JP6837180B2 - Composite materials for hot press molded products and hot press molded products - Google Patents

Composite materials for hot press molded products and hot press molded products Download PDF

Info

Publication number
JP6837180B2
JP6837180B2 JP2020503330A JP2020503330A JP6837180B2 JP 6837180 B2 JP6837180 B2 JP 6837180B2 JP 2020503330 A JP2020503330 A JP 2020503330A JP 2020503330 A JP2020503330 A JP 2020503330A JP 6837180 B2 JP6837180 B2 JP 6837180B2
Authority
JP
Japan
Prior art keywords
particle size
less
polyarylene sulfide
sulfide resin
hot press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020503330A
Other languages
Japanese (ja)
Other versions
JPWO2020022439A1 (en
Inventor
川崎 達也
達也 川崎
吉昭 田口
吉昭 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Publication of JPWO2020022439A1 publication Critical patent/JPWO2020022439A1/en
Application granted granted Critical
Publication of JP6837180B2 publication Critical patent/JP6837180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、熱プレス成形品用ポリアリーレンサルファイド樹脂複合材料及び熱プレス成形品に関する。 The present invention relates to a polyarylene sulfide resin composite material for a hot press molded product and a hot press molded product.

ポリアリーレンサルファイド樹脂は、高い機械的強度を有するとともに、耐熱性、耐薬品性及び寸法安定性に優れているため、ポリアリーレンサルファイド樹脂を含有する成形品は種々の用途に適用されている。成形品に機能を付与する充填剤をポリアリーレンサルファイド樹脂に混合して成形品を作製する場合、目的とする機能を効率的に発現させるためには成形品中における充填剤の分散の制御が重要視される。従来、ポリアリーレンサルファイド樹脂を含む成形品を得る方法としては、一旦ポリアリーレンサルファイド樹脂と充填剤とを含む複合材料のペレットを溶融押出で作製し、該ペレットを射出成形で成形する方法が広範に用いられている。特許文献1には、ポリアリーレンサルファイド樹脂と導電性カーボンブラックとを含む複合材料のペレットを溶融押出で作製し、該ペレットを射出成形して成形品を得ることが記載されている。しかし、こうした従来の方法では、充填剤の分散性が不十分になる場合がある。
熱プレス成形は、樹脂粉体を樹脂が溶融する温度で加熱プレス成形する成形方法であり、樹脂が流動する程の高温で溶融させる射出成形と比べると成形品の異方性を制御できる特徴がある。また、樹脂を粉体状態で各種充填剤と混合することができるので、充填剤の分散性に優れた成形品を容易に製造することができる。
Since the polyarylene sulfide resin has high mechanical strength and is excellent in heat resistance, chemical resistance and dimensional stability, molded products containing the polyarylene sulfide resin are applied to various uses. When a filler that imparts a function to a molded product is mixed with a polyarylene sulfide resin to produce a molded product, it is important to control the dispersion of the filler in the molded product in order to efficiently exhibit the desired function. Be seen. Conventionally, as a method for obtaining a molded product containing a polyarylene sulfide resin, a method in which pellets of a composite material containing a polyarylene sulfide resin and a filler are once produced by melt extrusion and the pellets are molded by injection molding is widely used. It is used. Patent Document 1 describes that pellets of a composite material containing a polyarylene sulfide resin and conductive carbon black are produced by melt extrusion, and the pellets are injection-molded to obtain a molded product. However, such conventional methods may result in insufficient dispersibility of the filler.
Hot press molding is a molding method in which resin powder is heat press molded at a temperature at which the resin melts, and has a feature that the anisotropy of the molded product can be controlled as compared with injection molding in which the resin powder is melted at a high temperature such that the resin flows. is there. Further, since the resin can be mixed with various fillers in a powder state, a molded product having excellent dispersibility of the filler can be easily produced.

国際公開第2002/093670号International Publication No. 2002/03670

本発明は、優れた耐熱性を有しかつ充填剤の分散性に優れた熱プレス成形品を製造可能なポリアリーレンサルファイド樹脂複合材料、およびそれを用いた熱プレス成形品を提供することを課題とする。 An object of the present invention is to provide a polyarylene sulfide resin composite material capable of producing a hot press molded product having excellent heat resistance and excellent dispersibility of a filler, and a hot press molded product using the same. And.

本発明は、以下に関するものである。
[1]ポリアリーレンサルファイド樹脂粉体と、充填剤と、を含み、ポリアリーレンサルファイド樹脂粉体の、平均粒径が5μm以上100μm以下であり、示差走査熱量計で測定される融点Tm1が250℃以上300℃以下であり、動的画像解析法で測定される平均円形度が0.70以上1.00以下である、熱プレス成形品用複合材料。
[2]ポリアリーレンサルファイド樹脂粉体のカールフィッシャー水分計で測定される水分量が、0.1ppm以上750ppm以下である、[1]に記載の複合材料。
[3]ポリアリーレンサルファイド樹脂粉体の示差走査熱量計で測定される融点Tm1よりも30℃高いシリンダー温度及びせん断速度1216sec−1で測定した溶融粘度が、10Pa・s以上1000Pa・s以下である、[1]又は[2]に記載の複合材料。
[4]ポリアリーレンサルファイド樹脂粉体の最大粒径と平均粒径との比(最大粒径/平均粒径)が、6.5以下である、[1]から[3]のいずれかに記載の複合材料。
[5]充填剤が導電性充填剤を含有する、[1]から[4]のいずれかに記載の複合材料。
[6]充填剤が、カーボン繊維、ミルドカーボンファイバー、カーボンナノファイバー、カーボンナノチューブ、カーボンブラック及び黒鉛からなる群より選ばれる1種以上を含有する、[1]から[5]のいずれかに記載の複合材料。
[7][1]から[6]のいずれかに記載の複合材料を用いた熱プレス成形品。
[8]厚みが5mm未満の板状である、[7]に記載の熱プレス成形品。
The present invention relates to the following.
[1] The polyarylene sulfide resin powder containing a polyarylene sulfide resin powder and a filler, the average particle size of the polyarylene sulfide resin powder is 5 μm or more and 100 μm or less, and the melting point Tm1 measured by a differential scanning calorimeter is 250 ° C. A composite material for a hot press molded product, which has a temperature of 300 ° C. or higher and an average circularity of 0.70 or higher and 1.00 or lower measured by a dynamic image analysis method.
[2] The composite material according to [1], wherein the amount of water measured by the Karl Fischer titer of the polyarylene sulfide resin powder is 0.1 ppm or more and 750 ppm or less.
[3] The melt viscosity measured at a cylinder temperature 30 ° C. higher than the melting point Tm1 measured by a differential scanning calorimeter of polyarylene sulfide resin powder and a shear rate of 1216 sec -1 is 10 Pa · s or more and 1000 Pa · s or less. , [1] or [2].
[4] Described in any one of [1] to [3], wherein the ratio of the maximum particle size to the average particle size (maximum particle size / average particle size) of the polyarylene sulfide resin powder is 6.5 or less. Composite material.
[5] The composite material according to any one of [1] to [4], wherein the filler contains a conductive filler.
[6] Described in any one of [1] to [5], wherein the filler contains at least one selected from the group consisting of carbon fiber, milled carbon fiber, carbon nanofiber, carbon nanotube, carbon black and graphite. Composite material.
[7] A hot press molded product using the composite material according to any one of [1] to [6].
[8] The hot press molded product according to [7], which has a plate shape with a thickness of less than 5 mm.

