JP6839236B2 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP6839236B2
JP6839236B2 JP2019135852A JP2019135852A JP6839236B2 JP 6839236 B2 JP6839236 B2 JP 6839236B2 JP 2019135852 A JP2019135852 A JP 2019135852A JP 2019135852 A JP2019135852 A JP 2019135852A JP 6839236 B2 JP6839236 B2 JP 6839236B2
Authority
JP
Japan
Prior art keywords
peripheral surface
diameter portion
ceramic member
distance
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019135852A
Other languages
Japanese (ja)
Other versions
JP2019191198A (en
Inventor
悠介 渡邉
悠介 渡邉
隆生 村瀬
隆生 村瀬
将司 安居
将司 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2019135852A priority Critical patent/JP6839236B2/en
Publication of JP2019191198A publication Critical patent/JP2019191198A/en
Application granted granted Critical
Publication of JP6839236B2 publication Critical patent/JP6839236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガスセンサに関する。 The present invention relates to a gas sensor.

従来、自動車の排気ガスなどの被測定ガスにおけるNOxなどの特定ガス濃度を検出するガスセンサが知られている。例えば、特許文献1には、センサ素子と、センサ素子を挿通保持する絶縁碍子と、絶縁碍子を挿通保持するハウジングと、ハウジングに固定された素子カバーと、を備えたガスセンサが記載されている。 Conventionally, a gas sensor that detects a specific gas concentration such as NOx in a gas to be measured such as an exhaust gas of an automobile has been known. For example, Patent Document 1 describes a gas sensor including a sensor element, an insulator that inserts and holds the sensor element, a housing that inserts and holds the insulator, and an element cover fixed to the housing.

特開2007−178418号公報Japanese Unexamined Patent Publication No. 2007-178418

ところで、このようなガスセンサは、使用時には排気ガスなどの被測定ガスによって加熱されるため、絶縁碍子が膨張する。しかし、特許文献1では、このような絶縁碍子の膨張については特に考慮されていなかった。そのため、絶縁碍子の膨張時にハウジングからの応力がかかることにより、絶縁碍子にクラックなどの破損が生じる場合があった。 By the way, when such a gas sensor is used, it is heated by a gas to be measured such as an exhaust gas, so that the insulator expands. However, in Patent Document 1, such expansion of the insulator is not particularly considered. Therefore, stress from the housing may be applied when the insulator is expanded, which may cause damage such as cracks in the insulator.

本発明はこのような課題を解決するためになされたものであり、加熱によるセラミックス部材の破損を抑制することを主目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to suppress damage to a ceramic member due to heating.

すなわち、本発明は、上述した主目的を達成するために以下の手段を採った。 That is, the present invention has adopted the following means in order to achieve the above-mentioned main object.

本発明のガスセンサは、
被測定ガス中の特定ガス濃度を検出可能な長尺なセンサ素子と、
前記センサ素子が内部を軸方向に貫通している円柱状のセラミックス部材と、
前記セラミックス部材が内部に軸方向に挿入されている貫通孔を有し、該貫通孔の内周面と前記セラミックス部材との間に隙間を有し、該隙間の径方向の距離W1が20μm以上である筒状のハウジングと、
を備えたものである。
The gas sensor of the present invention
A long sensor element that can detect a specific gas concentration in the gas to be measured, and
A columnar ceramic member through which the sensor element penetrates in the axial direction,
The ceramic member has a through hole inserted in the axial direction, and has a gap between the inner peripheral surface of the through hole and the ceramic member, and the radial distance W1 of the gap is 20 μm or more. With a tubular housing that is
It is equipped with.

このガスセンサでは、ハウジングの貫通孔の内周面とセラミックス部材との間に隙間が形成されており、隙間の径方向の距離W1が20μm以上である。このような隙間が存在することで、セラミックス部材が加熱により膨張した際のハウジングからの径方向の応力が低減される。したがって、加熱によるセラミックス部材の破損を抑制できる。 In this gas sensor, a gap is formed between the inner peripheral surface of the through hole of the housing and the ceramic member, and the radial distance W1 of the gap is 20 μm or more. The presence of such a gap reduces the radial stress from the housing when the ceramic member expands due to heating. Therefore, damage to the ceramic member due to heating can be suppressed.

本発明のガスセンサにおいて、前記距離W1が500μm以下であってもよい。こうすることで、ハウジングとセラミックス部材との間の隙間を気体(例えば被測定ガスや大気)が軸方向に流通するのを抑制でき、隙間で気体が結露しにくくなり、例えばハウジングなどの腐食が生じにくくなる。これにより、センサ素子の一端側と他端側との間の気密性が低下することを抑制できる。 In the gas sensor of the present invention, the distance W1 may be 500 μm or less. By doing so, it is possible to prevent gas (for example, the gas to be measured or the atmosphere) from flowing in the axial direction through the gap between the housing and the ceramic member, and it becomes difficult for the gas to condense in the gap, for example, corrosion of the housing or the like. It is less likely to occur. As a result, it is possible to suppress a decrease in airtightness between one end side and the other end side of the sensor element.

本発明のガスセンサは、前記センサ素子の先端側を覆い、内部への前記被測定ガスの流通を許容する保護カバー、を備え、前記セラミックス部材は、円柱状の大径部と、該大径部よりも前記保護カバー側に位置し且つ該大径部よりも外径が小さい円柱状の小径部と、を有しており、前記距離W1は、前記小径部の外周面と前記貫通孔の内周面との隙間の径方向の距離であってもよい。すなわち、セラミックス部材の小径部の外周面とハウジングの貫通孔の内周面との間に隙間が存在し、この隙間の径方向の距離W1が20μm以上としてもよい。セラミックス部材が大径部と小径部とを有する場合、保護カバーに近い小径部の方が被測定ガスによって加熱されやすいため破損しやすい。そのため、小径部とハウジングの内周面との間に20μm以上の隙間が存在することで、例えば大径部とハウジングの内周面との間にのみ隙間がある場合と比較して、加熱によるセラミックス部材の破損をより抑制できる。 The gas sensor of the present invention includes a protective cover that covers the tip end side of the sensor element and allows the flow of the gas to be measured to flow inside, and the ceramic member has a cylindrical large-diameter portion and the large-diameter portion. It has a columnar small diameter portion that is located closer to the protective cover side and has an outer diameter smaller than that of the large diameter portion, and the distance W1 is the outer peripheral surface of the small diameter portion and the inside of the through hole. It may be the radial distance of the gap with the peripheral surface. That is, there may be a gap between the outer peripheral surface of the small diameter portion of the ceramic member and the inner peripheral surface of the through hole of the housing, and the radial distance W1 of this gap may be 20 μm or more. When the ceramic member has a large diameter portion and a small diameter portion, the small diameter portion closer to the protective cover is more likely to be heated by the gas to be measured and is therefore more likely to be damaged. Therefore, since there is a gap of 20 μm or more between the small diameter portion and the inner peripheral surface of the housing, for example, as compared with the case where there is a gap only between the large diameter portion and the inner peripheral surface of the housing, heating is performed. Damage to the ceramic member can be further suppressed.

セラミックス部材が大径部と小径部とを備える態様の本発明のガスセンサにおいて、前記セラミックス部材は、前記大径部が前記貫通孔の内周面との間に隙間を有し、該隙間の径方向の距離W2が5μm以上であってもよい。小径部とハウジングの内周面との間だけでなく、大径部とハウジングの内周面との間にも隙間があることで、セラミックス部材が加熱により膨張した際のハウジングからの径方向の応力がより低減される。したがって、加熱によるセラミックス部材の破損をより抑制できる。 In the gas sensor of the present invention in which the ceramic member includes a large-diameter portion and a small-diameter portion, the ceramic member has a gap between the large-diameter portion and the inner peripheral surface of the through hole, and the diameter of the gap. The distance W2 in the direction may be 5 μm or more. Since there is a gap not only between the small diameter portion and the inner peripheral surface of the housing but also between the large diameter portion and the inner peripheral surface of the housing, the ceramic member expands due to heating in the radial direction from the housing. The stress is further reduced. Therefore, damage to the ceramic member due to heating can be further suppressed.

セラミックス部材が大径部と小径部とを備える態様の本発明のガスセンサにおいて、前記距離W2が500μm以下であってもよい。こうすることで、ハウジングとセラミックス部材との間の隙間を気体が軸方向に流通するのを抑制でき、隙間で気体が結露しにくくなり、例えばハウジングなどの腐食が生じにくくなる。これにより、センサ素子の一端側と他端側との間の気密性が低下することを抑制できる。 In the gas sensor of the present invention in which the ceramic member includes a large diameter portion and a small diameter portion, the distance W2 may be 500 μm or less. By doing so, it is possible to suppress the gas from flowing in the axial direction through the gap between the housing and the ceramic member, and the gas is less likely to condense in the gap, and for example, the housing and the like are less likely to be corroded. As a result, it is possible to suppress a decrease in airtightness between one end side and the other end side of the sensor element.

セラミックス部材が大径部と小径部とを備える態様の本発明のガスセンサにおいて、前記距離W1と前記距離W2との比である比W1/W2が値1以上であってもよい。こうすれば、ガスセンサが加熱された場合に、保護カバーから遠いため加熱されにくい大径部の方が、小径部よりも先にハウジングと接触しやすくなる。これにより、加熱されやすいことで熱膨張しやすい小径部は、ハウジングと接触しなくなる、もしくは接触してもハウジングからの径方向の応力が緩和される。したがって、セラミックス部材の破損をより抑制できる。 In the gas sensor of the present invention in which the ceramic member includes a large-diameter portion and a small-diameter portion, the ratio W1 / W2, which is the ratio of the distance W1 to the distance W2, may be a value of 1 or more. In this way, when the gas sensor is heated, the large-diameter portion, which is far from the protective cover and therefore difficult to heat, is more likely to come into contact with the housing before the small-diameter portion. As a result, the small-diameter portion that is easily heated and easily expands thermally does not come into contact with the housing, or even if it comes into contact, the radial stress from the housing is relaxed. Therefore, damage to the ceramic member can be further suppressed.

セラミックス部材が大径部と小径部とを備える態様の本発明のガスセンサにおいて、前記ハウジングは、内周面が前記貫通孔の一部を構成し前記小径部が内部に挿入されている第1筒状部と、内周面が前記貫通孔の一部を構成し前記大径部が内部に挿入されており前記第1筒状部よりも内径が大きい第2筒状部と、前記第1筒状部の一部であり該第1筒状部の内周面と前記第2筒状部の内周面とを接続する第1段差面と、を有しており、前記セラミックス部材は、前記大径部の一部であり該大径部の外周面と前記小径部の外周面とを接続し前記第1段差面と対向する第2段差面を有しており、前記第1段差面と前記第2段差面との間に配設され、該第1段差面と該第2段差面とに押圧されているリング状の封止部材、を備えていてもよい。こうすれば、リング状の封止部材が存在することで第1段差面と第2段差面との間を封止できる。そのため、ハウジングとセラミックス部材との間を気体が軸方向に流通するのを抑制でき、センサ素子の一端側と他端側との間の気密性が低下することを抑制できる。 In the gas sensor of the present invention in which the ceramic member has a large diameter portion and a small diameter portion, the housing has a first cylinder in which the inner peripheral surface forms a part of the through hole and the small diameter portion is inserted inside. The shape portion, the second tubular portion whose inner peripheral surface forms a part of the through hole and the large diameter portion is inserted inside, and the inner diameter is larger than that of the first tubular portion, and the first cylinder. The ceramic member has a first stepped surface that is a part of the shaped portion and connects the inner peripheral surface of the first tubular portion and the inner peripheral surface of the second tubular portion. It is a part of the large-diameter portion and has a second stepped surface that connects the outer peripheral surface of the large-diameter portion and the outer peripheral surface of the small-diameter portion and faces the first stepped surface. A ring-shaped sealing member that is disposed between the second stepped surface and is pressed against the first stepped surface and the second stepped surface may be provided. In this way, the presence of the ring-shaped sealing member can seal between the first stepped surface and the second stepped surface. Therefore, it is possible to suppress the gas from flowing in the axial direction between the housing and the ceramic member, and it is possible to prevent the airtightness between one end side and the other end side of the sensor element from being lowered.

