JP2017128442A - Air separation deceleration system - Google Patents

Air separation deceleration system Download PDF

Info

Publication number
JP2017128442A
JP2017128442A JP2016058145A JP2016058145A JP2017128442A JP 2017128442 A JP2017128442 A JP 2017128442A JP 2016058145 A JP2016058145 A JP 2016058145A JP 2016058145 A JP2016058145 A JP 2016058145A JP 2017128442 A JP2017128442 A JP 2017128442A
Authority
JP
Japan
Prior art keywords
air
inner cylinder
pipe
cylinder
opening end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016058145A
Other languages
Japanese (ja)
Other versions
JP6185108B2 (en
Inventor
栄一 成川
Eiichi Narukawa
栄一 成川
敏晴 田中
Toshiharu Tanaka
敏晴 田中
武雄 堀
Takeo Hori
武雄 堀
功次 能島
Koji Nojima
功次 能島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwa Seiki Corp
Original Assignee
Taiwa Seiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwa Seiki Corp filed Critical Taiwa Seiki Corp
Publication of JP2017128442A publication Critical patent/JP2017128442A/en
Application granted granted Critical
Publication of JP6185108B2 publication Critical patent/JP6185108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate installation and reduce a size of an air separation deceleration device for separating a transported object and air as long as possible.SOLUTION: An air separation device of an air suction type transport machine comprises: an inner cylinder; an outer cylinder which surrounds the inner cylinder with a gap in outside of a bore direction; a pair of closing parts for closing a space between the outer cylinder and the bore direction of the inner cylinder on both sides of a longitudinal direction of the outer cylinder; and a chimney which is branched from an intermediate part in the longitudinal direction of the outer cylinder and connected to a suction device side. The inner cylinder is configured so that an opening end on a primary side is an inlet of a transported object and air, an opening end on a secondary side is an outlet of the transported object, and plural air holes which are outlets of air are provided on a side surface of the inner cylinder, and an inner space of the inner cylinder is a passage space in which the transported object passes by inertia.SELECTED DRAWING: Figure 2

Description

本発明は、搬送路の空気を吸い込むことにより気流を発生させ、その気流により搬送物を搬送する空気吸引式搬送機の空気分離装置、およびその空気分離装置を用いた空気分離減速システムに関する。   The present invention relates to an air separation device of an air suction type conveying machine that generates an air flow by sucking air in a conveyance path and conveys a conveyed product by the air flow, and an air separation speed reduction system using the air separation device.

空気吸引式搬送機の一例として、エア搬送路と、エア搬送路の二次側の開口端に対して一次側の開口端を接続する空気分離装置としての搬送物回収部と、空気分離装置のうち空気の排気口側に接続する吸引機構とを備えるものが知られている(特許文献1)。なお、一次側とは空気や搬送物が入ってくる側であり、二次側とは空気や搬送物が出ていく側である。   As an example of an air suction type transporter, an air transport path, a transported material recovery unit as an air separation device that connects an open end on the primary side to an open end on the secondary side of the air transport path, Among them, there is known one having a suction mechanism connected to the air exhaust port side (Patent Document 1). Note that the primary side is the side where air and transported goods enter, and the secondary side is the side where air and transported goods exit.

特許文献1での空気分離装置は、エア搬送路の二次側の開口端に対して一次側の開口端を接続する回収ガイドと、回収ガイドを収容する大容量の受容ホッパーと、受容ホッパーの内部空間を回収ガイドの上側で上下に仕切る流出防止フィルタと、受容ホッパーの下端側に接続するロータリーバルブとを備えるものである。   An air separation device disclosed in Patent Document 1 includes a recovery guide that connects a primary side opening end to a secondary side opening end of an air conveyance path, a large-capacity receiving hopper that stores the recovery guide, and a receiving hopper An outflow prevention filter that partitions the internal space vertically above the collection guide and a rotary valve connected to the lower end side of the receiving hopper are provided.

特開2006−232546号公報JP 2006-232546 A

空気分離装置は、搬送物と空気の分離をすることが主目的であるが、特許文献1に開示された空気分離装置は、搬送物と空気の分離を主目的とした上で、搬送物の損傷防止(=搬送物の減速)を主目的と同程度に重要な目的としている。そのため特許文献1に開示された空気分離装置は、回収ガイドを水平方向から下方へ向かって円弧状に湾曲させると共に、円弧状の回収ガイドの内周面部分を主に下方に開口する構成を採用しており、搬送物の損傷を防止するためには、回収ガイドを大型化せねばならなかった。そのうえ回収ガイドとは別に流出防止フィルタを上側に配置してあるので、回収ガイドに比べて受容ホッパーを何倍も大容量にしなければならなかった。このような大容量、つまり大型の受容ホッパーは、大きな空間を占めるので、設置する際の制約が大きい。   The main purpose of the air separation device is to separate the conveyed product from the air. However, the air separation device disclosed in Patent Document 1 is mainly intended to separate the conveyed product from the air and The purpose of preventing damage (= deceleration of the conveyed product) is as important as the main purpose. Therefore, the air separation device disclosed in Patent Document 1 adopts a configuration in which the collection guide is curved in an arc shape from the horizontal direction to the lower side and the inner peripheral surface portion of the arc-shaped collection guide is mainly opened downward. In order to prevent damage to the conveyed product, the collection guide had to be enlarged. In addition, since the outflow prevention filter is arranged on the upper side separately from the collection guide, the receiving hopper has to be many times larger in capacity than the collection guide. Such a large capacity, that is, a large receiving hopper occupies a large space, and thus there are great restrictions on installation.

本発明は上記実情を考慮してなされたもので、その目的は、搬送物と空気を分離するための空気分離装置をできるだけ小型化できるようにし、設置し易くすることである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to miniaturize an air separation apparatus for separating a conveyed product and air as much as possible and to facilitate installation.

本発明の空気吸引式搬送機の空気分離装置は、内筒と、内筒をその口径方向外側に間隔をあけて取り囲む外筒と、外筒の長さ方向の両側で外筒と内筒の口径方向の間を閉鎖する一対の閉鎖部と、外筒の長さ方向の中間部から分岐すると共に吸引装置側へ接続する排気筒とを備える。そして内筒は、その一次側の開口端を搬送物と空気の入口とし、その二次側の開口端を搬送物の排出口とし、その側面には空気の排気口となる複数の空気孔を備えると共に、その内部空間を搬送物が慣性で通過する通過空間にする。   The air separation device of the air suction type transporter of the present invention includes an inner cylinder, an outer cylinder that surrounds the inner cylinder with a gap on the outer side in the radial direction, and an outer cylinder and an inner cylinder on both sides in the length direction of the outer cylinder. A pair of closing portions for closing between the caliber directions and an exhaust tube branching from an intermediate portion in the length direction of the outer tube and connected to the suction device side are provided. The inner cylinder has an opening on the primary side as an inlet for the conveyed object and air, an opening end on the secondary side as an outlet for the conveyed object, and a plurality of air holes serving as air outlets on the side surface. In addition, the internal space is made a passing space through which the conveyed product passes by inertia.

空気孔は形状を問わないが、搬送物をできるだけ損傷しないようにするには次のようにすることが望ましい。
すなわち空気孔は内筒の長さ方向に延長する細孔にすることである。
The shape of the air hole is not limited, but it is desirable to do the following in order to prevent damage to the conveyed product as much as possible.
That is, the air hole is a hole extending in the length direction of the inner cylinder.

内筒と外筒とは、互いの中心が一致するか否か、あるいは一体であるか否かを問わないが、内筒の側面からの空気の吸引力をその周方向の全周に亘って均等にしたり、組立や点検をし易くしたりするには次のようにすることが望ましい。
すなわち、内筒と外筒を同心状に配置する内フランジ部を、内筒と外筒の互いの口径方向の間であって互いの長さ方向の複数個所に備え、内筒は単独または少なくとも一つの内フランジ部と一緒に、外筒に対してその長さ方向に着脱可能であることである。
It does not matter whether the inner cylinder and the outer cylinder coincide with each other or are integrated, but the air suction force from the side surface of the inner cylinder extends over the entire circumference in the circumferential direction. In order to make it even or to facilitate assembly and inspection, it is desirable to do the following.
That is, the inner flange portion that concentrically arranges the inner cylinder and the outer cylinder is provided at a plurality of locations in the length direction between the inner cylinder and the outer cylinder, and the inner cylinder is independent or at least Along with one inner flange portion, it is detachable in the length direction with respect to the outer cylinder.

内筒は、その貫通方向を問わないが、不測の事態が生じても、内筒の中に搬送物が溜まり難くするには、次のようにすることが望ましい。
すなわち、内筒はその一次側の開口端に対して二次側の開口端を低くしてあることである。また内筒は、水平方向に対して傾斜していることである。
The inner cylinder may be penetrated in any direction. However, in order to make it difficult for the conveyed product to accumulate in the inner cylinder even if an unexpected situation occurs, it is desirable to do the following.
That is, the inner cylinder has a secondary side open end that is lower than the primary side open end. The inner cylinder is inclined with respect to the horizontal direction.

空気分離装置は内筒および外筒の長さに応じて搬送物を減速させることができるが、搬送物の減速効果を高めるには空気分離装置だけでなく、空気分離装置以外の減速装置を組み合わせた空気分離減速システムを用いることである。
すなわち空気分離減速システムの一例は、空気分離装置と、内筒の一次側の開口端に接続する第一減速管路を備えるものである。そして第一減速管路は、その一次側の開口端の内径に比べてその二次側の開口端の内径を大きくすると共に、その二次側の開口端の内径を内筒の一次側の開口端の内径よりも小さくしてあることである。
The air separation device can decelerate the conveyed product according to the length of the inner cylinder and the outer cylinder, but not only the air separation device but also a decelerator other than the air separation device is combined to enhance the deceleration effect of the conveyed product Use an air separation deceleration system.
That is, an example of the air separation speed reduction system includes an air separation device and a first speed reduction pipeline connected to the opening end on the primary side of the inner cylinder. The first reduction pipe has a larger inner diameter at the opening end on the secondary side than the inner diameter at the opening end on the primary side, and the inner diameter of the opening end on the secondary side is larger than the inner diameter of the inner cylinder. This is smaller than the inner diameter of the end.

また空気分離減速システムの他の例は、空気分離装置と、内筒の二次側の開口端に接続する第二減速管路を備えるものである。そして第二減速管路は、内筒の長さ方向に対して湾曲する方向に延長する第1の曲がり管路と、第1の曲がり管路の長さ方向に対して湾曲する方向に延長する第2の曲がり管路とを備えるものである。   In addition, another example of the air separation speed reduction system includes an air separation device and a second speed reduction pipe line connected to the opening end on the secondary side of the inner cylinder. The second deceleration conduit extends in a direction curved with respect to the length direction of the first bent pipeline and a first curved pipeline that extends in a direction curved with respect to the length direction of the inner cylinder. And a second bent pipeline.

第1の曲がり管路の内径と、内筒の内径との関係は問わないが、次のようにすることが望ましい。
すなわち、第1の曲がり管路における一次側の開口端の内径は、内筒の二次側の開口端の内径よりも大きくすることである。
The relationship between the inner diameter of the first bent pipe line and the inner diameter of the inner cylinder is not questioned, but it is desirable to do as follows.
That is, the inner diameter of the primary side opening end in the first bent pipe is to be larger than the inner diameter of the secondary side opening end of the inner cylinder.