本発明によれば、優れた耐熱性を有しかつ充填材の分散性に優れた熱プレス成形品を製造可能なポリアリーレンサルファイド樹脂複合材料、およびそれを用いた熱プレス成形品を提供することができる。 According to the present invention, there is provided a polyarylene sulfide resin composite material capable of producing a hot press molded product having excellent heat resistance and excellent dispersibility of a filler, and a hot press molded product using the same. Can be done.

以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 Hereinafter, one embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications as long as the effects of the present invention are not impaired.

[熱プレス成形品用複合材料]
本実施形態に係る熱プレス成形品用複合材料(以下、単に「複合材料」ともいう。)は、ポリアリーレンサルファイド樹脂粉体と充填剤とを含む。
[Composite material for hot press molded products]
The composite material for a hot press molded product (hereinafter, also simply referred to as “composite material”) according to the present embodiment includes a polyarylene sulfide resin powder and a filler.

(ポリアリーレンサルファイド樹脂粉体)
ポリアリーレンサルファイド樹脂粉体(以下、「樹脂粉体」ともいう。)は、ポリアリーレンサルファイド樹脂微粒子で構成されている。本明細書において、「微粒子」との用語は、0.1μm〜1000μm程度の平均粒径を有する粒子のことをいい、「平均粒径」とは、レーザー回折/散乱式粒度分布測定法による体積基準の算術平均粒子径を意味する。平均粒径は、レーザー回折/散乱式粒度分布測定装置(例えば、株式会社堀場製作所製レーザー回折/散乱式粒度分布測定装置LA−920)を用いて測定することができる。
(Polyarylene sulfide resin powder)
The polyarylene sulfide resin powder (hereinafter, also referred to as “resin powder”) is composed of polyarylene sulfide resin fine particles. In the present specification, the term "fine particles" refers to particles having an average particle size of about 0.1 μm to 1000 μm, and the “average particle size” is a volume measured by a laser diffraction / scattering type particle size distribution measurement method. It means the standard arithmetic average particle size. The average particle size can be measured using a laser diffraction / scattering type particle size distribution measuring device (for example, a laser diffraction / scattering type particle size distribution measuring device LA-920 manufactured by HORIBA, Ltd.).

ポリアリーレンサルファイド樹脂は、以下の一般式(I)で示される繰り返し単位を有する樹脂である。
−(Ar−S)− ・・・(I)
(但し、Arは、アリーレン基を示す。)
The polyarylene sulfide resin is a resin having a repeating unit represented by the following general formula (I).
-(Ar-S)-... (I)
(However, Ar indicates an arylene group.)

アリーレン基は、特に限定されないが、例えば、p−フェニレン基、m−フェニレン基、o−フェニレン基、置換フェニレン基、p,p’−ジフェニレンスルフォン基、p,p’−ビフェニレン基、p,p’−ジフェニレンエーテル基、p,p’−ジフェニレンカルボニル基、ナフタレン基等を挙げることができる。ポリアリーレンサルファイド樹脂は、上記一般式(I)で示される繰り返し単位の中で、同一の繰り返し単位を用いたホモポリマーの他、用途によっては異種の繰り返し単位を含むコポリマーとすることができる。 The arylene group is not particularly limited, but for example, a p-phenylene group, an m-phenylene group, an o-phenylene group, a substituted phenylene group, a p, p'-diphenylene sulphon group, a p, p'-biphenylene group, p, Examples thereof include a p'-diphenylene ether group, a p, p'-diphenylene carbonyl group, and a naphthalene group. The polyarylene sulfide resin can be a copolymer containing different repeating units depending on the application, in addition to a homopolymer using the same repeating unit among the repeating units represented by the above general formula (I).

ホモポリマーとしては、アリーレン基としてp−フェニレン基を有する、p−フェニレンサルファイド基を繰り返し単位とするものが好ましい。p−フェニレンサルファイド基を繰り返し単位とするホモポリマーは、極めて高い耐熱性を持ち、広範な温度領域で高強度、高剛性、さらに高い寸法安定性を示すからである。このようなホモポリマーを用いることで非常に優れた物性を備える成形品を得ることができる。 As the homopolymer, one having a p-phenylene group as an arylene group and having a p-phenylene sulfide group as a repeating unit is preferable. This is because homopolymers having a p-phenylene sulfide group as a repeating unit have extremely high heat resistance, and exhibit high strength, high rigidity, and high dimensional stability in a wide temperature range. By using such a homopolymer, a molded product having very excellent physical properties can be obtained.

コポリマーとしては、上記のアリーレン基を含むアリーレンサルファイド基の中で異なる2種以上のアリーレンサルファイド基の組み合わせが使用できる。これらの中では、p−フェニレンサルファイド基とm−フェニレンサルファイド基とを含む組み合わせが、耐熱性、成形性、機械的特性等の高い物性を備える成形品を得るという観点から好ましい。p−フェニレンサルファイド基を70mol%以上含むポリマーがより好ましく、80mol%以上含むポリマーがさらに好ましい。なお、フェニレンサルファイド基を有するポリアリーレンサルファイド樹脂は、ポリフェニレンサルファイド樹脂(PPS樹脂)である。 As the copolymer, a combination of two or more different arylene sulfide groups among the above-mentioned arylene sulfide groups containing an arylene group can be used. Among these, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is preferable from the viewpoint of obtaining a molded product having high physical properties such as heat resistance, moldability and mechanical properties. A polymer containing 70 mol% or more of p-phenylene sulfide group is more preferable, and a polymer containing 80 mol% or more is further preferable. The polyarylene sulfide resin having a phenylene sulfide group is a polyphenylene sulfide resin (PPS resin).

ポリアリーレンサルファイド樹脂は、一般にその製造方法により、実質的に線状で分岐や架橋構造を有しない分子構造のものと、分岐や架橋を有する構造のものが知られているが、本実施形態においてはその何れのタイプのものについても有効である。 The polyarylene sulfide resin is generally known to have a molecular structure that is substantially linear and does not have a branched or crosslinked structure, or a structure that has a branched or crosslinked structure, depending on the production method. Is valid for any of these types.

