JP6838596B2 - Yield strength estimation method - Google Patents

Yield strength estimation method Download PDF

Info

Publication number
JP6838596B2
JP6838596B2 JP2018209559A JP2018209559A JP6838596B2 JP 6838596 B2 JP6838596 B2 JP 6838596B2 JP 2018209559 A JP2018209559 A JP 2018209559A JP 2018209559 A JP2018209559 A JP 2018209559A JP 6838596 B2 JP6838596 B2 JP 6838596B2
Authority
JP
Japan
Prior art keywords
residual stress
shot peening
estimation method
stress
proof stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018209559A
Other languages
Japanese (ja)
Other versions
JP2020076622A (en
Inventor
祐次 小林
祐次 小林
彰則 松井
彰則 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2018209559A priority Critical patent/JP6838596B2/en
Priority to PCT/JP2019/029540 priority patent/WO2020095486A1/en
Publication of JP2020076622A publication Critical patent/JP2020076622A/en
Application granted granted Critical
Publication of JP6838596B2 publication Critical patent/JP6838596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本開示は、耐力推定方法に関する。 The present disclosure relates to a proof stress estimation method.

金属材料からなる対象物の表面に高硬度の投射材(ショット)を投射するショットピーニングが知られている(例えば、非特許文献1,2)。ショットピーニングによれば、金属材料の疲労強度を向上させることができる。 Shot peening is known in which a high-hardness projecting material (shot) is projected onto the surface of an object made of a metal material (for example, Non-Patent Documents 1 and 2). According to shot peening, the fatigue strength of a metal material can be improved.

小林祐次,“ショットピーニング特性に及ぼす機械的性質と残留オーステナイトの影響”,ばね論文集,第57号,P.9-15,2012Yuji Kobayashi, “Mechanical Properties and Effects of Retained Austenite on Shot Peening Properties”, Spring Papers, No. 57, P.9-15, 2012 岡田秀樹,“ショットピーニング方法の違いによる材料硬さと残留応力分布と降伏応力の関係”,圧力技術第41号第5号,P.223-242,2003Hideki Okada, "Relationship between Material Hardness, Residual Stress Distribution and Yield Stress Due to Differences in Shot Peening Method", Pressure Technology No. 41, No. 5, P.223-242, 2003

ところで、金属材料の耐力は、引張試験によって求められる。しかしながら、実際の製品では、引張試験のような破壊試験を行うことができない場合がある。そのため、金属材料の耐力を非破壊で推定できる方法が必要とされている。 By the way, the yield strength of a metal material is determined by a tensile test. However, in an actual product, it may not be possible to perform a fracture test such as a tensile test. Therefore, there is a need for a method that can estimate the yield strength of metal materials in a non-destructive manner.

本開示は、金属材料の耐力を非破壊で推定できる耐力推定方法を提供する。 The present disclosure provides a proof stress estimation method capable of nondestructively estimating the proof stress of a metallic material.

本開示に係る耐力推定方法は、金属材料からなる対象物に最大残留応力を付与するためのショットピーニング条件を決定する決定工程と、対象物に対し、ショットピーニング条件でショットピーニングを行うショットピーニング工程と、ショットピーニング工程後の対象物の残留応力を測定する測定工程と、予め取得された最大残留応力と対象物の耐力との関係、及び、測定された残留応力に基づき対象物の耐力を推定する推定工程と、を含む。 The strength estimation method according to the present disclosure includes a determination step of determining shot peening conditions for imparting maximum residual stress to an object made of a metallic material, and a shot peening step of performing shot peening on the object under shot peening conditions. And, the measurement step of measuring the residual stress of the object after the shot peening process, the relationship between the maximum residual stress acquired in advance and the strength of the object, and the strength of the object are estimated based on the measured residual stress. Including the estimation process to be performed.

この耐力推定方法では、最大残留応力を付与するためのショットピーニング条件で対象物にショットピーニングが行われた後、残留応力が測定される。測定された残留応力から、対象物の最大残留応力と対象物の耐力との間に関係があることを利用して、対象物の耐力が推定される。したがって、引張試験を行うことができない場合であっても、対象物を構成する金属材料の耐力を非破壊で推定できる。 In this proof stress estimation method, the residual stress is measured after shot peening is performed on the object under the shot peening condition for imparting the maximum residual stress. From the measured residual stress, the yield strength of the object is estimated by utilizing the relationship between the maximum residual stress of the object and the yield strength of the object. Therefore, even when the tensile test cannot be performed, the yield strength of the metal material constituting the object can be estimated non-destructively.