本発明の空気分離装置によれば、内筒に突入した搬送物と空気のうち空気は、内筒の側面の排気口から、内筒と外筒の間の空間部、排気筒を順次へて吸引装置へ向かう。いっぽう搬送物は、内筒の側面から空気が吸引されることから減速して、その減速した勢い(慣性)で内筒の内部空間を通過する。本発明の空気分離装置はこのような構成であるから、外筒の内径(容量)を小さくして、外筒と内筒との口径方向の間隔を狭くしても、空気と搬送物を分離することができ、小型化に適し、設置し易いものである。また排気筒を外筒の長さ方向の中間部から分岐しているので、たとえば外筒が水平に設置されている場合に外筒の長さ方向(貫通方向)から視て排気筒の向きを360度、所望の向きに設置できるので、排気筒に接続する管を設置しやすい。   According to the air separation device of the present invention, air out of the transported object and air that has entered the inner cylinder passes through the space between the inner cylinder and the outer cylinder, and the exhaust cylinder sequentially from the exhaust port on the side surface of the inner cylinder. Head to the suction device. On the other hand, the conveyed product is decelerated because air is sucked from the side surface of the inner cylinder, and passes through the inner space of the inner cylinder with the reduced momentum (inertia). Since the air separation device of the present invention has such a configuration, even if the inner cylinder (capacity) of the outer cylinder is reduced and the gap between the outer cylinder and the inner cylinder in the aperture direction is reduced, the air and the conveyed product are separated. It is suitable for downsizing and easy to install. In addition, since the exhaust tube is branched from the middle portion in the length direction of the outer tube, for example, when the outer tube is installed horizontally, the direction of the exhaust tube can be changed as viewed from the length direction (through direction) of the outer tube. Since it can be installed in a desired direction at 360 degrees, it is easy to install a pipe connected to the exhaust stack.

また空気孔を内筒の長さ方向に延長する細孔にすれば、内筒の内部空間を通過するときに搬送物が空気孔の部分に触れたとしても、搬送物が細孔に沿って移動するようになり、搬送物が損傷しづらくなる。また搬送物とは相違する形状の物が搬送物の中に混入していることもあり、その破片等が細孔に刺さり難くなり、空気孔の目詰りの防止が出来る。   In addition, if the air hole is made into a fine hole extending in the length direction of the inner cylinder, even if the conveyed product touches the air hole portion when passing through the inner space of the inner cylinder, the conveyed object is along the fine hole. It will move, making it difficult to damage the conveyed product. In addition, an object having a shape different from that of the conveyed object may be mixed in the conveyed object, and it is difficult for the fragments and the like to be stuck in the pores, and clogging of the air holes can be prevented.

また内筒を単独または少なくとも一方の内フランジ部と一緒に、外筒に対してその長さ方向に着脱可能にすれば、組立や点検が容易になる。また内筒と外筒を同心状に配置する内フランジ部を、内筒と外筒の互いの口径方向の間であって互いの長さ方向の複数個所に備えるものであれば、内筒の側面からの空気の吸引力をその周方向の全周に亘って均等にできるので、たとえば内筒と外筒とが偏心されて配置してある場合に比べて、吸引空気量が多くなり、吸引効率が向上する。   Further, if the inner cylinder is made detachable in the length direction of the outer cylinder alone or together with at least one inner flange portion, assembly and inspection are facilitated. Moreover, if the inner flange part which arrange | positions an inner cylinder and an outer cylinder concentrically is provided between the mutual caliber directions of an inner cylinder and an outer cylinder, and is provided in several places of a mutual length direction, Since the suction force of air from the side surface can be made uniform over the entire circumference in the circumferential direction, for example, the amount of suction air is increased compared to the case where the inner cylinder and the outer cylinder are arranged eccentrically. Efficiency is improved.

また内筒をその一次側の開口端に対して二次側の開口端を低くしてあれば、不測の事態が生じても、内筒の中に搬送物が溜まり難くなる。   Further, if the opening end on the secondary side of the inner cylinder is made lower than the opening end on the primary side, even if an unexpected situation occurs, it becomes difficult for the conveyed product to accumulate in the inner cylinder.

また空気分離装置と、内筒の一次側の開口端に接続する第一減速管路とを備える空気分離減速システムの場合、第一減速管路では一次側の開口端の内径よりも二次側の開口端の内径を大きくしてあるので、第一減速管路の中で吸引される空気と搬送物を減速させた上で、内筒に送ることができ、そのうえ第一減速管路の二次側の開口端の内径を内筒の一次側の開口端の内径よりも小さくしてあるので、内筒に入った瞬間に空気と搬送物を減速させることができるので、空気分離装置だけで所望の速度に搬送物を減速させる場合に比べて、空気分離装置を小型化することができる。   Further, in the case of an air separation speed reduction system including an air separation device and a first speed reduction pipe line connected to an opening end on the primary side of the inner cylinder, the first speed reduction pipe line is more secondary than the inner diameter of the primary side opening end. Since the inner diameter of the opening end of the first reduction pipe is increased, the air sucked in the first reduction pipe and the conveyed product can be decelerated and sent to the inner cylinder. Since the inner diameter of the opening end on the secondary side is smaller than the inner diameter of the opening end on the primary side of the inner cylinder, the air and the conveyed product can be decelerated at the moment of entering the inner cylinder, so only the air separation device Compared with the case where the conveyed product is decelerated to a desired speed, the air separation device can be downsized.

また空気分離装置と、内筒の二次側の開口端に接続する第二減速管路とを備える空気分離減速システムの場合、第1、第2の曲がり管路のように曲り管路を複数備えることによって、搬送物を減速させることができるので、空気分離装置だけで所望の速度に搬送物を減速させる場合に比べて、空気分離装置を小型化することができる。   In the case of an air separation speed reduction system including an air separation device and a second speed reduction pipe line connected to the opening end on the secondary side of the inner cylinder, a plurality of bent pipe lines are provided such as first and second bent pipe lines. By providing, the conveyed product can be decelerated, so that the air separating device can be reduced in size as compared with the case where the conveyed product is decelerated to a desired speed only by the air separation device.

また第1の曲がり管路の一次側の開口端の内径を内筒の二次側の開口端の内径よりも大きくしてあれば、第1の曲がり管路の一次側の開口端の内径と内筒の二次側の開口端の内径を同じにしてある場合に比べて、搬送物を効果的に減速させることができ、空気分離装置を小型化することができる。   Further, if the inner diameter of the primary side open end of the first bent pipe line is larger than the inner diameter of the secondary side open end of the inner cylinder, the inner diameter of the primary side open end of the first bent pipe line Compared with the case where the inner diameter of the secondary side opening end of the inner cylinder is the same, the conveyed product can be effectively decelerated and the air separation device can be downsized.

第一実施形態の空気吸引式搬送機を示す全体図である。It is a general view which shows the air suction type conveying machine of 1st embodiment. 第一実施形態の空気吸引式搬送機の空気分離減速システムを示す正面方向から視た断面図である。It is sectional drawing seen from the front direction which shows the air separation deceleration system of the air suction type conveying machine of 1st embodiment. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 第一実施形態の空気吸引式搬送機の空気分離減速システムの平面図である。It is a top view of the air separation deceleration system of the air suction type conveyance machine of a first embodiment. 第一実施形態の空気吸引式搬送機における空気分離減速システムの第二減速管路を示す側面図である。It is a side view which shows the 2nd deceleration pipeline of the air separation deceleration system in the air suction type conveying machine of 1st embodiment. 第二実施形態の空気吸引式搬送機を示す全体図である。It is a general view which shows the air suction type conveying machine of 2nd embodiment. 第二実施形態の空気吸引式搬送機の空気分離減速システムを示す正面方向から視た断面図である。It is sectional drawing seen from the front direction which shows the air separation deceleration system of the air suction type conveying machine of 2nd embodiment.

本発明が適用された第一実施形態の空気吸引式搬送機は図1に示すように、搬送物を投入するホッパー1、搬送物を空気と共に通過させる搬送管路2、搬送管路2を通過させた搬送物を貯留する貯留タンク3、搬送管路2の中間部から搬送管路2の長さ方向とは別方向に空気を排気する排気管4、排気管4の中間部に接続する集塵装置5と、排気管4の末端に接続する吸引装置6を備える。中間部とは、物の長さ方向の両端以外の部分であり、両端のちょうど真ん中にという意味に限定されない。   As shown in FIG. 1, the air suction type transporter according to the first embodiment to which the present invention is applied passes through a hopper 1 for feeding a transported object, a transport pipeline 2 for allowing the transported article to pass along with air, and a transport conduit 2. The storage tank 3 for storing the transported material, the exhaust pipe 4 for exhausting air from the intermediate part of the transport pipe line 2 in a direction different from the length direction of the transport pipe line 2, and the collector connected to the intermediate part of the exhaust pipe 4 A dust device 5 and a suction device 6 connected to the end of the exhaust pipe 4 are provided. An intermediate part is a part other than the both ends of the length direction of a thing, and is not limited to the meaning of being in the middle of both ends.

ホッパー1は、下方に向けて内径が小さくなる漏斗形状の容器であって、上側の開口端が投入口、下側の開口端が出口になっている。   The hopper 1 is a funnel-shaped container having an inner diameter that decreases downward, and has an upper opening end serving as an inlet and a lower opening end serving as an outlet.

集塵装置5は、搬送物よりも小さな微粒子(ダスト)を空気から分離し、分離した微粒子をダストタンク(符号省略)に溜め、微粒子が除去された空気を吸引装置6に吸引させるものである。なお搬送物の吸引時にはダストタンクの出口は閉鎖されており、必要に応じて開放して、ダストを排出する。   The dust collector 5 separates fine particles (dust) smaller than the conveyed product from the air, collects the separated fine particles in a dust tank (reference number omitted), and causes the suction device 6 to suck the air from which the fine particles have been removed. . Note that the outlet of the dust tank is closed when the conveyed product is sucked, and is opened as necessary to discharge the dust.

吸引装置6は、たとえばブロワで、空気吸引側を排気管4に接続し、排気側を外気に開放してある。   The suction device 6 is, for example, a blower, and the air suction side is connected to the exhaust pipe 4 and the exhaust side is opened to the outside air.

搬送管路2は、ホッパー1の出口に一次側の開口端を接続するシャッター装置11、シャッター装置11の二次側の開口端に対して一次側の開口端を接続する搬送管路本体12、搬送管路本体12の二次側の開口端に対して一次側の開口端を接続する空気分離減速システム13、空気分離減速システム13のうち搬送物を排出する二次側の開口端と貯留タンク3の入口との間に接続するロータリーバルブ14を備える。なお接続には、たとえば本実施形態では後述するフランジ部同士の接合が用いられるが、接続箇所の気密が保てれば、それ以外の接合を用いても良い。   The conveyance pipe line 2 includes a shutter device 11 that connects the primary side opening end to the outlet of the hopper 1, a conveyance pipe body 12 that connects the primary side opening end to the secondary side opening end of the shutter device 11, An air separation speed reduction system 13 that connects the primary side opening end to the secondary side opening end of the transport pipe main body 12, and a secondary side opening end that discharges the transported material in the air separation speed reduction system 13 and a storage tank. 3 is provided with a rotary valve 14 connected between the three inlets. For the connection, for example, in the present embodiment, a joint between flange portions described later is used, but other joints may be used as long as the connection portion is kept airtight.

シャッター装置11は、Y字状の分岐管11aと、分岐管11aの支管11cに対してその長さ方向に往復動可能に案内される調整操作部材11pとを備える。   The shutter device 11 includes a Y-shaped branch pipe 11a and an adjusting operation member 11p guided so as to be reciprocally movable in the length direction with respect to the branch pipe 11c of the branch pipe 11a.