ポリアリーレンサルファイド樹脂の製造方法は、特に限定されず、従来公知の製造方法によって製造することができる。例えば、低分子量のポリアリーレンサルファイド樹脂を合成後、公知の重合助剤の存在下で、高温下で重合して高分子量化することで製造することができる。こうして得られたポリアリーレン樹脂を、後述するように、そのままポリアリーレン樹脂粉体として用いるか、又は後述の各種方法で粉砕して微粒子化してポリアリーレン樹脂粉体として用いることができる。 The method for producing the polyarylene sulfide resin is not particularly limited, and the polyarylene sulfide resin can be produced by a conventionally known production method. For example, it can be produced by synthesizing a low molecular weight polyarylene sulfide resin and then polymerizing it at a high temperature in the presence of a known polymerization aid to increase the molecular weight. The polyarylene resin thus obtained can be used as it is as a polyarylene resin powder as described later, or can be pulverized by various methods described later into fine particles and used as a polyarylene resin powder.

ポリアリーレンサルファイド樹脂粉体の平均粒径は、5μm以上100μm以下であり、好ましくは10μm以上80μm以下であり、より好ましくは20μm以上50μm以下である。平均粒径を5μm以上100μm以下とすることにより、熱プレス成形品用ポリアリーレンサルファイド樹脂複合材料において充填剤との均一な混合、均一な分散が可能となる。「平均粒径」の測定方法については、上述のとおりである。 The average particle size of the polyarylene sulfide resin powder is 5 μm or more and 100 μm or less, preferably 10 μm or more and 80 μm or less, and more preferably 20 μm or more and 50 μm or less. By setting the average particle size to 5 μm or more and 100 μm or less, uniform mixing and uniform dispersion with the filler becomes possible in the polyarylene sulfide resin composite material for hot press molded products. The method for measuring the "average particle size" is as described above.

ポリアリーレンサルファイド樹脂粉体は、最大粒径と平均粒径との比(最大粒径/平均粒径)が、6.5以下であることが好ましく、5.5以下であることがより好ましい。下限値は特に限定されず、1以上とすることができる。なお、「最大粒径」とは、(レーザー回折/散乱式粒度分布測定法)により測定した値のうち、最大値のことをいう。最大粒径と平均粒径との比(最大粒径/平均粒径)を6.5以下にすることにより、熱プレス成形品の物性におけるばらつきを抑制することが可能となる。 The ratio of the maximum particle size to the average particle size (maximum particle size / average particle size) of the polyarylene sulfide resin powder is preferably 6.5 or less, and more preferably 5.5 or less. The lower limit is not particularly limited and may be 1 or more. The "maximum particle size" means the maximum value among the values measured by (laser diffraction / scattering type particle size distribution measurement method). By setting the ratio of the maximum particle size to the average particle size (maximum particle size / average particle size) to 6.5 or less, it is possible to suppress variations in the physical properties of the hot press molded product.

上記平均粒径を有するポリアリーレンサルファイド樹脂粉体の製造は、特に限定されず、上記ポリアリーレンサルファイド樹脂の製造方法によって得られたポリアリーレンサルファイド樹脂をそのまま樹脂粉体として用いることもできるし、上記ポリアリーレンサルファイド樹脂をペレット、繊維、フィルム等に成形したものを、ジェットミル、ビーズミル、ハンマーミル、ボールミル、カッターミル、石臼型摩砕機等を用いた乾式粉砕、湿式粉砕、冷凍粉砕により粉砕処理したものを用いることもできる。また、溶媒中にポリアリーレンサルファイド樹脂を溶解させた後にスプレードライする方法、溶媒中でエマルションを形成した後で貧溶媒に接触させる貧溶媒析出法、溶媒中でエマルションを形成した後で有機溶媒を乾燥除去する液中乾燥法等を用いることもできる。ポリアリーレンサルファイド樹脂と熱可塑性樹脂とを混ぜ合わせた後、熱可塑性樹脂を溶媒で溶解除去して上記平均粒径を有するポリアリーレンサルファイド樹脂粉体を得る方法を用いることもできる。 The production of the polyarylene sulfide resin powder having the above average particle size is not particularly limited, and the polyarylene sulfide resin obtained by the method for producing the polyarylene sulfide resin can be used as it is as the resin powder, or the above. Polyarylene sulfide resin molded into pellets, fibers, film, etc. was crushed by dry crushing, wet crushing, and freezing crushing using a jet mill, bead mill, hammer mill, ball mill, cutter mill, stone mill type grinder, etc. You can also use the one. In addition, a method of dissolving the polyarylene sulfide resin in a solvent and then spray-drying, a poor solvent precipitation method in which an emulsion is formed in the solvent and then contacted with a poor solvent, and an organic solvent are used after the emulsion is formed in the solvent. An in-liquid drying method or the like for drying and removing can also be used. It is also possible to use a method of mixing the polyarylene sulfide resin and the thermoplastic resin, and then dissolving and removing the thermoplastic resin with a solvent to obtain a polyarylene sulfide resin powder having the above average particle size.

ポリアリーレンサルファイド樹脂粉体の示差走査熱量計で測定される融点Tm1は、250℃以上300℃以下であり、好ましくは255℃以上300℃以下であり、より好ましくは260℃以上300℃以下である。融点Tm1を250℃以上300℃以下とすることにより、熱プレス成形品の耐熱性を高めることができるとともに、上記平均粒径及び後述する平均円形度を満たす場合に、充填剤の分散性に優れた熱プレス成形品にすることができる。
なお、融点Tm1は、JIS K−7121(1999)に基づいた方法により、室温から10℃/分の昇温速度で加熱(1stRUN)した際に観測される1stRUNの吸熱ピークにおけるピークトップの温度とする。
The melting point Tm1 measured by the differential scanning calorimetry of the polyarylene sulfide resin powder is 250 ° C. or higher and 300 ° C. or lower, preferably 255 ° C. or higher and 300 ° C. or lower, and more preferably 260 ° C. or higher and 300 ° C. or lower. .. By setting the melting point Tm1 to 250 ° C. or higher and 300 ° C. or lower, the heat resistance of the hot press molded product can be enhanced, and when the above average particle size and the average circularity described later are satisfied, the dispersibility of the filler is excellent. It can be made into a hot press molded product.
The melting point Tm1 is the temperature of the peak top at the endothermic peak of 1st RUN observed when heating (1st RUN) from room temperature at a heating rate of 10 ° C./min by a method based on JIS K-7121 (1999). To do.

