6 is driven, there is a possibility that the accumulation of the conveyed object is not eliminated and the conveyed object cannot be conveyed. In that case, the first speed reduction line 16, the air separation device 17, and the second speed reduction line 18 must be disassembled to remove the accumulated transported material. To avoid such a situation as much as possible, it is desirable to do the following.

第二実施形態の空気吸引式搬送機は図6、7に示すように、空気分離減速システム13について第一減速管路16、空気分離装置17、第二減速管路18の一次側部分を、一次側に対して二次側を低くなる状態にしてあることを特徴とする。より詳しくは以下の通りである。 As shown in FIGS. 6 and 7, the air suction type conveyor of the second embodiment has the air separation / deceleration system 13 having the first deceleration line 16, the air separation device 17, and the primary side portion of the second deceleration line 18. It is characterized in that the secondary side is set lower than the primary side. More details are as follows.

第一減速管路16の一次側の開口端を接続する搬送管路本体12は、その全長の中間部に水平に配置される直管12aと、その全長の二次側の端部において当該直管12aの二次側の開口端に接続する曲がり管12bとを備えるものである。この曲がり管12bは、くの字状であって、二本の直管部12c、12dと、二本の直管部12c、12dを90度未満の角度で屈曲する形状に滑らかに接続する湾曲管部12eとを備える。また二本の直管部12c、12dのうち一本12cは、直管12aの二次側開口端に接続され、もう一本12dはその二次側開口端が斜め下方に向かうように傾斜して配置される。 The transport line main body 12 connecting the opening end on the primary side of the first deceleration line 16 has a straight pipe 12a horizontally arranged in the middle of the entire length and the straight pipe 12a at the end on the secondary side of the total length. It is provided with a bent pipe 12b connected to an open end on the secondary side of the pipe 12a. The bent pipe 12b has a dogleg shape and is curved to smoothly connect the two straight pipe portions 12c and 12d and the two straight pipe portions 12c and 12d into a shape that bends at an angle of less than 90 degrees. It is provided with a pipe portion 12e. Further, one of the two straight pipe portions 12c and 12d, 12c, is connected to the secondary opening end of the straight pipe 12a, and the other 12d is inclined so that the secondary opening end is obliquely downward. Is placed.

第二減速管路18は、搬送管路本体12の二次側の端部における曲がり管12bと同じように、くの字状に曲がる第1の管路40としての曲がり管路40と、第1の曲がり管路40の長さ方向に延長する第2の管路42としての直管路とを備える。第1の曲がり管路40は、二本の直管部40a、40aと、二本の直管部40a、40aを90度未満の角度で屈曲する形状に接続する湾曲管部40bとを備える。この例では第1の曲がり管路40と第2の直管路42とはフランジ部同士で接合されている。
第一減速管路16は、一次側の開口端の内径に比べて二次側の開口端の内径を大きくしてあるが、直管である。
また空気分離装置17の内筒21は、その長さ方向の全長に亘って内径が等しいものであるが、これも直管である。
The second deceleration line 18 has a bent line 40 as a first line 40 that bends in a dogleg shape, and a first line, like the bent line 12b at the secondary end of the transport line body 12. It is provided with a straight pipe as a second pipe 42 extending in the length direction of the curved pipe 40 of 1. The first curved pipeline 40 includes two straight pipe portions 40a and 40a and a curved pipe portion 40b that connects the two straight pipe portions 40a and 40a in a shape that bends at an angle of less than 90 degrees. In this example, the first curved pipe line 40 and the second straight pipe line 42 are joined to each other by flanges.
The first reduction pipe line 16 is a straight pipe, although the inner diameter of the opening end on the secondary side is larger than the inner diameter of the opening end on the primary side.
Further, the inner cylinder 21 of the air separation device 17 has the same inner diameter over the entire length in the length direction thereof, but this is also a straight pipe.

