JP6836785B2 - Multi-feeder - Google Patents

Multi-feeder Download PDF

Info

Publication number
JP6836785B2
JP6836785B2 JP2017088158A JP2017088158A JP6836785B2 JP 6836785 B2 JP6836785 B2 JP 6836785B2 JP 2017088158 A JP2017088158 A JP 2017088158A JP 2017088158 A JP2017088158 A JP 2017088158A JP 6836785 B2 JP6836785 B2 JP 6836785B2
Authority
JP
Japan
Prior art keywords
inner peripheral
powder
peripheral surface
granular material
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017088158A
Other languages
Japanese (ja)
Other versions
JP2018184275A (en
Inventor
修 吉川
修 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Corp
Original Assignee
Yoshikawa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Corp filed Critical Yoshikawa Corp
Priority to JP2017088158A priority Critical patent/JP6836785B2/en
Publication of JP2018184275A publication Critical patent/JP2018184275A/en
Application granted granted Critical
Publication of JP6836785B2 publication Critical patent/JP6836785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Description

本発明は、例えば大型のサイロ内の材料を、円滑に排出供給するためのマルチフィーダーに関するものである。 The present invention relates to, for example, a multi-feeder for smoothly discharging and supplying a material in a large silo.

従来、大型のサイロ(例えば直径8m)において、木質チップ等の粉粒体材料をサイロ下部から定量排出する場合、例えばサイロを構成する貯留槽の下方にホッパーを設け、該ホッパーの底盤に複数の開口部を設け、これらの開口部の下方に各々小型供給機を接続し、上記貯留槽内に投入された粉粒体材料を、上記小型供給機により下方に定量排出する、いわゆるマルチフィーダーが提案されている(特許文献1)。 Conventionally, in a large silo (for example, 8 m in diameter), when a powder or granular material such as wood chips is quantitatively discharged from the lower part of the silo, for example, a hopper is provided below the storage tank constituting the silo, and a plurality of hoppers are provided on the bottom plate of the hopper. A so-called multi-feeder has been proposed in which openings are provided, small feeders are connected below these openings, and the powder or granular material material charged into the storage tank is quantitatively discharged downward by the small feeder. (Patent Document 1).

このマルチフィーダーは、上記底板上に、該底板に沿って放射状に延びる中央回転羽根を有し、上記定量排出の過程において、上記中央回転羽根を回転させることにより、貯留槽内の粉粒体材料を小型供給機内に排出し、貯留槽内の粉粒体材料の残留をできるだけ少なくするものである。 This multi-feeder has a central rotary blade that extends radially along the bottom plate on the bottom plate, and in the process of the quantitative discharge, the central rotary blade is rotated to form a powder or granular material in a storage tank. Is discharged into a small feeder to minimize the residual powder or granular material in the storage tank.

特開2016−216258号公報Japanese Unexamined Patent Publication No. 2016-216258

ところで、上記従来のマルチフィーダーは、貯留槽内に、その上端部近傍まで粉粒体材料を入れた状態で、下部の小型供給機を駆動して定量排出動作を行う場合、上記ホッパー内において、上記底板の上記小型供給機の上側に位置する粉粒体材料が先に排出されて行くため、貯留槽内の粉粒体材料Mにおいて、貯留槽中央部に材料の大きな穴30が形成され、貯留槽内周面に沿って周方向に粉粒体材料が残るという傾向がある(図7参照)。例えば、粉粒体材料が木質チップのような短冊状材料の場合は、貯留槽内で周方向に材料同士が絡み易い性質を有しているため、このような傾向が見られる。 By the way, in the conventional multi-feeder, when the powder or granular material is put in the storage tank up to the vicinity of the upper end thereof and the small feeder at the lower part is driven to perform the quantitative discharge operation, the hopper is used. Since the powder or granular material material located on the upper side of the small feeder of the bottom plate is discharged first, in the powder or granular material material M in the storage tank, a large hole 30 of the material is formed in the central portion of the storage tank. There is a tendency for the powder or granular material to remain in the circumferential direction along the inner peripheral surface of the storage tank (see FIG. 7). For example, when the powder or granular material is a strip-shaped material such as wood chips, this tendency is observed because the materials tend to be entangled with each other in the circumferential direction in the storage tank.