ポリアリーレンサルファイド樹脂粉体を構成するポリアリーレン樹脂微粒子は、所定の円形度を有している。すなわち、ポリアリーレンサルファイド樹脂粉体は、動的画像解析法で測定される平均円形度が0.70〜1.00であり、0.80〜1.00であることがより好ましい。平均円形度をこの範囲とすることにより、熱プレス成形品用ポリアリーレンサルファイド樹脂複合材料において充填剤との均一な混合、均一な分散が可能となる。
平均円形度は、動的画像解析法/粒子状態分析計を用いて、ポリアリーレンサルファイド樹脂粉体中の4500粒の微粒子について、面積Aと周囲長Pから円形度を以下の式(II)から算出し、その平均値とする。
円形度=(4×π×A)/P ・・・(II)
The polyarylene resin fine particles constituting the polyarylene sulfide resin powder have a predetermined circularity. That is, the polyarylene sulfide resin powder has an average circularity of 0.70 to 1.00, more preferably 0.80 to 1.00, as measured by the dynamic image analysis method. By setting the average circularity within this range, it is possible to uniformly mix and uniformly disperse the polyarylene sulfide resin composite material for hot press moldings with the filler.
The average circularity is calculated from the following formula (II) from the area A and the peripheral length P for 4500 fine particles in the polyarylene sulfide resin powder using a dynamic image analysis method / particle state analyzer. Calculate and use as the average value.
Circularity = (4 × π × A) / P 2 ... (II)

ポリアリーレンサルファイド樹脂粉体は、カールフィッシャー水分計で測定される水分量が0.1ppm以上750ppm以下であることが好ましく、1ppm以上500ppm以下であることがより好ましい。水分量をこの範囲とすることにより熱プレス成形品用ポリアリーレンサルファイド樹脂複合材料の作製時において、充填剤との混合性や分散性を良好に制御でき、また、熱プレス成型時の溶融状態におけるガスの発生やボイド(気孔)の発生を抑制することができる。 The polyarylene sulfide resin powder preferably has a water content of 0.1 ppm or more and 750 ppm or less, and more preferably 1 ppm or more and 500 ppm or less, as measured by a Karl Fischer titer. By setting the water content within this range, the mixability and dispersibility with the filler can be satisfactorily controlled during the production of the polyarylene sulfide resin composite material for hot press molding, and in the molten state during hot press molding. It is possible to suppress the generation of gas and the generation of voids (pores).

ポリアリーレンサルファイド樹脂粉体は、示差走査熱量計で測定される融点Tm1よりも30℃高いシリンダー温度及びせん断速度1216sec−1で測定した溶融粘度が、10Pa・s以上1000Pa・s以下であることが好ましく、20〜800Pa・sであることがより好ましく、50Pa・s以上800Pa・s以下とすることもできる。ポリアリーレンサルファイド樹脂粉体の溶融粘度を上記範囲とすることにより、熱プレス成形時の加工性や成形品外観、および機械物性を向上することができる。溶融粘度の調整は、ポリアリーレンサルファイド樹脂の重合時のモノマー仕込み比を調整すること、重合時間を制御すること、及び溶融粘度が異なるポリアリーレンサルファイド樹脂をブレンドすることなどで行うことができる。なお、溶融粘度を10Pa・s以上にすることで、重量平均分子量を15,000以上にすることができる。The polyarylene sulfide resin powder has a cylinder temperature 30 ° C. higher than the melting point Tm1 measured by a differential scanning calorimeter and a melt viscosity measured at a shear rate of 1216 sec -1 which is 10 Pa · s or more and 1000 Pa · s or less. It is preferably 20 to 800 Pa · s, more preferably 50 Pa · s or more, and 800 Pa · s or less. By setting the melt viscosity of the polyarylene sulfide resin powder within the above range, it is possible to improve the processability at the time of hot press molding, the appearance of the molded product, and the mechanical properties. The melt viscosity can be adjusted by adjusting the monomer charging ratio at the time of polymerization of the polyarylene sulfide resin, controlling the polymerization time, blending polyarylene sulfide resins having different melt viscosities, and the like. By setting the melt viscosity to 10 Pa · s or more, the weight average molecular weight can be set to 15,000 or more.

(充填剤)
充填剤としては、各種の繊維状、粉粒状、板状の無機及び有機の充填剤を挙げることができる。繊維状充填剤としては、ガラス繊維、ミルドガラスファイバー、カーボン繊維、ミルドカーボンファイバー、カーボンナノファイバー、カーボンナノチューブ、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイト等の珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等の無機質繊維状物質が挙げられる。
好ましい繊維状充填剤は、導電性充填剤であり、特に好ましい繊維状充填剤は、カーボン繊維、ミルドカーボンファイバー、カーボンナノファイバー、カーボンナノチューブから選択される1種以上である。なお、ポリアミド、フッ素樹脂、ポリエステル樹脂、アクリル樹脂などの高融点有機質繊維状物質も使用することができる。
繊維状充填剤の平均繊維長は、ポリアリーレンサルファイド樹脂粉体との分散性を高める点で、150μm以下であることが好ましい。なお、平均繊維長は、例えば、株式会社ニコレ製画像測定器LUZEXFSを用いて測定することができる。
粉粒状充填剤としては、カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、硅藻土、ウォラストナイト等の硅酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナ等の金属の酸化物、炭酸カルシウム、炭酸マグネシウム等の金属の炭酸塩、硫酸カルシウム、硫酸バリウム等の金属の硫酸塩、その他フェライト、炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。好ましい粉粒状充填剤は、導電性充填剤であり、特に好ましい粉粒状充填剤は、カーボンブラック及び黒鉛から選択される1種以上である。
板状充填剤としては、マイカ、ガラスフレーク、タルク、各種の金属箔等が挙げられる。
粉粒状充填剤、板状充填剤の平均粒径は、ポリアリーレンサルファイド樹脂粉体との分散性を高める点で、500nm以下、又は400nm以下であることが好ましい。なお、平均粒径は、上記した樹脂微粒子と同じ方法で測定することができる。
これらの無機及び有機充填剤は一種又は二種以上併用することができる。
(filler)
Examples of the filler include various fibrous, powdery, plate-like inorganic and organic fillers. Fibrous fillers include glass fibers, milled glass fibers, carbon fibers, milled carbon fibers, carbon nanofibers, carbon nanotubes, asbestos fibers, silica fibers, silica-alumina fibers, alumina fibers, zirconia fibers, boron nitride fibers, and nitrided fibers. Silicon fiber, boron fiber, potassium titanate fiber, silicate fiber such as wollastonite, magnesium sulfate fiber, aluminum borate fiber, and inorganic material such as metal fibrous material such as stainless steel, aluminum, titanium, copper and brass. Fibrous substances can be mentioned.
A preferred fibrous filler is a conductive filler, and a particularly preferred fibrous filler is one or more selected from carbon fibers, milled carbon fibers, carbon nanofibers, and carbon nanotubes. In addition, high melting point organic fibrous substances such as polyamide, fluororesin, polyester resin, and acrylic resin can also be used.
The average fiber length of the fibrous filler is preferably 150 μm or less in terms of enhancing the dispersibility with the polyarylene sulfide resin powder. The average fiber length can be measured using, for example, the image measuring device LUZEXFS manufactured by Nicolet Co., Ltd.
Examples of the powder / granular filler include carbonates such as carbon black, graphite, silica, quartz powder, glass beads, glass balloons, glass powder, calcium carbonate, aluminum silicate, kaolin, clay, diatomaceous earth, and wollastonite. , Iron oxide, titanium oxide, zinc oxide, antimony trioxide, metal oxides such as alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, sulfates of metals such as calcium sulfate and barium sulfate, and other ferrites and carbides. Examples thereof include calcium, calcium nitride, boron nitride, and various metal powders. A preferred powder-granular filler is a conductive filler, and a particularly preferable powder-granular filler is one or more selected from carbon black and graphite.
Examples of the plate-shaped filler include mica, glass flakes, talc, and various metal foils.
The average particle size of the powder granular filler and the plate-shaped filler is preferably 500 nm or less or 400 nm or less in terms of enhancing the dispersibility with the polyarylene sulfide resin powder. The average particle size can be measured by the same method as the above-mentioned resin fine particles.
These inorganic and organic fillers can be used alone or in combination of two or more.