分岐管11aは、搬送物を通過させる本管11bと、本管11bの長さ方向の中間部から分岐すると共に空気を取り入れる支管11cとを備える。なお分岐管11aは、本管11bに支管11cが合流した合流管とも言える。本管11bは、その一次側の開口端をホッパー1の出口に接続すると共に、その二次側の開口端を搬送管路本体12の一次側の開口端に接続するものである。なお支管11cは、調整操作部材11pの一部(後述する外気導入管11q)を収納する管、つまり外気導入部収納管とも言える。   The branch pipe 11a includes a main pipe 11b that allows a conveyed product to pass therethrough, and a branch pipe 11c that branches from an intermediate portion in the length direction of the main pipe 11b and takes in air. The branch pipe 11a can also be said to be a merge pipe in which the branch pipe 11c merges with the main pipe 11b. The main pipe 11 b connects the primary side opening end to the outlet of the hopper 1, and connects the secondary side opening end to the primary side opening end of the conveyance pipe main body 12. The branch pipe 11c can also be said to be a pipe that houses a part of the adjusting operation member 11p (an outside air introduction pipe 11q described later), that is, an outside air introduction part accommodation pipe.

調整操作部材11pは、支管11cの内側に接する状態で収容される外気導入管11qであって支管11cの長さ方向に往復動可能に案内されると共に長さ方向の一端部で本管11bの内部を開閉可能な外気導入管11qと、外気導入管11qをその長さ方向の他端部で塞ぐ板状の塞ぎ部11rと、塞ぎ部11rから外気導入管11qの外側に突出する調整ツマミ11sとを備える。   The adjustment operation member 11p is an outside air introduction pipe 11q accommodated in a state of being in contact with the inside of the branch pipe 11c, and is guided so as to reciprocate in the length direction of the branch pipe 11c, and at one end portion in the length direction of the main pipe 11b. An outside air introduction pipe 11q that can be opened and closed, a plate-like closing part 11r that closes the outside air introduction pipe 11q at the other end in the length direction, and an adjustment knob 11s that protrudes from the closing part 11r to the outside of the outside air introduction pipe 11q. With.

外気導入管11qの側面には吸気口(図示略)が形成されており、外気導入管11qの側面をその口径方向外側から支管11cが覆うことにより、吸気口を隠蔽するようになっている。ただし吸気口の全部を支管11cが覆うのではなく、その一部である。
より詳しく言えば、外気導入管11qを支管11cの中に深く突入すると、外気導入管11qが本管11bの内面に衝突して、本管11bの内部空間が一次側と二次側で隔離され、シャッター装置11が全閉状態になる。このとき吸気口の大部分は外気導入管11qに覆われるが、吸気口の一部は外気導入管11qに覆われることなく、外気に通じている。また外気は吸気口から支管11cの内部、本管11bの内部空間の二次側部分を経て、搬送管路本体12に取り込まれるようになっている。そして調整操作部材11pを操作して、往復動可能な外気導入管11qが支管11cに対する位置を変えることによって、外気導入管11qが本管11bの内面から離れ、調整操作部材11pの操作量に応じてシャッター装置11が所定量開き、ホッパー1の出口を通過する搬送物の量が変化すると共に、吸気口が支管11cに覆われる面積が変わり、外気導入管11qの外部と内部が通じる吸気口の開口面積(閉鎖面積)が変化するようになっている。
An intake port (not shown) is formed on the side surface of the outside air introduction pipe 11q, and the intake port is concealed by covering the side surface of the outside air introduction pipe 11q with the branch pipe 11c from the outside in the diameter direction. However, the entire intake port is not covered by the branch pipe 11c but a part thereof.
More specifically, when the outside air introduction pipe 11q penetrates deeply into the branch pipe 11c, the outside air introduction pipe 11q collides with the inner surface of the main pipe 11b, and the internal space of the main pipe 11b is isolated on the primary side and the secondary side. The shutter device 11 is fully closed. At this time, most of the intake port is covered by the outside air introduction pipe 11q, but a part of the intake port is not covered by the outside air introduction pipe 11q and communicates with the outside air. Further, outside air is taken into the transfer pipe main body 12 from the intake port through the inside of the branch pipe 11c and the secondary side portion of the internal space of the main pipe 11b. Then, by operating the adjustment operation member 11p and changing the position of the reciprocating outside air introduction pipe 11q relative to the branch pipe 11c, the outside air introduction pipe 11q is separated from the inner surface of the main pipe 11b, and according to the operation amount of the adjustment operation member 11p. As a result, the shutter device 11 opens by a predetermined amount, the amount of the conveyed product passing through the outlet of the hopper 1 changes, the area of the intake port covered by the branch pipe 11c changes, and the intake port through which the outside and inside of the outside air introduction pipe 11q communicates. The opening area (closed area) changes.

搬送管路本体12は、搬送物を上昇させてから所望の位置に搬送するもので、複数の管を接続したものである。   The conveyance pipe main body 12 raises a conveyed product and conveys it to a desired position, and connects a plurality of tubes.

ロータリーバルブ14は図2または図4に示すように、ケーシング14aと、ケーシング14a内に回転可能に支持される繰出し羽根14bと、繰出し羽根14bの回転軸14cを回転させるモータ14mとを備えるものである。また繰出し羽根14bは、回転軸14cと、回転軸14cの周囲から放射状に突出する複数枚の羽根14dとを備える。ロータリーバルブ14は、ケーシング14aの内部を一次側と二次側に分断するように繰出し羽根14bが配置されており、密閉性の高いものである。そして繰出し羽根14bを回転させることによって、ケーシング14aの一次側の開口端から内部に入った搬送物が定量ずつ二次側の開口端に排出される。なおロータリーバルブ14には貯留タンク3の一次側の開口端が接続されており、貯留タンク3の二次側の開口端は、必要に応じて開閉可能となっている。   As shown in FIG. 2 or 4, the rotary valve 14 includes a casing 14a, a feeding blade 14b that is rotatably supported in the casing 14a, and a motor 14m that rotates a rotating shaft 14c of the feeding blade 14b. is there. The feeding blade 14b includes a rotating shaft 14c and a plurality of blades 14d that project radially from the periphery of the rotating shaft 14c. The rotary valve 14 is provided with a feeding blade 14b so as to divide the inside of the casing 14a into a primary side and a secondary side, and has high sealing performance. Then, by rotating the feeding blade 14b, a conveyed product entering the inside from the primary side opening end of the casing 14a is discharged to the secondary side opening end by a fixed amount. The rotary valve 14 is connected to an opening end on the primary side of the storage tank 3, and the opening end on the secondary side of the storage tank 3 can be opened and closed as necessary.

空気分離減速システム13は、搬送管路本体12の二次側の開口端に対して一次側の開口端を接続する接続する第一減速管路16と、第一減速管路16の二次側の開口端に対して一次側の開口端を接続すると共に空気を搬送物から分離させる空気分離装置17と、空気分離装置17のうち搬送物を排出する二次側の開口端に対して一次側の開口端を接続する第二減速管路18とを備える。また空気分離装置17のうち空気を排出する二次側の開口端に対して排気管4を接続してある。   The air separation decelerating system 13 includes a first decelerating line 16 that connects the open end of the primary side with respect to the open end of the secondary side of the transport pipe main body 12, and the secondary side of the first decelerating line 16. An air separation device 17 for connecting the primary side opening end to the opening end and separating the air from the conveyed product, and a primary side with respect to the secondary side opening end for discharging the conveyed product in the air separating device 17 And a second reduction line 18 connecting the open ends of the two. Further, the exhaust pipe 4 is connected to the open end of the air separation device 17 on the secondary side that discharges air.

第一減速管路16は、第一減速管路本体16aと、第一減速管路本体16aの長さ方向の両端から口径方向外側に張り出す一対のフランジ部16b,16cとを備える。   The first reduction pipe line 16 includes a first reduction pipe line main body 16a and a pair of flange portions 16b and 16c projecting outward from the both ends in the length direction of the first reduction pipe main body 16a.

第一減速管路本体16aは、一次側の開口端の内径に比べて二次側の開口端の内径を大きくしてある。また第一減速管路本体16aは、その内面の上面側が水平に延長すると共に、内面の下面側が二次側の開口端に向かって徐々に低くなる傾斜面となっている。   The first deceleration pipe main body 16a has an inner diameter at the secondary opening end larger than an inner diameter at the primary opening end. The first deceleration pipe main body 16a has an inclined surface in which the upper surface side of the inner surface extends horizontally and the lower surface side of the inner surface gradually decreases toward the opening end on the secondary side.

第二減速管路18は、空気分離装置17のうち搬送物の通過方向(後述する内筒21の長さ方向)に対して湾曲する方向に延長する第1の管路40としての曲がり管路40と、第1の曲がり管路40の長さ方向に対して湾曲する方向に延長する第2の管路42としての曲がり管路42とを備える。図示の例では第1、第2の曲がり管路40,42は、一本の管路である。第1の曲がり管路40は、その一次側開口端に口径方向外側に張り出すフランジ部18aを備えている。   The second decelerating pipe 18 is a bent pipe as a first pipe 40 that extends in the direction of bending with respect to the passing direction of the conveyed product (the length direction of the inner cylinder 21 to be described later) in the air separating device 17. 40 and a bent pipe line 42 as a second pipe line 42 extending in a direction of bending with respect to the length direction of the first bent pipe line 40. In the illustrated example, the first and second bent pipelines 40 and 42 are a single pipeline. The first bent pipe line 40 is provided with a flange portion 18a projecting outward in the radial direction at the primary side opening end.

第1の曲がり管路40は図4に示すように二本の直管部40a,40aと、二本の直管部40a,40aを接続する湾曲管部40bとを備えるものである。
二本の直管部40a,40aは、互いの長さ方向の延長線上で交差するように配置され、互いの内部空間が湾曲管部40bの内部空間によって連絡している。また二本の直管部40a,40aの交差角度は、35度以上90度以内の範囲であり、図示の例では90度である。
湾曲管部40bは、二本の直管部40a,40aを滑らかに繋ぐように湾曲している。
As shown in FIG. 4, the first bent pipeline 40 includes two straight pipe portions 40a and 40a and a curved pipe portion 40b connecting the two straight pipe portions 40a and 40a.
The two straight pipe portions 40a, 40a are arranged so as to intersect with each other on the extension line in the length direction of each other, and the internal space of each other is connected by the internal space of the curved pipe portion 40b. Further, the crossing angle between the two straight pipe portions 40a, 40a is in the range of 35 degrees to 90 degrees, and is 90 degrees in the illustrated example.
The curved tube portion 40b is curved so as to smoothly connect the two straight tube portions 40a and 40a.

第2の曲がり管路42も、第1の曲がり管路40と同じ構成であり、図5に示すように二本の直管部42a、42aと、二本の直管部42a,42aを接続する湾曲管部42bとを備えるものである。   The second bent pipe line 42 has the same configuration as the first bent pipe line 40, and as shown in FIG. 5, the two straight pipe parts 42a and 42a are connected to the two straight pipe parts 42a and 42a. And a bending tube portion 42b.

空気分離装置17は図2、図3に示すように、第一減速管路16の二次側の開口端に対して一次側の開口端を接続する内筒部材20と、内筒部材20が貫通する状態で収容される外筒容器30とを備える。   As shown in FIGS. 2 and 3, the air separation device 17 includes an inner cylinder member 20 that connects the primary side opening end to the secondary side opening end of the first deceleration pipe 16, and the inner cylinder member 20 includes And an outer cylinder container 30 that is accommodated in a penetrating state.

