JP6839268B2 - 体細胞コピー数多型検出 - Google Patents

体細胞コピー数多型検出 Download PDF

Info

Publication number
JP6839268B2
JP6839268B2 JP2019515874A JP2019515874A JP6839268B2 JP 6839268 B2 JP6839268 B2 JP 6839268B2 JP 2019515874 A JP2019515874 A JP 2019515874A JP 2019515874 A JP2019515874 A JP 2019515874A JP 6839268 B2 JP6839268 B2 JP 6839268B2
Authority
JP
Japan
Prior art keywords
sequencing
baseline
interest
region
bins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019515874A
Other languages
English (en)
Other versions
JP2019537095A (ja
Inventor
ハン−ユ チュアン
ハン−ユ チュアン
チェン ジャオ
チェン ジャオ
Original Assignee
イルミナ インコーポレイテッド
イルミナ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イルミナ インコーポレイテッド, イルミナ インコーポレイテッド filed Critical イルミナ インコーポレイテッド
Publication of JP2019537095A publication Critical patent/JP2019537095A/ja
Application granted granted Critical
Publication of JP6839268B2 publication Critical patent/JP6839268B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/10Ploidy or copy number detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Electrotherapy Devices (AREA)
  • Soil Working Implements (AREA)
  • Image Processing (AREA)