充填剤の含有量は、ポリアリーレンサルファイド樹脂100質量部に対して、10〜400質量部であることが好ましく、より好ましくは15〜350質量部である。また、充填剤の含有量は、複合材料中9〜80質量%であることが好ましく、より好ましくは、13〜78質量%である。 The content of the filler is preferably 10 to 400 parts by mass, and more preferably 15 to 350 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. The content of the filler is preferably 9 to 80% by mass, more preferably 13 to 78% by mass in the composite material.

また、複合材料には、その他の成分として、酸化防止剤、熱安定剤、紫外線吸収剤、滑剤、顔料、結晶核剤等の添加剤が、本発明の効果を阻害しない範囲で、例えば、複合材料中0.01〜3質量%配合されていてもよい。 Further, in the composite material, as other components, additives such as antioxidants, heat stabilizers, ultraviolet absorbers, lubricants, pigments, crystal nucleating agents, etc. do not impair the effects of the present invention, for example, composites. It may be blended in 0.01 to 3% by mass in the material.

また、複合材料には、ポリオキシメチレン樹脂、ポリブチレンテレフタレート樹脂、液晶性樹脂等の結晶性熱可塑性樹脂やポリエーテルサルフォン、ポリエーテルイミド、ポリカーボネート、シクロオレフィンコポリマー等の非晶性熱可塑性樹脂等のその他の熱可塑性樹脂を、本発明の効果を阻害しない範囲で、例えば、複合材料中20質量%以下含有することもできる。 The composite material includes crystalline thermoplastic resins such as polyoxymethylene resin, polybutylene terephthalate resin and liquid crystal resin, and amorphous thermoplastic resins such as polyether sulfone, polyetherimide, polycarbonate and cycloolefin copolymer. Other thermoplastic resins such as, for example, may be contained in the composite material in an amount of 20% by mass or less as long as the effects of the present invention are not impaired.

ポリアリーレンサルファイド樹脂粉体及び充填剤、並びに必要に応じて含有しても良い添加剤等を含む複合材料を得るための各種成分の混合方法は、従来公知の方法を用いることができ、例えば、振とうによる混合方法、ボールミル等の粉砕を伴う混合方法、ヘンシェルミキサー等の攪拌翼による混合方法等を用いることができる。 As a method for mixing various components for obtaining a composite material containing a polyarylene sulfide resin powder and a filler, and an additive which may be contained if necessary, a conventionally known method can be used, for example. A mixing method using shaking, a mixing method involving pulverization of a ball mill or the like, a mixing method using a stirring blade such as a Henschel mixer, or the like can be used.

[熱プレス成形品]
熱プレス成形品は、上記したポリアリーレンサルファイド樹脂粉体及び充填剤を含む複合材料を用いて形成された熱プレス成形品である。上記した複合材料は、ポリアリーレンサルファイド樹脂粉体中に充填剤が均一に混合されて、均一に分散されているので、結果、得られる熱プレス成形品の強度や耐熱性等の物性を均一化することができ、信頼性の高い成形品とすることができる。よって、この熱プレス成形品は、高温下(例えば、250℃以上となり得る環境下)で使用される自動車部品、半田リフロー工程にて実装される電気・電子部品、燃料電池用セパレータ、プラスチックマグネット等の金属材料との複合材料及びセラミックとの複合材料等として好ましく用いることができる。
[Hot press molded product]
The hot press molded product is a hot press molded product formed by using the composite material containing the polyarylene sulfide resin powder and the filler described above. In the above-mentioned composite material, the filler is uniformly mixed in the polyarylene sulfide resin powder and uniformly dispersed. As a result, the physical properties such as strength and heat resistance of the obtained hot press molded product are made uniform. It is possible to obtain a highly reliable molded product. Therefore, this hot press molded product includes automobile parts used at high temperatures (for example, in an environment where the temperature can reach 250 ° C. or higher), electrical / electronic parts mounted in the solder reflow process, fuel cell separators, plastic magnets, and the like. It can be preferably used as a composite material with a metal material, a composite material with a ceramic, or the like.

熱プレス成形品の製造は、上記した複合材料を、加熱プレス成形機により、ポリアリーレンサルファイド樹脂粉体の上記融点Tm1以上の温度(例えば250℃〜400℃)でプレス成形して得ることができる。成形時の圧力は、特に限定されず、所望の厚みに成形できる圧力とすることができる。成形品の厚みは、用途及び/又は求められる性能に応じて適宜選択され、例えば、5mm未満とすることができる。 The hot press molded product can be obtained by press molding the above-mentioned composite material with a hot press molding machine at a temperature (for example, 250 ° C. to 400 ° C.) of the above melting point Tm1 or more of the polyarylene sulfide resin powder. .. The pressure at the time of molding is not particularly limited, and can be a pressure capable of molding to a desired thickness. The thickness of the molded product is appropriately selected according to the application and / or the required performance, and can be, for example, less than 5 mm.

以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the interpretation of the present invention is not limited by these Examples.

[ポリアリーレンサルファイド樹脂]
実施例及び比較例で用いたポリアリーレンサルファイド樹脂は、以下のとおりである。
PPS1:ポリフェニレンサルファイド樹脂、株式会社クレハ製「フォートロンKPS」、(溶融粘度:30Pa・s(剪断速度:1216sec−1、310℃))
PPS2:ポリフェニレンサルファイド樹脂、株式会社クレハ製「フォートロンKPS」、(溶融粘度:130Pa・s(剪断速度:1216sec−1、310℃))
[Polyarylene sulfide resin]
The polyarylene sulfide resin used in Examples and Comparative Examples is as follows.
PPS1: Polyphenylene sulfide resin, "Fortron KPS" manufactured by Kureha Corporation, (melt viscosity: 30 Pa · s (shear rate: 1216 sec- 1 , 310 ° C))
PPS2: Polyphenylene sulfide resin, "Fortron KPS" manufactured by Kureha Corporation, (melt viscosity: 130 Pa · s (shear rate: 1216 sec -1 , 310 ° C))