そして第一減速管路16と空気分離装置17の内筒21と第二減速管路18の一次側の直管部40aは、互いの貫通方向を、搬送管路本体12の曲がり管12bにおける二次側の直管部12dの延長線方向に対して一直線になるように配置される。したがって第一減速管路16と空気分離装置17の内筒21と第二減速管路18の一次側の直管部40aの貫通方向は、水平方向に対して傾斜しており、その傾斜角度の望ましい範囲は、搬送物の安息角度よりも大きく、水平方向に対して30°以上90°未満の角度である。またこのように傾斜していることから、内筒21はその一次側の開口端(入口22)に対して二次側の開口端(出口24)が低くなっている。また第二減速管路18の二次側の直管部40aは鉛直方向に向かうように配置される。
なお図示しないが、搬送管路本体の曲がり管は、二本の直管部を湾曲管部によって90度の角度で屈曲する形状に接続するものとし、二次側の直管部がその貫通方向を鉛直方向に一致させるようにしても良い。この場合は、上記した第一減速管路と空気分離装置の内筒をその貫通方向が鉛直方向になるようにして配置すれば、当該貫通方向が鉛直方向に対して傾斜している場合と同様に、内筒はその一次側の開口端に対して二次側の開口端を低くしてあることになる。なおこの場合、第二減速管路は直管路とする。
Then, the straight pipe portion 40a on the primary side of the first reduction pipe line 16, the inner cylinder 21 of the air separation device 17, and the second speed reduction pipe 18 has a penetrating direction with each other in the curved pipe 12b of the transport pipe main body 12. It is arranged so as to be in a straight line with respect to the extension line direction of the straight pipe portion 12d on the next side. Therefore, the penetrating direction of the straight pipe portion 40a on the primary side of the first speed reduction pipe line 16, the inner cylinder 21 of the air separation device 17, and the second speed reduction pipe line 18 is inclined with respect to the horizontal direction, and the inclination angle thereof. The desired range is an angle larger than the rest angle of the transported object, which is 30 ° or more and less than 90 ° with respect to the horizontal direction. Further, since the inner cylinder 21 is inclined in this way, the opening end (outlet 24) on the secondary side of the inner cylinder 21 is lower than the opening end (inlet 22) on the primary side. Further, the straight pipe portion 40a on the secondary side of the second reduction pipe line 18 is arranged so as to face in the vertical direction.
Although not shown, the curved pipe of the main body of the transport pipeline shall be connected to a shape in which two straight pipe portions are bent at an angle of 90 degrees by a curved pipe portion, and the straight pipe portion on the secondary side is in the penetrating direction. May be matched in the vertical direction. In this case, if the first reduction control line and the inner cylinder of the air separation device are arranged so that the penetrating direction is the vertical direction, the penetrating direction is the same as the case where the penetrating direction is inclined with respect to the vertical direction. In addition, the inner cylinder has a lower opening end on the secondary side than the opening end on the primary side. In this case, the second deceleration pipeline shall be a straight pipeline.

空気分離装置の排気筒36は、外筒32の側面から下方に向かって突出し、より詳しくは内管21の貫通方向に対して直交するように下方に向かって突出している。 The exhaust stack 36 of the air separation device projects downward from the side surface of the outer cylinder 32, and more specifically, protrudes downward so as to be orthogonal to the penetrating direction of the inner pipe 21.

第二実施形態の空気分離減速システム13の場合、吸引装置6が停止するような不測の事態が生じても、第一減速管路16と空気分離装置17の内筒21と第二減速管路18の一次側の直管部40aに関して、二次側を一次側よりも低くしてあるので、搬送物は自然と落下し易くなり、特に貫通方向の傾斜角度を安息角よりも急にしてあれば必然的に落下することから、第一減速管路16と空気分離装置17の内筒21と第二減速管路18の一次側の直管部40aに搬送物が溜まり難くなる。 In the case of the air separation / deceleration system 13 of the second embodiment, even if an unexpected situation occurs such that the suction device 6 stops, the inner cylinder 21 and the second deceleration pipe of the first deceleration pipe 16 and the air separation device 17 occur. With respect to the straight pipe portion 40a on the primary side of 18, since the secondary side is lower than the primary side, the transported object naturally falls easily, and in particular, the inclination angle in the penetration direction should be steeper than the rest angle. If this happens, it will inevitably fall, so that it becomes difficult for the conveyed material to collect in the straight pipe portion 40a on the primary side of the inner cylinder 21 of the first reduction pipe line 16, the air separation device 17, and the second reduction speed pipe line 18.