内筒部材20は、内筒21と、内筒21の長さ方向の両端から口径方向の外側に張り出す一対の内フランジ部21a、21bとを備える。内筒部材20は、内筒21の貫通方向に直交する方向から視ても(図2のように見ても)、貫通方向から視ても(図3のように見ても)、対称形状であり、貫通方向の向きがどちらであっても、外筒容器30に着脱可能となっている。   The inner cylinder member 20 includes an inner cylinder 21 and a pair of inner flange portions 21 a and 21 b that project outward from both ends in the length direction of the inner cylinder 21 in the caliber direction. The inner cylinder member 20 has a symmetrical shape even when viewed from the direction orthogonal to the penetration direction of the inner cylinder 21 (even when viewed as shown in FIG. 2) or when viewed from the penetration direction (when viewed as shown in FIG. 3). Thus, it can be attached to and detached from the outer tube container 30 regardless of the direction of the penetrating direction.

内筒21は、真っ直ぐに延長する直管であり、角筒状または円筒状である。内筒21の内径は、内筒21の長さ方向の全長に亘って等しく、第一減速管路16の二次側の内径よりも大きくしてある。また内筒21は、その内部空間を搬送物が当該内部空間に突入したときの勢いを利用して慣性で通過する通過空間にすると共に、その一次側の開口端を搬送物と空気の入口22とし、その二次側の開口端を搬送物の排出口24とし、その側面には空気の排気口26を備えるものである。なお一対の内フランジ部21a、21bの詳細は外筒容器30の説明中で述べる。   The inner cylinder 21 is a straight pipe that extends straight, and has a rectangular tube shape or a cylindrical shape. The inner diameter of the inner cylinder 21 is the same over the entire length of the inner cylinder 21 in the length direction, and is larger than the inner diameter of the secondary side of the first reduction line 16. Further, the inner cylinder 21 uses the moment when the conveyed product enters the inner space to make the inner cylinder 21 a passing space that passes by inertia, and the primary side opening end of the inner cylinder 21 is the inlet 22 for the conveyed item and the air. The secondary side opening end is used as a discharge port 24 for a conveyed product, and the side surface thereof is provided with an air exhaust port 26. The details of the pair of inner flange portions 21 a and 21 b will be described in the description of the outer cylinder container 30.

排気口26は、内筒21の側面にその口径方向に貫通して形成された多数の空気孔26aから構成されており、図示の例では多数の空気孔26aは長さ方向に間隔をあけると共に、周方向にも間隔をあけて行列状に配列されている。また空気孔26aは、内筒21の長さ方向に平行に延長する細孔としてある。   The exhaust port 26 is composed of a large number of air holes 26a formed through the side surface of the inner cylinder 21 in the diameter direction. In the illustrated example, the large number of air holes 26a are spaced apart in the length direction. Also, they are arranged in a matrix at intervals in the circumferential direction. The air hole 26 a is a fine hole extending in parallel with the length direction of the inner cylinder 21.

外筒容器30は、内筒21をその口径方向外側に等間隔をあけて取り囲む外筒32と、外筒32の長さ方向の両端から口径方向外側に張り出す一対の外フランジ部32a,32bと、外筒32の長さ方向の中間部から分岐すると共に吸引装置側へ接続する排気筒36とを備える。   The outer cylinder container 30 includes an outer cylinder 32 that surrounds the inner cylinder 21 at equal intervals outward in the caliber direction, and a pair of outer flange portions 32a and 32b that project outward from both ends in the length direction of the outer cylinder 32 in the caliber direction. And an exhaust cylinder 36 that branches from the middle portion of the outer cylinder 32 in the length direction and is connected to the suction device side.

外筒32は、真っ直ぐに延長する直管であり、内筒21の形状と相似形状の角筒状または円筒状である。そして外筒32の側面には排気筒36に通じる出口が外筒32の口径方向に貫通して形成されている。外筒32の内径は、外筒32の長さ方向の全長に亘って等しく、内筒21の外径よりも大きく形成されると共に、内筒部材20の一対の内フランジ部21a、21bの外径よりも僅かに大きく形成される。そして内筒部材20を外筒32に対してその長さ方向に差し込むと、外筒32の内周面に内筒部材20の一対の内フランジ部21a,21bが嵌り込み、内筒部材20はその口径方向に移動不能に位置決めされ、内筒21は外筒32を貫通する状態となり、内筒21と外筒32とは同心状、つまり互いの口径方向の中心が一致する。また外筒32の内面の断面形状と一対の内フランジ部21a,21bの外形が相似形状であると共に、一対の内フランジ部21a、21bが板状であるので、一対の内フランジ部21a,21bは、外筒32の長さ方向の両側で外筒32と内筒21の口径方向の間をほぼ閉鎖する。つまり一対の内フランジ部21a,21bは、一対の閉鎖部34,34としての機能をも発揮する。   The outer cylinder 32 is a straight pipe that extends straight, and has a rectangular or cylindrical shape similar to the shape of the inner cylinder 21. An outlet communicating with the exhaust cylinder 36 is formed in the side surface of the outer cylinder 32 so as to penetrate in the caliber direction of the outer cylinder 32. The inner diameter of the outer cylinder 32 is the same over the entire length in the length direction of the outer cylinder 32 and is formed larger than the outer diameter of the inner cylinder 21, and outside the pair of inner flange portions 21 a and 21 b of the inner cylinder member 20. It is formed slightly larger than the diameter. When the inner cylinder member 20 is inserted into the outer cylinder 32 in the length direction, the pair of inner flange portions 21a and 21b of the inner cylinder member 20 are fitted into the inner peripheral surface of the outer cylinder 32, and the inner cylinder member 20 is The inner cylinder 21 is positioned so as to be immovable in the caliber direction, and the inner cylinder 21 passes through the outer cylinder 32. The inner cylinder 21 and the outer cylinder 32 are concentric, that is, the centers of the caliber directions of each other coincide. Further, since the cross-sectional shape of the inner surface of the outer cylinder 32 and the outer shape of the pair of inner flange portions 21a and 21b are similar, and the pair of inner flange portions 21a and 21b are plate-shaped, the pair of inner flange portions 21a and 21b. Substantially closes the gap between the outer cylinder 32 and the inner cylinder 21 on both sides in the length direction of the outer cylinder 32. That is, the pair of inner flange portions 21a and 21b also functions as the pair of closing portions 34 and 34.

排気筒36は、外筒32の内部空間に対して分岐するように外筒32の側面から突出している。図示の例では、排気筒36の一次側部分は、一次側から二次側に向かって徐々に内径が狭くなる形状となっている。   The exhaust cylinder 36 protrudes from the side surface of the outer cylinder 32 so as to branch from the internal space of the outer cylinder 32. In the illustrated example, the primary side portion of the exhaust pipe 36 has a shape in which the inner diameter gradually decreases from the primary side toward the secondary side.

一対の外フランジ部32a,32bのうち一次側の外フランジ部32aと、第一減速管路16の二次側のフランジ部16cの口径方向外側部分とは、例えばボルト、ナットで接合される。また一対の外フランジ部32a,32bのうち二次側の外フランジ部32bと、第二減速管路18の一次側のフランジ部18aの口径方向外側部分とは、同様にボルト、ナットで接合される。このように接合されることにより空気分離装置17は、第一、第二減速管路16、18と一体化される。この一体化された状態において、第一減速管路16の二次側のフランジ部16cと、第二減速管路18の一次側のフランジ部18aとの間に、内筒部材20の一対の内フランジ部21a、21bが挟まれ、内筒21が外筒32の口径方向内側においてその長さ方向に移動不能に位置決めされると共に、外筒32の長さ方向の両側で外筒32と内筒21の口径方向の間(空間部)を高気密に閉鎖され、第一減速管路16の二次側のフランジ部16cと、第二減速管路18の一次側のフランジ部18aとは、一対の閉鎖部34,34として機能する。   Of the pair of outer flange portions 32a and 32b, the primary outer flange portion 32a and the outer side portion of the secondary flange portion 16c of the first reduction pipe line 16 are joined together by bolts and nuts, for example. Further, the outer flange portion 32b on the secondary side of the pair of outer flange portions 32a and 32b and the radially outer side portion of the flange portion 18a on the primary side of the second reduction line 18 are similarly joined with bolts and nuts. The By being joined in this way, the air separation device 17 is integrated with the first and second reduction lines 16 and 18. In this integrated state, a pair of inner cylinder members 20 are connected between the secondary flange portion 16c of the first reduction conduit 16 and the primary flange portion 18a of the second reduction conduit 18. The flanges 21 a and 21 b are sandwiched so that the inner cylinder 21 is positioned so as to be immovable in the length direction inside the outer cylinder 32, and the outer cylinder 32 and the inner cylinder are disposed on both sides in the length direction of the outer cylinder 32. 21 (space part) between the diametrical directions of 21 is closed with high airtightness, and the flange part 16c on the secondary side of the first reduction line 16 and the flange part 18a on the primary side of the second reduction line 18 are a pair. It functions as the closing part 34,34.

一対の閉鎖部34、34のうち第一減速管路16側の閉鎖部34は、内筒部材20の一次側の内フランジ部21aと、第一減速管路16の二次側のフランジ部16cにおける口径方向内側部分とから構成される。また一対の閉鎖部34、34のうち第二減速管路18側の閉鎖部34は、内筒部材20の二次側の内フランジ部21bと、第二減速管路18の一次側のフランジ部18aとから構成される。したがって本実施形態では空気分離装置17は、第一、第二減速管路16,18の一部を含むものである。各閉鎖部34は、二枚の板である、各フランジ部が重なり合う二重壁構造である。   Of the pair of closing portions 34, 34, the closing portion 34 on the first reduction pipe line 16 side includes an inner flange part 21 a on the primary side of the inner cylinder member 20 and a flange part 16 c on the secondary side of the first reduction pipe line 16. And a diametrically inner portion. Further, of the pair of closing portions 34, 34, the closing portion 34 on the second reduction pipe line 18 side includes an inner flange part 21 b on the secondary side of the inner cylinder member 20 and a flange part on the primary side of the second reduction pipe line 18. 18a. Therefore, in the present embodiment, the air separation device 17 includes a part of the first and second reduction lines 16 and 18. Each closing portion 34 is a double wall structure in which the flange portions overlap each other, which are two plates.