[実施例1、2]
PPS1を気流式ジェットミル(株式会社セイシン企業製、縦型ジェット粉砕機SKジェット・オー・ミル)を用いて、乾式粉砕処理してポリアリーレンサルファイド樹脂粉体を得た。この樹脂粉体の融点Tm1、水分量、溶融粘度、平均粒径及び最大粒径、並びに平均円形度を、後述の方法で測定した。結果を表1に示した。
得られたポリアリーレンサルファイド樹脂粉体と導電性カーボンブラック(三菱ケミカル株式会社製、#3050B、平均粒径40nm)とを表1に示す含有割合で、ヘンシェルミキサーで混合して複合材料とした後に、3gを直径40mmのアルミニウム製リングに充填し、熱プレス成形機(株式会社東洋精機製作所製「Mini Test Press−10」)を用いて、温度310℃、圧力5MPaの条件でプレスして、熱プレス成形品(直径40mm、厚み2mmの板状成形品)を製造した。この熱プレス成形品の表面性、充填剤の分散性について後述の方法で評価した。結果を表1に示した。
[Examples 1 and 2]
PPS1 was subjected to dry pulverization using an airflow jet mill (Seishin Enterprise Co., Ltd., vertical jet crusher SK Jet O Mill) to obtain polyarylene sulfide resin powder. The melting point Tm1, water content, melt viscosity, average particle size and maximum particle size, and average circularity of this resin powder were measured by the methods described below. The results are shown in Table 1.
After mixing the obtained polyarylene sulfide resin powder and conductive carbon black (manufactured by Mitsubishi Chemical Co., Ltd., # 3050B, average particle size 40 nm) at the content ratios shown in Table 1 with a Henschel mixer to form a composite material. 3 g is filled in an aluminum ring having a diameter of 40 mm and pressed using a hot press molding machine (“Mini Test Press-10” manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a temperature of 310 ° C. and a pressure of 5 MPa to heat. A press-molded product (a plate-shaped molded product having a diameter of 40 mm and a thickness of 2 mm) was manufactured. The surface properties of this hot press molded product and the dispersibility of the filler were evaluated by the methods described below. The results are shown in Table 1.

[実施例3]
PPS1に替えてPPS2を用いた以外は、実施例1と同様にしてポリアリーレンサルファイド樹脂粉体を得た。実施例1と同様にして、ポリアリーレンサルファイド樹脂粉体の融点Tm1、水分量、溶融粘度、平均粒径及び最大粒径、並びに平均円形度を測定した。結果を表1に示した。
得られたポリアリーレンサルファイド樹脂粉体を使用して、実施例1と同様にして複合材料を得、実施例1と同様にして熱プレス成形体を製造した。実施例1と同様にして、熱プレス成形品の表面性、充填剤の分散性を評価した。結果を表1に示した。
[Example 3]
A polyarylene sulfide resin powder was obtained in the same manner as in Example 1 except that PPS2 was used instead of PPS1. In the same manner as in Example 1, the melting point Tm1, water content, melt viscosity, average particle size and maximum particle size, and average circularity of the polyarylene sulfide resin powder were measured. The results are shown in Table 1.
Using the obtained polyarylene sulfide resin powder, a composite material was obtained in the same manner as in Example 1, and a hot press molded product was produced in the same manner as in Example 1. In the same manner as in Example 1, the surface properties of the hot press molded product and the dispersibility of the filler were evaluated. The results are shown in Table 1.

[比較例1]
PPS1をメッシュミル型粉砕機(株式会社ホーライ製、HA−2542)を用いて凍結粉砕処理してポリアリーレンサルファイド樹脂微粒子を得た以外は、実施例1と同様にしてポリアリーレンサルファイド樹脂微粒子を得た。実施例1と同様にして、ポリアリーレンサルファイド樹脂粉体の融点Tm1、水分量、溶融粘度、平均粒径及び最大粒径、並びに平均円形度を測定した。結果を表1に示した。
得られたポリアリーレンサルファイド樹脂粉体を使用して、実施例1と同様にして複合材料を得、実施例1と同様にして熱プレス成形品を製造した。実施例1と同様にして、熱プレス成形品の表面性、充填剤の分散性を評価した。結果を表1に示した。
[Comparative Example 1]
Polyarylene sulfide resin fine particles were obtained in the same manner as in Example 1 except that PPS1 was freeze-crushed using a mesh mill type crusher (HA-2542, manufactured by Horai Co., Ltd.) to obtain polyarylene sulfide resin fine particles. It was. In the same manner as in Example 1, the melting point Tm1, water content, melt viscosity, average particle size and maximum particle size, and average circularity of the polyarylene sulfide resin powder were measured. The results are shown in Table 1.
Using the obtained polyarylene sulfide resin powder, a composite material was obtained in the same manner as in Example 1, and a hot press molded product was produced in the same manner as in Example 1. In the same manner as in Example 1, the surface properties of the hot press molded product and the dispersibility of the filler were evaluated. The results are shown in Table 1.

[比較例2]
PPS2を粉砕処理せずに使用して、ポリアリーレンサルファイド樹脂粉体とした。実施例1と同様にして、ポリアリーレンサルファイド樹脂粉体の融点Tm1、水分量、溶融粘度、平均粒径及び最大粒径、並びに平均円形度を測定した。結果を表1に示した。
得られたポリアリーレンサルファイド樹脂粉体を使用して、実施例1と同様にして複合材料を得、実施例1と同様にして熱プレス成形品を製造した。実施例1と同様にして、熱プレス成形品の表面性、充填剤の分散性を評価した。結果を表1に示した。
[Comparative Example 2]
PPS2 was used without pulverization to obtain a polyarylene sulfide resin powder. In the same manner as in Example 1, the melting point Tm1, water content, melt viscosity, average particle size and maximum particle size, and average circularity of the polyarylene sulfide resin powder were measured. The results are shown in Table 1.
Using the obtained polyarylene sulfide resin powder, a composite material was obtained in the same manner as in Example 1, and a hot press molded product was produced in the same manner as in Example 1. In the same manner as in Example 1, the surface properties of the hot press molded product and the dispersibility of the filler were evaluated. The results are shown in Table 1.

[比較例3]
PPS2を粉砕処理せずに使用して、ポリアリーレンサルファイド樹脂粉体とした。実施例1と同様にして、ポリアリーレンサルファイド樹脂粉体の融点Tm1、水分量、溶融粘度、平均粒径及び最大粒径、並びに平均円形度を測定した。結果を表1に示した。
得られたポリアリーレンサルファイド樹脂粉体を使用して、実施例1と同様にして複合材料を得、実施例1と同様にして熱プレス成形品の製造を試みたが、ポリアリーレンサルファイド樹脂粉体と導電性カーボンブラックとの接着が不十分であり成形不可であった。
[Comparative Example 3]
PPS2 was used without pulverization to obtain a polyarylene sulfide resin powder. In the same manner as in Example 1, the melting point Tm1, water content, melt viscosity, average particle size and maximum particle size, and average circularity of the polyarylene sulfide resin powder were measured. The results are shown in Table 1.
Using the obtained polyarylene sulfide resin powder, a composite material was obtained in the same manner as in Example 1, and an attempt was made to produce a hot press molded product in the same manner as in Example 1. And the conductive carbon black were not sufficiently adhered to each other and could not be molded.