封止部材を備える態様の本発明のガスセンサにおいて、前記封止部材は、外径Dp[mm]が前記大径部の外径Dc2[mm]以下であってもよい。こうすれば、封止部材は、大径部の外周面よりも外径側にはみ出しにくい。ここで、封止部材が大径部の外周面よりも外径側にはみ出していると、大径部の外周面と第2段差面との間の角部が加熱により膨張する際に、角部の膨張が封止部材に規制されて角部に熱応力が集中する場合がある。封止部材の外径Dpが大径部の外径Dc2以下であることで、角部への熱応力の集中を抑制でき、加熱によるセラミックス部材の破損を抑制できる。 In the gas sensor of the present invention in the embodiment including the sealing member, the sealing member may have an outer diameter Dp [mm] of the outer diameter Dc2 [mm] or less of the large diameter portion. In this way, the sealing member is less likely to protrude to the outer diameter side than the outer peripheral surface of the large diameter portion. Here, if the sealing member protrudes to the outer diameter side from the outer peripheral surface of the large diameter portion, the corner portion between the outer peripheral surface of the large diameter portion and the second stepped surface expands due to heating. The expansion of the portion is restricted by the sealing member, and thermal stress may be concentrated on the corner portion. When the outer diameter Dp of the sealing member is equal to or less than the outer diameter Dc2 of the large diameter portion, concentration of thermal stress on the corner portion can be suppressed, and damage to the ceramic member due to heating can be suppressed.

封止部材を備える態様の本発明のガスセンサにおいて、前記封止部材は、前記第1段差面と前記第2段差面とに押圧されていない状態で、内径側が外径側に比べて厚い部材であってもよい。こうすれば、例えば押圧されていない状態での封止部材の厚さが均一な場合と比較して、封止部材の位置が径方向にずれにくい。そのため、ガスセンサが昇降温を繰り返した場合に、ハウジングとセラミックス部材との位置が径方向にずれるのを抑制できる。したがって、センサ素子の一端側と他端側との間の気密性が低下することを抑制できる。 In the gas sensor of the present invention including the sealing member, the sealing member is a member whose inner diameter side is thicker than that of the outer diameter side in a state where the first step surface and the second step surface are not pressed. There may be. In this way, the position of the sealing member is less likely to shift in the radial direction as compared with the case where the thickness of the sealing member is uniform, for example, when the sealing member is not pressed. Therefore, when the gas sensor repeatedly raises and lowers the temperature, it is possible to prevent the housing and the ceramic member from shifting in the radial direction. Therefore, it is possible to suppress a decrease in airtightness between one end side and the other end side of the sensor element.

封止部材を備える態様の本発明のガスセンサにおいて、前記第1段差面と前記第2段差面との軸方向の距離が、前記セラミックス部材の中心軸に近づくほど大きくなっていてもよい。こうすれば、ハウジングからセラミックス部材への封止部材を介した押圧力が中心軸に向かう成分を有するようになる。そのため、ガスセンサが昇降温を繰り返した場合に、ハウジングとセラミックス部材との位置が径方向にずれるのを抑制できる。したがって、センサ素子20の一端側と他端側との間の気密性が低下することを抑制できる。 In the gas sensor of the present invention including the sealing member, the axial distance between the first stepped surface and the second stepped surface may increase as it approaches the central axis of the ceramic member. In this way, the pressing force from the housing to the ceramic member via the sealing member has a component toward the central axis. Therefore, when the gas sensor repeatedly raises and lowers the temperature, it is possible to prevent the housing and the ceramic member from shifting in the radial direction. Therefore, it is possible to suppress a decrease in airtightness between one end side and the other end side of the sensor element 20.

ガスセンサ10が配管90に取り付けられた様子を示す概略説明図。The schematic explanatory view which shows the appearance that the gas sensor 10 was attached to the pipe 90. ガスセンサ10の縦断面図。A vertical sectional view of the gas sensor 10. 図2のハウジング41及びセラミックス部材45周辺の拡大図。An enlarged view of the periphery of the housing 41 and the ceramic member 45 in FIG.

次に、本発明の実施形態について、図面を用いて説明する。図1は、本発明の一実施形態であるガスセンサ10が配管90に取り付けられた様子を示す概略説明図である。図2は、ガスセンサ10の縦断面図であり、図1のA−A断面図である。図3は、図2のハウジング41及びセラミックス部材45周辺の拡大図である。なお、本実施形態において、上下方向,及び左右方向は、図2,3に示した通りとする。 Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic explanatory view showing a state in which a gas sensor 10 according to an embodiment of the present invention is attached to a pipe 90. FIG. 2 is a vertical cross-sectional view of the gas sensor 10, and is a cross-sectional view taken along the line AA of FIG. FIG. 3 is an enlarged view of the periphery of the housing 41 and the ceramic member 45 of FIG. In this embodiment, the vertical direction and the horizontal direction are as shown in FIGS. 2 and 3.

図1に示すように、ガスセンサ10は、例えば車両の排ガス管などの配管90に取り付けられて、被測定ガスとしての排気ガスに含まれるNOxやO2等の特定ガスの濃度(特定ガス濃度)を測定するために用いられる。本実施形態では、ガスセンサ10は特定ガス濃度としてNOx濃度を測定するものとした。 As shown in FIG. 1, the gas sensor 10 is attached to a pipe 90 such as an exhaust gas pipe of a vehicle, and the concentration of a specific gas such as NOx or O 2 contained in the exhaust gas as a gas to be measured (specific gas concentration). Is used to measure. In the present embodiment, the gas sensor 10 measures the NOx concentration as a specific gas concentration.

図2に示すように、ガスセンサ10は、センサ素子20と、センサ素子20の表面の少なくとも一部を被覆する保護層25と、センサ素子20の先端面20aを含む先端側(図2の下端側)を保護する保護カバー30と、センサ素子20を封止固定する素子封止体40と、センサ素子20の基端面20bを含む基端側(図2の上端側)の保護やセンサ素子20からの電気信号の取り出しを行う組立体50と、を備えている。 As shown in FIG. 2, the gas sensor 10 includes a sensor element 20, a protective layer 25 that covers at least a part of the surface of the sensor element 20, and a tip side (lower end side of FIG. 2) including the tip surface 20a of the sensor element 20. ), The element encapsulant 40 that seals and fixes the sensor element 20, and the protection of the base end side (upper end side in FIG. 2) including the base end surface 20b of the sensor element 20 and the sensor element 20. The assembly 50, which extracts the electric signal of the above, is provided.

センサ素子20は、ジルコニア(ZrO2)等の酸素イオン伝導性固体電解質層を複数積層した構造を有している。センサ素子20は、長尺な板状体形状(直方体形状)の素子であり、下端側の先端面20aと、上端側の基端面20bと、先端面20a及び基端面20bに垂直な4つの面と、を備えている。センサ素子20は、被測定ガスを自身の内部に導入する図示しない被測定ガス導入口を先端面20aに有しており、被測定ガス導入口から内部に流入した被測定ガス中の特定ガス濃度を検出可能に構成されている。 The sensor element 20 has a structure in which a plurality of oxygen ion conductive solid electrolyte layers such as zirconia (ZrO 2) are laminated. The sensor element 20 is an element having a long plate-like body shape (rectangular parallelepiped shape), and has a tip surface 20a on the lower end side, a base end surface 20b on the upper end side, and four surfaces perpendicular to the tip surface 20a and the base end surface 20b. And have. The sensor element 20 has a gas measurement port 20a (not shown) for introducing the gas to be measured into its own interior, and has a specific gas concentration in the gas to be measured that has flowed into the inside from the gas introduction port to be measured. Is configured to be detectable.

保護層25は、センサ素子20の表面の少なくとも一部を覆う多孔質体である。保護層25は、センサ素子20の先端面20aを含む、素子室37内に位置する部分のほとんどを覆っている。保護層25は、例えば被測定ガス中の水分やオイル成分等からセンサ素子20を保護する役割を果たす。保護層25は、例えばアルミナなどのセラミックスの多孔質体からなる。 The protective layer 25 is a porous body that covers at least a part of the surface of the sensor element 20. The protective layer 25 covers most of the portion located in the element chamber 37 including the tip surface 20a of the sensor element 20. The protective layer 25 plays a role of protecting the sensor element 20 from, for example, moisture and oil components in the gas to be measured. The protective layer 25 is made of a porous body of ceramics such as alumina.

保護カバー30は、例えばステンレス鋼などの金属からなり、外部から内部の素子室37への被測定ガスの流入を許容する円筒状の部材である。保護カバー30は、センサ素子20の先端側を覆う有底筒状の内側保護カバー31と、この内側保護カバー31を覆う有底筒状の外側保護カバー32とを備えている。内側保護カバー31は、内側に素子室37を有している。素子室37は、内側保護カバー31の内周面に囲まれた空間である。素子室37内には、センサ素子20の先端面20aを含む先端側が配置されている。内側保護カバー31と外側保護カバー32との間には、両カバーに囲まれた空間であるガス室38が存在する。内側保護カバー31には、側面(外周面)に位置する複数の素子室入口33と、底面に位置する素子室出口34とが配設されている。外側保護カバー32には、側面(外周面)に位置する複数の外側入口35と、底面に位置する外側出口36とが配設されている。 The protective cover 30 is made of a metal such as stainless steel, and is a cylindrical member that allows the inflow of the gas to be measured from the outside into the element chamber 37 inside. The protective cover 30 includes a bottomed tubular inner protective cover 31 that covers the tip end side of the sensor element 20, and a bottomed tubular outer protective cover 32 that covers the inner protective cover 31. The inner protective cover 31 has an element chamber 37 inside. The element chamber 37 is a space surrounded by the inner peripheral surface of the inner protective cover 31. In the element chamber 37, the tip side including the tip surface 20a of the sensor element 20 is arranged. Between the inner protective cover 31 and the outer protective cover 32, there is a gas chamber 38 which is a space surrounded by both covers. The inner protective cover 31 is provided with a plurality of element chamber inlets 33 located on the side surface (outer peripheral surface) and element chamber outlets 34 located on the bottom surface. The outer protective cover 32 is provided with a plurality of outer inlets 35 located on the side surface (outer peripheral surface) and outer outlets 36 located on the bottom surface.

素子封止体40は、センサ素子20を固定すると共に、センサ素子の先端側(下側)である保護カバー30内の空間(素子室37及びガス室38)と、基端側(上側)である大気側カバー74内の空間との間を封止するものである。センサ素子20は、長手方向(上下方向)に素子封止体40を貫通している。素子封止体40は、ハウジング41と、セラミックス部材45と、封止部材48と、シール材49と、を備えている。センサ素子20と、ハウジング41と、セラミックス部材45と、封止部材48とは、同軸に配置されており、これらの中心軸はガスセンサ10の中心軸Cと一致している。 The element encapsulant 40 fixes the sensor element 20 and is located in the space (element chamber 37 and gas chamber 38) in the protective cover 30 on the tip end side (lower side) of the sensor element and on the proximal end side (upper side). It seals the space inside a certain atmosphere side cover 74. The sensor element 20 penetrates the element sealing body 40 in the longitudinal direction (vertical direction). The element sealing body 40 includes a housing 41, a ceramic member 45, a sealing member 48, and a sealing material 49. The sensor element 20, the housing 41, the ceramic member 45, and the sealing member 48 are arranged coaxially, and their central axes coincide with the central axis C of the gas sensor 10.