この傾向は、マルチフィーダーにおいて、貯留槽内に連続的に粉粒体材料が補充投入される場合、貯留槽内の中央部の材料が先に下降して上記小型供給機から排出され、貯留槽の内周面近傍に位置する粉粒体材料が比較的長い時間、貯留槽に滞留する、という課題があった。 This tendency is that when the powder or granular material is continuously replenished and charged into the storage tank in the multi-feeder, the material in the central part of the storage tank first descends and is discharged from the small feeder, and the storage tank. There is a problem that the powder or granular material material located near the inner peripheral surface of the water tank stays in the storage tank for a relatively long time.

本発明は、貯留槽内に仕切板を設けることにより、この仕切板により貯留槽内の粉粒体材料の周方向の絡み合いを分断し、貯留槽内における粉粒体材料の滞留を防止して、粉粒体材料を円滑に排出することを目的とする。 In the present invention, by providing a partition plate in the storage tank, the partition plate divides the entanglement of the powder or granular material material in the storage tank in the circumferential direction, and prevents the powder or granular material material from staying in the storage tank. , The purpose is to smoothly discharge the powder or granular material.

上記の目的を達成するため本発明は、
第1に、粉粒体材料を貯留する円筒形状の貯留槽が設けられ、上記貯留槽は上部円筒体とそれに接続されたホッパー部とそれに接続された下部円筒体により構成され、上記貯留槽の下面は水平の底盤にて閉鎖され、当該底盤に上記円筒形状の共通中心軸の周りに一定の開き角度で複数の小円形開口部が貫設され、上記各小円形開口部に小型供給機が各々接続され、上記底盤の上方に上記共通中心軸を中心とする中央円錐体が設けられ、該中央円錐体は上記貯留槽の内周面との間に放射状に設けられた複数の支持アームにより固定され、上記各支持アームは上記共通中心軸の周りに上記一定の開き角度で上記小円形開口部を塞がない位置において、上記ホッパー部に接続された逆截頭円錐部の内周面に各々固定されており、上記各支持アームの各上縁と上記上部円筒体の内周面との間に、上記貯留槽の内周面から上記共通中心軸に向かう板状の仕切板を、上記共通中心軸を中心とする上記一定の開き角度の位置で各々設けることで、上記各仕切板が上記各支持アームの上記各上縁と上記上部円筒体の内周面に接続固定され、これらの仕切板により上記貯留槽の内周面周方向に複数のエリアに分割され、上記各仕切板の各下縁の幅は、上記貯留槽の内周面側から上記回転中心軸に向けて、上記支持アームの上縁の長さの半分程度の幅又は上記支持アームの上縁の長さの半分より若干狭い幅にて構成され、上記各仕切板の内縁と上記各支持アームの上縁とのなす角度は90度より小さい鋭角であり、かつ、上記各仕切板の各外縁と上記上部円筒体の内周面とは各々隙間なく接続され、上記仕切板の各外縁と上記ホッパー部の内周面との間には、各々仕切板用小間隙が設けられ、上記各仕切板によって囲まれた上記各エリアに各々対応して上記各小型供給機が存在するものであるマルチフィーダーにより構成される。
In order to achieve the above object, the present invention
First, a cylindrical storage tank for storing the powder and granule material is provided, and the storage tank is composed of an upper cylindrical body, a hopper portion connected to the upper cylindrical body, and a lower cylindrical body connected to the upper cylindrical body . The lower surface is closed by a horizontal bottom plate, and a plurality of small circular openings are formed in the bottom plate at a constant opening angle around the common central axis of the cylindrical shape, and a small feeder is provided in each of the small circular openings. Each is connected, and a central cone centered on the common central axis is provided above the bottom plate, and the central cone is provided by a plurality of support arms radially provided between the inner peripheral surface of the storage tank. Each of the support arms is fixed to the inner peripheral surface of the inverted conical portion connected to the hopper portion at a position where the small circular opening is not blocked at the constant opening angle around the common central axis. each is fixed, between the inner circumferential surfaces of the upper edge and the upper cylindrical body of each support arm, a plate-shaped partition plate toward the common central axis from the inner peripheral surface of the storage tank, said in each provided Rukoto at the position of the fixed opening angle around the common central axis, each partition plate is fixedly connected to the inner peripheral surface of the respective upper edge and the upper cylindrical body of each of the support arms, these the inner peripheral surface of the storage tank by a partition plate is divided into a plurality of areas in the circumferential direction, the width of each of the lower edge of each partition plate, toward the rotation axis from the inner peripheral surface side of the storage tank The width is about half the length of the upper edge of the support arm or slightly narrower than half the length of the upper edge of the support arm, and the inner edge of each partition plate and the upper edge of each support arm. The angle between the two is a sharp angle smaller than 90 degrees, and each outer edge of each of the partition plates and the inner peripheral surface of the upper cylinder are connected without a gap, and each outer edge of the partition plate and the hopper portion are connected. A small gap for a partition plate is provided between the inner peripheral surface and each of the small gaps, and each of the small feeders is present in each of the areas surrounded by the partition plates. Will be done.