上記した実施形態の空気分離減速システム13は、以下のようにして空気と搬送物の分離と搬送物の搬送速度の減速を行う。この例では、搬送物に粒状物や粉状物として、穀物の種子(より具体的には米粒)を用いるものとする。
1)シャッター装置11を全閉状態にしておき、ホッパー1に米粒を投入する。そうすると、ホッパー1内に米粒は収容されたままであり、シャッター装置11の本管11bの内部空間の二次側部分には米粒がない。また外気導入管11qの内部空間は本管11bの内部空間の二次側部分に通じ、吸気口の一部が外気に通じている。
2)吸引装置6を駆動させて搬送管路2内を負圧にし、シャッター装置11の外気導入管11qの吸気口から外気を搬送管路本体12内に取り込み、気流を発生させる。そうすると空気は、搬送管路本体12から空気分離装置17を経て排気管4へ向かい、その後、集塵装置5を経て吸引装置6の吸引側へ向かい、排気側から排出される。また吸引装置6の駆動と相前後させて、ロータリーバルブ14のモータ14mを駆動させる。
3)所定時間経過後にシャッター装置11をたとえば全開状態にして、搬送管路2へ米粒を流し込む。
4)ホッパー1から搬送管路本体12内に吸引された米粒は、気流により空気分離装置17へ向かう。
5)搬送管路本体12から第一減速管路16に米粒と空気が突入し、第一減速管路16では二次側の開口端の内径が一次側の開口端の内径に比べて広がっているので、吸引された空気と米粒が減速する。
6)第一減速管路16から内筒21に米粒と空気が突入する。内筒21の一次側の開口端の内径が第一減速管路16の二次側の開口端よりも大きいことから、空気と米粒は、内筒21の中で減速する。
空気は、内筒21の側面の排気口26を経て外筒32と内筒21の口径方向の間の内部空間に突入する。外筒32の内周面と内筒21の外周面とは互いの周方向の全周に亘って等間隔をあけてあるので、空気は外筒32と内筒21との口径方向の間における周方向の全周からほぼ均等に吸われ、排気筒36へ向かう。
いっぽう米粒は、内筒21の側面から空気が吸引されることから減速して、その減速した勢い(慣性)で内筒21の内部空間を通過し、そのまま内筒21の排出口24から第二減速管路18へ向かう。
7−1)米粒は、第二減速管路18へ突入し、第二減速管路18では一次側の開口端の内径が内筒21の二次側の開口端の内径に比べて広がっているので、米粒が減速する。第二減速管路18の第1、第2の曲がり管路40,42を通過する毎に米粒が減速し、米粒はロータリーバルブ14に向かう。ロータリーバルブ14の繰出し羽根14bの回転によって所定量ずつ米粒が貯留タンク3に排出される。
7−2)いっぽう空気は空気分離装置17の排気筒36から排気管4、集塵装置5を順次経て吸引装置6へ向かい、吸引装置6の外へ排出される。
The air separation decelerating system 13 of the above-described embodiment performs separation of the air and the conveyed product and deceleration of the conveyed material speed as follows. In this example, grain seeds (more specifically, rice grains) are used as the granular material or powdery material for the conveyed product.
1) The shutter device 11 is fully closed, and rice grains are put into the hopper 1. As a result, the rice grains remain contained in the hopper 1, and there are no rice grains in the secondary side portion of the internal space of the main tube 11 b of the shutter device 11. Further, the internal space of the outside air introduction pipe 11q communicates with the secondary side portion of the internal space of the main pipe 11b, and a part of the intake port communicates with the outside air.
2) The suction device 6 is driven to make the inside of the transport pipe line 2 have a negative pressure, and outside air is taken into the transport pipe body 12 from the intake port of the outside air introduction pipe 11q of the shutter device 11 to generate an air flow. As a result, the air travels from the transfer pipe main body 12 to the exhaust pipe 4 through the air separation device 17, then travels to the suction side of the suction device 6 through the dust collector 5 and is discharged from the exhaust side. Further, the motor 14m of the rotary valve 14 is driven in synchronism with the driving of the suction device 6.
3) After a predetermined time has elapsed, the shutter device 11 is fully opened, for example, and the rice grains are poured into the conveyance pipeline 2.
4) The rice grains sucked from the hopper 1 into the conveyance pipe main body 12 travel to the air separation device 17 by the air current.
5) Rice grains and air rush into the first speed reduction pipe 16 from the transport pipe main body 12, and the inner diameter of the secondary opening end is larger than the inner diameter of the primary opening end in the first speed reduction pipe 16. As a result, the sucked air and rice grains slow down.
6) Rice grains and air enter the inner cylinder 21 from the first deceleration line 16. Since the inner diameter of the opening end on the primary side of the inner cylinder 21 is larger than the opening end on the secondary side of the first deceleration pipe 16, air and rice grains are decelerated in the inner cylinder 21.
The air rushes into the internal space between the outer cylinder 32 and the inner cylinder 21 through the exhaust port 26 on the side surface of the inner cylinder 21. Since the inner peripheral surface of the outer cylinder 32 and the outer peripheral surface of the inner cylinder 21 are equally spaced over the entire circumference in the circumferential direction, the air is between the outer cylinder 32 and the inner cylinder 21 in the caliber direction. The air is sucked from the entire circumference in the circumferential direction almost uniformly, and travels toward the exhaust pipe 36.
On the other hand, the rice grains are decelerated because air is sucked from the side surface of the inner cylinder 21, passes through the inner space of the inner cylinder 21 with the reduced momentum (inertia), and passes through the outlet 24 of the inner cylinder 21 as it is. Head to the deceleration line 18.
7-1) The rice grains enter the second speed reduction pipe 18, and the inner diameter of the opening end on the primary side is wider than the inner diameter of the opening end on the secondary side of the inner cylinder 21 in the second speed reduction pipe 18. So rice grains slow down. The rice grains decelerate each time they pass through the first and second bent pipelines 40, 42 of the second deceleration pipe 18, and the rice grains go to the rotary valve 14. The rice grains are discharged into the storage tank 3 by a predetermined amount by the rotation of the feeding blade 14b of the rotary valve 14.
7-2) On the other hand, the air passes from the exhaust pipe 36 of the air separation device 17 through the exhaust pipe 4 and the dust collector 5 to the suction device 6 and is discharged out of the suction device 6.

上記実施形態の空気分離装置17および空気分離減速システム13は以下の効果を有する。
空気分離装置17は、空気と搬送物を分離することを主目的とし、内筒21の側面から空気が吸引されるものなので、外筒32の内径(容量)を小さくして、外筒32と内筒21との口径方向の間隔を狭くしても、空気と搬送物を分離することができ、小型化に適し、設置し易いものである。しかも内筒21の側面から空気が吸引されることによって、内筒21の中で搬送物を減速させることもできる。
また空気孔26aを内筒21の長さ方向に延長する細孔にしてあるので、内筒21の内部空間を通過するときに米粒が空気孔26aの部分に触れたとしても、米粒が細孔に沿って移動するようになり、米粒が損傷しづらくなる。また搬送物とは相違する形状の物が搬送物の中に混入していることもあり、その破片等が細孔に刺さり難くなり、空気孔26aの目詰りの防止が出来る。
また内筒21の内部空間を米粒が慣性で通過する通過空間にしてあるので、空気と搬送物を分離するときに、米粒が損傷しづらくなり、ひいては米粒の損傷による粉状物が発生しづらくなり、排気筒36の内部を通過する粉状物の量が減量する。
また内筒21と一対の内フランジ部21a,21bとが一部品となった内筒部材20を、外筒32に対してその長さ方向に着脱可能(抜き差し可能)にしてあるので、組立や点検が容易になる。また内筒21と外筒32を同心状に配置してあるので、内筒21の側面からの空気の吸引力をその周方向の全周に亘って均等にでき、たとえば内筒21と外筒32とが偏心されて配置してある場合に比べて、吸引空気量が多くなり、吸引効率が向上する。
また排気筒36を外筒32の長さ方向の中間部から分岐しているので、たとえば外筒32が水平に設置されている場合に外筒の長さ方向(貫通方向)から視て排気筒36の向きを360度、所望の向きに設置できるので、排気筒36に接続する排気管4を設置しやすい。
The air separation device 17 and the air separation deceleration system 13 of the above embodiment have the following effects.
The air separation device 17 is mainly intended to separate air and a conveyed product, and air is sucked from the side surface of the inner cylinder 21, so that the inner diameter (capacity) of the outer cylinder 32 is reduced, Even if the distance between the inner cylinder 21 in the caliber direction is narrowed, the air and the conveyed product can be separated, which is suitable for downsizing and easy to install. In addition, the conveyed object can be decelerated in the inner cylinder 21 by sucking air from the side surface of the inner cylinder 21.
Moreover, since the air hole 26a is a fine hole extending in the length direction of the inner cylinder 21, even if the rice grain touches the air hole 26a when passing through the inner space of the inner cylinder 21, the rice grain is not a fine hole. And the rice grains are less likely to be damaged. In addition, an object having a shape different from that of the conveyed object may be mixed in the conveyed object, and it is difficult for the fragments and the like to be stuck in the pores, thereby preventing the air holes 26a from being clogged.
In addition, since the inner space of the inner cylinder 21 is a passage space through which the rice grains pass by inertia, when the air and the conveyed product are separated, the rice grains are less likely to be damaged, and consequently, the powdered material is less likely to be generated due to the damage of the rice grains. Thus, the amount of powdery material passing through the exhaust pipe 36 is reduced.
Further, the inner cylinder member 20 in which the inner cylinder 21 and the pair of inner flange portions 21a and 21b are formed as one component is detachable (removable) in the length direction with respect to the outer cylinder 32. Inspection becomes easy. Further, since the inner cylinder 21 and the outer cylinder 32 are arranged concentrically, the air suction force from the side surface of the inner cylinder 21 can be made uniform over the entire circumference in the circumferential direction. For example, the inner cylinder 21 and the outer cylinder As compared with the case where the air outlet 32 is arranged eccentrically, the amount of suction air is increased and the suction efficiency is improved.
Further, since the exhaust cylinder 36 is branched from the intermediate portion in the length direction of the outer cylinder 32, for example, when the outer cylinder 32 is installed horizontally, the exhaust cylinder is viewed from the length direction (through direction) of the outer cylinder. Since the direction of 36 can be installed in a desired direction of 360 degrees, it is easy to install the exhaust pipe 4 connected to the exhaust tube 36.

また空気分離減速システム13は、空気分離装置17と第一減速管路16とを備えるものであり、第一減速管路16では一次側の開口端の内径よりも二次側の開口端の内径を大きくすると共に、第一減速管路16の二次側の開口端の内径を内筒21の一次側の開口端の内径よりも小さくしてあるので、第一減速管路16の中で米粒と空気を減速させた上で、内筒21に送ることができ、そのうえ、内筒21に入った瞬間に米粒を減速させることができるので、空気分離装置17だけで所望の速度に空気と米粒を減速させる場合に比べて、空気分離装置17を小型化することができる。   In addition, the air separation speed reduction system 13 includes an air separation device 17 and a first speed reduction pipe line 16. In the first speed reduction pipe line 16, the inner diameter of the secondary side opening end is larger than the inner diameter of the primary side opening end. And the inner diameter of the opening end on the secondary side of the first reduction pipe line 16 is smaller than the inner diameter of the opening end on the primary side of the inner cylinder 21, so that the rice grains in the first reduction pipe line 16 And the air can be sent to the inner cylinder 21, and the rice grains can be decelerated at the moment of entering the inner cylinder 21, so that the air and the rice grains can be brought to a desired speed only by the air separation device 17. The air separation device 17 can be reduced in size compared with the case where the speed is reduced.

また空気分離減速システム13は、第二減速管路18の第1、第2の曲がり管路40,42によって、米粒を減速させることができるので、空気分離装置17だけで所望の速度に米粒を減速させる場合に比べて、空気分離装置17および空気分離減速システム13全体を小型化することができる。なお空気分離装置17と第一、第二減速管路16、18によって米粒が減速されるので、米粒がロータリーバルブ14に衝突するときの衝撃が緩和され、米粒の損傷が防止できる。   Moreover, since the air separation deceleration system 13 can decelerate the rice grains by the first and second bent pipelines 40 and 42 of the second deceleration pipeline 18, the rice separation can be performed at a desired speed only by the air separation device 17. Compared with the case where it decelerates, the air separation apparatus 17 and the air separation deceleration system 13 whole can be reduced in size. Since the rice grains are decelerated by the air separation device 17 and the first and second deceleration pipes 16 and 18, the impact when the rice grains collide with the rotary valve 14 is mitigated, and damage to the rice grains can be prevented.