ハウジング41は、例えばステンレス鋼などからなる円筒状の金属部材である。図3に示すように、ハウジング41は、セラミックス部材45が内部に軸方向(上下方向)に挿入されている貫通孔41aと、円筒状の第1筒状部42と、第1筒状部42の上側に第1筒状部42と同軸に接続された円筒状の第2筒状部43と、を備えている。第1筒状部42は、内周面42aと、内周面42aの上端と第2筒状部43の内周面43aの下端との間を接続する第1段差面42bと、を備えている。第1段差面42bは、上面視でリング状の面であり、中心軸Cに垂直な方向(左右方向)すなわちハウジング41の径方向で中心軸Cに近づくほど保護カバー30側(下側)に向かうように傾斜している。換言すると、第1段差面42bは、内径側ほど下側に向かうように傾斜している。第2筒状部43は、内周面42aよりも内径が大きい内周面43aを備えている。第1筒状部42の内径(内周面42aの直径)を内径dm1[mm]と称する。第2筒状部43の内径(内周面43aの直径)を内径dm2[mm]と称する。内径dm1は、例えば9mm〜12mmである。内径dm2は、例えば12mm〜16mmである。内周面42a,内周面43a,及び第1段差面42bは、貫通孔41aの一部を構成している。第1筒状部42の内部には、セラミックス部材45の小径部46が挿入されている。第2筒状部43の内部には、セラミックス部材45の大径部47が挿入されている。第1筒状部42の下端には保護カバー30の上端が取り付けられている。第1筒状部42は、外周面に雄ネジ部が設けられており、配管90に溶接され内周面に雌ネジ部が設けられた固定用部材91内に挿入されている。これにより、ガスセンサ10のうちセンサ素子20の先端側や保護カバー30が配管90内に突出した状態で、ガスセンサ10が配管90に固定されている。 The housing 41 is a cylindrical metal member made of, for example, stainless steel. As shown in FIG. 3, the housing 41 has a through hole 41a in which the ceramic member 45 is inserted in the axial direction (vertical direction), a cylindrical first tubular portion 42, and a first tubular portion 42. A cylindrical second tubular portion 43 connected coaxially with the first tubular portion 42 is provided on the upper side of the above. The first tubular portion 42 includes an inner peripheral surface 42a and a first stepped surface 42b that connects the upper end of the inner peripheral surface 42a and the lower end of the inner peripheral surface 43a of the second tubular portion 43. There is. The first stepped surface 42b is a ring-shaped surface when viewed from above, and is closer to the central axis C in the direction perpendicular to the central axis C (left-right direction), that is, in the radial direction of the housing 41, toward the protective cover 30 side (lower side). It is tilted toward you. In other words, the first stepped surface 42b is inclined so as to go downward toward the inner diameter side. The second tubular portion 43 includes an inner peripheral surface 43a having an inner diameter larger than that of the inner peripheral surface 42a. The inner diameter of the first tubular portion 42 (diameter of the inner peripheral surface 42a) is referred to as an inner diameter dm1 [mm]. The inner diameter of the second tubular portion 43 (diameter of the inner peripheral surface 43a) is referred to as an inner diameter dm2 [mm]. The inner diameter dm1 is, for example, 9 mm to 12 mm. The inner diameter dm2 is, for example, 12 mm to 16 mm. The inner peripheral surface 42a, the inner peripheral surface 43a, and the first stepped surface 42b form a part of the through hole 41a. A small diameter portion 46 of the ceramic member 45 is inserted inside the first tubular portion 42. A large diameter portion 47 of the ceramic member 45 is inserted inside the second tubular portion 43. The upper end of the protective cover 30 is attached to the lower end of the first tubular portion 42. The first tubular portion 42 is provided with a male screw portion on the outer peripheral surface, and is inserted into a fixing member 91 welded to the pipe 90 and provided with a female screw portion on the inner peripheral surface. As a result, the gas sensor 10 is fixed to the pipe 90 with the tip side of the sensor element 20 and the protective cover 30 of the gas sensor 10 protruding into the pipe 90.

セラミックス部材45は、ハウジング41の貫通孔41aの内部に挿入された円柱状の部材である。セラミックス部材45は、中心軸Cと同軸の貫通孔を有し、センサ素子20が内部を軸方向に貫通している。セラミックス部材45は、例えばアルミナ、ステアタイト、ジルコニアなどの絶縁性のセラミックスからなる。このセラミックス部材45は、円柱状の小径部46と、小径部46に小径部46と同軸に接続された円柱状の大径部47と、を備えている。小径部46は、大径部47よりも保護カバー30側(下側)に位置している。小径部46は、大径部47の外周面47aよりも外径が小さい外周面46aを備えている。外周面46aは、第1筒状部42の内周面42aと径方向に対向している。大径部47は、外周面47aと、外周面47aの下端と小径部46の外周面46aの上端との間を接続する第2段差面47bと、を備えている。外周面47aは、第2筒状部43の内周面43aと径方向に対向している。第2段差面47bは、中心軸Cに垂直な面であり、ハウジング41の第1段差面42bと上下に対向している。大径部47の内径側には、シール材49が充填されている。小径部46の外径(外周面46aの直径)を外径Dc1[mm]と称する。大径部47の外径(外周面47aの直径)を外径Dc2[mm]と称する。外径Dc1は、例えば8.96mm〜11.96mmである。外径Dc2は、例えば12mm〜16mmである。 The ceramic member 45 is a columnar member inserted into the through hole 41a of the housing 41. The ceramic member 45 has a through hole coaxial with the central axis C, and the sensor element 20 penetrates the inside in the axial direction. The ceramic member 45 is made of insulating ceramics such as alumina, steatite, and zirconia. The ceramic member 45 includes a columnar small-diameter portion 46 and a columnar large-diameter portion 47 coaxially connected to the small-diameter portion 46 with the small-diameter portion 46. The small diameter portion 46 is located on the protective cover 30 side (lower side) of the large diameter portion 47. The small diameter portion 46 includes an outer peripheral surface 46a having an outer diameter smaller than that of the outer peripheral surface 47a of the large diameter portion 47. The outer peripheral surface 46a faces the inner peripheral surface 42a of the first tubular portion 42 in the radial direction. The large-diameter portion 47 includes an outer peripheral surface 47a and a second stepped surface 47b that connects the lower end of the outer peripheral surface 47a and the upper end of the outer peripheral surface 46a of the small-diameter portion 46. The outer peripheral surface 47a faces the inner peripheral surface 43a of the second tubular portion 43 in the radial direction. The second stepped surface 47b is a surface perpendicular to the central axis C and faces the first stepped surface 42b of the housing 41 in the vertical direction. The inner diameter side of the large diameter portion 47 is filled with a sealing material 49. The outer diameter of the small diameter portion 46 (diameter of the outer peripheral surface 46a) is referred to as an outer diameter Dc1 [mm]. The outer diameter of the large diameter portion 47 (diameter of the outer peripheral surface 47a) is referred to as an outer diameter Dc2 [mm]. The outer diameter Dc1 is, for example, 8.96 mm to 11.96 mm. The outer diameter Dc2 is, for example, 12 mm to 16 mm.

封止部材48は、例えばステンレス,ニッケル,又は銅などの金属からなるリング状の部材である。封止部材48は、ハウジング41の第1段差面42bとセラミックス部材45の第2段差面47bとの間に配設され、第1段差面42b及び第2段差面47bに上下から押圧されている。これにより、封止部材48はハウジング41とセラミックス部材45との隙間を気密に封止している。封止部材48の外径を外径Dp[mm]と称する。封止部材48の内径を内径dp[mm]と称する。なお、外径Dp及び内径dpは、図3のように素子封止体40に封止部材48が組み込まれた状態における径、すなわち第1段差面42bと第2段差面47bとに押圧された状態での径とする。また、封止部材48は、第1段差面42bと第2段差面47bとに押圧されていない状態で、内径側が外径側に比べて厚い部材であることが好ましい。すなわち、封止部材48は、外部からの圧力が加えられていない状態での形状が、内径側が外径側に比べて厚くなっていることが好ましい。なお、封止部材48は、図3のように素子封止体40に組み込まれた状態では、第1段差面42bと第2段差面47bとに押圧されて変形していてもよい。その場合、変形した状態では必ずしも内径側が外径側に比べて厚い必要はない。シール材49は、タルクやアルミナ粉末、ボロンナイトライドなどのセラミックス粉末の成型体である。シール材49は、大径部47の内周面とセンサ素子20との間に充填されて、セラミックス部材45とセンサ素子20との間を気密に封止している。 The sealing member 48 is a ring-shaped member made of a metal such as stainless steel, nickel, or copper. The sealing member 48 is arranged between the first stepped surface 42b of the housing 41 and the second stepped surface 47b of the ceramic member 45, and is pressed from above and below by the first stepped surface 42b and the second stepped surface 47b. .. As a result, the sealing member 48 airtightly seals the gap between the housing 41 and the ceramic member 45. The outer diameter of the sealing member 48 is referred to as an outer diameter Dp [mm]. The inner diameter of the sealing member 48 is referred to as an inner diameter dp [mm]. The outer diameter Dp and the inner diameter dp were pressed against the diameter of the element sealing body 40 in the state where the sealing member 48 was incorporated, that is, the first step surface 42b and the second step surface 47b. The diameter in the state. Further, the sealing member 48 is preferably a member whose inner diameter side is thicker than that of the outer diameter side in a state where the first step surface 42b and the second step surface 47b are not pressed. That is, it is preferable that the shape of the sealing member 48 in a state where no external pressure is applied is thicker on the inner diameter side than on the outer diameter side. The sealing member 48 may be deformed by being pressed by the first stepped surface 42b and the second stepped surface 47b in a state of being incorporated in the element sealing body 40 as shown in FIG. In that case, the inner diameter side does not necessarily have to be thicker than the outer diameter side in the deformed state. The sealing material 49 is a molded body of ceramic powder such as talc, alumina powder, and boron nitride. The sealing material 49 is filled between the inner peripheral surface of the large diameter portion 47 and the sensor element 20, and airtightly seals between the ceramic member 45 and the sensor element 20.

ここで、素子封止体40のハウジング41,セラミックス部材45,及び封止部材48の位置関係について詳細に説明する。ハウジング41の内周面とセラミックス部材45の外周面との間には、図3に示すように隙間が存在する。より具体的には、第1筒状部42の内周面42aと小径部46の外周面46aとの間に隙間が存在する。この隙間の径方向の距離W1は、20μm以上である。詳細は後述するが、距離W1が20μm以上であることで、ガスセンサ10の使用時の加熱によるセラミックス部材45の破損を抑制できる。なお、距離W1は、内周面42aと外周面46aとの全周に亘る隙間(径方向の距離)の平均値とする。そのため、ハウジング41とセラミックス部材45との中心軸が一致しているか否かに関わらず、距離W1は、基本的には「内周面42aの内径dm1と外周面46aの外径Dc1との差」の半分の値となる。すなわち、W1=(dm1−Dc1)/2となる。 Here, the positional relationship between the housing 41 of the element sealing body 40, the ceramic member 45, and the sealing member 48 will be described in detail. As shown in FIG. 3, there is a gap between the inner peripheral surface of the housing 41 and the outer peripheral surface of the ceramic member 45. More specifically, there is a gap between the inner peripheral surface 42a of the first tubular portion 42 and the outer peripheral surface 46a of the small diameter portion 46. The radial distance W1 of this gap is 20 μm or more. Although the details will be described later, when the distance W1 is 20 μm or more, damage to the ceramic member 45 due to heating when the gas sensor 10 is used can be suppressed. The distance W1 is an average value of the gaps (distances in the radial direction) over the entire circumference between the inner peripheral surface 42a and the outer peripheral surface 46a. Therefore, regardless of whether or not the central axes of the housing 41 and the ceramic member 45 are aligned, the distance W1 is basically "the difference between the inner diameter dm1 of the inner peripheral surface 42a and the outer diameter Dc1 of the outer peripheral surface 46a". Is half the value. That is, W1 = (dm1-Dc1) / 2.