このように構成すると、貯留槽内に収納された粉粒体材料は、複数の仕切板により、周方向の絡み合いが複数個所で分断されるため、底盤の小型供給機により下方に排出されていくと、仕切板によって囲まれた各エリアにおける粉粒体材料は円滑に下降していくことができ、貯留槽内の内周面における、周方向の粉粒体材料の残留を防止することができる。 このように構成すると、貯留槽内の支持アームの位置において、仕切板により、貯留槽内の粉粒体材料に、共通回転軸方向の十分な切れ目を設けることができ、仕切板により囲まれた各エリア毎に、より円滑に粉粒体材料を下降させることができる。このように構成すると、仕切板用小間隙の存在により、各仕切板の外縁と上記内周面間の近傍において、粉粒体材料が下降する際の抵抗を少なくすることができ、より円滑に粉粒体材料を下降させることができる。このように貯留槽の下半部をホッパーにより形成することにより、仕切板によって囲まれた各エリアにおける粉粒体材料の底盤に対する圧力を低減しつつ、粉粒体材料の下降をより円滑に行うことができる。また、上記角度を鋭角とすることにより、貯留槽内における粉粒体材料のブリッジを効果的に低減することができる。このように構成すると、仕切板によって囲まれたエリアに、各々対応して小型供給機(小円形開口部)が存在することになり、各エリアの粉粒体材料を対応する位置の小型供給機に、円滑に排出することができる。 With this configuration, the powder or granular material material stored in the storage tank is discharged downward by the small feeder on the bottom plate because the entanglement in the circumferential direction is divided at a plurality of places by the plurality of partition plates. As a result, the powder or granular material in each area surrounded by the partition plate can smoothly descend, and the powder or granular material in the circumferential direction can be prevented from remaining on the inner peripheral surface in the storage tank. .. With this configuration, at the position of the support arm in the storage tank, the partition plate can provide a sufficient cut in the powder or granular material in the storage tank in the common rotation axis direction, and is surrounded by the partition plate. The powder or granular material can be lowered more smoothly in each area. With this configuration, the presence of the small gaps for the partition plate makes it possible to reduce the resistance when the powder or granular material material descends in the vicinity between the outer edge of each partition plate and the inner peripheral surface, and more smoothly. The powder or granular material can be lowered. By forming the lower half of the storage tank with a hopper in this way, the pressure on the bottom plate of the powder or granular material material in each area surrounded by the partition plate is reduced, and the powder or granular material material is lowered more smoothly. be able to. Further, by setting the above angle to an acute angle, it is possible to effectively reduce the bridging of the powder or granular material in the storage tank. With this configuration, there are corresponding small feeders (small circular openings) in the areas surrounded by the partition plates, and the small feeders at the corresponding positions for the powder or granular material in each area. In addition, it can be discharged smoothly.