[測定]
(融点Tm1)
示差走査熱量計(株式会社日立ハイテクサイエンス製、DSC7000X)を用いて、室温から10℃/分の昇温速度で加熱(1stRUN)した際に観測される吸熱ピークにおけるピークトップの温度を融点Tm1として測定した。
[Measurement]
(Melting point Tm1)
The temperature of the peak top at the endothermic peak observed when heating (1stRUN) from room temperature at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC7000X, manufactured by Hitachi High-Tech Science Corporation) is set as the melting point Tm1. It was measured.

(水分量)
カールフィッシャー水分計(株式会社三菱ケミカルアナリテック製、CA−200)を用いて、試料0.5gを280℃、200mL/minの窒素気流下の条件で水分量を測定した。
(amount of water)
Using a Karl Fischer titer (manufactured by Mitsubishi Chemical Analytech Co., Ltd., CA-200), the water content of 0.5 g of the sample was measured under the conditions of 280 ° C. and 200 mL / min under a nitrogen stream.

(溶融粘度)
キャピラリー式レオメーター(株式会社東洋精機製作所製キャピログラフ1D:ピストン径10mm)を用いて、シリンダー温度310℃及びせん断速度1216sec−1の条件で、ISO 11443に準拠し、見かけの溶融粘度を測定した。測定には、内径1mm、長さ10mmのオリフィスを用いた。
(Melting viscosity)
Using a capillary rheometer (Capillary Graph 1D manufactured by Toyo Seiki Seisakusho Co., Ltd .: piston diameter 10 mm), the apparent melt viscosity was measured in accordance with ISO 11443 under the conditions of a cylinder temperature of 310 ° C. and a shear rate of 1216 sec -1. An orifice having an inner diameter of 1 mm and a length of 10 mm was used for the measurement.

(平均粒径及び最大粒径)
レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製、LA−920)を用いて、平均粒径及び最大粒径を測定した。なお、平均粒径は、体積基準の算術平均粒子径である。
(Average particle size and maximum particle size)
The average particle size and the maximum particle size were measured using a laser diffraction / scattering type particle size distribution measuring device (LA-920, manufactured by HORIBA, Ltd.). The average particle size is an arithmetic average particle size based on the volume.

(円形度)
動的画像解析法/粒子状態分析計(株式会社セイシン企業製、PITA−3)を用いて、ポリアリーレンサルファイド樹脂粉体中の4500粒の微粒子について、面積Aと周囲長Pから円形度を以下の式(II)から算出し、その平均値を樹脂粉体の平均円形度とした。
円形度=(4×π×A)/P ・・・(II)
(Circularity)
Using a dynamic image analysis method / particle state analyzer (PITA-3, manufactured by Seishin Enterprise Co., Ltd.), the circularity of 4500 fine particles in the polyarylene sulfide resin powder is calculated from the area A and the circumference P as follows. It was calculated from the formula (II) of the above, and the average value was taken as the average circularity of the resin powder.
Circularity = (4 × π × A) / P 2 ... (II)

[評価]
(表面性)
実施例及び比較例で得られた熱プレス成形品について、外観を目視にて観察し、以下の基準に従って評価した。結果を表1に示した。
良 :成形品の表面が滑らかであり、ボイドが確認されなかった。
不良:成形品の表面がざらついており、ボイドが確認された。
[Evaluation]
(Surface)
The appearance of the hot press molded products obtained in Examples and Comparative Examples was visually observed and evaluated according to the following criteria. The results are shown in Table 1.
Good: The surface of the molded product was smooth and no voids were confirmed.
Defective: The surface of the molded product was rough and voids were confirmed.

(充填剤の分散性)
充填剤の分散性を、熱プレス成形品の表面抵抗値を指標として評価した。すなわち、実施例及び比較例で得られた熱プレス成形品について、表面抵抗値を任意の4箇所で抵抗率計(株式会社三菱ケミカルアナリテック製、ロレスターGP、電極;微小領域測定用PSPプローブ)を用いて測定した。上記より測定した4箇所の表面抵抗値について、最大値から最小値を除した値をばらつきとして算出し、以下の基準に従って評価した。結果を表1に示した。
良 :上記ばらつきが20.0未満であった。
不良:上記ばらつきが20.0以上であった。
(Dispersibility of filler)
The dispersibility of the filler was evaluated using the surface resistance value of the hot press molded product as an index. That is, with respect to the heat-press molded products obtained in Examples and Comparative Examples, the resistivity value was measured at any four locations (manufactured by Mitsubishi Chemical Analytech Co., Ltd., Lorester GP, electrode; PSP probe for microregion measurement). Was measured using. The surface resistance values of the four points measured from the above were calculated by dividing the maximum value by the minimum value as a variation, and evaluated according to the following criteria. The results are shown in Table 1.
Good: The above variation was less than 20.0.
Defective: The above variation was 20.0 or more.

Figure 0006837180
Figure 0006837180

表1に示すように、本実施形態に係る樹脂粉体を用いた実施例の熱プレス成形品は、充填剤の分散性に優れており、高品質な熱プレス成形品であることが分かる。また、ポリアリーレンサルファイド樹脂粉体を用いるとともにその融点Tm1が250℃以上300℃以下であるので、耐熱性が優れている。 As shown in Table 1, it can be seen that the hot press-molded product of the example using the resin powder according to the present embodiment has excellent dispersibility of the filler and is a high-quality hot press-molded product. Further, since the polyarylene sulfide resin powder is used and its melting point Tm1 is 250 ° C. or higher and 300 ° C. or lower, the heat resistance is excellent.

Claims (6)