Description

本開示は、一般に、配列データのような、生物学的サンプルに関連したデータの分野に関する。より具体的には、本開示は、シーケンシング・データに基づいてコピー数多型を判定するための技術に関する。
関連出願の相互参照
本出願は、すべての目的で引用により本明細書に組み入れられる、2016年9月22日出願の「SOMATIC COPY NUMBER VARIATION DETECTION」と題する米国特許仮出願番号第62/398,354号及び2017年1月17日出願の「SOMATIC COPY NUMBER VARIATION DETECTION」と題する米国特許仮出願番号62/447,065号に対する優先権を主張する。
遺伝子シーケンシングは、診断その他の用途おける将来の使用が見込まれており、遺伝子研究のますます重要な分野になってきている。一般に、遺伝子シーケンシングは、RNA又はDNAの断片等の核酸についてヌクレオチドの順序を判定することを伴う。幾つかの技術は全ゲノム・シーケンシングを伴い、これはゲノムを分析する包括的方法を伴う。他の技術は、遺伝子のサブセット又はゲノムの領域の標的化シーケンシングを伴う。標的化シーケンシングは、注目領域に焦点を合わせ、より小さく、よりコンパクトなデータセットを生成する。さらに、標的化シーケンシングは、シーケンシングのコスト及びデータ分析の負担を削減すると同時に、注目領域内の変異体(variant)の検出のための高いカバレッジ(coverage)レベルでの深いシーケンシングを可能にする。このような変異体の例には、体細胞変異、一塩基多型、及びコピー数多型が含まれ得る。変異体の検出は、疾患の可能性又は感受性に関する情報を臨床医にもたらすことができる。したがって、シーケンシング・データにおける変異体の改善された検出が必要とされている。
米国特許出願公開第2007/0166705号明細書 米国特許出願公開第2006/0188901号明細書 米国特許出願公開第2006/0240439号明細書 米国特許出願公開第2006/0281109号明細書 米国特許出願公開第2005/0100900号明細書 米国特許第7,057,026号明細書 国際公開第05/065814号 国際公開第06/064199号 国際公開第07/010,251号 米国特許第6,969,488号明細書 米国特許第6,172,218号明細書 米国特許第6,306,597号明細書 米国特許第7,001,792号明細書 米国特許出願公開第2009/0026082号明細書 米国特許出願公開第2009/0127589号明細書 米国特許出願公開第2010/0137143号明細書 米国特許出願公開第2010/0282617号明細書 米国特許第7,329,860号明細書
Soni及びMeller、Clin.Chem.第53巻、p.1996−2001(2007年); Healy、Nanomed.第2巻、p.459−481(2007年) Cockroft他、J.Am.Chem.Soc.第130巻、p.818−820(2008年) Levene他、Science第299巻、p.682−686(2003年) Lundquist他、Opt.Lett.第33巻、p1026−1028(2008年) Korlach他、Proc.Natl.Acad.Sci.米国、第105巻、p.1176−1181(2008年)
本開示は、生物学的サンプルにおけるコピー数多型の検出のための新規手法を提供する。本明細書で提供される場合、コピー数多型(CNV:copy number variation)は、1つ以上のゲノム領域の異常な数のコピーをもたらすゲノムの変更である。重複、増殖、欠失、転座、及び反転といった構造的なゲノム再配列がCNVを引き起こし得る。一塩基多型(SNP)と同様に、特定のCNVが疾患感受性(disease susceptibility)に関連付けられている。本明細書における「コピー数多型」という用語は、注目するテストサンプル中に存在する核酸配列のコピー数の、期待コピー数と比較した変動を意味し得る。例えば、ヒトの場合、常染色体配列(及び女性のX染色体配列)の期待コピー数は2である。他の生物は、そのゲノム構造に従って異なる期待コピー数を有し得る。コピー数多型は、重複又は欠失の結果であり得る。特定の実施形態において、コピー数変異体は、重複又は欠失した少なくとも1kbの配列を意味する。1つの実施形態において、コピー数変異体は、少なくとも単一遺伝子のサイズであり得る。別の実施形態において、コピー数変異体は、少なくとも140bp、140−280bp、又は少なくとも500bpであり得る。
1つの実施形態において、「コピー数変異体」は、テストサンプル中の注目配列とその注目配列の期待レベルとの比較によってコピー数の差異が見いだされた核酸の配列を意味する。本明細書で提供される場合、基準サンプルは、非適合サンプル(unmatched samples)のシーケンシング・データのセットから誘導されて正規化情報を生成し、正規化情報は、個々のテストサンプルが正規化されることを可能にして、正規化されたシーケンシング・データに基づいて期待コピー数からの偏差を決定することができるようにする。正規化データは、本明細書で提供される技術を用いて生成され、テストサンプルと適合する仮説的に最も代表的なサンプル(hypothetical most representative sample)に対する正規化を可能にする。テストサンプルを正規化することにより、シーケンシングによって導入されるノイズ又は他のバイアスが除去される。
特定の実施形態において、標的化シーケンシングの実行から得られた生シーケンシング・データ・カバレッジを正規化して技術的及び生物学的ノイズを低減し、CNV検出を改善する。1つの実施形態において、注目サンプル(例えば、ホルマリン固定パラフィン包埋サンプル)は、所望のシーケンシング技術、例えば注目する標的領域に対するプローブのシーケンシング・パネルを用いる標的化シーケンシング技術によって、シーケンシングされる。ひとたびシーケンシング・データが収集されると、シーケンシング・データを正規化してノイズを除去し、次いで正規化されたデータを分析してCNVを検出する。
1つの実施形態において、コピー数を正規化する方法が提供され、これは、ユーザからシーケンシング要求を受けて、生物学的サンプル内の1つ以上の注目領域をシーケンシングするステップと;生物学的サンプルと適合しない複数のベースライン生物学的サンプル由来の1つ以上の注目領域から、ベースライン・シーケンシング・データを取得するステップと;ベースライン・シーケンシング・データを用いて、1つ以上の注目領域のうちの注目領域についての少なくとも1つのコピー数ベースラインを含む、コピー数正規化情報を決定するステップと;コピー数正規化情報をユーザに提供するステップとを含む。
別の実施形態において、コピー数多型を検出する方法が提供され、これは、生物学的サンプルから、それぞれの複数の注目領域についての複数の生シーケンシング・リードカウントを含むシーケンシング・データを取得するステップと;領域依存カバレッジ・バイアスを除去するためにシーケンシング・データを正規化するステップとを含む。正規化するステップは、各注目領域について、生物学的サンプルの領域内の1つ以上のビンの生シーケンシング・リードカウントをベースライン・メジアン・シーケンシング・リードカウントと比較して、注目領域内の1つ以上のビンについてのベースライン補正シーケンシング・リードカウントを生成することを含み、ここで注目領域内の1つ以上のビンについてのベースライン・メジアン・シーケンシング・リードカウントは、生物学的サンプルと適合しない複数のベースライン・サンプル由来であり、各注目領域についてのベースライン・シーケンシング・データの最も代表的な部分のみから決定されたものであり;ベースライン補正シーケンシング・リードカウントからGCバイアスを除去して、各注目領域についての正規化シーケンシング・リードカウントを生成することを含む。上記方法はまた、各注目領域内の1つ以上のビンの正規化シーケンシング・リードカウントに基づいて、各注目領域内のコピー数多型を判定することも含む。
別の実施形態において、標的化シーケンシング・パネルを査定する方法が提供され、これは、標的化シーケンシング・パネルに対して、それぞれの複数の遺伝子の部分に対応する第1の複数の標的をゲノム内で同定するステップと;第1の複数の標的の各々のGC含量を判定するステップと;第1の複数の標的のうち所定の範囲外のGC含量を有する標的を排除して、第1の複数の標的より小さい第2の複数の標的を得るステップと;排除の後、個々の遺伝子が、その個々の遺伝子の部分に対応する標的を所定の数より少なく有する場合、その個々の遺伝子内で追加の標的を同定するステップと;追加の標的を第2の複数の標的に追加して、第3の複数の標的を得るステップと;第3の複数の標的に対して特異的なプローブを含むシーケンシング・パネルを提供するステップとを含む。