また、第2筒状部43の内周面43aと大径部47の外周面47aとの間にも隙間が存在することが好ましい。すなわち、この隙間の径方向の距離W2は0μm(隙間が存在しない)でもよいが、0μm超過であることが好ましい。なお、距離W2も、距離W1と同様に全周に亘る隙間(径方向の距離)の平均値とする。そのため、ハウジング41とセラミックス部材45との中心軸が一致しているか否かに関わらず、距離W2は、基本的には「内周面43aの内径dm2と外周面47aの外径Dc2との差」の半分の値となる。すなわち、W2=(dm2−Dc2)/2となる。また、距離W2が0μm超過である場合において、距離W2は距離W1以下であることが好ましい。すなわち、距離W1と距離W2との比である比W1/W2が値1以上であることが好ましい。なお、比W1/W2は値1超過としてもよい。比W1/W2は、値100以下としてもよいし、値10以下としてもよい。 Further, it is preferable that there is also a gap between the inner peripheral surface 43a of the second tubular portion 43 and the outer peripheral surface 47a of the large diameter portion 47. That is, the radial distance W2 of the gap may be 0 μm (there is no gap), but it is preferably more than 0 μm. The distance W2 is also the average value of the gaps (distances in the radial direction) over the entire circumference, similarly to the distance W1. Therefore, regardless of whether or not the central axes of the housing 41 and the ceramic member 45 are aligned, the distance W2 is basically "the difference between the inner diameter dm2 of the inner peripheral surface 43a and the outer diameter Dc2 of the outer peripheral surface 47a". Is half the value. That is, W2 = (dm2-Dc2) / 2. Further, when the distance W2 exceeds 0 μm, the distance W2 is preferably the distance W1 or less. That is, it is preferable that the ratio W1 / W2, which is the ratio of the distance W1 and the distance W2, is a value of 1 or more. The ratio W1 / W2 may exceed the value 1. The ratio W1 / W2 may have a value of 100 or less, or may have a value of 10 or less.

第1段差面42bは、上述したように、ハウジング41の径方向で中心軸Cに近づくほど保護カバー30側(下側)に向かうように傾斜している。また、第2段差面47bは、上述したように中心軸Cに垂直な面である。これらにより、第1段差面42b及び第2段差面47bは、軸方向(上下方向)の互いの距離が、セラミックス部材45の中心軸Cに近づくほど大きくなっている。第1段差面42bと第2段差面47bとのなす角θg(図3の部分拡大図参照)は、例えば0°超過30°以下である。なす角θgは、5°以上としてもよい。なす角θgは、15°以下としてもよい。 As described above, the first stepped surface 42b is inclined so as to approach the central axis C in the radial direction of the housing 41 toward the protective cover 30 side (lower side). Further, the second stepped surface 47b is a surface perpendicular to the central axis C as described above. As a result, the distance between the first stepped surface 42b and the second stepped surface 47b in the axial direction (vertical direction) increases as the distance between them approaches the central axis C of the ceramic member 45. The angle θg formed by the first stepped surface 42b and the second stepped surface 47b (see the partially enlarged view of FIG. 3) is, for example, more than 0 ° and 30 ° or less. The formed angle θg may be 5 ° or more. The formed angle θg may be 15 ° or less.

組立体50は、絶縁碍子55と、複数の接触金具60と、複数の接続端子71と、複数のリード線72と、ゴム栓73と、大気側カバー74と、外側カバー75と、皿バネ77とを備えている。絶縁碍子55は、有底筒状の部材であり、セラミックス部材45と同様に絶縁性のセラミックスからなる。絶縁碍子55は、下面がセラミックス部材45の上面と接触しており、セラミックス部材45と同軸に位置している。接触金具60は、複数箇所で屈曲した金属板であり、内側に折り曲げられた状態の板バネ部を備えている。接触金具60は、センサ素子20の左右に複数本ずつ(例えば2本ずつ、3本ずつなど)配設されており、各々がセンサ素子20の表面に配設された図示しない導通電極と接触し導通している。複数の接触金具60の各々の端部は、絶縁碍子55の上側の底部の孔を貫通して引き出され、接続端子71を介してリード線72と導通している。リード線72は、大気側カバー74及び外側カバー75の上端を塞ぐゴム栓73を上下に貫通して外部(配管90の外部であり、大気中)に引き出されている。大気側カバー74は、第2筒状部43の外周面のうちセンサ素子20の基端側(上側)の部分を覆っている。また、大気側カバー74は、絶縁碍子55及びゴム栓73を覆っている。外側カバー75は、大気側カバー74の上側の外周面を覆っている。大気側カバー74及び外側カバー75には、それぞれ複数の大気導入孔76が形成されている。この大気導入孔76を介して、センサ素子20の基端面20bに配設された図示しない基準ガス導入口内に、特定ガス濃度の検出の基準となる基準ガス(大気)が導入される。大気側カバー74及び外側カバー75は、上端付近に、縮径状に加締められた加締め部を有しており、この加締め部により、ゴム栓73が固定されている。皿バネ77は、上下で大気側カバー74と絶縁碍子55とに挟まれており、絶縁碍子55を下方に押圧することで絶縁碍子55及びセラミックス部材45を固定している。 The assembly 50 includes an insulator 55, a plurality of contact fittings 60, a plurality of connection terminals 71, a plurality of lead wires 72, a rubber stopper 73, an atmosphere side cover 74, an outer cover 75, and a disc spring 77. And have. The insulating insulator 55 is a bottomed tubular member, and is made of an insulating ceramic like the ceramic member 45. The lower surface of the insulating insulator 55 is in contact with the upper surface of the ceramic member 45, and is located coaxially with the ceramic member 45. The contact metal fitting 60 is a metal plate bent at a plurality of places, and includes a leaf spring portion in a state of being bent inward. A plurality of contact fittings 60 are arranged on the left and right sides of the sensor element 20 (for example, two or three), and each of the contact metal fittings 60 comes into contact with a conduction electrode (not shown) arranged on the surface of the sensor element 20. It is conducting. Each end of the plurality of contact fittings 60 is pulled out through a hole in the upper bottom of the insulating insulator 55, and is electrically connected to the lead wire 72 via the connection terminal 71. The lead wire 72 penetrates vertically through the rubber stopper 73 that closes the upper ends of the atmospheric side cover 74 and the outer cover 75, and is pulled out to the outside (outside the pipe 90 and in the atmosphere). The atmosphere side cover 74 covers the portion of the outer peripheral surface of the second tubular portion 43 on the proximal end side (upper side) of the sensor element 20. Further, the atmospheric side cover 74 covers the insulating insulator 55 and the rubber stopper 73. The outer cover 75 covers the upper outer peripheral surface of the atmospheric side cover 74. A plurality of atmospheric introduction holes 76 are formed in the atmospheric side cover 74 and the outer cover 75, respectively. Through the atmosphere introduction hole 76, a reference gas (atmosphere) that serves as a reference for detecting a specific gas concentration is introduced into a reference gas introduction port (not shown) arranged on the base end surface 20b of the sensor element 20. The atmosphere side cover 74 and the outer cover 75 have a crimping portion crimped in a reduced diameter shape near the upper end, and the rubber stopper 73 is fixed by the crimping portion. The disc spring 77 is sandwiched between the atmospheric side cover 74 and the insulating insulator 55 at the top and bottom, and the insulating insulator 55 and the ceramic member 45 are fixed by pressing the insulating insulator 55 downward.

次に、こうして構成されたガスセンサ10の使用例を以下に説明する。ガスセンサ10が図1,図2のように配管90に取り付けられた状態で、配管90内を被測定ガスが流れると、被測定ガスは保護カバー30内を流通する。具体的には、配管90内の被測定ガスは、外側入口35からガス室38に流入し、ガス室38から素子室入口33を経て素子室37に流入する。そして、被測定ガスは素子室37内を素子室入口33から素子室出口34に向かって流れ、素子室出口34から外側出口36を経て外部(配管90内)に流出する。そして、被測定ガスが、素子室37内を流通する際に被測定ガス導入口からセンサ素子20内に流入すると、この被測定ガス中の特定ガス濃度(例えばNOx濃度)に応じた電気信号(電圧又は電流)をセンサ素子20が発生させる。なお、センサ素子20は、大気側カバー74内に位置する基準ガス導入口から内部に導入された基準ガスに基づいて、被測定ガス中の特定ガス濃度に応じた電気信号を発生させる。この電気信号を接触金具60,接続端子71,及びリード線72を介して取り出すことで、電気信号に基づき特定ガス濃度が検出される。 Next, a usage example of the gas sensor 10 thus configured will be described below. When the gas to be measured flows through the pipe 90 with the gas sensor 10 attached to the pipe 90 as shown in FIGS. 1 and 2, the gas to be measured flows through the protective cover 30. Specifically, the gas to be measured in the pipe 90 flows into the gas chamber 38 from the outer inlet 35, and flows into the element chamber 37 from the gas chamber 38 through the element chamber inlet 33. Then, the gas to be measured flows in the element chamber 37 from the element chamber inlet 33 toward the element chamber outlet 34, and flows out from the element chamber outlet 34 through the outer outlet 36 to the outside (inside the pipe 90). Then, when the gas to be measured flows into the sensor element 20 from the gas introduction port to be measured when flowing through the element chamber 37, an electric signal (for example, NOx concentration) corresponding to the specific gas concentration (for example, NOx concentration) in the gas to be measured is used. Voltage or current) is generated by the sensor element 20. The sensor element 20 generates an electric signal according to the specific gas concentration in the gas to be measured, based on the reference gas introduced inside from the reference gas introduction port located in the atmosphere side cover 74. By taking out this electric signal through the contact metal fitting 60, the connection terminal 71, and the lead wire 72, the specific gas concentration is detected based on the electric signal.