本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において適宜変更可能である。
たとえば各閉鎖部34は、上記実施形態では、二枚の板である、各フランジ部が重なり合う二重壁構造であるが、本発明ではこれに限らず、一枚の壁構造であっても良い。より具体的な例としては以下の1)、2)の通りである。
1)一対の内フランジ部21a,21bは、上記実施形態では板状であったが、本発明ではこれに限らず、たとえば板の厚み方向に多数の孔が形成されたものであっても良く、この場合、一対の内フランジ部21a,21bには閉鎖部としての機能がほぼ無くなるので、一対の閉鎖部は、第一減速管路16の二次側のフランジ部16cと、第二減速管路18の一次側のフランジ部18aとによって形成される。
2)一対の内フランジ部21a,21bは、上記実施形態では外筒32の中に嵌り込む構成であったが、本発明ではこれに限らず、たとえば一対の内フランジ部21a,21bの外周を外筒32に溶着等して一体化する構成等である。このようにすれば空気分離装置17は、第一、第二減速管路16,18の一部を含まない構成となり、上記実施形態の構成、つまり第一、第二減速管路16,18の一部を含む構成とは相違するものとなる。
また一対の内フランジ部21a,21bは、上記実施形態では内筒21と一体であり、一部品としての内筒部材20の一部を構成していたが、本発明ではこれに限らず、少なくとも一方の内フランジ部が内筒21とは別部品であっても良いし、少なくとも一方の内フランジ部が外筒32と一体になり、外筒容器30の一部を構成しても良い。このようにすれば、内筒21は単独または少なくとも一方の内フランジ部と一緒に、外筒32に対してその長さ方向に着脱可能である。
また第二減速管路18は上記第一実施形態では2か所で曲がる構成、つまり第1、第2の曲がり管路40,42で構成しているが、本発明はこれに限らず、3ヶ所以上であっても良い。
また搬送物としての粒状物は、上記実施形態では米粒であったが、本発明ではこれに限らずその他に、米粒と同等形状であれば、食品の原料となる麦、大豆、小豆、工業製品の原料となるプラスチックペレット等が挙げられる。
The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit of the present invention.
For example, in the above embodiment, each closing portion 34 has a double wall structure in which the flange portions overlap each other, which is two plates, but the present invention is not limited to this, and a single wall structure may be used. .. More specific examples are as follows 1) and 2).
1) The pair of inner flange portions 21a and 21b have a plate shape in the above embodiment, but the present invention is not limited to this, and for example, a large number of holes may be formed in the thickness direction of the plate. In this case, since the pair of inner flange portions 21a and 21b have almost no function as a closing portion, the pair of closing portions are the flange portion 16c on the secondary side of the first reduction pipe line 16 and the second reduction pipe. It is formed by a flange portion 18a on the primary side of the path 18.
2) The pair of inner flange portions 21a and 21b are configured to be fitted into the outer cylinder 32 in the above embodiment, but the present invention is not limited to this, and for example, the outer circumferences of the pair of inner flange portions 21a and 21b are fitted. The structure is such that it is integrated with the outer cylinder 32 by welding or the like. In this way, the air separation device 17 has a configuration that does not include a part of the first and second reduction pipes 16 and 18, and the configuration of the above embodiment, that is, the first and second reduction pipes 16 and 18. It will be different from the configuration including a part.
Further, the pair of inner flange portions 21a and 21b are integrated with the inner cylinder 21 in the above embodiment and form a part of the inner cylinder member 20 as one component, but the present invention is not limited to this, and at least One inner flange portion may be a separate part from the inner cylinder 21, or at least one inner flange portion may be integrated with the outer cylinder 32 to form a part of the outer cylinder container 30. In this way, the inner cylinder 21 can be attached to and detached from the outer cylinder 32 in the length direction thereof, either alone or together with at least one inner flange portion.
Further, the second deceleration line 18 is configured to bend at two places in the first embodiment, that is, is composed of the first and second bent lines 40 and 42, but the present invention is not limited to this. It may be more than one place.
Further, the granular material as the transported product was rice grains in the above embodiment, but is not limited to this in the present invention. Examples thereof include plastic pellets used as a raw material for.