に、上記各支持アームは横断面三角形状に形成され、各頂部を形成する各上縁に上記各仕切板が接続固定され、上記各支持アームの半径方向外縁には垂直板が各々固定され、上記各垂直板が上記逆截頭円錐部の内周面に各々接続されることで上記各支持アームが固定されており、上記逆截頭円錐部の内周面と上記各支持アームの各半径方向外縁との間には、支持アーム用小間隙が各々設けられており、上記各仕切板用小間隙と上記各支持アーム用小間隙とは連通されているものである上記第記載のマルチフィーダーにより構成される。 Second, each support arm is formed in shape cross section triangular, each partition plate is fixedly connected to the respective upper edge to form the apexes, the fixed vertical plate in the radial outer edge of each support arm are each Each of the vertical plates is connected to the inner peripheral surface of the inverted conical portion to fix each of the support arms, and the inner peripheral surface of the inverted conical portion and each of the support arms are fixed. between each radial outer edge, the small clearance for the support arm is provided with each said first described is what is communicated to the above small gap and the small clearance for the support arms for each partition plates Consists of a multi-feeder.

このように構成すると、支持アーム用小間隙の存在により、各支持アームの半径方向外縁と上記内周面間の近傍において、粉粒体材料のブリッジの発生を防止し、粉粒体材料が下降する際の抵抗を少なくすることができ、しかも、仕切板用小間隙と支持アーム用小間隙が連通しているので、より円滑に粉粒体材料を下降させることができる。 With this configuration, the presence of the support arm gaps prevents the formation of bridges in the powder or granular material material in the vicinity of the radial outer edge of each support arm and the inner peripheral surface, and the powder or granular material material descends. Since the small gap for the partition plate and the small gap for the support arm are communicated with each other, the powder or granular material can be lowered more smoothly.

に、上記底盤上であって上記中央円錐体の下側に、上記共通中心軸を中心とする回転駆動軸を突設し、該回転駆動軸に上記底盤上を放射状に延びる複数のスポークを有する中央回転掻き出し羽根を接続したものである上記第1又は2記載のマルチフィーダーにより構成される。 Thirdly, above the bottom a platen bottom of the central cone, the common central axis projecting from the rotary drive shaft around a plurality of spokes extending the bottom surface plate radially to the rotary drive shaft It is composed of the multi-feeder according to the first or second above, which is formed by connecting the central rotary scraping blades having the above.

このように構成すると、貯留槽内の粉粒体材料の排出が略終了段階において、中央回転掻き出し羽根を回転することにより、隣接する小円形開口部間の底盤上に残留する粉粒体材料等を小円形開口部に排出することができ、底盤近傍に残留する粉粒体材料を略完全に排出することが可能となる。 With this configuration, when the discharge of the powder or granular material material in the storage tank is almost completed, the powder or granular material material or the like remaining on the bottom plate between the adjacent small circular openings is rotated by rotating the central rotary scraping blade. Can be discharged into the small circular opening, and the powder or granular material remaining in the vicinity of the bottom plate can be discharged almost completely.

に、上記中央回転掻き出し羽根の上記各スポークは、その停止位置において、上記各支持アームの下方に位置しているものである上記第に記載のマルチフィーダーにより構成される。
Fourth , each of the spokes of the central rotary scraping blade is configured by the multi-feeder according to the third aspect , which is located below each of the support arms at the stop position.