このように、ガスセンサ10は、使用時に保護カバー30側が被測定ガスにさらされるため、被測定ガスによって加熱されて高温になる。そのため、使用時と不使用時とで、ガスセンサ10は昇降温が繰り返される。そして、使用時にガスセンサ10が高温になることでセラミックス部材45は膨張する。ここで、本実施形態では、ハウジング41の内周面42aとセラミックス部材45の外周面46aとの間に隙間があり、上述したようにこの隙間の距離W1が20μm以上になっている。このような隙間が存在すると、セラミックス部材45が加熱された際に膨張を許容する空間が存在することになるから、ハウジング41の内周面42aとセラミックス部材45の外周面46aとが接触しなくなるか、もしくは接触したとしても内周面42aから外周面46aへの径方向の応力が低減される。したがって、加熱によりセラミックス部材45にクラックなどの破損が生じるのを抑制できる。なお、距離W1が大きいほど、加熱によるセラミックス部材45の破損を抑制する効果は高まる傾向にある。例えば、距離W1は、50μm以上としてもよい。また、距離W1は、500μm以下であることが好ましい。距離W1が500μm以下であることで、ハウジング41とセラミックス部材45との間の隙間を気体(被測定ガスや基準ガス)が軸方向に流通するのを抑制できる。その結果、内周面42aと外周面46aとの隙間で気体が結露しにくくなり、例えばハウジング41や封止部材48などの気密性に関連する部材の腐食が生じにくくなる。そのため、素子封止体40を境界としたセンサ素子20の一端側(先端面20a側)と他端側(基端面20b側)との間の気密性が低下することを抑制できる。上述したように、センサ素子20は、大気側カバー74内の基準ガスに基づいて保護カバー30内の被測定ガス中の特定ガス濃度を検出するから、センサ素子20の一端側と他端側との間の気密性が低下すると、検出の精度が低下する。そのため、センサ素子20の一端側と他端側との間の気密性の低下を抑制することで、ガスセンサ10の特定ガス濃度の検出精度の低下を抑制できる。なお、距離W1が小さいほど、気密性の低下を抑制する効果は高まる傾向にある。例えば、距離W1は、300μm以下としてもよいし、100μm以下としてもよい。 As described above, since the protective cover 30 side of the gas sensor 10 is exposed to the gas to be measured during use, the gas sensor 10 is heated by the gas to be measured and becomes high in temperature. Therefore, the temperature of the gas sensor 10 is repeatedly raised and lowered between when it is used and when it is not used. Then, when the gas sensor 10 becomes hot during use, the ceramic member 45 expands. Here, in the present embodiment, there is a gap between the inner peripheral surface 42a of the housing 41 and the outer peripheral surface 46a of the ceramic member 45, and as described above, the distance W1 of this gap is 20 μm or more. If such a gap exists, there is a space that allows expansion when the ceramic member 45 is heated, so that the inner peripheral surface 42a of the housing 41 and the outer peripheral surface 46a of the ceramic member 45 do not come into contact with each other. Or, even if they come into contact with each other, the radial stress from the inner peripheral surface 42a to the outer peripheral surface 46a is reduced. Therefore, it is possible to prevent the ceramic member 45 from being damaged such as cracks by heating. The larger the distance W1, the greater the effect of suppressing damage to the ceramic member 45 due to heating. For example, the distance W1 may be 50 μm or more. Further, the distance W1 is preferably 500 μm or less. When the distance W1 is 500 μm or less, it is possible to suppress the flow of gas (measured gas or reference gas) in the axial direction through the gap between the housing 41 and the ceramic member 45. As a result, gas is less likely to condense in the gap between the inner peripheral surface 42a and the outer peripheral surface 46a, and corrosion of members related to airtightness such as the housing 41 and the sealing member 48 is less likely to occur. Therefore, it is possible to suppress a decrease in airtightness between one end side (tip surface 20a side) and the other end side (base end surface 20b side) of the sensor element 20 with the element encapsulant 40 as a boundary. As described above, since the sensor element 20 detects the specific gas concentration in the gas to be measured in the protective cover 30 based on the reference gas in the atmosphere side cover 74, one end side and the other end side of the sensor element 20 If the airtightness between the two is reduced, the accuracy of detection is reduced. Therefore, by suppressing the decrease in airtightness between one end side and the other end side of the sensor element 20, it is possible to suppress the decrease in the detection accuracy of the specific gas concentration of the gas sensor 10. The smaller the distance W1, the greater the effect of suppressing the decrease in airtightness. For example, the distance W1 may be 300 μm or less, or 100 μm or less.

また、第2筒状部43の内周面43aと大径部47の外周面47aとの間にも隙間が存在すれば、ハウジング41の内周面43aからセラミックス部材45の外周面47aへの径方向の応力も低減される。そのため、距離W2が0μm超過であれば、加熱によりセラミックス部材45にクラックなどの破損が生じるのをより抑制できる。距離W2が大きいほど、ガスセンサ10の使用時の加熱によるセラミックス部材45の破損をより抑制できる傾向にある。例えば、距離W2は5μm以上であることが好ましい。距離W2は20μm以上としてもよい。また、距離W2は、500μm以下であることが好ましい。距離W2が500μm以下であることで、距離W1を500μm以下とする場合と同様に、内周面43aと外周面47aとの隙間で気体が結露しにくくなり、例えばハウジング41や封止部材48などの気密性に関連する部材の腐食が生じにくくなる。そのため、センサ素子20の一端側と他端側との間の気密性が低下することをより抑制できる。なお、距離W2が小さいほど、気密性の低下を抑制する効果は高まる傾向にある。距離W2は、300μm以下としてもよいし、100μm以下としてもよいし、50μm以下としてもよい。 Further, if there is a gap between the inner peripheral surface 43a of the second tubular portion 43 and the outer peripheral surface 47a of the large diameter portion 47, the inner peripheral surface 43a of the housing 41 can be transferred to the outer peripheral surface 47a of the ceramic member 45. Radial stress is also reduced. Therefore, if the distance W2 exceeds 0 μm, it is possible to further suppress the occurrence of breakage such as cracks in the ceramic member 45 due to heating. The larger the distance W2, the more likely it is that damage to the ceramic member 45 due to heating during use of the gas sensor 10 can be suppressed. For example, the distance W2 is preferably 5 μm or more. The distance W2 may be 20 μm or more. Further, the distance W2 is preferably 500 μm or less. When the distance W2 is 500 μm or less, gas is less likely to condense in the gap between the inner peripheral surface 43a and the outer peripheral surface 47a, as in the case where the distance W1 is 500 μm or less. Corrosion of members related to the airtightness of the housing is less likely to occur. Therefore, it is possible to further suppress the decrease in airtightness between one end side and the other end side of the sensor element 20. The smaller the distance W2, the greater the effect of suppressing the decrease in airtightness. The distance W2 may be 300 μm or less, 100 μm or less, or 50 μm or less.

さらに、封止部材48は、外径Dpが大径部47の外径Dc2以下であることが好ましい。こうすれば、封止部材48は、大径部47の外周面47aよりも外径側にはみ出しにくい。ここで、封止部材48が大径部47の外周面47aよりも外径側にはみ出していると、大径部47の外周面47aと第2段差面47bとの間の角部47c(図3の部分拡大図参照)が加熱により膨張する際に、膨張が封止部材48に規制される場合がある。これにより、角部47cに熱応力が集中する場合がある。封止部材48の外径Dpが大径部47の外径Dc2以下であることで、角部47cへの熱応力の集中を抑制でき、加熱によるセラミックス部材45の破損(特に角部47cやその周辺の破損)を抑制できる。外径Dpが外径Dc2未満であってもよい。また、封止部材48とセラミックス部材45とが、下記式(1)を満たすことが好ましい。なお、式(1)の左辺は、封止部材48とセラミックス部材45とが同軸の状態から封止部材48が径方向に最大限ずれた状態になるまでの封止部材48の径方向の移動距離に相当する。また、式(1)の右辺は、封止部材48とセラミックス部材45とが同軸の状態から封止部材48が径方向にずれても外周面47aより外径側にはみ出す部分が生じない移動距離の最大値に相当する。この式(1)を満たすことで、セラミックス部材45に対する封止部材48の位置が径方向にずれた場合でも、封止部材48が大径部47の外周面47aよりも外径側にはみ出しにくい。なお、封止部材48の内径dpと小径部46の外径Dc1との差は、5μm〜500μmとしてもよいし、20μm〜500μmとしてもよい。大径部47の外径Dc2と封止部材48の外径Dpとの差は、5μm〜500μmとしてもよい。 Further, the sealing member 48 preferably has an outer diameter Dp of not more than the outer diameter Dc2 of the large diameter portion 47. In this way, the sealing member 48 is less likely to protrude to the outer diameter side than the outer peripheral surface 47a of the large diameter portion 47. Here, when the sealing member 48 protrudes to the outer diameter side from the outer peripheral surface 47a of the large diameter portion 47, the corner portion 47c between the outer peripheral surface 47a of the large diameter portion 47 and the second stepped surface 47b (FIG. When the (see partially enlarged view of 3) expands due to heating, the expansion may be restricted by the sealing member 48. As a result, thermal stress may be concentrated on the corner portion 47c. When the outer diameter Dp of the sealing member 48 is equal to or less than the outer diameter Dc2 of the large diameter portion 47, it is possible to suppress the concentration of thermal stress on the corner portion 47c, and the ceramic member 45 is damaged by heating (particularly the corner portion 47c and its thereof). Damage to the surrounding area) can be suppressed. The outer diameter Dp may be less than the outer diameter Dc2. Further, it is preferable that the sealing member 48 and the ceramic member 45 satisfy the following formula (1). The left side of the equation (1) is the radial movement of the sealing member 48 from the state in which the sealing member 48 and the ceramic member 45 are coaxial to the state in which the sealing member 48 is maximally displaced in the radial direction. Corresponds to the distance. Further, the right side of the equation (1) is a moving distance in which a portion protruding from the outer peripheral surface 47a to the outer diameter side does not occur even if the sealing member 48 is displaced in the radial direction from the state where the sealing member 48 and the ceramic member 45 are coaxial. Corresponds to the maximum value of. By satisfying this equation (1), even if the position of the sealing member 48 with respect to the ceramic member 45 is displaced in the radial direction, the sealing member 48 is less likely to protrude to the outer diameter side than the outer peripheral surface 47a of the large diameter portion 47. .. The difference between the inner diameter dp of the sealing member 48 and the outer diameter Dc1 of the small diameter portion 46 may be 5 μm to 500 μm or 20 μm to 500 μm. The difference between the outer diameter Dc2 of the large diameter portion 47 and the outer diameter Dp of the sealing member 48 may be 5 μm to 500 μm.

(dp−Dc1)/2≦(Dc2−Dp)/2 (1) (Dp-Dc1) / 2≤ (Dc2-Dp) / 2 (1)

以上詳述した本実施形態のガスセンサ10によれば、貫通孔41aの内周面42aとセラミックス部材45との間に隙間を有し、隙間の径方向の距離W1が20μm以上であるため、加熱によるセラミックス部材45の破損を抑制できる。また、距離W1が500μm以下であるため、センサ素子20の一端側と他端側との間の気密性が低下することを抑制できる。 According to the gas sensor 10 of the present embodiment described in detail above, there is a gap between the inner peripheral surface 42a of the through hole 41a and the ceramic member 45, and the radial distance W1 of the gap is 20 μm or more. Damage to the ceramic member 45 due to the above can be suppressed. Further, since the distance W1 is 500 μm or less, it is possible to suppress a decrease in airtightness between one end side and the other end side of the sensor element 20.

また、セラミックス部材45は、円柱状の大径部47と、大径部47よりも保護カバー30側に位置し且つ大径部47よりも外径が小さい円柱状の小径部46と、を有している。そして、距離W1は、小径部46の外周面46aと貫通孔41aの内周面42aとの隙間の径方向の距離である。ここで、セラミックス部材45が大径部47と小径部46とを有する場合、保護カバー30に近い小径部46の方が被測定ガスによって加熱されやすいため破損しやすい。そのため、小径部46とハウジング41の内周面42aとの間に20μm以上の隙間が存在することで、例えば大径部47とハウジング41の内周面43aとの間にのみ隙間がある場合と比較して、加熱によるセラミックス部材45の破損をより抑制できる。 Further, the ceramic member 45 has a columnar large diameter portion 47 and a columnar small diameter portion 46 located closer to the protective cover 30 than the large diameter portion 47 and having an outer diameter smaller than that of the large diameter portion 47. doing. The distance W1 is the radial distance between the outer peripheral surface 46a of the small diameter portion 46 and the inner peripheral surface 42a of the through hole 41a. Here, when the ceramic member 45 has a large diameter portion 47 and a small diameter portion 46, the small diameter portion 46 closer to the protective cover 30 is more likely to be heated by the gas to be measured and is therefore more likely to be damaged. Therefore, when there is a gap of 20 μm or more between the small diameter portion 46 and the inner peripheral surface 42a of the housing 41, for example, there may be a gap only between the large diameter portion 47 and the inner peripheral surface 43a of the housing 41. In comparison, damage to the ceramic member 45 due to heating can be further suppressed.