1 ホッパー
2 搬送管路
3 貯留タンク
4 排気管
5 集塵装置
6 吸引装置
11 シャッター装置
11a 分岐管(合流管)
11b 本管
11c 支管(外気導入部収納管)
11p 調整操作部材
11q 外気導入管
11r 塞ぎ部
11s 調整ツマミ
12 搬送管路本体
12a 直管
12b 曲がり管
13 空気分離減速システム
14 ロータリーバルブ
14a ケーシング
14b 繰出し羽根
14c 回転軸
14d 羽根
14m モータ
16 第一減速管路
16a 第一減速管路本体
16b,c フランジ部
17 空気分離装置
18 第二減速管路
18a フランジ部
20 内筒部材
21 内筒
21a,b 内フランジ部
22 入口
24 搬送物の排出口
26 空気の排気口
26a 空気孔
30 外筒容器
32 外筒
32a,b 外フランジ部
34 閉鎖部
36 排気筒
40 第1の曲がり管路(第1の管路)
40a 直管部
40b 湾曲管部
42 第2の曲がり管路(第2の管路)
42a 直管部
42b 湾曲管部
1 Hopper 2 Conveyance pipeline 3 Storage tank 4 Exhaust pipe 5 Dust collector 6 Suction device 11 Shutter device 11a Branch pipe (merging pipe)
11b Main pipe 11c Branch pipe (outside air introduction part storage pipe)
11p Adjustment operation member 11q Outside air introduction pipe 11r Closure part 11s Adjustment knob 12 Conveyance pipeline body 12a Straight pipe 12b Bent pipe 13 Air separation / reduction system 14 Rotary valve 14a Casing 14b Feeding blade 14c Rotating shaft 14d Blade 14m Motor 16 Road 16a First speed reduction line main body 16b, c Flange part 17 Air separator 18 Second speed reduction line 18a Flange part 20 Inner cylinder member 21 Inner cylinder 21a, b Inner flange part 22 Inlet 24 Outlet of air Exhaust port 26a Air hole 30 Outer cylinder container 32 Outer cylinder 32a, b Outer flange part 34 Closure part 36 Exhaust pipe 40 First bent pipe (first pipe)
40a Straight pipe part 40b Curved pipe part 42 Second curved pipe (second pipe)
42a Straight pipe part 42b Curved pipe part

Claims (3)