このように構成すると、スポークに粉粒体材料の圧力が作用しないので、より低出力の駆動モータにより中央回転掻き出し羽根を駆動することができる。 With this configuration, the pressure of the powder or granular material does not act on the spokes, so the central rotary scraping blade can be driven by a drive motor with a lower output.

本発明によれば、貯留槽内に収納された粉粒体材料は、複数の仕切板により、周方向の絡み合いが複数個所で分断されるため、底盤の小型供給機により下方に排出されていくと、仕切板によって囲まれたエリアにおける粉粒体材料は円滑に下降していくことができ、貯留槽内の内周面に周方向に粉粒体材料が残留することはない。 According to the present invention, the powder or granular material material stored in the storage tank is discharged downward by a small feeder on the bottom plate because the entanglement in the circumferential direction is divided at a plurality of places by a plurality of partition plates. Then, the powder or granular material in the area surrounded by the partition plate can smoothly descend, and the powder or granular material does not remain on the inner peripheral surface in the storage tank in the circumferential direction.

また、貯留槽の下半部をホッパーにより形成することにより、仕切板によって囲まれた各エリアにおける粉粒体材料の下降をより円滑に行うことができる。 Further, by forming the lower half of the storage tank with a hopper, it is possible to more smoothly lower the powder or granular material in each area surrounded by the partition plate.

また、仕切板の内縁と上記支持アームの上縁との角度を鋭角とすることにより、貯留槽内における粉粒体材料のブリッジを低減することができる。 Further, by making the angle between the inner edge of the partition plate and the upper edge of the support arm an acute angle, it is possible to reduce the bridge of the powder or granular material material in the storage tank.

また、貯留槽内の支持アームの位置において、仕切板により、貯留槽内の粉粒体材料に、共通回転軸方向の十分な切れ目を設けることができ、仕切板により囲まれた各エリア毎に、より円滑に粉粒体材料を下降させることができる。 Further, at the position of the support arm in the storage tank, the partition plate can provide a sufficient cut in the powder or granular material in the storage tank in the common rotation axis direction, and each area surrounded by the partition plate can be provided. , The powder or granular material can be lowered more smoothly.

また、仕切板用小間隙の存在により、各仕切板の外縁と上記内周面間の近傍において、粉粒体材料が下降する際の抵抗を少なくすることができ、より円滑に粉粒体材料を下降させることができる。 Further, due to the presence of the small gaps for the partition plate, the resistance when the powder or granular material material descends in the vicinity between the outer edge of each partition plate and the inner peripheral surface can be reduced, and the powder or granular material material can be made more smoothly. Can be lowered.

また、支持アーム用小間隙の存在により、各支持アームの半径方向外縁と上記内周面間の近傍において、粉粒体材料が下降する際の抵抗を少なくすることができ、しかも、仕切板用小間隙と支持アーム用小間隙が連通しているので、より円滑に粉粒体材料を下降することができる。 Further, due to the presence of the small gap for the support arm, the resistance when the powder or granular material material descends in the vicinity between the radial outer edge of each support arm and the inner peripheral surface can be reduced, and moreover, it is used for the partition plate. Since the small gap and the small gap for the support arm communicate with each other, the powder or granular material can be lowered more smoothly.

また、仕切板によって囲まれたエリアに、各々対応して小型供給機が存在することになり、各エリアの粉粒体材料を対応する小型供給機により円滑に排出することができる。 In addition, small feeders are present in the areas surrounded by the partition plates, and the powder or granular material in each area can be smoothly discharged by the corresponding small feeders.

また、貯留槽内の粉粒体材料の排出が略終了段階において、中央回転掻き出し羽根を回転することにより、隣接する小円形開口部間の底盤上に残留する粉粒体材料等を小円形開口部に排出することができ、底盤近傍に残留する粉粒体材料を略完全に排出することが可能となる。 In addition, when the discharge of the powder or granular material in the storage tank is almost completed, the central rotary scraping blade is rotated to open the small circular opening of the powder or granular material remaining on the bottom plate between the adjacent small circular openings. It can be discharged to the part, and the powder or granular material remaining in the vicinity of the bottom plate can be discharged almost completely.