一実施形態に係る耐力推定方法において、決定工程では、対象物の硬さに基づいて、ショットピーニング条件を決定してもよい。この場合、ショットピーニング条件を適切に決定することができる。 In the proof stress estimation method according to one embodiment, the shot peening condition may be determined based on the hardness of the object in the determination step. In this case, the shot peening conditions can be appropriately determined.

一実施形態に係る耐力推定方法において、測定工程では、回折法により測定を行ってもよい。この場合、残留応力を適切に測定することができる。 In the proof stress estimation method according to one embodiment, the measurement may be performed by a diffraction method in the measurement step. In this case, the residual stress can be appropriately measured.

一実施形態に係る耐力推定方法において、推定工程では、対象物の0.2%耐力を推定してもよい。この場合、0.2%耐力は広く用いられているので、耐力推定方法の必要性が高い。 In the proof stress estimation method according to one embodiment, 0.2% proof stress of the object may be estimated in the estimation step. In this case, since 0.2% proof stress is widely used, there is a high need for a proof stress estimation method.

一実施形態に係る耐力推定方法では、対象物は、鉄鋼材料からなってもよい。この場合、鉄鋼材料は広く用いられているので、耐力推定方法の必要性が高い。 In the proof stress estimation method according to the embodiment, the object may be made of a steel material. In this case, since steel materials are widely used, there is a high need for a proof stress estimation method.

本開示に係る耐力推定方法によれば、金属材料の耐力を非破壊で推定できる。 According to the proof stress estimation method according to the present disclosure, the proof stress of a metal material can be estimated non-destructively.

実施形態に係る耐力推定方法を示すフローチャートである。It is a flowchart which shows the proof stress estimation method which concerns on embodiment. 熱疲労試験について説明するための図である。It is a figure for demonstrating the thermal fatigue test. サイクル試験による残留応力の変化を示すグラフである。It is a graph which shows the change of the residual stress by a cycle test.

以下、添付図面を参照して、実施形態について詳細に説明する。説明において、同一要素又は同一機能を有する要素には同一符号を用い、重複する説明を省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and duplicate description is omitted.

図1は、実施形態に係る耐力推定方法を示すフローチャートである。実施形態に係る耐力推定方法は、金属材料からなる対象物の耐力を推定する方法である。対象物を構成する金属材料は、例えば鉄鋼材料である。鉄鋼材料として、具体的には、炭素含有量が0.5%〜0.6%である中炭素の焼入材、炭素含有量が0.8%〜1.1%である高炭素の浸炭材等が挙げられる。中炭素の焼入材は、例えば、ばね材、アルミダイガスト用の金型材に用いられる。高炭素の浸炭材は、例えば、歯車材に用いられる。これらの鉄鋼材料は、いずれもマルテンサイト組織を有するマルテンサイト鋼である。 FIG. 1 is a flowchart showing a proof stress estimation method according to an embodiment. The proof stress estimation method according to the embodiment is a method of estimating the proof stress of an object made of a metal material. The metal material constituting the object is, for example, a steel material. Specific examples of the steel material include a medium carbon hardened material having a carbon content of 0.5% to 0.6% and a high carbon carburizing material having a carbon content of 0.8% to 1.1%. Materials and the like can be mentioned. The medium carbon hardened material is used, for example, as a spring material and a mold material for aluminum die gust. High carbon carburized materials are used, for example, in gear materials. All of these steel materials are martensitic steels having a martensitic structure.

この耐力推定方法は、ショットピーニング条件を決定する工程S1(決定工程)と、ショットピーニングを行う工程S2(ショットピーニング工程)と、残留応力を測定する工程S3(測定工程)と、耐力を推定する工程S4(推定工程)と、を含む。以下、各工程について説明する。 This strength estimation method estimates the strength, including a step S1 (determination step) for determining shot peening conditions, a step S2 (shot peening step) for performing shot peening, and a step S3 (measurement step) for measuring residual stress. Step S4 (estimation step) and the like. Hereinafter, each step will be described.

工程S1では、対象物に最大残留応力を付与するためのショットピーニング条件を決定する。最大残留応力とは、対象物に付与可能な残留応力(圧縮残留応力)の最大値である。最大残留応力は、対象物によって異なる。 In step S1, the shot peening conditions for applying the maximum residual stress to the object are determined. The maximum residual stress is the maximum value of the residual stress (compressive residual stress) that can be applied to the object. The maximum residual stress depends on the object.