また第1の曲がり管路40の一次側の開口端の内径を内筒21の二次側の開口端の内径よりも大きくしてあるので、たとえば第1の曲がり管路40の一次側の開口端の内径と内筒21の二次側の開口端の内径を同じにしてある場合に比べて、米粒を効果的に減速させることができ、空気分離装置17および空気分離減速システム13全体を小型化することができる。   Further, since the inner diameter of the primary side opening end of the first bent pipe line 40 is larger than the inner diameter of the secondary side opening end of the inner cylinder 21, for example, the primary side opening of the first bent pipe line 40 is opened. Compared with the case where the inner diameter of the end and the inner diameter of the opening end on the secondary side of the inner cylinder 21 are the same, the rice grains can be effectively decelerated, and the air separation device 17 and the air separation decelerating system 13 as a whole can be made compact. Can be

上記した第一実施系形態の空気吸引式搬送機は、第一減速管路16、空気分離装置17、第二減速管路18の一次側部分を、搬送物の通過方向が水平になるように配置してあった。この場合、不測の事態、たとえば停電や運転の誤操作により、吸引装置6が停止するような事態、あるいは吸引装置6による吸引空気量が搬送物の搬送に必要な量よりも不足するような事態等が生じると、第一減速管路16、空気分離装置17、第二減速管路18の一次側部分で搬送物が溜まったままの状態になるおそれがある。この場合に、吸引装置6を駆動させても、搬送物の溜まりが解消せずに搬送不能に陥るおそれがある。そうなると、第一減速管路16、空気分離装置17、第二減速管路18を分解して、溜まった搬送物を除去しなければならない。このような事態をできるだけ避けるようにするには、次のようにすることが望ましい。   In the air suction type transport device of the first embodiment described above, the primary reduction portion 16, the air separation device 17, and the second reduction passage 18 are arranged so that the passing direction of the conveyed product is horizontal. It was arranged. In this case, an unexpected situation, for example, a situation where the suction device 6 stops due to a power failure or erroneous operation, or a situation where the amount of air sucked by the suction device 6 is less than the amount necessary for transporting the transported object, etc. If this occurs, there is a risk that the conveyed product remains in the primary side portions of the first reduction pipe 16, the air separation device 17, and the second reduction pipe 18. In this case, even if the suction device 6 is driven, there is a possibility that the accumulation of the conveyed product is not eliminated and the conveyance becomes impossible. When this happens, the first reduction pipe 16, the air separation device 17, and the second reduction pipe 18 must be disassembled to remove the accumulated transported material. In order to avoid such a situation as much as possible, it is desirable to do the following.

第二実施形態の空気吸引式搬送機は図6、7に示すように、空気分離減速システム13について第一減速管路16、空気分離装置17、第二減速管路18の一次側部分を、一次側に対して二次側を低くなる状態にしてあることを特徴とする。より詳しくは以下の通りである。   As shown in FIGS. 6 and 7, the air suction type conveyance machine of the second embodiment includes the primary side portion of the first reduction pipe line 16, the air separation device 17, and the second reduction pipe line 18 in the air separation reduction system 13. The secondary side is lower than the primary side. More details are as follows.

第一減速管路16の一次側の開口端を接続する搬送管路本体12は、その全長の中間部に水平に配置される直管12aと、その全長の二次側の端部において当該直管12aの二次側の開口端に接続する曲がり管12bとを備えるものである。この曲がり管12bは、くの字状であって、二本の直管部12c、12dと、二本の直管部12c、12dを90度未満の角度で屈曲する形状に滑らかに接続する湾曲管部12eとを備える。また二本の直管部12c、12dのうち一本12cは、直管12aの二次側開口端に接続され、もう一本12dはその二次側開口端が斜め下方に向かうように傾斜して配置される。   The conveyance pipe main body 12 connecting the primary side opening end of the first deceleration pipe line 16 includes a straight pipe 12a disposed horizontally in the middle part of the full length, and the straight pipe 12a at the secondary side end part of the full length. And a bent pipe 12b connected to the open end of the secondary side of the pipe 12a. The bent pipe 12b has a dogleg shape and smoothly connects the two straight pipe portions 12c and 12d and the two straight pipe portions 12c and 12d into a shape that bends at an angle of less than 90 degrees. And a tube portion 12e. Of the two straight pipe portions 12c and 12d, one 12c is connected to the secondary side opening end of the straight pipe 12a, and the other 12d is inclined so that the secondary side opening end is obliquely downward. Arranged.

第二減速管路18は、搬送管路本体12の二次側の端部における曲がり管12bと同じように、くの字状に曲がる第1の管路40としての曲がり管路40と、第1の曲がり管路40の長さ方向に延長する第2の管路42としての直管路とを備える。第1の曲がり管路40は、二本の直管部40a、40aと、二本の直管部40a、40aを90度未満の角度で屈曲する形状に接続する湾曲管部40bとを備える。この例では第1の曲がり管路40と第2の直管路42とはフランジ部同士で接合されている。
第一減速管路16は、一次側の開口端の内径に比べて二次側の開口端の内径を大きくしてあるが、直管である。
また空気分離装置17の内筒21は、その長さ方向の全長に亘って内径が等しいものであるが、これも直管である。
Similar to the bent pipe 12b at the end on the secondary side of the conveying pipe main body 12, the second deceleration pipe 18 is a bent pipe 40 as a first pipe 40 bent in a U-shape, And a straight pipe line as the second pipe line 42 extending in the length direction of the one bent pipe line 40. The first bent pipe line 40 includes two straight pipe portions 40a and 40a and a curved pipe portion 40b that connects the two straight pipe portions 40a and 40a to a shape that bends at an angle of less than 90 degrees. In this example, the first bent pipe line 40 and the second straight pipe line 42 are joined by flange portions.
The first deceleration pipe 16 is a straight pipe, although the inner diameter of the secondary side opening end is larger than the inner diameter of the primary side opening end.
The inner cylinder 21 of the air separation device 17 has the same inner diameter over the entire length in the length direction, but this is also a straight pipe.

そして第一減速管路16と空気分離装置17の内筒21と第二減速管路18の一次側の直管部40aは、互いの貫通方向を、搬送管路本体12の曲がり管12bにおける二次側の直管部12dの延長線方向に対して一直線になるように配置される。したがって第一減速管路16と空気分離装置17の内筒21と第二減速管路18の一次側の直管部40aの貫通方向は、水平方向に対して傾斜しており、その傾斜角度の望ましい範囲は、搬送物の安息角度よりも大きく、水平方向に対して30°以上90°未満の角度である。またこのように傾斜していることから、内筒21はその一次側の開口端(入口22)に対して二次側の開口端(出口24)が低くなっている。また第二減速管路18の二次側の直管部40aは鉛直方向に向かうように配置される。
なお図示しないが、搬送管路本体の曲がり管は、二本の直管部を湾曲管部によって90度の角度で屈曲する形状に接続するものとし、二次側の直管部がその貫通方向を鉛直方向に一致させるようにしても良い。この場合は、上記した第一減速管路と空気分離装置の内筒をその貫通方向が鉛直方向になるようにして配置すれば、当該貫通方向が鉛直方向に対して傾斜している場合と同様に、内筒はその一次側の開口端に対して二次側の開口端を低くしてあることになる。なおこの場合、第二減速管路は直管路とする。
The straight pipe portion 40 a on the primary side of the first reduction pipe line 16, the inner cylinder 21 of the air separation device 17, and the second reduction pipe line 18 passes through each other in the bent pipe 12 b of the conveyance pipe main body 12. It arrange | positions so that it may become a straight line with respect to the extended line direction of the straight pipe part 12d of the next side. Therefore, the penetration direction of the straight pipe portion 40a on the primary side of the first reduction pipe line 16, the inner cylinder 21 of the air separation device 17, and the second reduction pipe line 18 is inclined with respect to the horizontal direction. A desirable range is an angle that is larger than the repose angle of the conveyed product and is 30 ° or more and less than 90 ° with respect to the horizontal direction. Since the inner cylinder 21 is inclined in this way, the secondary side opening end (outlet 24) is lower than the primary side opening end (inlet 22). Further, the straight pipe portion 40a on the secondary side of the second reduction pipe line 18 is arranged so as to be directed in the vertical direction.
Although not shown in the figure, the bent pipe of the conveyance pipe main body connects the two straight pipe portions to a shape that bends at an angle of 90 degrees by the curved pipe portion, and the straight pipe portion on the secondary side is in the penetrating direction. May be matched with the vertical direction. In this case, if the first decelerating pipe and the inner cylinder of the air separation device are arranged so that the penetrating direction is the vertical direction, the penetrating direction is inclined with respect to the vertical direction. Moreover, the inner cylinder has a lower opening end on the secondary side than the opening end on the primary side. In this case, the second deceleration line is a straight line.

空気分離装置の排気筒36は、外筒32の側面から下方に向かって突出し、より詳しくは内管21の貫通方向に対して直交するように下方に向かって突出している。   The exhaust cylinder 36 of the air separation device protrudes downward from the side surface of the outer cylinder 32, and more specifically, protrudes downward so as to be orthogonal to the penetration direction of the inner tube 21.

第二実施形態の空気分離減速システム13の場合、吸引装置6が停止するような不測の事態が生じても、第一減速管路16と空気分離装置17の内筒21と第二減速管路18の一次側の直管部40aに関して、二次側を一次側よりも低くしてあるので、搬送物は自然と落下し易くなり、特に貫通方向の傾斜角度を安息角よりも急にしてあれば必然的に落下することから、第一減速管路16と空気分離装置17の内筒21と第二減速管路18の一次側の直管部40aに搬送物が溜まり難くなる。   In the case of the air separation speed reduction system 13 of the second embodiment, even if an unexpected situation occurs in which the suction device 6 stops, the first speed reduction pipe line 16, the inner cylinder 21 of the air separation apparatus 17, and the second speed reduction pipe line. Since the secondary side is made lower than the primary side with respect to the straight pipe portion 40a on the primary side, the transported object tends to fall naturally, and in particular, the inclination angle in the penetration direction should be made steeper than the repose angle. Since it inevitably falls, the conveyed product is less likely to accumulate in the first reduction pipe 16, the inner cylinder 21 of the air separation device 17, and the straight pipe portion 40 a on the primary side of the second reduction pipe 18.