また、スポークに粉粒体材料の圧力が作用しないので、より低出力の駆動モータにより中央回転掻き出し羽根を駆動することができる。 Further, since the pressure of the powder or granular material does not act on the spokes, the central rotation scraping blade can be driven by a lower output drive motor.

本発明に係るマルチフィーダーの一部断面側面図である。It is a partial cross-sectional side view of the multi-feeder which concerns on this invention. 同上マルチフィーダーの平面図である。Same as above. It is a plan view of the multi-feeder. 同上マルチフィーダーの断面図である。It is sectional drawing of the above-mentioned multi-feeder. 同上マルチフィーダーの中央円錐体近傍を示す図であり、(a)は中央円錐体の平面図、(b)は中央円錐体の側面図、(c)は中央円錐体と支持アームとの接続状態を示す図である。Same as above. It is a view showing the vicinity of the central cone of the multi-feeder, (a) is a plan view of the central cone, (b) is a side view of the central cone, and (c) is a connection state between the central cone and the support arm. It is a figure which shows. 同上マルチフィーダーの貯留槽内部の概略斜視図である。The same is a schematic perspective view of the inside of the storage tank of the multi-feeder. (a)は粉粒体材料を投入した状態の貯留槽の概略斜視図、(b)は粉粒体材料の下降がある程度進んだ状態の貯留槽の概略斜視図である。(A) is a schematic perspective view of a storage tank in which the powder or granular material is charged, and (b) is a schematic perspective view of the storage tank in a state where the powder or granular material is lowered to some extent. 従来の貯留槽の斜視図であり、貯留槽内の粉粒体材料の下降がある程度進んだ状態を示す図である。It is a perspective view of the conventional storage tank, and is the figure which shows the state which the descent of the powder or granular material material in a storage tank progressed to some extent.

以下、本発明に係るマルチフィーダーについて詳細に説明する。 Hereinafter, the multi-feeder according to the present invention will be described in detail.

図1に上記マルチフィーダーの側面図、図2に同上マルチフィーダーの平面図を示す。より具体的には、図1の下部円筒体4より上側は、図2のX−X断面図、図1の下部円筒体4より下側は図2の矢印Y方向からみた側面図である。 FIG. 1 shows a side view of the multi-feeder, and FIG. 2 shows a plan view of the multi-feeder. More specifically, the upper side of the lower cylindrical body 4 of FIG. 1 is a cross-sectional view taken along the line XX of FIG. 2, and the lower side of the lower cylindrical body 4 of FIG. 1 is a side view seen from the arrow Y direction of FIG.

これらの図において、1は円筒状のサイロであり、共通中心軸Cを中心軸とする円筒形の上部円筒体2と、該上部円筒体2の下部にフランジF1にて接続され、上記共通中心軸Cを共有の中心軸とする逆截頭円錐形状のホッパー部3と、該ホッパー部3の下部にフランジF2にて接続され、上記共通中心軸Cを中心とする下部円筒体4とから構成されており、このサイロ1自体は、機枠40上に垂直に固定されている。 In these figures, reference numeral 1 denotes a cylindrical silo, which is connected to a cylindrical upper cylindrical body 2 having a common central axis C as a central axis and a lower portion of the upper cylindrical body 2 by a flange F1. It is composed of an inverted conical hopper 3 having a shaft C as a shared central axis, and a lower cylindrical body 4 connected to the lower part of the hopper 3 by a flange F2 and centered on the common central shaft C. The silo 1 itself is vertically fixed on the machine frame 40.