さらに、大径部47が貫通孔41aの内周面43aとの間に隙間を有し、この隙間の径方向の距離W2が5μm以上である。このように、小径部46とハウジング41の内周面42aとの間だけでなく、大径部47とハウジング41の内周面43aとの間にも隙間があることで、加熱によるセラミックス部材45の破損をより抑制できる。また、距離W2が500μm以下であるため、センサ素子20の一端側と他端側との間の気密性が低下することを抑制できる。 Further, the large diameter portion 47 has a gap between the large diameter portion 47 and the inner peripheral surface 43a of the through hole 41a, and the radial distance W2 of this gap is 5 μm or more. As described above, since there is a gap not only between the small diameter portion 46 and the inner peripheral surface 42a of the housing 41 but also between the large diameter portion 47 and the inner peripheral surface 43a of the housing 41, the ceramic member 45 by heating is formed. Damage can be further suppressed. Further, since the distance W2 is 500 μm or less, it is possible to suppress a decrease in airtightness between one end side and the other end side of the sensor element 20.

さらにまた、比W1/W2が値1以上であることで、すなわち距離W2が距離W1以下であることで、ガスセンサ10が加熱された場合に、保護カバー30から遠いため加熱されにくい大径部47の方が、小径部46よりも先にハウジング41と接触しやすくなる。これにより、加熱されやすいことで熱膨張しやすい小径部46は、ハウジング41と接触しなくなる、もしくは接触してもハウジング41からの径方向の応力が緩和される。したがって、セラミックス部材45の破損をより抑制できる。 Furthermore, when the ratio W1 / W2 is a value of 1 or more, that is, the distance W2 is a distance W1 or less, when the gas sensor 10 is heated, it is far from the protective cover 30 and therefore difficult to be heated. Is easier to contact with the housing 41 than the small diameter portion 46. As a result, the small diameter portion 46, which is easily heated and easily expands thermally, does not come into contact with the housing 41, or even if it comes into contact, the radial stress from the housing 41 is relaxed. Therefore, damage to the ceramic member 45 can be further suppressed.

そしてまた、ガスセンサ10は、第1段差面42bと第2段差面47bとの間に配設され、第1段差面42bと第2段差面47bとに押圧されているリング状の封止部材48を備えている。リング状の封止部材48が存在することで第1段差面42bと第2段差面47bとの間を封止できる。そのため、ハウジング41とセラミックス部材45との間を気体が軸方向に流通するのを抑制でき、センサ素子20の一端側と他端側との間の気密性が低下することを抑制できる。また、封止部材48の外径Dpが大径部47の外径Dc2以下であるため、封止部材48は、大径部47の外周面47aよりも外径側にはみ出しにくい。これにより、大径部47の角部47cへの熱応力の集中を抑制でき、加熱によるセラミックス部材45の破損を抑制できる。 Further, the gas sensor 10 is a ring-shaped sealing member 48 that is arranged between the first step surface 42b and the second step surface 47b and is pressed against the first step surface 42b and the second step surface 47b. It has. The presence of the ring-shaped sealing member 48 can seal between the first stepped surface 42b and the second stepped surface 47b. Therefore, it is possible to suppress the gas from flowing in the axial direction between the housing 41 and the ceramic member 45, and it is possible to prevent the airtightness between one end side and the other end side of the sensor element 20 from being lowered. Further, since the outer diameter Dp of the sealing member 48 is equal to or less than the outer diameter Dc2 of the large diameter portion 47, the sealing member 48 is less likely to protrude to the outer diameter side than the outer peripheral surface 47a of the large diameter portion 47. As a result, concentration of thermal stress on the corner portion 47c of the large diameter portion 47 can be suppressed, and damage to the ceramic member 45 due to heating can be suppressed.

そしてまた、封止部材48は、第1段差面42bと第2段差面47bとに押圧されていない状態で、内径側が外径側に比べて厚い部材である。そのため、例えば押圧されていない状態での封止部材48の厚さが均一な場合と比較して、封止部材48の位置が径方向にずれにくい。これにより、ガスセンサ10が昇降温を繰り返した場合に、ハウジング41とセラミックス部材45との位置が径方向にずれるのを抑制できる。その結果、センサ素子20の一端側と他端側との間の気密性が低下することを抑制できる。 Further, the sealing member 48 is a member whose inner diameter side is thicker than that of the outer diameter side in a state where the first step surface 42b and the second step surface 47b are not pressed. Therefore, for example, the position of the sealing member 48 is less likely to shift in the radial direction as compared with the case where the sealing member 48 has a uniform thickness when not pressed. As a result, when the gas sensor 10 repeatedly raises and lowers the temperature, it is possible to prevent the housing 41 and the ceramic member 45 from being displaced in the radial direction. As a result, it is possible to suppress a decrease in airtightness between one end side and the other end side of the sensor element 20.

そしてまた、第1段差面42bと前記第2段差面47bとの軸方向の距離が、セラミックス部材45の中心軸Cに近づくほど大きくなっている。換言すると、図3のなす角θgが0°超過である。これにより、ハウジング41からセラミックス部材45への封止部材48を介した押圧力が中心軸Cに向かう成分を有するようになる。例えば、第1段差面42bと第2段差面47bとが平行(なす角θgが0°)であると、ハウジング41からセラミックス部材45への封止部材48を介した押圧力は軸方向に平行(上向き)に作用する。一方、なす角θgが0°超過であれば、押圧力は図3の部分拡大図で右上方向に作用するため、中心軸Cに向かう成分(図3の部分拡大図では右向きの成分)を有するようになる。これにより、ハウジング41は封止部材48の全周に亘って外径側から内径側に押圧されることになる。そのため、ガスセンサ10が昇降温を繰り返した場合に、ハウジング41とセラミックス部材45との位置が径方向にずれるのを抑制できる。その結果、センサ素子20の一端側と他端側との間の気密性が低下することを抑制できる。 Further, the distance between the first stepped surface 42b and the second stepped surface 47b in the axial direction becomes larger as it approaches the central axis C of the ceramic member 45. In other words, the angle θg formed by FIG. 3 exceeds 0 °. As a result, the pressing force from the housing 41 to the ceramic member 45 via the sealing member 48 has a component toward the central axis C. For example, when the first step surface 42b and the second step surface 47b are parallel (the angle θg formed is 0 °), the pressing force from the housing 41 to the ceramic member 45 via the sealing member 48 is parallel in the axial direction. Acts (upward). On the other hand, if the formed angle θg exceeds 0 °, the pressing force acts in the upper right direction in the partially enlarged view of FIG. 3, and therefore has a component toward the central axis C (a component pointing to the right in the partially enlarged view of FIG. 3). Will be. As a result, the housing 41 is pressed from the outer diameter side to the inner diameter side over the entire circumference of the sealing member 48. Therefore, when the gas sensor 10 repeatedly raises and lowers the temperature, it is possible to prevent the housing 41 and the ceramic member 45 from being displaced in the radial direction. As a result, it is possible to suppress a decrease in airtightness between one end side and the other end side of the sensor element 20.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various aspects as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、第1段差面42bは、内径側ほど下側に向かうように傾斜していたが、これに限られない。第1段差面42bと前記第2段差面47bとの軸方向の距離が、セラミックス部材45の中心軸に近づくほど大きくなっていれば、上述した実施形態と同様にセラミックス部材45の径方向の位置ずれを抑制する効果が得られる。例えば、第1段差面42bの傾斜に加えて又は代えて、第2段差面47bも傾斜していてもよい。具体的には、第2段差面47bが、ハウジング41の径方向で中心軸Cに近づくほど保護カバー30側とは反対側(上側)に向かうように傾斜していてもよい。また、第1段差面42bと前記第2段差面47bとの軸方向の距離が、セラミックス部材45の中心軸Cに近づくほど小さくなっていてもよい。あるいは、第1段差面42bと前記第2段差面47bとが平行であってもよい。 For example, in the above-described embodiment, the first stepped surface 42b is inclined so as to go downward toward the inner diameter side, but the present invention is not limited to this. If the axial distance between the first stepped surface 42b and the second stepped surface 47b increases as it approaches the central axis of the ceramic member 45, the radial position of the ceramic member 45 is the same as in the above-described embodiment. The effect of suppressing deviation can be obtained. For example, in addition to or in place of the inclination of the first step surface 42b, the second step surface 47b may also be inclined. Specifically, the second stepped surface 47b may be inclined so as to approach the central axis C in the radial direction of the housing 41 toward the side (upper side) opposite to the protective cover 30 side. Further, the axial distance between the first stepped surface 42b and the second stepped surface 47b may become smaller as it approaches the central axis C of the ceramic member 45. Alternatively, the first stepped surface 42b and the second stepped surface 47b may be parallel to each other.

上述した実施形態では、ガスセンサ10は、第1段差面42bと第2段差面47bとの間に封止部材48を備えていたが、封止部材48を備えなくてもよい。この場合、センサ素子20の一端側と他端側との間の気密性が低下することを抑制できるよう、距離W2を0μmとすることが好ましい。 In the above-described embodiment, the gas sensor 10 includes the sealing member 48 between the first stepped surface 42b and the second stepped surface 47b, but the sealing member 48 may not be provided. In this case, it is preferable that the distance W2 is 0 μm so that the decrease in airtightness between one end side and the other end side of the sensor element 20 can be suppressed.

上述した実施形態では、セラミックス部材45は小径部46と大径部47とを備えていたが、セラミックス部材45の形状はこれに限られない。例えば、セラミックス部材45が、第2段差面47bを有さない円柱状の形状、すなわち図3の外径Dc1と外径Dc2とが等しいような形状であってもよい。この場合も、ハウジングの内周面とセラミックス部材の外周面との間に隙間が存在し、この隙間の距離W1が20μm以上であれば、上述した実施形態と同様に加熱によるセラミックス部材の破損を抑制する効果が得られる。また、セラミックス部材45が、小径部46及び大径部47に加えて、これらと同軸に接続された円柱状の部材を有していてもよい。同様に、ハウジング41の形状も、上述した実施形態に限られない。 In the above-described embodiment, the ceramic member 45 includes a small diameter portion 46 and a large diameter portion 47, but the shape of the ceramic member 45 is not limited to this. For example, the ceramic member 45 may have a columnar shape that does not have the second stepped surface 47b, that is, a shape in which the outer diameter Dc1 and the outer diameter Dc2 in FIG. 3 are equal. Also in this case, if there is a gap between the inner peripheral surface of the housing and the outer peripheral surface of the ceramic member, and the distance W1 of this gap is 20 μm or more, the ceramic member is damaged by heating as in the above-described embodiment. The effect of suppressing is obtained. Further, the ceramic member 45 may have a columnar member coaxially connected to the small diameter portion 46 and the large diameter portion 47 in addition to the small diameter portion 46 and the large diameter portion 47. Similarly, the shape of the housing 41 is not limited to the above-described embodiment.