本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において適宜変更可能である。
たとえば各閉鎖部34は、上記実施形態では、二枚の板である、各フランジ部が重なり合う二重壁構造であるが、本発明ではこれに限らず、一枚の壁構造であっても良い。より具体的な例としては以下の1)、2)の通りである。
1)一対の内フランジ部21a,21bは、上記実施形態では板状であったが、本発明ではこれに限らず、たとえば板の厚み方向に多数の孔が形成されたものであっても良く、この場合、一対の内フランジ部21a,21bには閉鎖部としての機能がほぼ無くなるので、一対の閉鎖部は、第一減速管路16の二次側のフランジ部16cと、第二減速管路18の一次側のフランジ部18aとによって形成される。
2)一対の内フランジ部21a,21bは、上記実施形態では外筒32の中に嵌り込む構成であったが、本発明ではこれに限らず、たとえば一対の内フランジ部21a,21bの外周を外筒32に溶着等して一体化する構成等である。このようにすれば空気分離装置17は、第一、第二減速管路16,18の一部を含まない構成となり、上記実施形態の構成、つまり第一、第二減速管路16,18の一部を含む構成とは相違するものとなる。
また一対の内フランジ部21a,21bは、上記実施形態では内筒21と一体であり、一部品としての内筒部材20の一部を構成していたが、本発明ではこれに限らず、少なくとも一方の内フランジ部が内筒21とは別部品であっても良いし、少なくとも一方の内フランジ部が外筒32と一体になり、外筒容器30の一部を構成しても良い。このようにすれば、内筒21は単独または少なくとも一方の内フランジ部と一緒に、外筒32に対してその長さ方向に着脱可能である。
また第二減速管路18は上記第一実施形態では2か所で曲がる構成、つまり第1、第2の曲がり管路40,42で構成しているが、本発明はこれに限らず、3ヶ所以上であっても良い。
また搬送物としての粒状物は、上記実施形態では米粒であったが、本発明ではこれに限らずその他に、米粒と同等形状であれば、食品の原料となる麦、大豆、小豆、工業製品の原料となるプラスチックペレット等が挙げられる。
The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the spirit of the present invention.
For example, each closing portion 34 is a double wall structure in which the flange portions overlap each other in the above-described embodiment, but the present invention is not limited to this and may be a single wall structure. . More specific examples are as follows 1) and 2).
1) The pair of inner flange portions 21a and 21b are plate-like in the above-described embodiment. However, the present invention is not limited to this, and for example, a plurality of holes may be formed in the thickness direction of the plate. In this case, since the pair of inner flange portions 21a and 21b have almost no function as a closing portion, the pair of closing portions includes the secondary flange portion 16c of the first reduction line 16 and the second reduction line. It is formed by a flange portion 18 a on the primary side of the path 18.
2) Although the pair of inner flange portions 21a and 21b is configured to fit into the outer cylinder 32 in the above embodiment, the present invention is not limited to this, and for example, the outer circumferences of the pair of inner flange portions 21a and 21b are provided. For example, the outer cylinder 32 is integrated by welding or the like. If it does in this way, the air separation apparatus 17 will become a structure which does not contain a part of 1st, 2nd deceleration pipelines 16 and 18, and is the structure of the said embodiment, ie, 1st, 2nd deceleration pipelines 16 and 18. This is different from the configuration including a part.
The pair of inner flange portions 21a and 21b are integral with the inner cylinder 21 in the above-described embodiment and constitute a part of the inner cylinder member 20 as one component. One inner flange part may be a separate part from the inner cylinder 21, or at least one inner flange part may be integrated with the outer cylinder 32 to constitute a part of the outer cylinder container 30. If it does in this way, the inner cylinder 21 can be attached or detached to the outer cylinder 32 in the length direction independently or together with at least one inner flange part.
In the first embodiment, the second speed reducing pipe 18 is bent at two places, that is, the first and second bent pipes 40 and 42. However, the present invention is not limited to this. It may be more than one place.
Moreover, although the granular material as a conveyed product was a rice grain in the said embodiment, it is not restricted to this in this invention, In addition, if it is a shape equivalent to a rice grain, the wheat, soybeans, red beans, industrial products which are the raw materials of food Plastic pellets, etc., which are raw materials for the above.

1 ホッパー
2 搬送管路
3 貯留タンク
4 排気管
5 集塵装置
6 吸引装置
11 シャッター装置
11a 分岐管(合流管)
11b 本管
11c 支管(外気導入部収納管)
11p 調整操作部材
11q 外気導入管
11r 塞ぎ部
11s 調整ツマミ
12 搬送管路本体
12a 直管
12b 曲がり管
13 空気分離減速システム
14 ロータリーバルブ
14a ケーシング
14b 繰出し羽根
14c 回転軸
14d 羽根
14m モータ
16 第一減速管路
16a 第一減速管路本体
16b,c フランジ部
17 空気分離装置
18 第二減速管路
18a フランジ部
20 内筒部材
21 内筒
21a,b 内フランジ部
22 入口
24 搬送物の排出口
26 空気の排気口
26a 空気孔
30 外筒容器
32 外筒
32a,b 外フランジ部
34 閉鎖部
36 排気筒
40 第1の曲がり管路(第1の管路)
40a 直管部
40b 湾曲管部
42 第2の曲がり管路(第2の管路)
42a 直管部
42b 湾曲管部
DESCRIPTION OF SYMBOLS 1 Hopper 2 Conveyance line 3 Storage tank 4 Exhaust pipe 5 Dust collector 6 Suction apparatus 11 Shutter apparatus 11a Branch pipe (confluence pipe)
11b Main pipe 11c Branch pipe (outside air introduction part storage pipe)
11p Adjustment operation member 11q Outside air introduction pipe 11r Blocking part 11s Adjustment knob 12 Conveyance pipe main body 12a Straight pipe 12b Curved pipe 13 Air separation reduction system 14 Rotary valve 14a Casing 14b Feeding blade 14c Rotating shaft 14d Blade 14m Motor 16 First reduction tube Road 16a First deceleration pipe main body 16b, c Flange part 17 Air separation device 18 Second reduction pipe line 18a Flange part 20 Inner cylinder member 21 Inner cylinder 21a, b Inner flange part 22 Inlet 24 Conveyed material discharge port 26 Exhaust port 26a Air hole 30 Outer cylinder container 32 Outer cylinder 32a, b Outer flange part 34 Closed part 36 Exhaust cylinder 40 First bent pipe line (first pipe line)
40a Straight pipe part 40b Curved pipe part 42 2nd bending pipe line (2nd pipe line)
42a Straight pipe part 42b Curved pipe part

本発明は、空気分離減速システムに関するものである。そして空気分離減速システムは、搬送路の空気を吸い込むことにより気流を発生させ、その気流により搬送物を搬送する空気吸引式搬送機の空気分離装置を用いたものである。 The present invention relates to an air separation deceleration system. The air separation speed reduction system uses an air separation device of an air suction type conveying machine that generates an air flow by sucking air in a conveyance path and conveys a conveyed product by the air flow .

本発明の第一の空気分離減速システムは、空気分離装置と、空気分離装置の内筒の一次側の開口端に接続する第一減速管路を備えるものである。そして空気分離装置は、内筒と、内筒をその口径方向外側に間隔をあけて取り囲む外筒と、外筒の長さ方向の両側で外筒と内筒の口径方向の間を閉鎖する一対の閉鎖部と、外筒の長さ方向の中間部から分岐すると共に吸引装置側へ接続する排気筒とを備えるものである。また内筒は、その一次側の開口端を搬送物と空気の入口とし、その二次側の開口端を搬送物の排出口とし、その側面には空気の排気口となる複数の空気孔を備えると共に、その内部空間を搬送物が慣性で通過する通過空間にするものである。そのうえで第一減速管路は、その一次側の開口端の内径に比べてその二次側の開口端の内径を大きくすると共に、その二次側の開口端の内径を内筒の一次側の開口端の内径よりも小さくしてあるものである The first air separation reduction system of the present invention includes an air separation device and a first reduction pipe line connected to the opening end on the primary side of the inner cylinder of the air separation device . The air separation device includes a pair of an inner cylinder, an outer cylinder that surrounds the inner cylinder with a gap in the outer diameter direction, and a gap between the outer cylinder and the inner cylinder on both sides in the length direction of the outer cylinder. And an exhaust pipe that branches off from the intermediate part in the length direction of the outer cylinder and that is connected to the suction device side. Also, the inner cylinder has an opening end on the primary side as an inlet for the conveyed product and air, an opening end on the secondary side as an outlet for the conveyed item, and a plurality of air holes serving as air exhaust ports on the side surface. In addition, the internal space is made a passing space through which the conveyed product passes by inertia. In addition, the first decelerating pipe has a larger inner diameter at the secondary opening than the inner diameter at the primary opening, and the inner diameter of the secondary opening is set at the primary opening of the inner cylinder. in which it is smaller than the inner diameter of the end.

また本発明の第二の空気分離減速システムは上記した空気分離装置と、空気分離装置の内筒の二次側の開口端に接続する第二減速管路を備えるものである。そして第二減速管路は、内筒の長さ方向に対して湾曲する方向に延長する第1の曲がり管路と、第1の曲がり管路の長さ方向に対して湾曲する方向に延長する第2の曲がり管路とを備えるものである。そのうえで第1の曲がり管路における一次側の開口端の内径は、搬送物を減速させるために内筒の二次側の開口端の内径よりも大きいものである。 Moreover, the 2nd air separation reduction system of this invention is provided with the above-mentioned air separation apparatus and the 2nd reduction line connected to the opening end of the secondary side of the inner cylinder of an air separation apparatus . The second deceleration conduit extends in a direction curved with respect to the length direction of the first bent pipeline and a first curved pipeline that extends in a direction curved with respect to the length direction of the inner cylinder. And a second bent pipeline. In addition, the inner diameter of the primary opening end in the first bent pipe is larger than the inner diameter of the secondary opening end of the inner cylinder in order to decelerate the conveyed product.

また本発明の第三の空気分離減速システムは、上記した空気分離装置と、空気分離装置の内筒の一次側の開口端に接続する第一減速管路と、空気分離装置の内筒の二次側の開口端に接続する第二減速管路を備えるものである。そして第一減速管路、空気分離装置の内筒、第二減速管路の一次側部分は、一次側に対して二次側を低くしてあると共に、水平方向に対して傾斜しているものである。そしてその傾斜角度は搬送物の安息角度よりも大きく、水平方向に対して30°以上90°未満の角度である。 The third air separation speed reduction system of the present invention includes the above-described air separation device , the first speed reduction pipe connected to the opening end on the primary side of the inner cylinder of the air separation device, and the inner cylinder of the air separation device. A second reduction line connected to the opening end on the next side is provided. And the primary side part of the first reduction pipe line, the inner cylinder of the air separation device, and the second reduction pipe line has a lower secondary side than the primary side and is inclined with respect to the horizontal direction. It is. The inclination angle is larger than the repose angle of the conveyed product and is an angle of 30 ° or more and less than 90 ° with respect to the horizontal direction.

本発明の空気分離減速システムの空気分離装置によれば、内筒に突入した搬送物と空気のうち空気は、内筒の側面の排気口から、内筒と外筒の間の空間部、排気筒を順次へて吸引装置へ向かう。いっぽう搬送物は、内筒の側面から空気が吸引されることから減速して、その減速した勢い(慣性)で内筒の内部空間を通過する。本発明の空気分離装置はこのような構成であるから、外筒の内径(容量)を小さくして、外筒と内筒との口径方向の間隔を狭くしても、空気と搬送物を分離することができ、小型化に適し、設置し易いものである。また排気筒を外筒の長さ方向の中間部から分岐しているので、たとえば外筒が水平に設置されている場合に外筒の長さ方向(貫通方向)から視て排気筒の向きを360度、所望の向きに設置できるので、排気筒に接続する管を設置しやすい。 According to the air separation device of the air separation decelerating system of the present invention, air is transferred from the exhaust port on the side surface of the inner cylinder to the space between the inner cylinder and the outer cylinder, the exhaust gas out of the conveyed goods and air that have entered the inner cylinder. The cylinders are moved sequentially to the suction device. On the other hand, the conveyed product is decelerated because air is sucked from the side surface of the inner cylinder, and passes through the inner space of the inner cylinder with the reduced momentum (inertia). Since the air separation device of the present invention has such a configuration, even if the inner cylinder (capacity) of the outer cylinder is reduced and the gap between the outer cylinder and the inner cylinder in the aperture direction is reduced, the air and the conveyed product are separated. It is suitable for downsizing and easy to install. In addition, since the exhaust tube is branched from the middle portion in the length direction of the outer tube, for example, when the outer tube is installed horizontally, the direction of the exhaust tube can be changed as viewed from the length direction (through direction) of the outer tube. Since it can be installed in a desired direction at 360 degrees, it is easy to install a pipe connected to the exhaust stack.