ポリアリーレンサルファイド樹脂粉体100質量部と、平均繊維長が150μm以下のカーボン繊維、平均繊維長が150μm以下のミルドカーボンファイバー、平均繊維長が150μm以下のカーボンナノファイバー平均繊維長が150μm以下のカーボンナノチューブ、平均粒径が500nm以下のカーボンブラック及び平均粒径が500nm以下の黒鉛からなる群より選ばれる1種以上を含有する導電性充填剤10〜400質量部と、を含み、
ポリアリーレンサルファイド樹脂粉体の、平均粒径が5μm以上100μm以下であり、示差走査熱量計で測定される融点Tm1が250℃以上300℃以下であり、動的画像解析法で測定される平均円形度が0.70以上1.00以下である、熱プレス成形品用複合材料において
導電性充填剤、平均粒径が500nm以下のカーボンブラック及び平均粒径が500nm以下の黒鉛からなる群より選ばれる1種以上とする、複合材料。
100 parts by mass of polyarylene sulfide resin powder, carbon fibers with an average fiber length of 150 μm or less, milled carbon fibers with an average fiber length of 150 μm or less, carbon nanofibers with an average fiber length of 150 μm or less, and an average fiber length of 150 μm or less. It contains 10 to 400 parts by mass of a conductive filler containing at least one selected from the group consisting of carbon nanotubes, carbon black having an average particle size of 500 nm or less, and graphite having an average particle size of 500 nm or less.
The average particle size of the polyarylene sulfide resin powder is 5 μm or more and 100 μm or less, the melting point Tm1 measured by the differential scanning calorimeter is 250 ° C. or more and 300 ° C. or less, and the average circular shape measured by the dynamic image analysis method. degree is 0.70 to 1.00, in the composite material for hot press molded product,
The conductive filler, the average particle size of 1 or more of carbon black and the average particle size of less than or equal to 500nm is selected from the group consisting of graphite 500nm, composites.
ポリアリーレンサルファイド樹脂粉体のカールフィッシャー水分計で測定される水分量が、0.1ppm以上750ppm以下である、請求項1に記載の複合材料。 The composite material according to claim 1, wherein the amount of water measured by the Karl Fischer titer of the polyarylene sulfide resin powder is 0.1 ppm or more and 750 ppm or less. ポリアリーレンサルファイド樹脂粉体の示差走査熱量計で測定される融点Tm1よりも30℃高いシリンダー温度及びせん断速度1216sec−1で測定した溶融粘度が、10Pa・s以上1000Pa・s以下である、請求項1または2に記載の複合材料。 Claim that the melt viscosity measured at a cylinder temperature 30 ° C. higher than the melting point Tm1 measured by a differential scanning calorimeter of polyarylene sulfide resin powder and a shear rate of 1216 sec -1 is 10 Pa · s or more and 1000 Pa · s or less. The composite material according to 1 or 2. ポリアリーレンサルファイド樹脂粉体の最大粒径と平均粒径との比(最大粒径/平均粒径)が、6.5以下である、請求項1から3のいずれか一項に記載の複合材料。 The composite material according to any one of claims 1 to 3, wherein the ratio of the maximum particle size to the average particle size (maximum particle size / average particle size) of the polyarylene sulfide resin powder is 6.5 or less. .. 請求項1から4のいずれか一項に記載の複合材料を用いた熱プレス成形品。 A hot press molded product using the composite material according to any one of claims 1 to 4. 厚みが5mm未満の板状である、請求項5に記載の熱プレス成形品。 The hot press molded product according to claim 5, which is in the form of a plate having a thickness of less than 5 mm.
JP2020503330A 2018-07-27 2019-07-25 Composite materials for hot press molded products and hot press molded products Active JP6837180B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018140989 2018-07-27
JP2018140989 2018-07-27
PCT/JP2019/029243 WO2020022439A1 (en) 2018-07-27 2019-07-25 Composite material for hot-press molded product, and hot-press molded product

Publications (2)

Publication Number Publication Date
JPWO2020022439A1 JPWO2020022439A1 (en) 2020-08-06
JP6837180B2 true JP6837180B2 (en) 2021-03-03

Family

ID=69180747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020503330A Active JP6837180B2 (en) 2018-07-27 2019-07-25 Composite materials for hot press molded products and hot press molded products

Country Status (3)

Country Link
JP (1) JP6837180B2 (en)
TW (1) TW202016176A (en)
WO (1) WO2020022439A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273594A (en) * 1997-03-28 1998-10-13 Dainippon Ink & Chem Inc Spherical fine polyphenylene sulfide powder and its production
EP3088445B1 (en) * 2013-12-25 2019-01-30 Toray Industries, Inc. Polyphenylene sulfide microparticles
CN105612218B (en) * 2014-02-25 2017-09-15 东丽株式会社 Polyarylene sulfide resin bulk material composition and its manufacture method
JP6345469B2 (en) * 2014-04-09 2018-06-20 旭化成株式会社 Method for producing polyphenylene sulfide fine particles, polymer electrolyte membrane, membrane / electrode assembly, and fuel cell
JP6638257B2 (en) * 2015-08-24 2020-01-29 東レ株式会社 Polyarylene sulfide resin powder mixture
JP6256818B2 (en) * 2016-01-20 2018-01-10 東レ株式会社 Polyarylene sulfide resin powder and method for producing the same
US20200055234A1 (en) * 2016-10-21 2020-02-20 Toray Industries, Inc. Polyarylene sulfide resin powder granular article mixture and method for producing three-dimensional molded article

Also Published As

Publication number Publication date
WO2020022439A1 (en) 2020-01-30
TW202016176A (en) 2020-05-01
JPWO2020022439A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
Ko et al. Rheology and physical characteristics of synthetic biodegradable aliphatic polymer blends dispersed with MWNTs
US20120153239A1 (en) Formation of High Electrical Conductivity Polymer Composites with Multiple Fillers
JP7071235B2 (en) Porous molded body and its manufacturing method
Wieme et al. The relevance of material and processing parameters on the thermal conductivity of thermoplastic composites
Ma et al. Electrical properties and morphology of carbon black filled PP/EPDM blends: effect of selective distribution of fillers induced by dynamic vulcanization
KR20070108368A (en) Thermally stable thermoplastic resin compositions, methods of manufacture thereof and articles comprising the same
Yang et al. Solid‐state shear milling method to prepare PA12/boron nitride thermal conductive composite powders and their selective laser sintering 3D‐printing
JP6527010B2 (en) Thermally conductive resin molding and method for producing the same
Bian et al. Comparative study on the exfoliated expanded graphite nanosheet‐PES composites prepared via different compounding method
Kang et al. Properties of polypropylene composites containing aluminum/multi-walled carbon nanotubes
Noorunnisa Khanam et al. Improved flexible, controlled dielectric constant material from recycled LDPE polymer composites
JP5298786B2 (en) Method for producing regenerated fibrous filler reinforced polyphenylene sulfide granules
JP6643516B1 (en) Pellet mixture and injection molding
US20080075953A1 (en) Electrically Conductive Composites with Resin and Vgcf, Production Process, and Use Thereof
Kailasanathan et al. Polyoxymethylene/talc composite: investigation of warpage, mechanical and thermal properties for thin walled‐injection molding applications
JP6837180B2 (en) Composite materials for hot press molded products and hot press molded products
Russo et al. Thermo‐mechanical behavior of poly (butylene terephthalate)/silica nanocomposites
Ma et al. Study on viscoelastic, crystallization, and mechanical properties of HDPE/EVA/Mg (OH) 2 composites
JP3406816B2 (en) Thermoplastic resin composition
KR101989163B1 (en) Composition for Syntactic Foams and Manufacturing Method thereof
JP2006097005A (en) Electrically conductive resin composition and method for producing the same
JP6120045B2 (en) Inorganic particle-organic polymer composite, resin composition containing the same, and resin molded product
Wacharawichanant Effect of zinc oxide on morphology and mechanical properties of polyoxymethylene/zinc oxide composites
JP6738501B2 (en) Polyarylene sulfide resin powder for thermoplastic prepreg and thermoplastic prepreg
Mou’ad et al. Hybridization of a Thermoplastic Natural Rubber Composite with Multi-Walled Carbon Nanotubes/Silicon Carbide Nanoparticles and the Effects on Morphological, Thermal, and Mechanical Properties

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201026

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6837180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250