ショットピーニングでは、投射材の硬さを高めることにより、対象物に付与される残留応力を高めることができる。しかしながら、対象物の硬さが投射材の硬さに見合っていないと、投射材の硬さを高めることにより、対象物に付与される残留応力がかえって低下する場合がある。つまり、対象物に最大残留応力を付与するには、対象物の硬さと投射材の硬さとのバランスを適正化する必要がある。 In shot peening, the residual stress applied to an object can be increased by increasing the hardness of the projecting material. However, if the hardness of the object does not match the hardness of the projecting material, increasing the hardness of the projecting material may actually reduce the residual stress applied to the object. That is, in order to give the maximum residual stress to the object, it is necessary to optimize the balance between the hardness of the object and the hardness of the projecting material.

対象物に最大残留応力を付与するには、例えば、投射材の硬さを対象物の硬さよりも50HV(ビッカース硬さ)以上250HV以下の範囲内で高く設定する。50HV以上とすることで、対象物の表面部分に残留応力を付与することができる。250HVよりも高く設定すると、投射のエネルギーが対象物の表面の削食に使われるので、対象物の表面部分に効果的かつ安定的に残留応力を付与することができない。削食量が大きくなると、対象物の寸法の変化量も大きくなる。対象物の削食量を5μm以下とすることで、対象物の表面部分に効果的かつ安定的に残留応力を付与することができるとともに、対象物の寸法の変化を抑制することができる。 In order to impart the maximum residual stress to the object, for example, the hardness of the projecting material is set higher than the hardness of the object within a range of 50 HV (Vickers hardness) or more and 250 HV or less. By setting it to 50 HV or more, residual stress can be applied to the surface portion of the object. If it is set higher than 250 HV, the energy of projection is used for erosion of the surface of the object, so that the residual stress cannot be effectively and stably applied to the surface portion of the object. As the amount of erosion increases, so does the amount of change in the dimensions of the object. By setting the amount of erosion of the object to 5 μm or less, residual stress can be effectively and stably applied to the surface portion of the object, and changes in the dimensions of the object can be suppressed.

ただし、対象物の硬さが750HVよりも低いと、対象物の表面部分に十分な残留応力を付与することができない場合がある。対象物の硬さは、例えば、対象物の表面から深さ0.050mmまでの表面部分の硬さを意味する。工程S1で決定されるショットピーニング条件は、最大残留応力を付与するための条件であれば、投射材の硬さ以外の条件であってもよい。 However, if the hardness of the object is lower than 750 HV, it may not be possible to apply sufficient residual stress to the surface portion of the object. The hardness of an object means, for example, the hardness of a surface portion from the surface of the object to a depth of 0.050 mm. The shot peening condition determined in step S1 may be a condition other than the hardness of the projecting material as long as it is a condition for imparting the maximum residual stress.

投射材の粒径は、0.05mm以上0.6mm以下とすることができる。投射材の粒径を0.05mm以上とすることにより、投射材を容易に作製することができる。投射材の粒径を0.6mm以下とすることにより、残留応力が深さ方向において最大値を示す位置(ピーク位置)が深くなりすぎず、ピーク位置を対象物の表面から深さ100μm以内に収めることができる。ピーク位置をこの範囲に収めることで、対象物の疲労強度を効果的に向上させることができる。 The particle size of the projection material can be 0.05 mm or more and 0.6 mm or less. By setting the particle size of the projecting material to 0.05 mm or more, the projecting material can be easily produced. By setting the particle size of the projecting material to 0.6 mm or less, the position (peak position) where the residual stress shows the maximum value in the depth direction does not become too deep, and the peak position is within 100 μm from the surface of the object. Can fit. By keeping the peak position within this range, the fatigue strength of the object can be effectively improved.

工程S2では、対象物に対し、工程S1で決定したショットピーニング条件でショットピーニングを行う。これにより、対象物の表面部分に残留応力が付与される。 In step S2, shot peening is performed on the object under the shot peening conditions determined in step S1. As a result, residual stress is applied to the surface portion of the object.

工程S3では、工程S2のショットピーニング後の対象物の残留応力を測定する。工程S3では、例えば、回折法により測定を行う。回折法としては、具体的には、X線回折法、電子線回折法、及び中性子回折法等が挙げられる。X線回折法による測定方法は、例えば、特開2017−009356号公報に開示されている。工程S3では、陽電子消滅法により測定を行ってもよい。 In step S3, the residual stress of the object after shot peening in step S2 is measured. In step S3, for example, the measurement is performed by a diffraction method. Specific examples of the diffraction method include an X-ray diffraction method, an electron beam diffraction method, and a neutron diffraction method. The measurement method by the X-ray diffraction method is disclosed in, for example, Japanese Patent Application Laid-Open No. 2017-09356. In step S3, the measurement may be performed by the positron annihilation method.