本技術によるコピー数変異体を検出するための方法の図式的概要である。 図1の方法に関連して用いることができるシーケンシング装置のブロック図である。 本開示の実施形態による正規化技術の一例の模式的な概要である。 本明細書で提供される正規化の前及び後のシーケンシング結果についてのビン・プロファイル・データを示す。 正常FFPEサンプルにおいて存在するノイズを、非常に劣化した細胞系及び正常な細胞系混合物と比べて示す。 異なるサンプルタイプ間でのベースライン相関が乏しいことを示すプロットのパネルである。 不良ビンを除去して正規化のためのベースラインを生成するために非適合試料由来のベースライン基準シーケンシング・データに適用することができる、ビン・フィルタリングの1つ以上のタイプの例を示す。 非適合正常サンプル由来のベースライン基準シーケンシング・データを用いて代表ベースラインを同定するための階層的クラスタリングを示す。 ノイズを除去するための線形回帰によるベースライン補正の結果を示し、ここでc1及びc2は、階層的クラスタリングから学習される2つの代表ベースラインである。 サンプルS1、S2、S3及びS4間の可変かつサンプル依存的なGCバイアスを示す。 入力データAを用いてプロットDの補正データを与える、ベースライン及びGCバイアス補正を含む正規化を示し、ここで、AからBは、トレーニングされたアルゴリズムのベースラインを用いた線形回帰を表し、BからCは、そのサンプルについてのGCバイアスを代表するフィッティングされた曲線の生成を表し、CからDは、サンプルからGCバイアスを除去するためのフィッティングされた曲線の平坦化を表す。 ERBB2についての配列ビンを含む、正規化の前及び後の結果を示す。 340個のFFPEサンプルにわたってR2=0.99であり、倍率変化検出が、使用されるベースラインから安定に独立であることを示す。 EGFR、ERBB2、FGFR1、MDM2、MET、及びMYCを含む幾つかの注目領域についてのパネルを用いてテストされた22個のFFPEサンプルにわたって、本明細書で提供される正規化技術と、ddPCRとの間の高い一致を示す。 EGFRについて、本明細書で提供される正規化技術を用いた結果と、コントロールフリー・サンプルを用いた結果との比較を示す。 本明細書で提供される正規化技術を用いた結果と、適合正常サンプルを用いた結果とのメジアン絶対偏差の比較を示し、対応のあるt検定のp値は0.0202である。 本明細書で提供される正規化技術(y軸)と適合正常(x軸)との間での、検出された倍率変化(FC)による、倍率変化比較を示す。 本明細書で提供される正規化技術を用いて検出されたKIT変異体を示す。 代替的な主成分分析技術を用いて検出されたKIT変異体を示す。 本明細書で提供される正規化技術を用いて検出されたBRCA2変異体を示す。 代替的な主成分分析技術を用いて検出できなかったBRCA2変異体を示す。 ビン領域を示す、例示的な遺伝子のためのプローブ設計の模式的表示である。 リードではなくフラグメントに基づくビン・カウントの模式的表示である。 ビンの名称及び特性の表である。 プローブに対する標的サイズ分布のプロットである。 遺伝子メジアンの絶対分布、並びに標的の数及び標的のGC含量に対する比較を示す。 FFPEサンプルの性別分類及びY染色体カバレッジの存在を示す。 カバレッジ・エンハンサーを伴う及び伴わないプローブ・カバレッジの比較を示す。 多様な遺伝子についてプローブ・カバレッジの概要を示す 検出されたコピー数多型のグラフィカル・ユーザ・インタフェースの一例を示す。
本技術は、改善された体細胞コピー数多型(CNV)検出のためのシーケンシング・データの分析及び処理に向けられる。CNV検出は、サンプル保存、ライブラリ調製、又はシーケンシングの際に導入される種々のタイプのバイアスによって乱されることが多い。バイアスがなければ、リード深さ(read depth)/カバレッジは、二倍体領域についてはゲノム全体にわたって均一になり、コピー数が多い(少ない)領域については比例的に高く(低く)なるはずである。バイアスがあると、この仮定は、少なくともバイアスを受けるゲノムの領域についてはもはや有効ではなくなる。バイアスを除去すること、又はデータを最初に例えばCNV検出に先立って正規化することで、本明細書で提供されるような、より正確なCNVコーリングが達成される。
本明細書では、ゲノム内の1つ以上の注目領域についてのコピー数の変化を代表する変動を査定する前にシーケンシング・データを正規化するのに有用な、個々の生物学的サンプルのための基準ベースラインを作成する技術が提供される。開示される技術は、テストサンプルを正規化するために、テストサンプルを採取した個人からの適合サンプルに依存することなく、基準又は正規化情報を提供する。他の技術は、基準を生成するために患者自身の組織を使用することがあるが、生物学的サンプルと同じ個体から取得した適合サンプルを使用することはある種の課題を提示する。例えば、サンプル収集における変動(サンプル品質、選択された組織)は、基準サンプルが正常組織の真の代表ではないことを意味することがある。さらに、シーケンシング・データに影響を与えるバイアスの導入がサンプル間で異なることがある限り、適合基準サンプルは、テストサンプルと比べて異なるレベルの導入されたバイアスを有することがあり、これがひいては不正確さ、及び不適切に正規化されたデータをもたらしかねない。さらに、すべてのテストサンプルが、利用可能な適合組織を有しているわけでもなく、又はシーケンシングに十分な高品質の適合組織を有しているわけでもない。
したがって、開示される技術は、適合サンプルを用いることなく、バイアスが低減した正規化情報を生成することによって、より正確なコピー数多型の査定(assessment)を促進する。個々のサンプルにおけるCNV検出に先立って、正規化情報を用いてシーケンシング・データのセットを正規化することができる。正規化情報は、非適合基準ベースライン生物学的サンプルのセット又はプールを用いて生成される。次いで、このセットから生成されたシーケンシング・データを用いて、最も典型的な仮説的適合基準サンプルである正規化情報を生成する。すなわち、正規化情報は、いかなる個々のテストサンプルもそれに対して正規化することができる、仮想的な較正された金基準(gold standard reference)を表す。
ある種の実施形態において、CNVは、全ゲノム・シーケンシング技術を用いて検出することができる。しかしながら、このような技術は、高価であり、かつ注目領域外にあるかもしれないデータを生成することを伴う。他の実施形態において、標的化シーケンシング技術を用いてCNVを検出することは、より安価であり、かつターンアラウンド・タイムがより速い。標的化シーケンシングにおいて、標的化プローブを用いて、シーケンシングのためにサンプルDNAから注目領域をプルダウンする。使用されるプローブは、注目領域及び所望の検出結果に応じて変更し得る。しかしながら、標的化シーケンシングの実行から得られるシーケンシング・データのカバレッジは、ゲノム内の注目領域(例えば標的配列)、プローブ、及びサンプル自体の品質の変化する特性に起因して、可変であり得る。例えば、より大きい標的(例えば、より長いエキソン)に対して特異的なプローブは、典型的には、より小さい標的に対するプローブよりも多くのリード又はカバレッジを有することになる。別の例において、生物学的サンプルにおけるDNAの劣化区域は、より少ないリードを有することになる。さらに別の例において、GCリッチ又はGCプアな注目領域は、非線形であり得るカバレッジの変動を有することになる。したがって、標的化シーケンシングの実行から得られるシーケンシング・データに対するカバレッジの変動性は、カバレッジ/リード深さに基づくCNV検出の正確さを妨害するノイズを導入することがある。
表1は、濃縮データ内に存在するシーケンシング・バイアス/ノイズの共通のタイプを示す。例えば、異なるプローブは、異なるプルダウン効率を有することがあるので、これにより、異なる領域にわたって一様ではないカバレッジを生じさせる(ベースライン効果)。カバレッジはまたGC依存性であり得、すなわち低い又は高いGC含量を有する領域は、一般により低いカバレッジを有する。さらに、カバレッジは、ホルマリン固定パラフィン埋設(FFPE)サンプルの品質又はサンプルタイプによって影響を受けることがある。上記のアーチファクトのすべてが、増幅検出に対する課題を提示する。CNVロバスト分析(CNV Robust Analysis)は、CNVコーリングの前にこれらのバイアスを除去する(すなわちデータ正規化を用いる)ことを目的とする。
Figure 0006839268
表1:生物学的サンプルにおけるバイアス源
開示される技術は、腫瘍サンプルのリードカウント正規化において、基準正常サンプルのパネルを利用し、適合正常サンプルを使用する必要性を解消する。詳細には、配列リードカウント・バイアスは、組織型及びDNA品質と強く相関し、より強力でないとしても、サンプルの生殖細胞系列の遺伝と同等のインパクトを有する。したがって、異なる組織型及び異なるDNA品質を代表する好適な多様な基準正常サンプルを用いて、CRAFTイン・シリコン(in silicon)は、すべての基準正常サンプルの線形結合を通じて、テスト腫瘍サンプルに対する「仮想」適合正常サンプルを組み立てる。
基準正常サンプルのパネルは、データ駆動クラスタリング・プロセスを経て、リードカウント・ベースラインを形成する。各基準ベースラインは、ゲノムにおける真のコピー数変化ではなく、特定の組織型、DNA品質、及びその他のリードカウント・バイアスに対する系統的バックグラウンドの代表である。テストサンプルについて、サンプル・リードカウント・データに対して基準ベースラインの線形回帰を行って、各ベースラインの係数を決定する。各テストサンプルは、一意の係数のセットをもたらし、仮想適合正常サンプルを模倣する。ユーザが、特定のシーケンシング・パネルでシーケンシング・データを取得すると、ユーザは、該係数を用いて、取得したシーケンシング・データを正規化することができる。1つの実施形態において、係数は、線形結合を経て適用することができ、特定の注目領域(例えば遺伝子)についての重み付きコピー数の値を与える。
そのために、開示される技術は、シーケンシング・バイアスの結果生じるコピー数多型査定の誤りを排除し又は低減する。図1は、本明細書で提供される正規化技術を用いる、エンドユーザとプロバイダとの間の相互作用を示すフロー図10である。図示したフロー図10は、標的化シーケンシング・パネルの状況で提示されている。しかしながら、同様の相互作用は、全ゲノム・シーケンシング反応の状況においてもまた起こり得ることを理解されたい。