また本発明の第一の空気分離減速システムの場合、第一減速管路では一次側の開口端の内径よりも二次側の開口端の内径を大きくしてあるので、第一減速管路の中で吸引される空気と搬送物を減速させた上で、内筒に送ることができ、そのうえ第一減速管路の二次側の開口端の内径を内筒の一次側の開口端の内径よりも小さくしてあるので、内筒に入った瞬間に空気と搬送物を減速させることができるので、空気分離装置だけで所望の速度に搬送物を減速させる場合に比べて、空気分離装置を小型化することができる。 In the case of the first air separation deceleration system of the present invention, the inner diameter of the secondary opening end is larger than the inner diameter of the primary opening end in the first deceleration pipeline, The air sucked in and the conveyed product can be decelerated and sent to the inner cylinder, and the inner diameter of the opening end on the secondary side of the first deceleration pipe is set to the inner diameter of the opening end on the primary side of the inner cylinder. Since the air and the conveyed product can be decelerated at the moment of entering the inner cylinder, the air separating device can be reduced compared to the case where the conveyed product is decelerated to a desired speed only by the air separating device. It can be downsized.

また本発明の第二の空気分離減速システムの場合、第1、第2の曲がり管路のように曲り管路を複数備えることによって、搬送物を減速させることができるので、空気分離装置だけで所望の速度に搬送物を減速させる場合に比べて、空気分離装置を小型化することができる。
また第1の曲がり管路の一次側の開口端の内径を内筒の二次側の開口端の内径よりも大きくしてあれば、第1の曲がり管路の一次側の開口端の内径と内筒の二次側の開口端の内径を同じにしてある場合に比べて、搬送物を効果的に減速させることができ、空気分離装置を小型化することができる。
Further, in the case of the second air separation deceleration system of the present invention, since a plurality of bent pipelines such as the first and second bent pipelines are provided, the conveyed product can be decelerated. Compared with the case where the conveyed product is decelerated to a desired speed, the air separation device can be downsized.
Further, if the inner diameter of the primary side open end of the first bent pipe line is larger than the inner diameter of the secondary side open end of the inner cylinder, the inner diameter of the primary side open end of the first bent pipe line Compared with the case where the inner diameter of the secondary side opening end of the inner cylinder is the same, the conveyed product can be effectively decelerated and the air separation device can be downsized.

また本発明の第三の空気分離減速システムの場合、吸引装置が停止するような不測の事態が生じても、第一減速管路と空気分離装置の内筒と第二減速管路の一次側部分に関して、二次側を一次側よりも低くしてあるので、搬送物は自然と落下し易くなり、特に貫通方向の傾斜角度を安息角よりも急にしてあるので、搬送物は必然的に落下することから、第一減速管路と空気分離装置の内筒と第二減速管路の一次側部分に搬送物が溜まり難くなる。 Further, in the case of the third air separation speed reduction system of the present invention, even if an unexpected situation occurs in which the suction device stops, the primary side of the first speed reduction line, the inner cylinder of the air separation device, and the second speed reduction line As for the part, the secondary side is lower than the primary side, so it is easy for the transported object to fall naturally, and in particular, the inclined angle in the penetration direction is made steeper than the repose angle, so the transported object is inevitably Since it falls, it becomes difficult for a conveyed product to collect in the primary side part of the 1st reduction line, the inner cylinder of an air separation apparatus, and the 2nd reduction line.

Claims (8)

内筒と、内筒をその口径方向外側に間隔をあけて取り囲む外筒と、外筒の長さ方向の両側で外筒と内筒の口径方向の間を閉鎖する一対の閉鎖部と、外筒の長さ方向の中間部から分岐すると共に吸引装置側へ接続する排気筒とを備え、
内筒は、その一次側の開口端を搬送物と空気の入口とし、その二次側の開口端を搬送物の排出口とし、その側面には空気の排気口となる複数の空気孔を備えると共に、その内部空間を搬送物が慣性で通過する通過空間にすることを特徴とする空気吸引式搬送機の空気分離装置。
An inner cylinder, an outer cylinder that surrounds the inner cylinder with a gap on the outer side in the caliber direction, a pair of closing portions that close between the outer cylinder and the inner cylinder on both sides in the length direction of the outer cylinder, An exhaust pipe that branches off from an intermediate portion in the length direction of the cylinder and that is connected to the suction device side;
The inner cylinder has an opening end on the primary side as an inlet for the conveyed product and air, an opening end on the secondary side as an outlet for the conveyed item, and a plurality of air holes serving as air exhaust ports on the side surface. In addition, an air separating device for an air suction type transporting machine, characterized in that the internal space is made a passing space through which a conveyed product passes by inertia.
空気孔は内筒の長さ方向に延長する細孔であることを特徴とする請求項1に記載の空気吸引式搬送機の空気分離装置。   The air separation device for an air suction type conveyance machine according to claim 1, wherein the air holes are pores extending in a length direction of the inner cylinder. 内筒と外筒を同心状に配置する内フランジ部を、内筒と外筒の互いの口径方向の間であって互いの長さ方向の複数個所に備え、
内筒は単独または少なくとも一つの内フランジ部と一緒に、外筒に対してその長さ方向に着脱可能であることを特徴とする請求項1又は2記載の空気吸引式搬送機の空気分離装置。
An inner flange portion that concentrically arranges the inner cylinder and the outer cylinder is provided between the inner cylinder and the outer cylinder in the caliber direction of the inner cylinder and the outer cylinder at a plurality of locations in the length direction of each other,
3. An air separation device for an air suction type transporter according to claim 1, wherein the inner cylinder is detachable in the length direction of the outer cylinder alone or together with at least one inner flange portion. .
内筒は、その一次側の開口端に対して二次側の開口端を低くしてあることを特徴とする請求項1、2又は3記載の空気吸引式搬送機の空気分離装置。   4. An air separating apparatus for an air suction type conveying machine as set forth in claim 1, wherein the inner cylinder has a lower opening end on the secondary side than the opening end on the primary side. 内筒は、水平方向に対して傾斜していることを特徴とする請求項4記載の空気吸引式搬送機の空気分離装置。   The air separating device for an air suction type conveying machine according to claim 4, wherein the inner cylinder is inclined with respect to the horizontal direction. 請求項1、2、3、4又は5記載の空気分離装置と、内筒の一次側の開口端に接続する第一減速管路を備え、
第一減速管路は、その一次側の開口端の内径に比べてその二次側の開口端の内径を大きくすると共に、その二次側の開口端の内径を内筒の一次側の開口端の内径よりも小さくしてあることを特徴とする空気分離減速システム。
The air separation device according to claim 1, 2, 3, 4 or 5, and a first reduction pipe connected to the opening end on the primary side of the inner cylinder,
The first reduction pipe has a larger inner diameter at the secondary opening than the inner diameter at the primary opening, and the inner diameter of the secondary opening is the primary opening of the inner cylinder. An air separation reduction system characterized by being smaller than the inner diameter of the air separation.
請求項1、2、3、4又は5記載の空気分離装置と、内筒の二次側の開口端に接続する第二減速管路を備え、
第二減速管路は、内筒の長さ方向に対して湾曲する方向に延長する第1の曲がり管路と、第1の曲がり管路の長さ方向に対して湾曲する方向に延長する第2の曲がり管路とを備える空気分離減速システム。
The air separation device according to claim 1, 2, 3, 4 or 5, and a second reduction pipe connected to the open end of the secondary side of the inner cylinder,
The second deceleration pipeline is a first bent pipeline that extends in a direction that curves with respect to the length direction of the inner cylinder, and a first curve that extends in a direction that curves with respect to the length direction of the first bent pipeline. An air separation reduction system comprising two bent pipes.
第1の曲がり管路における一次側の開口端の内径は、内筒の二次側の開口端の内径よりも大きいことを特徴とする請求項7記載の空気分離減速システム。   The air separation speed reduction system according to claim 7, wherein an inner diameter of the primary side opening end of the first bent pipe line is larger than an inner diameter of the secondary side opening end of the inner cylinder.
JP2016058145A 2016-01-18 2016-03-23 Air separation reduction system Active JP6185108B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016007298 2016-01-18
JP2016007298 2016-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017084154A Division JP6839598B2 (en) 2016-01-18 2017-04-21 Air separation deceleration system

Publications (2)

Publication Number Publication Date
JP2017128442A true JP2017128442A (en) 2017-07-27
JP6185108B2 JP6185108B2 (en) 2017-08-23

Family

ID=59395440

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016058145A Active JP6185108B2 (en) 2016-01-18 2016-03-23 Air separation reduction system
JP2017084154A Active JP6839598B2 (en) 2016-01-18 2017-04-21 Air separation deceleration system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017084154A Active JP6839598B2 (en) 2016-01-18 2017-04-21 Air separation deceleration system

Country Status (1)

Country Link
JP (2) JP6185108B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422620A (en) * 2020-04-09 2020-07-17 佛山市高明曦逻科技有限公司 Rotary hybrid carrying system and carrying method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367156B1 (en) * 2020-06-17 2022-02-23 강선행 Air intake device for car

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4634535Y1 (en) * 1967-09-26 1971-11-29
JPS49142379U (en) * 1973-03-31 1974-12-07
JPS6115233U (en) * 1984-06-30 1986-01-29 新日本製鐵株式会社 Gas venting device from powder transport pipe
JP2009067591A (en) * 2007-08-23 2009-04-02 Kumakura Industry Co Ltd Transporting pipe for separating liquid, and air transporting system equipped with the transporting pipe for separating liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4634535Y1 (en) * 1967-09-26 1971-11-29
JPS49142379U (en) * 1973-03-31 1974-12-07
JPS6115233U (en) * 1984-06-30 1986-01-29 新日本製鐵株式会社 Gas venting device from powder transport pipe
JP2009067591A (en) * 2007-08-23 2009-04-02 Kumakura Industry Co Ltd Transporting pipe for separating liquid, and air transporting system equipped with the transporting pipe for separating liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422620A (en) * 2020-04-09 2020-07-17 佛山市高明曦逻科技有限公司 Rotary hybrid carrying system and carrying method thereof
CN111422620B (en) * 2020-04-09 2021-09-28 潍坊高滨智能科技有限公司 Rotary hybrid carrying system and carrying method thereof

Also Published As

Publication number Publication date
JP2017128452A (en) 2017-07-27
JP6839598B2 (en) 2021-03-10
JP6185108B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP7041984B2 (en) Pneumatic carrier
FI123720B (en) Separation device and method in connection with a pneumatic material transport system
CA2726897A1 (en) Pneumatic grain conveying apparatus and method for selectively discharging grain or by-passing the discharge of grain into a grain bin
JP6185108B2 (en) Air separation reduction system
JP2013522145A (en) Method and apparatus in pneumatic material transfer system and waste transfer system
US10227185B2 (en) Grain conveying apparatus using air
IL271620B2 (en) Centrifugal gas separator
JP6170189B2 (en) Shutter device for air suction type conveyor
CN101905814A (en) Paper sheet takeout device
CN103213845A (en) Novel continuous dense-phase pneumatic conveyor
EP0057690A1 (en) Grain handling apparatus with improved cyclone separator
EP2672154A2 (en) Rotary valve with product relief grooves
JP2006240764A (en) Granular material feeding device, and granular material carrying system
CN203212012U (en) Novel continuous dense-phase pneumatic conveying device
US20120121399A1 (en) air vacuum pump for a particulate loader and transfer apparatus
JP2023512461A (en) Material transfer method in pneumatic material transfer system and pneumatic material transfer system
JP2002302250A (en) Selector valve
US8673063B2 (en) Inlet air extractor for a particulate loader and transfer apparatus
US6206247B1 (en) Rotary valve for particulate materials
CN201409423Y (en) Pneumatic tea conveying device
JP7249618B2 (en) Air suction transport device
CN106629976A (en) Integrated powdered activated carbon adding device and adding system thereof
KR20100109700A (en) Automatic waste collection system
JP7417323B1 (en) golf ball throwing device
CN215207364U (en) Discharging device and powder conveying system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170726

R150 Certificate of patent or registration of utility model

Ref document number: 6185108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250