空気分離装置と、空気分離装置の内筒の二次側の開口端に接続する第二減速管路と、空気分離装置の内筒の一次側の開口端に接続する第一減速管路を備え、
空気分離装置は、内筒と、内筒をその口径方向外側に間隔をあけて取り囲む外筒と、外筒の長さ方向の両側で外筒と内筒の口径方向の間を閉鎖する一対の閉鎖部と、外筒の長さ方向の中間部から分岐すると共に吸引装置側へ接続する排気筒とを備え、
内筒は、その一次側の開口端を搬送物と空気の入口とし、その二次側の開口端を搬送物の排出口とし、その側面には空気の排気口となる複数の空気孔を備えると共に、その内部空間を搬送物が慣性で通過する通過空間にするものであり、
第二減速管路は、内筒の長さ方向に対して湾曲する方向に延長する第1の曲がり管路と、第1の曲がり管路の長さ方向に対して湾曲する方向に延長する第2の曲がり管路とを備え
第1の曲がり管路における一次側の開口端の内径は、搬送物を減速させるために内筒の二次側の開口端の内径よりも大きいものであり、
空気分離装置の一次側及び二次側の開口端に、口径方向の外側に張り出す内フランジ部を備え、各々の内フランジ部は、空気分離装置の閉鎖部としても機能することを特徴とする空気分離減速システム。
It is provided with an air separation device, a second reduction line connected to the opening end on the secondary side of the inner cylinder of the air separation device, and a first reduction line connected to the opening end on the primary side of the inner cylinder of the air separation device. ,
The air separation device consists of an inner cylinder, an outer cylinder that surrounds the inner cylinder at intervals on the outer side in the radial direction, and a pair that closes between the outer cylinder and the inner cylinder in the radial direction on both sides in the length direction of the outer cylinder. It is equipped with a closed part and an exhaust pipe that branches from the middle part in the length direction of the outer cylinder and connects to the suction device side.
The inner cylinder is provided with a plurality of air holes serving as air outlets on the side surface thereof, with the opening end on the primary side serving as an inlet for the transported object and air, and the opening end on the secondary side serving as an exhaust port for the transported object. At the same time, the internal space is made into a passing space through which the conveyed object passes by inertia.
The second deceleration pipeline has a first curved pipeline extending in a bending direction with respect to the length direction of the inner cylinder, and a first bending pipeline extending in a bending direction with respect to the length direction of the first curved pipeline. Equipped with 2 curved pipelines,
The inner diameter of the opening end on the primary side in the first curved pipeline is larger than the inner diameter of the opening end on the secondary side of the inner cylinder in order to decelerate the transported object.
The opening ends on the primary and secondary sides of the air separation device are provided with inner flange portions that project outward in the radial direction, and each inner flange portion also functions as a closing portion of the air separation device. Air separation deceleration system.
空気分離装置の内筒の一次側の開口端に接続する第一減速管路を備え、
第二減速管路の一次側部分、第一減速管路、空気分離装置の内筒は、一次側に対して二次側を低くしてあると共に、水平方向に対して傾斜しており、
その傾斜角度は搬送物の安息角度よりも大きく、水平方向に対して30°以上90°未満の角度であることを特徴とする請求項1記載の空気分離減速システム。
It is equipped with a first reduction line that connects to the opening end on the primary side of the inner cylinder of the air separation device.
The primary side portion of the second reduction pipe, the first reduction pipe, and the inner cylinder of the air separation device are lowered on the secondary side with respect to the primary side and are inclined with respect to the horizontal direction.
The air separation deceleration system according to claim 1, wherein the inclination angle is larger than the rest angle of the transported object and is an angle of 30 ° or more and less than 90 ° with respect to the horizontal direction.
空気分離装置と、空気分離装置の内筒の一次側の開口端に接続する第一減速管路と、空気分離装置の内筒の二次側の開口端に接続する第二減速管路を備え、
空気分離装置は、内筒と、内筒をその口径方向外側に間隔をあけて取り囲む外筒と、外筒の長さ方向の両側で外筒と内筒の口径方向の間を閉鎖する一対の閉鎖部と、外筒の長さ方向の中間部から分岐すると共に吸引装置側へ接続する排気筒とを備え、
内筒は、その一次側の開口端を搬送物と空気の入口とし、その二次側の開口端を搬送物の排出口とし、その側面には空気の排気口となる複数の空気孔を備えると共に、その内部空間を搬送物が慣性で通過する通過空間にするものであり、
空気分離装置の一次側及び二次側の開口端に、口径方向の外側に張り出す内フランジ部を備え、各々の内フランジ部は、空気分離装置の閉鎖部としても機能するものであり、
第二減速管路の一次側部分、第一減速管路、空気分離装置の内筒は、一次側に対して二次側を低くしてあると共に、水平方向に対して傾斜しており、
その傾斜角度は搬送物の安息角度よりも大きく、水平方向に対して30°以上90°未満の角度であることを特徴とする空気分離減速システム。
It is provided with an air separation device, a first reduction line connected to the opening end on the primary side of the inner cylinder of the air separation device, and a second reduction line connected to the opening end on the secondary side of the inner cylinder of the air separation device. ,
The air separation device consists of an inner cylinder, an outer cylinder that surrounds the inner cylinder at intervals on the outer side in the radial direction, and a pair that closes between the outer cylinder and the inner cylinder in the radial direction on both sides in the length direction of the outer cylinder. It is equipped with a closed part and an exhaust pipe that branches from the middle part in the length direction of the outer cylinder and connects to the suction device side.
The inner cylinder is provided with a plurality of air holes serving as air outlets on the side surface thereof, with the opening end on the primary side serving as an inlet for the transported object and air, and the opening end on the secondary side serving as an exhaust port for the transported object. At the same time, the internal space is made into a passing space through which the conveyed object passes by inertia.
The opening ends on the primary and secondary sides of the air separation device are provided with inner flange portions that project outward in the radial direction, and each inner flange portion also functions as a closing portion of the air separation device.
The primary side portion of the second reduction pipe, the first reduction pipe, and the inner cylinder of the air separation device are lowered on the secondary side with respect to the primary side and are inclined with respect to the horizontal direction.
An air separation deceleration system characterized in that the inclination angle is larger than the rest angle of the transported object and is an angle of 30 ° or more and less than 90 ° with respect to the horizontal direction.
JP2017084154A 2016-01-18 2017-04-21 Air separation deceleration system Active JP6839598B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016007298 2016-01-18
JP2016007298 2016-01-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016058145A Division JP6185108B2 (en) 2016-01-18 2016-03-23 Air separation reduction system