ステップ12において、ユーザは、査定のための注目する生物学的サンプルを取得する。生物学的サンプルは、組織サンプル、液体サンプル、又はその他のゲノム若しくはゲノムDNAの少なくとも一部を含有するサンプルとすることができる。特定の実施形態において、生物学的サンプルは、新鮮なもの、凍結されたもの、又はFFPEのような標準的な組織病理学的保存法を用いて保存されたものである。生物学的サンプルは、テストサンプルであってもよく、又は正規化情報を生成するために用いられる内部サンプルであってもよい。標的化シーケンシング・パネルを用いて生物学的サンプルを査定する実施形態において、ユーザは、標的化シーケンシング要求をプロバイダに送信し、この要求は、サンプルのゲノムDNA内の所望の注目領域に基づいて、選択された既存のシーケンシング・パネル及び/又はカスタマイズされたシーケンシング・パネルを含む。要求は、顧客情報、生物学的サンプル生物体情報、生物学的サンプルタイプ情報(例えば、サンプルが新鮮なもの、凍結されたもの、又は保存されもののいずれであるかを識別する情報)、組織型、及び所望のシーケンシング・アッセイタイプを含むことができる。要求はまた、シーケンシング・パネルの所望のプローブのための核酸配列、及び/又は標的化シーケンシング・パネルのためのプローブを設計及び/又は生成するためにプロバイダによって使用され得るゲノム内の注目領域の核酸配列を含むこともできる。
プロバイダは、ステップ14において要求を受け取り、ステップ16において、指定されたプローブセット及び/又は指定された注目領域(例えばビン)に基づいて、シーケンシングにおいて用いられるプローブを設計及び/又は生成する。特定の実施形態において、既存のシーケンシング・パネルの場合、プローブは、ステップ14において要求を受け取る前に生成されてインベントリに保存されている場合もある。プローブは、ステップ20においてユーザに提供され、ステップ22におけるいずれかの関連したサンプル調製に続いて、ステップ24において生物学的サンプルのシーケンシングに用いられる。ユーザは、ステップ26において、シーケンシングからシーケンシング・データを取得する。
ユーザが標的化シーケンシング・パネルのためのプローブを選択した場合、そのプローブは、ステップ28において、非適合サンプルのセット(例えば、適合していない他の生物学的サンプル、又は生物学的サンプルとしての同じ個体からのもの)に対するベースライン・シーケンシング反応においても用いられ、ベースライン・シーケンシング・データが取得される。ベースライン・シーケンシング・データは、ステップ30において正規化情報を生成するために用いられ、この正規化情報はステップ32においてユーザに提供される。正規化情報を用いて、ユーザは、テストサンプルのシーケンシング・データを正規化し、その後、ステップ34において、取得された生物学的サンプルのシーケンシング・データを分析して、コピー数変異体を、標的化シーケンシング・パネル内に含まれる位置に対して同定する。すなわち、ゲノムの一部のみのシーケンシングを促進する標的化シーケンシング・パネルの状況では、シーケンシングされた部分に存在するコピー数変異体のみを同定することができる。これは、本技術によるゲノム全体にわたってコピー数変異体を同定することができる全ゲノム適用とは対照的である。
コピー数変異体の同定に応答して、ステップ36においてユーザに対して出力を提供することができる。出力は、ゲノム内の特定の位置におけるコピー数のグラフィカル・アイコンを含む、表示されるグラフィカル・ユーザ・インタフェース(図30参照)を含むことができる。
ユーザは、プロバイダのシーケンシング・サービスの外部ユーザ又は内部ユーザであり得る。例えば、フロー図10のステップは、任意の新規な標的化シーケンシング・パネル産物を較正すること又は生成することの一部として行うことができ、これはカスタマイズされたシーケンシング・パネルに対する外部要求も含み得る。所与の標的化シーケンシング・パネルは、パネルプローブによって標的化される注目領域に基づいて特定のバイアス傾向に関連付けられる。このバイアスは、コピー数多型の正確な査定に干渉することがある。したがって、フロー図10のステップを、プローブのセットを含む任意の標的化シーケンシング・パネルが設計、修正、又は更新されたときに行うことができる。他の実施形態において、ユーザ要求がゲノム内の注目領域を含む場合、開示の技術を用いてプローブのセットを含むパネルを生成及び評価して、正規化情報を与えることができる。正規化情報は、メトリック(metric)のセットを用いて評価することができる。メトリックが、そのパネルが不十分な(poor)正規化情報を与えることを示した場合、そのパネルを棄却してプローブを再設計する(例えば、いずれかの方向に50bpシフトさせる)ことができる。高品質の正規化情報が得られるまで、フロー図50のステップを用いて新たなプローブをテストすることができる。1つの実施形態において、メトリックは、内部サンプル中のコピー数変異体を同定する前に正規化情報を適用することによって得られる。シーケンシングされた領域にわたって同定されたコピー数変異体が期待分布(expected distribution)から逸脱していた場合、新たなシーケンシング・パネル(例えばプローブ再設計)をトリガすべきであることを示す出力を提供することができる。期待分布は、コピー数変異体の尤度分布に関連付けることができる。例えば、大部分の変異体は、いずれかの方向で2又は3倍率変化内にある。内部サンプルが、期待分布より大きい10倍以上の変異体を有することが示された場合、分析されたサンプルは、期待分布から逸脱していると示すことができる。
生物学的サンプルをシーケンシングすることによって生成されたシーケンシング・データを、正規化情報を用いて正規化した後、分析して、任意のコピー数多型を特徴づけることができる。生物学的サンプル・シーケンシング・データ及びベースライン・シーケンシング・データは、生データ、ベースコール・データ、又は一次若しくは二次分析を経たデータの形態とすることができることを理解されたい。
さらに、CNVは、遺伝子の一部、遺伝子内領域等として同定することができることを理解されたい。CNV検出を重複又は欠失配列に関連付けることができることもまた理解されたい。したがって、CNV検出は、1つ以上の遺伝子を含む領域のような、核酸領域の重複コピーを表すことができる。1つの実施形態において、CNVは、少なくとも1kbのサイズの重複又は欠失ゲノム領域である。
シーケンシング・カバレッジは、既知の基準塩基にアライメントする、すなわち「カバー」する、シーケンシング・リードカウントの平均数を記述する。カバレッジ・レベルは、しばしば、特定の塩基位置において特定の信頼度で変異体の発見を行うことができるかどうかを決める。カバレッジのレベルがより高いところでは、各塩基は、より多数のアライメントされた配列リードによってカバーされるので、より高い信頼度でベースコールを行うことができる。リードは、ゲノム全体にわたって一様に分布しているわけではなく、その理由は単にリードがゲノムをランダムかつ独立した方式でサンプリングするからである。したがって、多くの塩基が平均カバレッジよりも少ないリードによってカバーされる一方で、他の塩基が平均より多くのリードによってカバーされることになる。これは、あるゲノムがシーケンシングされる回数(シーケンシングの深さ)である、カバレッジ・メトリックによって表現される。標的化リシーケンシング(resequencing)の場合、カバレッジは、ある領域がシーケンシングされる回数の量を指す。例えば、標的化リシーケンシングの場合、カバレッジは、ゲノムの標的化サブセットがシーケンシングされる回数を意味する。開示される実施形態は、バイアスに起因する、シーケンシング・カバレッジにおけるノイズに対処する。
図2は、コピー数多型を査定するために用いられる、シーケンシング・データ(例えば、テストサンプル・シーケンシング・データ、ベースライン・シーケンシング・データ)を取得するために図1のフロー図のステップに関連して用いることができるシーケンシング装置60の模式図である。シーケンス装置60は、任意のシーケンシング技術、例えば、その開示の全体が引用により本明細書に組み入れられる特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9に記載されている合成によるシーケンシング(sequencing−by−synthesis)法を組み込んだ技術に従って実装することができる。あるいは、ライゲーション技術によるシーケンシングを、シーケンシング装置60において用いることができる。このような技術は、DNAリガーゼを使用してオリゴヌクレオチドを組み込み、そうしたオリゴヌクレオチドの組み込みを同定するものであり、その開示の全体が引用により本明細書に組み入れられる特許文献10、特許文献11、及び特許文献12に記載されている。幾つかの実施形態は、標的核酸ストランド又はヌクレオチドがエキソヌクレアーゼによって標的核酸から除去されてナノポアを通過する、ナノポア・シーケンシングを利用することができる。標的核酸又はヌクレオチドがナノポアを通過するときに、ポアの電気伝導度のゆらぎを測定することによって塩基の各タイプを同定することができる(その開示の全体が引用により本明細書に組み入れられる特許文献13、非特許文献1、非特許文献2、及び非特許文献3)。さらに他の実施形態は、ヌクレオチドが延長産物内に取り込まれるときに放出されるプロトンの検出を含む。例えば、放出されたプロトンの検出に基づくシーケンシングは、Ion Torrent(Guilford、CT、Life Technologiesの子会社)から市販されている電気検出器及び関連の技術、又はその開示の全体が引用により本明細書に組み入れられる特許文献14、特許文献15、特許文献16、又は特許文献17に記載されているシーケンシング方法及びシステムを使用することができる。特定の実施形態は、DNAポリメラーゼ活性の実時間モニタリングを伴う方法を利用することができる。ヌクレオチドの組み込みは、フルオロフォアを持つポリメラーゼとγ−ホスフェート標識ヌクレオチドとの間の蛍光共鳴エネルギー移動(FRET)相互作用を通じて、又は、例えば、その開示の全体が引用により本明細書に組み入れられる非特許文献4、非特許文献5、非特許文献6に記載されているようなゼロモード導波管を用いて検出することができる。他の好適な代替的技術は、例えば、蛍光インサイチュシーケンシング(FISSEQ)、及びMassively Parallel Signature Sequencing (MPSS)を含む。具体的な実施形態において、シーケンシング装置60は、Illumina(La Jolla、CA)のHiSeq、MiSeq、又はHiScanSQとすることができる。