ショットピーニングにより対象物に付与された残留応力は、熱疲労により減少する。例えば、ダイガスト金型では、溶湯により加熱されることで生じる熱応力と、離型剤により冷却されることで生じる熱応力とを繰り返し受けることによって、熱疲労が生じる。図2は、熱疲労試験について説明するための図である。この熱疲労試験では、ダイガスト金型の熱疲労が再現されている。図2に示されるように、この熱疲労試験では、まず試験片1がヒータ2の表面に押し付けられる。試験片1が押し付けられる時間は、150秒間に設定されている。ヒータ2の温度は、試験片1の表面温度が570℃となるように設定されている。その後、試験片1が室温の水3で冷却される。続いて、試験片1は、空気4を吹き付けるエアブローにより乾燥される。以上の一連のサイクルは約3分間で繰り返し行われる。 The residual stress applied to the object by shot peening is reduced by thermal fatigue. For example, in a die gust mold, thermal fatigue occurs by repeatedly receiving thermal stress generated by heating with a molten metal and thermal stress generated by cooling with a mold release agent. FIG. 2 is a diagram for explaining a thermal fatigue test. In this thermal fatigue test, the thermal fatigue of the die gust mold is reproduced. As shown in FIG. 2, in this thermal fatigue test, the test piece 1 is first pressed against the surface of the heater 2. The time during which the test piece 1 is pressed is set to 150 seconds. The temperature of the heater 2 is set so that the surface temperature of the test piece 1 is 570 ° C. Then, the test piece 1 is cooled with water 3 at room temperature. Subsequently, the test piece 1 is dried by an air blow that blows air 4. The above series of cycles is repeated in about 3 minutes.

試験片1の材質は、熱間工具鋼であるSKD61とした。試験片1の化学成分(wt%)を表1に示す。試験片1は、焼入焼戻しを行った後、塩浴軟窒化を行うことにより作成した。試験片1の形状は、厚さ15mm、直径58mm(φ58)の円盤形状とし、これに把持部として高さ15mm、直径15mm(φ15)の円柱を設けた。 The material of the test piece 1 was SKD61, which is hot tool steel. The chemical composition (wt%) of the test piece 1 is shown in Table 1. The test piece 1 was prepared by quenching and tempering, and then performing soft nitriding in a salt bath. The shape of the test piece 1 was a disk shape having a thickness of 15 mm and a diameter of 58 mm (φ58), and a cylinder having a height of 15 mm and a diameter of 15 mm (φ15) was provided as a grip portion.

Figure 0006838596
Figure 0006838596

図3は、サイクル試験による残留応力の変化を示すグラフである。グラフの横軸は、上述の熱疲労試験のサイクル数であり、縦軸は試験片1(図2参照)の残留応力(MPa)である。サイクル試験は、10サイクルまでの極低サイクルの熱疲労試験であり、試験片1に対して、最大残留応力を与えるための条件でショットピーニングを行った後に実施した。サイクル試験の開始前、5サイクル終了後、及び10サイクル終了時にそれぞれ残留応力を測定した。残留応力の測定は、X線回折法により、表2に示す測定条件で行った。図3に示されるように、サイクル数が増えるにしたがって、熱疲労により残留応力が減少した。 FIG. 3 is a graph showing changes in residual stress due to a cycle test. The horizontal axis of the graph is the number of cycles of the above-mentioned thermal fatigue test, and the vertical axis is the residual stress (MPa) of the test piece 1 (see FIG. 2). The cycle test is an extremely low cycle thermal fatigue test up to 10 cycles, and was performed after shot peening was performed on the test piece 1 under the conditions for giving the maximum residual stress. Residual stress was measured before the start of the cycle test, after the end of 5 cycles, and at the end of 10 cycles. The residual stress was measured by the X-ray diffraction method under the measurement conditions shown in Table 2. As shown in FIG. 3, as the number of cycles increased, the residual stress decreased due to thermal fatigue.