Publications (2)

Publication Number Publication Date
JP2017128452A JP2017128452A (en) 2017-07-27
JP6839598B2 true JP6839598B2 (en) 2021-03-10

Family

ID=59395440

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016058145A Active JP6185108B2 (en) 2016-01-18 2016-03-23 Air separation reduction system
JP2017084154A Active JP6839598B2 (en) 2016-01-18 2017-04-21 Air separation deceleration system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016058145A Active JP6185108B2 (en) 2016-01-18 2016-03-23 Air separation reduction system

Country Status (1)

Country Link
JP (2) JP6185108B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422620B (en) * 2020-04-09 2021-09-28 潍坊高滨智能科技有限公司 Rotary hybrid carrying system and carrying method thereof
KR102367156B1 (en) * 2020-06-17 2022-02-23 강선행 Air intake device for car

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4634535Y1 (en) * 1967-09-26 1971-11-29
JPS5445669Y2 (en) * 1973-03-31 1979-12-27
JPS6115233U (en) * 1984-06-30 1986-01-29 新日本製鐵株式会社 Gas venting device from powder transport pipe
JP5236999B2 (en) * 2007-08-23 2013-07-17 クマクラ工業株式会社 Transport pipe for liquid separation, and pneumatic transport system equipped with the transport pipe for liquid separation

Also Published As

Publication number Publication date
JP2017128442A (en) 2017-07-27
JP6185108B2 (en) 2017-08-23
JP2017128452A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP7041984B2 (en) Pneumatic carrier
FI123720B (en) Separation device and method in connection with a pneumatic material transport system
JP6839598B2 (en) Air separation deceleration system
US20080093391A1 (en) Feeder assembly for bulk solids
AU2018293565B2 (en) Centrifugal gas separator
US20180282081A1 (en) Grain conveying apparatus using air
JP6170189B2 (en) Shutter device for air suction type conveyor
CN103213845A (en) Novel continuous dense-phase pneumatic conveyor
US20120107059A1 (en) Apparatus and method for dispensing flowable solid material
WO1982000451A1 (en) Grain handling apparatus with improved cyclone separator
JP5420220B2 (en) Double damper type continuous suction type pneumatic transport device
CN203212012U (en) Novel continuous dense-phase pneumatic conveying device
US20120121399A1 (en) air vacuum pump for a particulate loader and transfer apparatus
US20140270996A1 (en) Lid assembly for a vacuum receiver vessel
US6206247B1 (en) Rotary valve for particulate materials
JP2006240764A (en) Granular material feeding device, and granular material carrying system
JP7249618B2 (en) Air suction transport device
KR200412437Y1 (en) Bulk Cargo Suction Discharge Pipe System.
JP7417323B1 (en) golf ball throwing device
JP4743005B2 (en) Dust recovery equipment and dust recovery method
CN215207364U (en) Discharging device and powder conveying system
KR101298979B1 (en) solid matter transferring apparatus
JP7078976B2 (en) Air suction type transfer device
WO2001051393A1 (en) Feed devices
CN207482897U (en) Vacuum feeding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6839598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250