図示された実施形態において、シーケンシング装置60は、分離したサンプル処理装置62と、関連付けられたコンピュータ64とを含む。しかしながら、前述のように、これらは単一装置として実装することができる。さらに、関連付けられたコンピュータ64は、サンプル処理装置62に対してローカルにすることもでき、又はネットワーク接続することもできる。図示された実施形態において、生物学的サンプルは、サンプルスライド70としてサンプル処理装置62内に装填することができ、これをイメージングして配列データを生成する。例えば、生物学的サンプルと相互作用する試薬がイメージング・モジュール72によって発生された励起ビームに応答して特定の波長で蛍光を発し、それによりイメージングのための放射を返す。例えば、蛍光成分は、その成分の相補的分子にハイブリダイズする、又はポリメラーゼを用いてオリゴヌクレオチドに組み込まれた蛍光標識ヌクレオチドにハイブリダイズする、蛍光標識核酸によって生成することができる。当業者に理解されるように、サンプルの染料が励起される波長及びそれらが蛍光を発する波長は、特定の染料の吸収及び発光スペクトルに依存する。このようにして戻される放射は、方向付けするオプティクスを通って戻り方向に伝搬することができる。この逆行ビーム(retrobeam)は、一般に、イメージング・モジュール72の検出オプティクスに向かって方向付けすることができる。
イメージング・モジュールの検出オプティクスは、任意の適切な技術に基づくものとすることができ、例えば、デバイス内の位置に衝突する光子に基づいて画素化されたイメージデータを生成する電荷結合素子(CCD)センサとすることができる。しかしながら、時間遅延積分(TDI)演算用に構成された検出器アレイ、相補型金属酸化膜半導体(CMOS)検出器、アバランシェ・フォトダイオード(APD)検出器、ガイガー方式の光子カウンタ、又は他のいずれかの適切な検出器を含むがこれらに限定されない様々なその他の検出器のいずれをも使用することができることが理解されるであろう。TDI方式の検出は、引用により本明細書に組み入れられる特許文献18に記載されているようなライン・スキャニングと結合することができる。他の有用な検出器は、例えば、種々の核酸シーケンシング方法に関連して本明細書で先に提示した参考文献に記載されている。
イメージング・モジュール72は、例えばプロセッサ74を介して、プロセッサ制御下にあってもよく、サンプル受入装置62は、I/Oコントロール76、内部バス78、不揮発性メモリ80、RAM82、及び他のいずれかのメモリ構造も含むことができ、そのメモリが実行可能命令を格納することが可能であるようになっており、また、図2に関連して説明したものと同様なものとすることができる他の適切なハードウェアコンポーネントを含むことができる。さらに、関連付けられたコンピュータ64もまた、プロセッサ84、I/Oコントロール86、通信モジュール84、並びにRAM88及び不揮発性メモリ90を含むメモリアーキテクチャを含むことができ、メモリアーキテクチャが実行可能命令92を格納することができるようになっている。ハードウェアコンポーネントは、内部バス94によって連結することができ、これはディスプレイ96にも連結することができる。シーケンシング装置がオールインワン装置として実装される実施形態においては、特定の冗長なハードウェア要素を省略することができる。
本技術は、生物学的サンプル(例えば腫瘍サンプル)中のCNVの検出又はコーリングを、最初にそのシーケンシング・データを適合シーケンシング・データに対して正規化することなく、促進する。本技術は、前処理ステップを用いてマニフェスト・ファイル及びベースライン・ファイルを生成し、これらは正規化ステップに対する入力パラメータとして使用される。マニフェスト・ファイル及びベースライン・ファイルは、コピー数多型を判定するための注目サンプルの分析とは独立して、分析に先立って生成される。マニフェスト・ファイル及びベースライン・ファイルは、非適合サンプル(すなわち非適合正常サンプル)から作成され、本明細書で提供されるベースライン生成技術によって決定される。ベースライン生成は、非適合正常サンプルに対して行われ、ベースライン生成の結果は、正規化技術の実行可能命令によるアクセスのためのベースライン情報(又は正規化情報)として格納される。例えば、注目サンプルを有するユーザは、1つ以上のCNVの分析を行うことができる。特定の実施形態において、生成及び格納の後、ベースライン情報は、異なる時点及び/又はその後の時点で、複数の注目サンプルの分析において用いられる。ユーザは、ベースライン情報に対応するシーケンシング・パネルに基づいて、格納されたファイルにアクセスすることができる。
1つの実施形態において、コピー数正規化情報は、ひとたび生成されると、特定のシーケンシング・パネルに対して固定される。すなわち、コピー数正規化情報は、シーケンシング・パネルの特定のプローブと関連付けられ、プロバイダによって格納され、その特定のシーケンシング・パネルのユーザに対して送られる。異なるシーケンシング・パネルは、異なるコピー数正規化情報を有する。別の例において、CNVコーリング・ソフトウェアパッケージは、各々が異なるシーケンシング・パネルに関連付けられた複数の異なるコピー数正規化情報を格納することができる。ユーザは、シーケンシング・データを取得するために用いられるシーケンシング・パネルに基づいて、適切な正規化情報を選択することができる。あるいは、シーケンシング装置60は、用いられるシーケンシング・パネルに関連したユーザによる情報入力に基づいて、適切なコピー数正規化情報を自動的に取得することができる。CNVコーリング・ソフトウェアパッケージはまた、コピー数正規化情報がプロバイダによって改良された場合、遠隔サーバから更新を受け取ることもできる。
体細胞コピー数多型検出の問題は、図3にまとめたように、階層的クラスタリング法を使用し、次いでデータ正規化のための線形回帰及びLoess回帰を利用して、代表ベースライン・カバレッジ挙動を同定することによって解決される。この技術は、構成100(例えば、アルゴリズム・トレーニング)と、注目サンプルの正規化102と、コピー数の倍率変化(fold change)及び個々の遺伝子ベースのT統計量(T−stats)などの出力又は統計量の提供104とを含む。例えば、FCは、注目遺伝子のメジアン値とゲノム・メジアンとの間の比である。T統計量は、注目遺伝子を残りのゲノム(例えば、二倍体生物について)と比較した、ビン・カウント分布とすることができる。
前処理(アルゴリズム・トレーニング)は、以下のステップを含むことができる。
1.ビン/エキソン選択110:トレーニングする正常サンプル(例えば、FFPE正常サンプル)のセットから、各ビンについてメジアン、メジアン絶対偏差(median absolute deviation)、GC含量及びサイズを計算する(図7参照)。次いで、低いメジアン、大きいMAD、極端なGC含量及び小さいサイズを有するビンをマニフェスト・ファイル内で不良ビンとしてマークする。このステップで影響を受けるビンの割合はわずかである(〜5%)。例えば、図6に示すように、用いられるフィルタリングパラメータは、
メジアン>0.25
CV:(0,2)
GC:(0.25,0.8)
標的サイズ:>20bp
である。
2.ベースライン又は正常サンプル(例えば、FFPE正常サンプル)からのベースライン生成112:異なる組織型由来のサンプル又は異なるDNA品質を有するサンプルは、極めて異なるベースライン挙動を有し得る。したがって、ベースライン効果を補正するために複数のベースラインが用いられる。一例において、各組織型由来の4−5個の正常FFPEサンプルを用いて、各ビンについてメジアン挙動を決定して、異なる組織型を表す。ベースラインを生成するために、階層的クラスタリングを用いて、正常サンプルポピュレーションにおける、複数の根底にあるカバレッジを反映する代表グループを同定する。図8参照。クラスタリングを、サンプル品質と相関させる。ひとたびクラスタが同定されると、各ビンについてのメジアン値を用いてベースライン・ファイルを作成し、これがその後の正規化に用いられる。すなわち、各クラスタ内のメジアン・ビン・カウントをベースラインとして採用する。クラスタリング法を用いることによって、正常サンプルにおける最も「代表的」な挙動が下流の正規化のために用いられる。
上記で生成された基準ベースラインを用いたベースライン又は正規化(査定されるサンプルに適用される)の後、新たなサンプルを標的サイズ及びメジアン・ビン・カウントによって正規化情報に対してスケール変更する114。
1.ベースライン補正116:新たなサンプルに対して、そのビン・カウントをベースラインの線形結合:Y〜c1+c2+c3としてモデル化する。新たなサンプルにおける潜在的なCNVゆえに、最初に外れ値がYから除去され、外れ値が除去された値に基づいて線形モデルが構築される。特定の実施形態において、外れ値はマスクされる。他の実施形態において、極端な外れ値のみが除去され又はマスクされる。次いで、Yと線形モデル予測との比がベースライン補正値として用いられる。3標準偏差を上回る又は下回るビン・カウントが外れ値とみなされる。
Lm(Y[good.idx]〜c1[good.idx]+c2[good.idx]+c3[good.idx])
Y_new〜Y/predict(lm,data=ALL)