Figure 0006838596
Figure 0006838596

以上のことから、ショットピーニングにより付与された残留応力の測定は、ショットピーニング後の対象物に対し、残留応力を減少させる要因となる熱疲労を与える前に行われる必要がある。これにより、ショットピーニングにより付与された残留応力の測定精度を向上させることができる。 From the above, the measurement of the residual stress applied by shot peening needs to be performed before applying thermal fatigue, which is a factor for reducing the residual stress, to the object after shot peening. As a result, the measurement accuracy of the residual stress applied by shot peening can be improved.

工程S4では、工程S3で測定した残留応力に基づき、対象物の耐力を推定する。工程S4では、対象物の0.2%耐力を推定する。非特許文献1には、ショットピーニング後の最大残留応力は、0.2%耐力の約60%程度であることが示されている。非特許文献2には、ショットピーニング後の残留応力は、耐力(降伏応力)の約半分であることが示されている。工程S4では、これらの関係を利用して、ショットピーニング後の対象物の残留応力に基づき対象物の0.2%耐力を推定する。すなわち、工程S4では、工程S3で測定した残留応力、及び、予め取得された最大残留応力と対象物の耐力との関係に基づき、対象物の耐力を推定する。 In step S4, the proof stress of the object is estimated based on the residual stress measured in step S3. In step S4, the 0.2% proof stress of the object is estimated. Non-Patent Document 1 shows that the maximum residual stress after shot peening is about 60% of the 0.2% proof stress. Non-Patent Document 2 shows that the residual stress after shot peening is about half of the proof stress (yield stress). In step S4, using these relationships, the 0.2% proof stress of the object is estimated based on the residual stress of the object after shot peening. That is, in step S4, the proof stress of the object is estimated based on the residual stress measured in step S3 and the relationship between the maximum residual stress acquired in advance and the proof stress of the object.

以上説明したように、実施形態に係る耐力推定方法では、最大残留応力を付与するためのショットピーニング条件で対象物にショットピーニングを行った後、残留応力を測定し、対象物の最大残留応力と対象物の耐力との間に関係があることを利用して、測定された残留応力から、対象物の耐力を推定する。したがって、引張試験のような破壊試験を行うことができない場合であっても、対象物を構成する金属材料の耐力を非破壊で簡便に推定できる。 As described above, in the proof stress estimation method according to the embodiment, after shot peening is performed on the object under the shot peening conditions for imparting the maximum residual stress, the residual stress is measured and the maximum residual stress of the object is obtained. Taking advantage of the relationship with the yield strength of the object, the yield strength of the object is estimated from the measured residual stress. Therefore, even when a fracture test such as a tensile test cannot be performed, the proof stress of the metal material constituting the object can be easily estimated in a non-destructive manner.

工程S1では、対象物の硬さに基づいて、ショットピーニング条件を決定するので、ショットピーニング条件を適切に決定することができる。測定する工程S3では、回折法により残留応力を測定するので、残留応力を適切に測定することができる。推定する工程S4では、対象物の0.2%耐力を推定する。0.2%耐力は広く用いられているので、耐力推定方法の必要性が高い。対象物は、鉄鋼材料からなる。鉄鋼材料は広く用いられているので、耐力推定方法の必要性が高い。 In step S1, the shot peening conditions are determined based on the hardness of the object, so that the shot peening conditions can be appropriately determined. In the measuring step S3, the residual stress is measured by the diffraction method, so that the residual stress can be appropriately measured. In the estimation step S4, the 0.2% proof stress of the object is estimated. Since 0.2% proof stress is widely used, there is a high need for a proof stress estimation method. The object is made of steel material. Since steel materials are widely used, there is a high need for a yield strength estimation method.

本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 The present invention is not necessarily limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.

1…試験片、2…ヒータ、3…水、4…空気。 1 ... test piece, 2 ... heater, 3 ... water, 4 ... air.

Claims (5)