上述した実施形態では、第1筒状部42の内周面42aと小径部46の外周面46aとの間に20μm以上の隙間が存在したが、内周面42aと外周面46aとが接していてもよい。この場合でも、第2筒状部43の内周面43aと大径部47の外周面47aとの間に20μm以上の距離の隙間が存在すれば、加熱によるセラミックス部材の破損を抑制する効果が得られる。このような場合は、内周面43aと外周面47aとの間の隙間の径方向の距離が、本発明の「距離W1」に相当する。このように、セラミックス部材とハウジングとの間のどこかに、径方向の距離が20μm以上である隙間が存在すれば、加熱によるセラミックス部材の破損を抑制する効果は得られる。ただし、小径部46の方が保護カバー30に近い分だけ被測定ガスによって加熱されやすく破損しやすいため、第1筒状部42の内周面42aと小径部46の外周面46aとの間に20μm以上の距離の隙間が存在することが好ましい。 In the above-described embodiment, there is a gap of 20 μm or more between the inner peripheral surface 42a of the first tubular portion 42 and the outer peripheral surface 46a of the small diameter portion 46, but the inner peripheral surface 42a and the outer peripheral surface 46a are in contact with each other. You may. Even in this case, if there is a gap of 20 μm or more between the inner peripheral surface 43a of the second tubular portion 43 and the outer peripheral surface 47a of the large diameter portion 47, the effect of suppressing damage to the ceramic member due to heating is effective. can get. In such a case, the radial distance of the gap between the inner peripheral surface 43a and the outer peripheral surface 47a corresponds to the "distance W1" of the present invention. As described above, if there is a gap having a radial distance of 20 μm or more somewhere between the ceramic member and the housing, the effect of suppressing damage to the ceramic member due to heating can be obtained. However, since the small diameter portion 46 is more easily heated by the gas to be measured and easily damaged because it is closer to the protective cover 30, it is between the inner peripheral surface 42a of the first tubular portion 42 and the outer peripheral surface 46a of the small diameter portion 46. It is preferable that there is a gap having a distance of 20 μm or more.

上述した実施形態では、被測定ガス導入口はセンサ素子20の先端面20aに配設されていたが、被測定ガス導入口は素子室37内に位置すればよく、被測定ガス導入口がセンサ素子20の他の面に配設されていてもよい。同様に、基準ガス導入口は、大気側カバー74内に位置すればよく、センサ素子20の基端面20bに限らずセンサ素子20の他の面に配設されていてもよい。また、センサ素子20が被測定ガス導入口を備えていなくてもよい。この場合、例えばセンサ素子20の表面に測定電極などを含む検出部が配設されていてもよい。 In the above-described embodiment, the gas introduction port to be measured is arranged on the tip surface 20a of the sensor element 20, but the gas introduction port to be measured may be located in the element chamber 37, and the gas introduction port to be measured is the sensor. It may be arranged on another surface of the element 20. Similarly, the reference gas introduction port may be located in the atmosphere side cover 74, and may be arranged not only on the base end surface 20b of the sensor element 20 but also on another surface of the sensor element 20. Further, the sensor element 20 does not have to be provided with the gas introduction port to be measured. In this case, for example, a detection unit including a measurement electrode or the like may be arranged on the surface of the sensor element 20.

上述した実施形態では、センサ素子20は長尺な板状体形状としたが、長尺であればよい。例えば、センサ素子20が円柱状であってもよい。 In the above-described embodiment, the sensor element 20 has a long plate-like shape, but it may be long. For example, the sensor element 20 may be cylindrical.

以下には、ガスセンサを具体的に作製した例を実施例として説明する。実験例3〜26が本発明の実施例に相当し、実験例1,2が比較例に相当する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, an example in which a gas sensor is specifically manufactured will be described as an example. Experimental Examples 3 to 26 correspond to Examples of the present invention, and Experimental Examples 1 and 2 correspond to Comparative Examples. The present invention is not limited to the following examples.

[実験例1〜10]
距離W2を0μmとし、距離W1を表1に示すように0μm〜600μmの間で種々
変更した点以外は、図2,3に示したガスセンサ10と同様の構成のガスセンサを作製し、実験例1〜10とした。なお、実験例1〜10において、ハウジング41の第2筒状部43の内径dm2及びセラミックス部材45の大径部47の外径Dc2はいずれも14.5mmとした。また、距離W1の調整は、ハウジング41の第1筒状部42の内径dm1を10.5mmで一定とし、セラミックス部材45の小径部46の外径Dc1を変更することで行った。なお、封止部材48の外径Dpは14mmとし、内径dpは10mmとした。封止部材48は、第1段差面42bと第2段差面47bとに押圧されていない状態で、外径側と内径側の厚さが同じとした。第1段差面42bと第2段差面47bとのなす角θgは、3°とした。
[Experimental Examples 1-10]
Experimental Example 1 produced a gas sensor having the same configuration as the gas sensor 10 shown in FIGS. 2 and 3 except that the distance W2 was set to 0 μm and the distance W1 was variously changed between 0 μm and 600 μm as shown in Table 1. It was set to 10. In Experimental Examples 1 to 10, the inner diameter dm2 of the second tubular portion 43 of the housing 41 and the outer diameter Dc2 of the large diameter portion 47 of the ceramic member 45 were both set to 14.5 mm. Further, the distance W1 was adjusted by keeping the inner diameter dm1 of the first tubular portion 42 of the housing 41 constant at 10.5 mm and changing the outer diameter Dc1 of the small diameter portion 46 of the ceramic member 45. The outer diameter Dp of the sealing member 48 was 14 mm, and the inner diameter dp was 10 mm. The sealing member 48 has the same thickness on the outer diameter side and the inner diameter side in a state where the first step surface 42b and the second step surface 47b are not pressed. The angle θg formed by the first stepped surface 42b and the second stepped surface 47b was set to 3 °.

[実験例11〜18]
距離W1を50μmで一定とし、距離W2を表1に示すように5μm〜150μmの間で種々変更した点以外は、実験例1〜10と同様の構成のガスセンサを作製し、実験例11〜18とした。なお、内径dm1及び外径Dc1は、実験例5と同じとした。また、距離W2の調整は、ハウジング41の第2筒状部43の内径dm2を14.5mmで一定とし、セラミックス部材45の大径部47の外径Dc2を変更することで行った。
[Experimental Examples 11-18]
Gas sensors having the same configurations as those of Experimental Examples 1 to 10 were produced except that the distance W1 was kept constant at 50 μm and the distance W2 was variously changed between 5 μm and 150 μm as shown in Table 1, and Experimental Examples 11 to 18 were produced. And said. The inner diameter dm1 and the outer diameter Dc1 were the same as in Experimental Example 5. Further, the distance W2 was adjusted by keeping the inner diameter dm2 of the second tubular portion 43 of the housing 41 constant at 14.5 mm and changing the outer diameter Dc2 of the large diameter portion 47 of the ceramic member 45.

[実験例19〜26]
距離W1を100μmで一定とし、距離W2を表1に示すように10μm〜300μmの間で種々変更した点以外は、実験例11〜18と同様の構成のガスセンサを作製し、実験例19〜26とした。なお、内径dm1及び外径Dc1は、実験例6と同じとした。距離W2の調整は、実験例11〜18と同様にハウジング41の第2筒状部43の内径dm2を14.5mmで一定とし、セラミックス部材45の大径部47の外径Dc2を変更することで行った。
[Experimental Examples 19-26]
A gas sensor having the same configuration as that of Experimental Examples 11 to 18 was produced except that the distance W1 was kept constant at 100 μm and the distance W2 was variously changed between 10 μm and 300 μm as shown in Table 1, and Experimental Examples 19 to 26 were produced. And said. The inner diameter dm1 and the outer diameter Dc1 were the same as in Experimental Example 6. The distance W2 is adjusted by keeping the inner diameter dm2 of the second tubular portion 43 of the housing 41 constant at 14.5 mm and changing the outer diameter Dc2 of the large diameter portion 47 of the ceramic member 45 in the same manner as in Experimental Examples 11 to 18. I went there.

[熱耐久試験]
実験例1〜26のガスセンサについて、熱耐久試験を行ってセラミックス部材45のクラックの有無及び位置ずれの有無を調べた。具体的には以下のように試験を行った。ハウジング41を600℃まで加熱した後にガスセンサを水没させる冷熱ストレスを与え、これを1回の昇降温サイクルとした。そして、昇降温サイクルを3000回繰り返した後、及び6000回繰り返した後に、セラミックス部材45のクラックの有無及びセラミックス部材45の径方向の位置ずれの有無を調べた。クラックの有無については、昇降温サイクルを6000回繰り返した後にクラックが見られなかった場合を「A(優)」とし、3000回繰り返した後にクラックが見られなかった場合を「B(良)」とし、3000回繰り返した後にクラックが見られた場合を「C(不可)」として評価した。位置ずれについては、昇降温サイクルを6000回繰り返した後に、目視でハウジング41に対するセラミックス部材45の位置が径方向にずれていた場合(ハウジング41とセラミックス部材45とが同軸ではなくなっていた場合)に「有り」とした。セラミックス部材45の位置が径方向にずれていなかった場合には「無し」として評価した。実験例1〜26の距離W1,距離W2,比W1/W2,及び熱耐久試験の結果を表1にまとめて示す。
[Thermal durability test]
The gas sensors of Experimental Examples 1 to 26 were subjected to a thermal durability test to check for cracks and misalignment of the ceramic member 45. Specifically, the test was conducted as follows. After heating the housing 41 to 600 ° C., a cold stress was applied to submerge the gas sensor, and this was defined as one elevating temperature cycle. Then, after repeating the elevating temperature cycle 3000 times and 6000 times, the presence or absence of cracks in the ceramic member 45 and the presence or absence of radial misalignment of the ceramic member 45 were examined. Regarding the presence or absence of cracks, "A (excellent)" is defined as "A (excellent)" when no cracks are observed after repeating the temperature raising / lowering cycle 6000 times, and "B (good)" is provided when no cracks are observed after repeating 3000 times. The case where cracks were observed after repeating 3000 times was evaluated as "C (impossible)". Regarding the misalignment, when the position of the ceramic member 45 with respect to the housing 41 is visually deviated in the radial direction after repeating the temperature raising / lowering cycle 6000 times (when the housing 41 and the ceramic member 45 are no longer coaxial). "Yes". When the position of the ceramic member 45 was not displaced in the radial direction, it was evaluated as “none”. Table 1 summarizes the distance W1, the distance W2, the ratio W1 / W2, and the results of the thermal durability test of Experimental Examples 1 to 26.