2.ステップ1の後、GCバイアスを除去するためのロバストloess回帰118。
3.各遺伝子について、そのメジアン・ビン値をゲノム・メジアンと比較することによって、その倍率変化124を計算する。追加の統計量、例えば各遺伝子についてのt−統計量126を決定することもできる。
図4は、幾つかのビンにわたる、本明細書で提供される正規化の前及び後のシーケンシング結果についてのビン・プロファイル・データを示す。「前」の結果において存在するノイズは、示されるように「後」の結果において低減される。ノイズは、コピー数変異体の正確なコーリングを妨げる。図5は、正常FFPEサンプルに存在するノイズを、非常に劣化した細胞系及び正常細胞系混合物と比べて示す。データ内に存在するノイズは、正確なCNVコーリングに干渉する。さらに、ノイズは、様々な品質のサンプルに存在する。しかしながら、ベースライン補正は、異なるサンプルタイプ間では不十分である。したがって、本技術は、適切な正規化情報を選択するためにユーザがサンプルタイプを入力することを可能にする。
図9は、ノイズを除去するための線形回帰によるベースライン補正の結果を示し、ここでc1及びc2は、階層的クラスタリングから学習される2つの代表ベースラインである。図10に示すように、GCバイアスはサンプル特異的である。一般に、極端に低いGC又は高いGC領域は、リードにおける提示不足(under−represented)である。幾つかのサンプルは他のサンプルよりも曲率が高い。図11は、段階的手法のための正規化ステップの図である。(A)大きいベースライン効果に起因して、エキソン・カウントとGCとの間には目に見える関係は存在しない。(B)ベースライン補正後、カウントとGCとの間には目に見える負の傾向がある。(C)外れ値が同定され、外れ値が除去されたデータに対してloess回帰がフィッティングされる。(D)GCバイアス除去後の最終的な正規化の結果。
図12は、ERBB2遺伝子についての配列ビンを含む、正規化の前及び後の結果を示す。「後」の結果は、本明細書で提供される正規化によるノイズの著しい低減を実証する。図13は、340個のFFPEサンプルにわたってR2=0.99であり、倍率変化検出が、使用されるベースラインから安定に独立であることを示す。図14は、EGFR、ERBB2、FGFR1、MDM2、MET、及びMYCを含む幾つかの注目領域についてのパネルを用いてテストされた22個のFFPEサンプルにわたって、本明細書で提供される正規化技術と、ddPCRとの間の高い一致を示す。
図15は、ベースライン又はコントロールフリー法に対する本明細書で用いられる正規化技術の比較である。コントロールフリー法は、正規化のためにいかなる追加のコントロール又は正常サンプルも必要としない。その代わり、データ正規化のためにテストサンプル自体に依拠する。本明細書で用いられる正規化技術と比べると、コントロールフリー法は、測定される倍率変化(FC)値に関して、遺伝子増幅を小さく見積もる傾向がある。さらに、コントロールフリー法を正常テストサンプルに対して適用すると、FC変動性が本正規化技術よりかなりも大きくなることが示されたが、それは、より高いブランク上限(limit of bland)(LoB)をもたらすことになる。一般に、コントロールフリー法は、本明細書で提供されるような正規化技術より、感度及び特異性の両方が低い。図15において、Y軸はコントロールフリー法の内部実施(internal implementation)であり、X軸は本明細書で説明される正規化技術の実施形態である。正規化技術と比べて、コントロールフリー法は、倍率変化値を小さく見積もる傾向がある。
図16は、本明細書で提供される正規化技術を用いた結果と、適合正常サンプルを用いた結果とのメジアン絶対偏差の比較を示し、対応のあるt検定(paired t test)のp値は0.0202である。図17は、本明細書で提供される正規化技術(y軸)と、適合正常(matched normal)(x軸)との間での、検出された倍率変化(FC)による、倍率変化比較を示す。
図18〜図21は、本明細書で提供される正規化技術と、適合正常サンプルを必要としない機械学習PCA手法に基づくCNV法であるXHMMとの間の比較を示す。データ正規化後、これはセグメンテーション法を使用してサンプル内のCNVをコールする。XHMMについて示した結果は、ダウンロードしたプログラムを15個のCNVサンプルに対して実行し、正規化技術と比較することによって得たものである。XHMMは、15増幅から10を検出したのに対し、正規化技術は、14CNVから14を検出し、ノーコールは1であった。この結果に基づいて、正規化技術はXHMMよりも良好な感度を有する。
本技術は、正規化を行うために適合正常サンプルを使用せず又は必要としない。その代わり、本明細書における正規化技術は、非適合正常サンプルを用いて基準ベースラインを生成し、そこから倍率変化が検出される。特定の実施形態において、複数の正常サンプルを用いて基準ベースラインが決定され、複数のサンプルのシーケンシング・データのクラスタリングを行って、最も代表的な正常ビンが決定される。したがって、基準ベースライン値は、サンプルベースで査定されるのではなく、ビンベースで査定される。さらに、本技術は、歴史的な(historical)正常サンプルに、1より多くのベースライン挙動値を組み込む。本技術は、ベースライン補正のために線形回帰を利用し、GC補正のためにLoessを利用する。R2 DVT研究において、達成された結果は感度100%を含む(特定のノーコールを含む)。
他の技術と比較すると、提供される正規化は、LoB及びLoDに関してコントロールフリーよりも優れた性能をもたらす。さらに、正規化は、追加のサンプル処理を必要とする適合正常を用いる技術に比べてより経済的である。正規化を用いるCNVコーリングは、シーケンシングコストが適合正常サンプルのシーケンシングのためのコストを含まないので、より経済的である。したがって、シーケンシングの実行及びシーケンシング装置の動作がより効率的である。基準フリー手法のような他の手法は、プローブ・プルダウン効果ゆえに高品質の結果をもたらさない。SVD分解又はPCAを用いる統計的技術もまた、高品質の結果をもたらさず、及び/又は特定のサンプルタイプに限定された適用性を有する。
特定の実施形態において、本明細書で提供されビンは、ゲノムの、連続的な核酸の注目領域を指す。ビンは、エキソン、イントロン、又は遺伝子内のものであり得る。ビン又はビン領域は、変異体を含むことがあり、したがって、一般に、固定された核酸配列ではなくゲノムの位置又は領域を指す。ビンのカウントは、リード・レベルではなくフラグメント・レベルで行われる。例えば、遺伝子A及びBは、図22に示すように、個々のビン(網掛区域)を標的とする種々のプローブを有することができる。図23は、リードではなくフラグメントに基づくビン・カウントの模式的表示である。ビンと重なるフラグメントは、そのビンに対するビン・カウントに寄与する。単一のフラグメントが複数のビンのビン・カウントに寄与することができる。したがって、各フラグメントについて、それが重なるすべての標的が見いだされる。リード・フィルタリングを行って、適正にアライメントしたペア、非PCR複製、正のストランド(二重カウントを避けるため)及びMAPQ>20を判定する。
特定の実施形態において、プローブ標的選択を改善して、シーケンシング・データへのノイズの導入を低減することができる。例えば、1つの技術において、プローブ選択は、概説するように行うことができる。すなわち、各遺伝子に対して、GC含量が0.3と0.8との間の標的の数を同定する。その数が20未満の場合、現在のプローブ設計でカバーされない領域を同定する。等しく間隔を空けたサイズ140bpのウインドウを作成し、各ウインドウに対してGC及びマッパビリティ(mappability)(75マー(mer))を計算する。マッパビリティ及びGC含量によって上位Kウインドウを選択する。性別分類に使用されるY染色体の場合、マッパビリティが1、かつGCが0.4と0.6との間の40領域をランダムに選択する。図24は、例示的なビンの名称及び特性の表であり、試験されるビンの開始部位及び終了部位、GC含量、及び特定の遺伝子について判定された品質を示す。
図25は、プローブに対する標的サイズ分布のプロットである。図26は、遺伝子メジアンの絶対分布、並びに標的の数及び標的のGC含量に対する比較を示す。1つの実施形態において、gDNAサンプルにおける遺伝子MADを安定化するには20個の良い標的(30−80%GC)で十分である(中央のプロット)。
1つの実施形態において、プローブセット2Cにおける170遺伝子のうち116個は、20個未満の標的を有する。1042個の追加の標的が選択される。49個のamp遺伝子のうち31個は20個未満の標的を有する。350個の追加の標的が選択される。Y染色体の場合、40個の標的が性別分類のために選択される。要するに、49個のamp遺伝子すべてを少なくとも20個の標的/遺伝子でカバーするために、390個の追加標的(140bpウインドウ)をプローブセット2Cに追加する。FGF4、CKD4及びMYCは、遺伝子サイズが小さいので、依然として20個未満の標的を有する。特定の遺伝子のための遺伝子標的を表2に示す。
Figure 0006839268
表2:遺伝子標的
図27は、29個のFFPEサンプルの性別分類及びY染色体カバレッジの存在を示す。Y染色体は、右のプロットにおける矢印によって示される。
図28は、カバレッジ・エンハンサーを伴う及び伴わないプローブ・カバレッジの比較を示す。図29は、様々な遺伝子についてプローブ・カバレッジの概要を示す。
開示された技術の実施形態は、コピー数多型情報を表示するためのグラフィカル・ユーザ・インタフェースを含み、これはユーザ入力を使用する及び/又は受け取る、出力又は指示を提供する。図30は、グラフィカル・ユーザ・インタフェース200の例である。例えばプロセッサ(図2)による正規化技術の実行により、CNV情報が表示される。軸に沿った変異体の数を含む表示されたCNV情報は、正規化後のものである。すなわち、取得されたシーケンシング・データについてのコピー数は、正規化を行った後、コピー数変異体について分析される。したがって、グラフィカル・ユーザ・インタフェース200は、正規化されたCNV情報を表示する。
開示された実施形態の技術的効果は、生物学的サンプルにおける、改善された、より正確なCNVの決定を含む。コピー数変異体は、遺伝子異常、がんの進行、又は他の有害な臨床症状に関連付けられることがある。したがって、改善されたCNV検出は、シーケンシング・データが、より豊富な、より意味のある情報を臨床医に提供することを可能にすることができる。さらに、開示されたCNV査定技術は、その配列がゲノムの一部のみである標的化シーケンシング技術と関連して用いることができる。このようにしてCNVをより効率的なシーケンシング戦略で同定することができる。本明細書で提供される正規化技術は、シーケンシング・カバレッジ・カウントに影響を及ぼすシーケンシング・データへのバイアスの導入に対処する。
本明細書では開示の特定の特徴のみ示し、説明してきたが、当業者は多くの修正及び変更に想到するであろう。したがって、添付の特許請求の範囲は、本開示の真意の範囲内のそのような修正及び変更のすべてを網羅することが意図される。
10:フロー図
60:シーケンシング装置
62:サンプル処理装置
64:コンピュータ
200:グラフィカル・ユーザ・インタフェース