金属材料からなる対象物に最大残留応力を付与するためのショットピーニング条件を決定する決定工程と、
前記対象物に対し、前記ショットピーニング条件でショットピーニングを行うショットピーニング工程と、
前記ショットピーニング工程後の前記対象物の残留応力を測定する測定工程と、
予め取得された前記最大残留応力と前記対象物の耐力との関係、及び、測定された前記残留応力に基づき前記対象物の耐力を推定する推定工程と、を含み、
前記測定工程は、前記対象物に熱疲労を与える前に行われる、耐力推定方法。
A determination process for determining shot peening conditions for imparting maximum residual stress to an object made of a metallic material, and
A shot peening step of performing shot peening on the object under the shot peening conditions,
A measurement step of measuring the residual stress of the object after the shot peening step, and a measurement step of measuring the residual stress of the object.
Relationship between strength of the object and has been previously obtained the maximum residual stress, and, viewed including the estimation step, the estimating the strength of the object based on said measured residual stress,
The measurement step is a proof stress estimation method performed before applying thermal fatigue to the object.
前記決定工程では、前記対象物の硬さに基づいて、ショットピーニング条件を決定する、請求項1に記載の耐力推定方法。 The proof stress estimation method according to claim 1, wherein in the determination step, shot peening conditions are determined based on the hardness of the object. 前記測定工程では、回折法により測定を行う、請求項1又は2に記載の耐力推定方法。 The proof stress estimation method according to claim 1 or 2, wherein in the measurement step, measurement is performed by a diffraction method. 前記推定工程では、前記対象物の0.2%耐力を推定する、請求項1〜3のいずれか一項に記載の耐力推定方法。 The proof stress estimation method according to any one of claims 1 to 3, wherein in the estimation step, the 0.2% proof stress of the object is estimated. 前記対象物は、鉄鋼材料からなる、請求項1〜4のいずれか一項に記載の耐力推定方法。 The proof stress estimation method according to any one of claims 1 to 4, wherein the object is made of a steel material.
JP2018209559A 2018-11-07 2018-11-07 Yield strength estimation method Active JP6838596B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018209559A JP6838596B2 (en) 2018-11-07 2018-11-07 Yield strength estimation method
PCT/JP2019/029540 WO2020095486A1 (en) 2018-11-07 2019-07-26 Proof stress estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018209559A JP6838596B2 (en) 2018-11-07 2018-11-07 Yield strength estimation method

Publications (2)

Publication Number Publication Date
JP2020076622A JP2020076622A (en) 2020-05-21
JP6838596B2 true JP6838596B2 (en) 2021-03-03

Family

ID=70612235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209559A Active JP6838596B2 (en) 2018-11-07 2018-11-07 Yield strength estimation method

Country Status (2)

Country Link
JP (1) JP6838596B2 (en)
WO (1) WO2020095486A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159425B2 (en) * 2003-03-14 2007-01-09 Prevey Paul S Method and apparatus for providing a layer of compressive residual stress in the surface of a part

Also Published As

Publication number Publication date
WO2020095486A1 (en) 2020-05-14
JP2020076622A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
Benedetti et al. Notch fatigue behaviour of shot peened high-strength aluminium alloys: Experiments and predictions using a critical distance method
Ren et al. Constitutive modeling of hot deformation behavior of X20Cr13 martensitic stainless steel with strain effect
Kamaya et al. True stress–strain curve acquisition for irradiated stainless steel including the range exceeding necking strain
WO2011040243A1 (en) Shot peening treatment method for steel product
Xie et al. Evaluation of residual stresses relaxation by post weld heat treatment using contour method and X-ray diffraction method
Zhou et al. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy
Wang et al. The flow behaviors of CLAM steel at high temperature
Tondini et al. Heat transfer in hot stamping of high-strength steel sheets
JP6838596B2 (en) Yield strength estimation method
Delpueyo et al. A specific device for enhanced measurement of mechanical dissipation in specimens subjected to long‐term tensile tests in fatigue
Degner et al. Experimental study on the warm forming and quenching behavior for hot stamping of high-strength aluminum alloys
Wen et al. Investigations on the interfacial heat transfer coefficient during hot stamping of ultra-high strength steel with Al-Si coating
JP6881420B2 (en) Deterioration evaluation method
Nikhare et al. Investigation of acoustic signals during W1 tool steel quenching
JP2002060845A (en) Method for prolonging service life of die casting die
US2958925A (en) Shot peen inspection technique
JP6416735B2 (en) Nitride component manufacturing method and nitride component
Wang et al. Investigation into the tribological behaviors of press hardening steels on the tailored conditions
Žagar et al. Surface modification analysis after shot peening of AA 7075 in different states
JP2013535341A (en) Shot peening method
Sawada Effect of young’s modulus of shot peening media on surface modification behavior by micro shot peening
JP6274743B2 (en) Shot peening method to obtain high compressive residual stress
Acht et al. Simulation of the distortion of 20MnCr5 parts after asymmetrical carburization
Harada et al. Effect of Shot Peening on Fatigue Strength of High‐T oughness Spring Steel
Zhigang et al. Research on laser peening of TC21 titanium alloy with high energy laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R150 Certificate of patent or registration of utility model

Ref document number: 6838596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250