表1に示すように、距離W1が20μm以上である実験例3〜26は、いずれもクラックに関する評価が「A(優)」又は「B(良)」であり、距離W1が20μm未満である実験例1,2と比べて加熱によるセラミックス部材45の破損を抑制できていた。また、距離W2が0μm超過である実験例11〜26は、いずれもクラックに関する評価が「A(優)」であり、距離W2が0μmである実験例3〜10と比べて加熱によるセラミックス部材45の破損をより抑制できていた。また、比W1/W2が値1以上である実験例11〜15,19〜23は、距離W1及び距離W2が共に0μm超過であっても、いずれもセラミックス部材45の位置ずれが生じていなかった。一方、比W1/W2が値1未満である実験例16〜18,24〜26では、位置ずれが生じていた。ここで、位置ずれが生じると、ハウジング41からセラミックス部材45への径方向の応力に偏りが生じるため、応力が大きい部分でセラミックス部材45が破損しやすくなる可能性がある。そのため、実験例11〜26はいずれもクラックに関する評価が「A(優)」であったが、比W1/W2が値1以上である実験例11〜15,19〜23は、比W1/W2が値1未満である実験例16〜18,24〜26と比べてさらに破損が生じにくいと考えられる。例えば、昇降温サイクルを6000回を超えてさらに繰り返した場合、実験例11〜15,19〜23は実験例16〜18,24〜26と比べて破損が生じにくいと考えられる。 As shown in Table 1, in Experimental Examples 3 to 26 in which the distance W1 is 20 μm or more, the evaluation regarding cracks is “A (excellent)” or “B (good)”, and the distance W1 is less than 20 μm. Compared with Experimental Examples 1 and 2, damage to the ceramic member 45 due to heating could be suppressed. Further, in Experimental Examples 11 to 26 in which the distance W2 exceeds 0 μm, the evaluation regarding cracks is “A (excellent)”, and the ceramic member 45 by heating is compared with Experimental Examples 3 to 10 in which the distance W2 is 0 μm. Was able to suppress the damage of. Further, in Experimental Examples 11 to 15, 19 to 23 in which the ratio W1 / W2 was a value of 1 or more, the position shift of the ceramic member 45 did not occur even if the distance W1 and the distance W2 both exceeded 0 μm. .. On the other hand, in Experimental Examples 16 to 18, 24 to 26 in which the ratio W1 / W2 was less than the value 1, misalignment occurred. Here, if the misalignment occurs, the stress in the radial direction from the housing 41 to the ceramic member 45 is biased, so that the ceramic member 45 may be easily damaged in the portion where the stress is large. Therefore, in Experimental Examples 11 to 26, the evaluation regarding cracks was "A (excellent)", but in Experimental Examples 11 to 15, 19 to 23 in which the ratio W1 / W2 was a value of 1 or more, the ratio W1 / W2 was obtained. It is considered that damage is less likely to occur as compared with Experimental Examples 16 to 18 and 24 to 26 in which the value is less than 1. For example, when the elevating temperature cycle is repeated more than 6000 times, it is considered that Experimental Examples 11 to 15, 19 to 23 are less likely to be damaged as compared with Experimental Examples 16 to 18, 24 to 26.

10 ガスセンサ、20 センサ素子、20a 先端面、20b 基端面、25 保護層、30 保護カバー、31 内側保護カバー、32 外側保護カバー、33 素子室入口、34 素子室出口、35 外側入口、36 外側出口、37 素子室、38 ガス室、40 素子封止体、41 ハウジング、41a 貫通孔、42 第1筒状部、42a 内周面、42b 第1段差面、43 第2筒状部、43a 内周面、45 セラミックス部材、46 小径部、46a 外周面、47 大径部、47a 外周面、47b 第2段差面、47c 角部、48 封止部材、49 シール材、50 組立体、55 絶縁碍子、60 接触金具、71 接続端子、72 リード線、73 ゴム栓、74 大気側カバー、75 外側カバー、76 大気導入孔、77 皿バネ、90 配管、91 固定用部材、C 中心軸。 10 Gas sensor, 20 Sensor element, 20a tip surface, 20b base end surface, 25 protective layer, 30 protective cover, 31 inner protective cover, 32 outer protective cover, 33 element chamber inlet, 34 element chamber outlet, 35 outer inlet, 36 outer outlet , 37 element chamber, 38 gas chamber, 40 element sealant, 41 housing, 41a through hole, 42 first tubular part, 42a inner peripheral surface, 42b first stepped surface, 43 second tubular part, 43a inner circumference Surface, 45 ceramics member, 46 small diameter part, 46a outer peripheral surface, 47 large diameter part, 47a outer peripheral surface, 47b second stepped surface, 47c square part, 48 sealing member, 49 sealing material, 50 assembly, 55 insulating porcelain, 60 Contact bracket, 71 Connection terminal, 72 Lead wire, 73 Rubber stopper, 74 Atmospheric side cover, 75 Outer cover, 76 Atmospheric introduction hole, 77 Countersunk spring, 90 Piping, 91 Fixing member, C central axis.

Claims (8)

被測定ガス中の特定ガス濃度を検出可能な長尺なセンサ素子と、
前記センサ素子が内部を軸方向に貫通している円柱状のセラミックス部材と、
前記セラミックス部材が内部に軸方向に挿入されている貫通孔を有し、該貫通孔の内周面と前記セラミックス部材との間に隙間を有し、該隙間の径方向の距離W1が20μm以上である筒状のハウジングと、
前記センサ素子の先端側を覆い、内部への前記被測定ガスの流通を許容する保護カバーと、
を備え、
前記セラミックス部材は、円柱状の大径部と、該大径部よりも前記保護カバー側に位置し且つ該大径部よりも外径が小さい円柱状の小径部と、のみで構成されており、
前記ハウジングは、内周面が前記貫通孔の一部を構成し前記小径部が内部に挿入されている第1筒状部と、内周面が前記貫通孔の一部を構成し前記大径部が内部に挿入されており前記第1筒状部よりも内径が大きい第2筒状部と、前記第1筒状部の一部であり該第1筒状部の内周面と前記第2筒状部の内周面とを接続する第1段差面と、を有しており、
前記セラミックス部材は、前記大径部の一部であり該大径部の外周面と前記小径部の外周面とを接続し前記第1段差面と対向する第2段差面を有しており、
前記第1段差面と前記第2段差面との間に配設され、該第1段差面と該第2段差面とに押圧されているリング状の封止部材、を備え、
前記小径部の外径Dc1[mm],前記大径部の外径Dc2[mm],前記封止部材の外径Dp[mm],前記封止部材の内径dp[mm]が下記式(1)を満たし、且つ前記外径Dpが前記外径Dc2以下である、
(dp−Dc1)/2≦(Dc2−Dp)/2 (1)
ガスセンサ。
A long sensor element that can detect a specific gas concentration in the gas to be measured, and
A columnar ceramic member through which the sensor element penetrates in the axial direction,
The ceramic member has a through hole inserted in the axial direction, and has a gap between the inner peripheral surface of the through hole and the ceramic member, and the radial distance W1 of the gap is 20 μm or more. With a tubular housing that is
A protective cover that covers the tip side of the sensor element and allows the flow of the gas to be measured inside.
With
The ceramic member has a cylindrical large-diameter portion, a cylindrical small-diameter portion outer diameter is smaller than and the large-diameter portion located on the protective cover side than the large diameter portion is composed of a chisel ,
In the housing, the inner peripheral surface forms a part of the through hole and the small diameter portion is inserted into the first tubular portion, and the inner peripheral surface forms a part of the through hole and has the large diameter. A second tubular portion having a portion inserted inside and having an inner diameter larger than that of the first tubular portion, and an inner peripheral surface of the first tubular portion which is a part of the first tubular portion and the first tubular portion. It has a first stepped surface that connects the inner peripheral surface of the two tubular portions.
The ceramic member is a part of the large-diameter portion, and has a second stepped surface that connects the outer peripheral surface of the large-diameter portion and the outer peripheral surface of the small-diameter portion and faces the first stepped surface.
A ring-shaped sealing member arranged between the first step surface and the second step surface and pressed against the first step surface and the second step surface is provided.
The outer diameter Dc1 [mm] of the small diameter portion, the outer diameter Dc2 [mm] of the large diameter portion, the outer diameter Dp [mm] of the sealing member, and the inner diameter dp [mm] of the sealing member are expressed by the following equations (1). ), And the outer diameter Dp is equal to or less than the outer diameter Dc2.
(Dp-Dc1) / 2≤ (Dc2-Dp) / 2 (1)
Gas sensor.
前記距離W1が500μm以下である、
請求項1に記載のガスセンサ。
The distance W1 is 500 μm or less.
The gas sensor according to claim 1.
請求項1又は2に記載のガスセンサであって、
前記距離W1は、前記小径部の外周面と前記貫通孔の内周面との隙間の径方向の距離である、
ガスセンサ。
The gas sensor according to claim 1 or 2.
The distance W1 is the radial distance of the gap between the outer peripheral surface of the small diameter portion and the inner peripheral surface of the through hole.
Gas sensor.
前記セラミックス部材は、前記大径部が前記貫通孔の内周面との間に隙間を有し、該隙間の径方向の距離W2が5μm以上である、
請求項3に記載のガスセンサ。
In the ceramic member, the large diameter portion has a gap between the large diameter portion and the inner peripheral surface of the through hole, and the radial distance W2 of the gap is 5 μm or more.
The gas sensor according to claim 3.
前記距離W2が500μm以下である、
請求項4に記載のガスセンサ。
The distance W2 is 500 μm or less.
The gas sensor according to claim 4.
前記距離W1と前記距離W2との比である比W1/W2が値1以上である、
請求項4又は5に記載のガスセンサ。
The ratio W1 / W2, which is the ratio of the distance W1 to the distance W2, has a value of 1 or more.
The gas sensor according to claim 4 or 5.
前記封止部材は、前記第1段差面と前記第2段差面とに押圧されていない状態で、内径側が外径側に比べて厚い部材である、
請求項1〜6のいずれか1項に記載のガスセンサ。
The sealing member is a member whose inner diameter side is thicker than that of the outer diameter side in a state where the first step surface and the second step surface are not pressed.
The gas sensor according to any one of claims 1 to 6.
前記第1段差面と前記第2段差面との軸方向の距離が、前記セラミックス部材の中心軸に近づくほど大きくなっている、
請求項1〜7のいずれか1項に記載のガスセンサ。
The axial distance between the first stepped surface and the second stepped surface increases as it approaches the central axis of the ceramic member.
The gas sensor according to any one of claims 1 to 7.
JP2019135852A 2019-07-24 2019-07-24 Gas sensor Active JP6839236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135852A JP6839236B2 (en) 2019-07-24 2019-07-24 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135852A JP6839236B2 (en) 2019-07-24 2019-07-24 Gas sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015192841A Division JP6563295B2 (en) 2015-09-30 2015-09-30 Gas sensor

Publications (2)

Publication Number Publication Date
JP2019191198A JP2019191198A (en) 2019-10-31
JP6839236B2 true JP6839236B2 (en) 2021-03-03

Family

ID=68387785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135852A Active JP6839236B2 (en) 2019-07-24 2019-07-24 Gas sensor

Country Status (1)

Country Link
JP (1) JP6839236B2 (en)

Also Published As

Publication number Publication date
JP2019191198A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP4680662B2 (en) Gas sensor
US7399925B2 (en) Structure of gas sensor ensuring stability of electrical connection
US8955373B2 (en) Exhaust sensor for an internal combustion engine
JP6754559B2 (en) Gas sensor
EP2784498B1 (en) Gas sensor
JPH08114574A (en) Exhaust sensor
JP2010243422A (en) Gas sensor and method of manufacturing the same
JP6839236B2 (en) Gas sensor
JP6966512B2 (en) Gas sensor
US10809239B2 (en) Gas sensor
JP6563295B2 (en) Gas sensor
US20230152270A1 (en) Gas sensor
JP6979387B2 (en) Sensor element and gas sensor
EP2784497B1 (en) Method for manufacturing gas sensor
US20170322175A1 (en) Hydrogen Detector for Gas Media
JP4241919B2 (en) Sensor for internal combustion engine
JP5057584B2 (en) Gas sensor
US20230168221A1 (en) Gas sensor and sensor element
JPH0623964Y2 (en) Oxygen sensor
KR20170077827A (en) Sensor for detecting at least one property of a measuring gas in a measuring gas chamber
JP2015068682A (en) Gas sensor
US20230152269A1 (en) Sensor element and gas sensor
JP6873220B2 (en) Gas sensor
JP4762539B2 (en) Gas sensor
US20230228701A1 (en) Gas sensor and casing for containing sensor element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6839236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150