Claims (36)

  1. コンピュータによって実行される、コピー数を正規化する方法であって、
    ユーザからシーケンシング要求を受けて、生物学的サンプル内の1つ以上の注目領域をシーケンシングするステップと、
    前記生物学的サンプルと適合しない複数のベースライン生物学的サンプル由来の前記1つ以上の注目領域から、ベースライン・シーケンシング・データを取得するステップと、
    前記ベースライン・シーケンシング・データを用いて、前記1つ以上の注目領域のうちの注目領域についての少なくとも1つのコピー数ベースラインを含む、コピー数正規化情報を決定するステップと、
    前記コピー数正規化情報を前記ユーザに提供するステップと、
    を含むことを特徴とする方法。
  2. 前記ベースライン・シーケンシング・データが、複数のビンの各ビンについてのシーケンシング・リードカウントを代表するデータを含み、前記複数のビンの各ビンは、それぞれの注目領域に関連付けられることを特徴とする請求項1に記載の方法。
  3. 前記ベースライン・シーケンシング・データを取得するステップが、標的化シーケンシング・パネルを用いることを含み、前記複数のビンは、前記標的化シーケンシング・パネルにおける前記注目領域に対応する配列を用いて定められることを特徴とする請求項2に記載の方法。
  4. 前記ベースライン・シーケンシング・データを取得するステップが、全ゲノムシーケンシング・データを取得することを含むことを特徴とする請求項2に記載の方法。
  5. 前記シーケンシング・リードカウントが、各ビンに対応する前記ベースライン・シーケンシング・データにおける個々のシーケンシング・リードの数の尺度であることを特徴とする請求項2に記載の方法。
  6. 前記複数のビンの各ビンについて、メジアン・シーケンシング・リードカウント、メジアン絶対偏差、GC含量、及びサイズのうちの1つ以上を決定するステップを含むことを特徴とする請求項3に記載の方法。
  7. 前記コピー数正規化情報を決定するステップの前に、前記ベースライン・シーケンシング・データから、低メジアン、大きいメジアン配列カバレッジ絶対偏差、所定の範囲外のGC含量、又はサイズ閾値を下回るサイズのうちの1つ以上を有する、前記複数のビンからのビンを排除又はマスクするステップを含み、前記コピー数正規化情報が、前記排除又はマスクするステップ後に残ったビンのみを用いて決定されるようにすることを特徴とする請求項6に記載の方法。
  8. 前記ビンを排除又はマスクするステップが、メジアン配列カバレッジ・カウントが0.25未満のビンを排除又はマスクすることを含むことを特徴とする請求項7に記載の方法。
  9. 前記ビンを排除又はマスクするステップが、閾値を上回る絶対偏差を有するメジアン配列カバレッジを有するビンを排除又はマスクすることを含むことを特徴とする請求項7に記載の方法。
  10. 前記ビンを排除又はマスクするステップが、GC含量が25%未満又は80%より大きいビンを排除又はマスクすることを含むことを特徴とする請求項7に記載の方法。
  11. 前記ビンを排除又はマスクするステップが、標的サイズが20塩基未満のビンを排除又はマスクすることを含むことを特徴とする請求項7に記載の方法。
  12. 前記コピー数ベースラインを決定するために、各ビンについて前記ベースライン・シーケンシング・データをクラスタリングするステップを含み、前記コピー数ベースラインは、前記注目領域に関連付けられた前記複数のビンのビン毎のメジアン・シーケンシング・リードカウントから生成されることを特徴とする請求項2に記載の方法。
  13. 前記複数のビンの追加のビンについてコピー数ベースラインを決定するステップを含むことを特徴とする請求項12に記載の方法。
  14. 前記生物学的サンプルは個体由来のサンプルであり、複数のベースライン・サンプルは異なる個体由来のサンプルであることを特徴とする請求項1に記載の方法。
  15. 前記生物学的サンプルは個体の腫瘍組織由来であり、複数のベースライン・サンプルはその個体由来ではない正常組織由来であることを特徴とする請求項1に記載の方法。
  16. 前記ユーザから前記生物学的サンプルのシーケンシング・データを受け取り、前記シーケンシング・データが前記注目領域における前記コピー数ベースラインからの変動を含むことを判定するステップを含むことを特徴とする請求項1に記載の方法。
  17. 前記変動の指標を生成し、前記指標を前記ユーザに提供するステップを含むことを特徴とする請求項16に記載の方法。
  18. 前記指標が、前記注目領域についての前記コピー数ベースラインに対する、前記生物学的サンプルのコピー数における倍率変化であることを特徴とする請求項17に記載の方法。
  19. 前記シーケンシング・データが前記注目領域における前記コピー数ベースラインからの変動を含むことを判定するステップの前に、前記シーケンシング・データにおける外れ値ビンをマスクするステップを含むことを特徴とする請求項16に記載の方法。
  20. 前記外れ値ビンをマスクするステップの後、GCバイアスを排除するために前記シーケンシング・データに対してloess回帰を適用するステップを含むことを特徴とする請求項19に記載の方法。
  21. 前記外れ値ビンをマスクするステップの後、前記シーケンシング・データを曲線にフィッティングするステップを含むことを特徴とする請求項19に記載の方法。
  22. 前記シーケンシング・データが、エキソーム・シーケンシング・パネルを用いて取得されることを特徴とする請求項19に記載の方法。
  23. 前記コピー数ベースラインを前記ユーザに提供するステップが、前記ユーザに対する適合サンプルを模倣し、かつ適合サンプルを用いて生成されたものではない、仮説的基準サンプルを代表する情報を提供することを含むことを特徴とする請求項1に記載の方法。
  24. コンピュータによって実行される、コピー数多型を検出する方法であって、
    生物学的サンプルから、それぞれの複数の注目領域についての複数の生シーケンシング・リードカウントを含むシーケンシング・データを取得するステップと、
    領域依存カバレッジ・バイアスを除去するために前記シーケンシング・データを正規化するステップと、
    を含み、前記正規化するステップは、
    各注目領域について、前記生物学的サンプルの領域内の1つ以上のビンの生シーケンシング・リードカウントとベースライン・メジアン・シーケンシング・リードカウントとを比較して、前記注目領域内の1つ以上のビンについてのベースライン補正シーケンシング・リードカウントを生成することを含み、ここで前記注目領域内の1つ以上のビンについての前記ベースライン・メジアン・シーケンシング・リードカウントは、前記生物学的サンプルと適合しない複数のベースライン・サンプル由来であり、各注目領域についてのベースライン・シーケンシング・データの最も代表的な部分のみから決定されたものであり、
    前記ベースライン補正シーケンシング・リードカウントからGCバイアスを除去して、各注目領域についての正規化シーケンシング・リードカウントを生成することを含み、
    前記方法は、各注目領域内の前記1つ以上のビンの前記正規化シーケンシング・リードカウントに基づいて、各注目領域内のコピー数多型を判定するステップをさらに含むことを特徴とする方法。
  25. 各注目領域が単一のビンを含むことを特徴とする請求項24に記載の方法。
  26. 各注目領域が複数のビンを含み、前記ベースライン・メジアン・シーケンシング・リードカウントが前記複数のビンにわたるメジアンであることを特徴とする請求項24に記載の方法。
  27. 適合した生物学的サンプルからシーケンシング・データを取得するステップを含まないことを特徴とする請求項24に記載の方法。
  28. 前記方法がコントロールフリーであることを特徴とする請求項24に記載の方法。
  29. 各注目領域内の前記コピー数多型に基づいて前記生物学的サンプルの臨床的状態を判定するステップを含むことを特徴とする請求項24に記載の方法。
  30. 前記生物学的サンプルが体細胞サンプルであり、前記臨床的状態が腫瘍又は正常の指定を含むことを特徴とする請求項29に記載の方法。
  31. 各注目領域についての前記ベースライン・メジアン・シーケンシング・リードカウントが前記ベースライン・シーケンシング・データのクラスタリングによって決定されることを特徴とする請求項24に記載の方法。
  32. 第1の注目領域についての第1のベースライン・メジアン配列カバレッジ・カウントが、前記複数のベースライン・サンプルの第1のサブセットに由来し、第2の注目領域についての第2のベースライン・メジアン配列カバレッジ・カウントが、前記第1のサブセットとは異なる前記複数のベースライン・サンプルの第2のサブセットに由来することを特徴とする請求項24に記載の方法。
  33. 前記シーケンシング・データを正規化するステップの前に、前記シーケンシング・データから外れ値ビンを除去又はマスクするステップを含むことを特徴とする請求項32に記載の方法。
  34. 前記シーケンシング・データを正規化するステップが、前記外れ値ビンを除去又はマスクするステップの後、前記シーケンシング・データにloess回帰を適用して前記シーケンシング・データを曲線にフィッティングすることを含むことを特徴とする請求項33に記載の方法。
  35. 前記領域依存カバレッジ・バイアスが、GCバイアス、PCRバイアス、又はDNA品質バイアスのうちの1つ以上を含むことを特徴とする請求項24に記載の方法。
  36. コンピュータによって実行される、標的化シーケンシング・パネルを査定する方法であって、
    標的化シーケンシング・パネルに対して、それぞれの複数の遺伝子の部分に対応する第1の複数の標的をゲノム内で同定するステップと、
    前記第1の複数の標的の各々のGC含量を判定するステップと、
    前記第1の複数の標的のうち所定の範囲外のGC含量を有する標的を排除して、前記第1の複数の標的より小さい第2の複数の標的を得るステップと、
    前記排除の後、個々の遺伝子が、その個々の遺伝子の部分に対応する標的を所定の数のより少なく有する場合、前記個々の遺伝子内で追加の標的を同定するステップと、
    前記追加の標的を前記第2の複数の標的に追加して、第3の複数の標的を得るステップと、
    前記第3の複数の標的に対して特異的なプローブを含むシーケンシング・パネルを提供するステップと
    を含むことを特徴とする方法。
JP2019515874A 2016-09-22 2017-09-21 体細胞コピー数多型検出 Active JP6839268B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662398354P 2016-09-22 2016-09-22
US62/398,354 2016-09-22
US201762447065P 2017-01-17 2017-01-17
US62/447,065 2017-01-17
PCT/US2017/052766 WO2018057770A1 (en) 2016-09-22 2017-09-21 Somatic copy number variation detection

Publications (2)

Publication Number Publication Date
JP2019537095A JP2019537095A (ja) 2019-12-19
JP6839268B2 true JP6839268B2 (ja) 2021-03-03

Family

ID=60002106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019515874A Active JP6839268B2 (ja) 2016-09-22 2017-09-21 体細胞コピー数多型検出

Country Status (11)

Country Link
US (1) US20230207048A1 (ja)
EP (1) EP3516564A1 (ja)
JP (1) JP6839268B2 (ja)
KR (2) KR102711907B1 (ja)
CN (2) CN110024035B (ja)
AU (2) AU2017332381A1 (ja)
CA (3) CA3213915A1 (ja)
MX (1) MX2019003344A (ja)
NZ (1) NZ751798A (ja)
RU (1) RU2768718C2 (ja)
WO (1) WO2018057770A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9476095B2 (en) 2011-04-15 2016-10-25 The Johns Hopkins University Safe sequencing system
EP3447495B2 (en) 2012-10-29 2024-03-13 The Johns Hopkins University Papanicolaou test for ovarian and endometrial cancers
WO2017027653A1 (en) 2015-08-11 2017-02-16 The Johns Hopkins University Assaying ovarian cyst fluid
CA3072195A1 (en) 2017-08-07 2019-04-04 The Johns Hopkins University Methods and materials for assessing and treating cancer
WO2019209884A1 (en) 2018-04-23 2019-10-31 Grail, Inc. Methods and systems for screening for conditions
CN109920485B (zh) * 2018-12-29 2023-10-31 浙江安诺优达生物科技有限公司 对测序序列进行变异模拟的方法及其应用
WO2021114139A1 (zh) * 2019-12-11 2021-06-17 深圳华大基因股份有限公司 一种基于血液循环肿瘤dna的拷贝数变异检测方法和装置
CN110993022B (zh) * 2019-12-20 2023-09-05 北京优迅医学检验实验室有限公司 检测拷贝数扩增的方法和装置及建立检测拷贝数扩增的动态基线的方法和装置
CN113192555A (zh) * 2021-04-21 2021-07-30 杭州博圣医学检验实验室有限公司 一种通过计算差异等位基因测序深度检测二代测序数据smn基因拷贝数的方法
CN113823353B (zh) * 2021-08-12 2024-02-09 上海厦维医学检验实验室有限公司 基因拷贝数扩增检测方法、装置及可读介质

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846719A (en) 1994-10-13 1998-12-08 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5750341A (en) 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
AU6846698A (en) 1997-04-01 1998-10-22 Glaxo Group Limited Method of nucleic acid amplification
US6969488B2 (en) 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
US7001792B2 (en) 2000-04-24 2006-02-21 Eagle Research & Development, Llc Ultra-fast nucleic acid sequencing device and a method for making and using the same
US7057026B2 (en) 2001-12-04 2006-06-06 Solexa Limited Labelled nucleotides
DK3363809T3 (da) 2002-08-23 2020-05-04 Illumina Cambridge Ltd Modificerede nukleotider til polynukleotidsekvensering
GB0321306D0 (en) 2003-09-11 2003-10-15 Solexa Ltd Modified polymerases for improved incorporation of nucleotide analogues
US20110059865A1 (en) 2004-01-07 2011-03-10 Mark Edward Brennan Smith Modified Molecular Arrays
EP1828412B2 (en) 2004-12-13 2019-01-09 Illumina Cambridge Limited Improved method of nucleotide detection
JP4990886B2 (ja) 2005-05-10 2012-08-01 ソレックサ リミテッド 改良ポリメラーゼ
GB0514936D0 (en) 2005-07-20 2005-08-24 Solexa Ltd Preparation of templates for nucleic acid sequencing
US7329860B2 (en) 2005-11-23 2008-02-12 Illumina, Inc. Confocal imaging methods and apparatus
WO2008062855A1 (en) * 2006-11-21 2008-05-29 Akita Prefectural University A method of detecting defects in dna microarray data
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
EP2653861B1 (en) 2006-12-14 2014-08-13 Life Technologies Corporation Method for sequencing a nucleic acid using large-scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
JP5709840B2 (ja) * 2009-04-13 2015-04-30 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. 動的シグナルの相関分析による、パターン認識、機械学習、および自動遺伝子型分類の迅速な方法
AU2011207561B2 (en) * 2010-01-19 2014-02-20 Verinata Health, Inc. Partition defined detection methods
WO2011139901A1 (en) * 2010-04-29 2011-11-10 Esoterix Genetic Laboratories, Llc Gc wave correction for array-based comparative genomic hybridization
US8725422B2 (en) * 2010-10-13 2014-05-13 Complete Genomics, Inc. Methods for estimating genome-wide copy number variations
DK2764459T3 (da) * 2011-10-06 2021-08-23 Sequenom Inc Fremgangsmåder og processer til ikke-invasiv bedømmelse af genetiske variationer
EP2844771A4 (en) * 2012-05-04 2015-12-02 Complete Genomics Inc METHOD FOR DETERMINING THE ABSOLUTE GENOME-WIDE COPY COUNTER CHANGES OF COMPLEX TUMORS
US20150094210A1 (en) * 2012-05-14 2015-04-02 Bgi Diagnosis Co., Ltd. Method, system and computer readable medium for determining base information in predetermined area of fetus genome
AU2013204536A1 (en) * 2012-07-20 2014-02-06 Verinata Health, Inc. Detecting and classifying copy number variation in a cancer genome
CA2883901C (en) * 2012-09-04 2023-04-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US20140371078A1 (en) * 2013-06-17 2014-12-18 Verinata Health, Inc. Method for determining copy number variations in sex chromosomes
ES2968644T3 (es) * 2013-10-04 2024-05-13 Sequenom Inc Métodos y procedimientos para la evaluación no invasiva de variaciones genéticas
CA2928185C (en) * 2013-10-21 2024-01-30 Verinata Health, Inc. Method for improving the sensitivity of detection in determining copy number variations
EP3149640B1 (en) 2014-05-30 2019-09-04 Sequenom, Inc. Chromosome representation determinations
US10318704B2 (en) * 2014-05-30 2019-06-11 Verinata Health, Inc. Detecting fetal sub-chromosomal aneuploidies
CN105760712B (zh) * 2016-03-01 2019-03-26 西安电子科技大学 一种基于新一代测序的拷贝数变异检测方法

Also Published As

Publication number Publication date
CA3213915A1 (en) 2018-03-29
US20230207048A1 (en) 2023-06-29
KR102416441B1 (ko) 2022-07-04
WO2018057770A1 (en) 2018-03-29
RU2019111924A3 (ja) 2020-10-22
KR20220098812A (ko) 2022-07-12
AU2021200154B2 (en) 2022-12-15
AU2021200154A1 (en) 2021-03-18
CN110024035B (zh) 2023-11-14
EP3516564A1 (en) 2019-07-31
RU2768718C2 (ru) 2022-03-24
MX2019003344A (es) 2019-09-04
CA3214358A1 (en) 2018-03-29
KR102711907B1 (ko) 2024-09-27
CN117352050A (zh) 2024-01-05
JP2019537095A (ja) 2019-12-19
CA3037917C (en) 2024-05-28
CA3037917A1 (en) 2018-03-29
AU2017332381A1 (en) 2019-04-18
NZ751798A (en) 2022-02-25
RU2019111924A (ru) 2020-10-22
KR20190058556A (ko) 2019-05-29
CN110024035A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
JP6839268B2 (ja) 体細胞コピー数多型検出
US10975445B2 (en) Integrated machine-learning framework to estimate homologous recombination deficiency
CN103201744B (zh) 用于估算全基因组拷贝数变异的方法
Bravo et al. Model-based quality assessment and base-calling for second-generation sequencing data
KR102356323B1 (ko) 서열 변이체 콜에 대한 검증방법 및 시스템
CN107229841B (zh) 一种基因变异评估方法及系统
CN111304303B (zh) 微卫星不稳定的预测方法及其应用
KR102667912B1 (ko) 미세부수체 불안정성을 결정하기 위한 시스템 및 방법
US20190348149A1 (en) Validation methods and systems for sequence variant calls
KR20160022374A (ko) 유전적 변이의 비침습 평가를 위한 방법 및 프로세스
JP2019080501A (ja) 品質評価方法、品質評価装置、プログラム、記録媒体、および品質管理試料
US6502039B1 (en) Mathematical analysis for the estimation of changes in the level of gene expression
EP1190366B1 (en) Mathematical analysis for the estimation of changes in the level of gene expression
Markham et al. Predicting response to immune checkpoint blockade in NSCLC with tumour-only RNA-seq
CN115762630A (zh) 一种利用单核苷酸多态性判断拷贝数变异的方法和系统
Khojasteh Lakelayeh Quality filtering and normalization for microarray-based CGH data
Bergemann Image analysis and signal extraction from cDNA microarrays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6839268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250