上記上部円筒体2の直径は例えば8mであり、上記下部円筒体4の下部の直径は例えば6mである。本発明に係るマルチフィーダーはこのように上記下部円筒体4の下部の直径が例えば4m以上の大口径のサイロ(上部円筒体2の直径は例えば6m〜20m)に適用されるものである。 The diameter of the upper cylinder 2 is, for example, 8 m, and the diameter of the lower portion of the lower cylinder 4 is, for example, 6 m. The multi-feeder according to the present invention is thus applied to a silo having a large diameter of 4 m or more in the lower portion of the lower cylindrical body 4 (the diameter of the upper cylindrical body 2 is, for example, 6 m to 20 m).

上記下部円筒体4の上端部4aには、上記ホッパー部3の側面の逆円錐形状と同一傾斜角度で、逆円錐形状に傾斜し、上記共通中心軸Cを共通中心とする逆截頭円錐部5が形成されており、上記ホッパー部3の内周面3aは、上記下部円筒体4の内部においても、同一傾斜角度の上記逆截頭円錐部5の内周面5aに円滑に連続するように形成されている。そして、上記逆截頭円錐部5の下端部5bは、上記下部円筒体4の底盤6に近接する位置(下端部5bと底盤6との距離t1)に固定されている。 The upper end portion 4a of the lower cylindrical body 4 is inclined in an inverted conical shape at the same inclination angle as the inverted conical shape of the side surface of the hopper portion 3, and the inverted conical portion having the common central axis C as the common center. 5 is formed so that the inner peripheral surface 3a of the hopper portion 3 smoothly continues to the inner peripheral surface 5a of the inverted conical portion 5 having the same inclination angle even inside the lower cylindrical body 4. Is formed in. The lower end portion 5b of the inverted head cone portion 5 is fixed at a position close to the bottom plate 6 of the lower cylindrical body 4 (distance t1 between the lower end portion 5b and the bottom plate 6).

ここで、上記ホッパー部3と上記逆截頭円錐部5により「ホッパー」が構成されているものとする。また、上記上部円筒体2、上記ホッパー部3、上記下部円筒体4により「貯留槽」が構成されているものとする。また、「貯留槽の内周面」とは、上記上部円筒体2の内周面2a、上記ホッパー部3の内周面3a、上記下部円筒体4の内周面4c、上記逆截頭円錐部5の内周面5aをいうものとする。 Here, it is assumed that the "hopper" is composed of the hopper portion 3 and the inverted head conical portion 5. Further, it is assumed that the "storage tank" is composed of the upper cylinder 2, the hopper 3, and the lower cylinder 4. The "inner peripheral surface of the storage tank" refers to the inner peripheral surface 2a of the upper cylindrical body 2, the inner peripheral surface 3a of the hopper portion 3, the inner peripheral surface 4c of the lower cylindrical body 4, and the inverted head cone. It shall refer to the inner peripheral surface 5a of the portion 5.

上記下部円筒体4の下側開口部外周にはフランジ4bが設けられており、該フランジ4bに当該下部円筒体4の下側開口部を閉鎖する水平な底盤(貯留槽の底盤)6が接続されている。 A flange 4b is provided on the outer periphery of the lower opening of the lower cylinder 4, and a horizontal bottom plate (bottom plate of the storage tank) 6 for closing the lower opening of the lower cylinder 4 is connected to the flange 4b. Has been done.

上記底盤6には、図2に示すように、その平坦な上面6aに、上記共通中心軸Cを中心として、周方向に120度の開き角度で、各中心Ca,Cb,Ccが位置する3つの小円形開口部7a,7b,7cが貫通形成されている。尚、小円形開口部7a〜7c(複数の小円形開口部をまとめて符号「7」で示す)は本実施形態における3個に限定されず、上記ホッパー部3、上記下部円筒体4の直径、供給する材料等により、4個、5個、6個等の何れかでも良い。これらの小円形開口部7は、底盤6上に、共通中心軸Cの周りに均等開き角度を以って貫通形成される。これらの小円形開口部7の裏面側には各々短円筒8a’〜8c’を介して各々回転フィーダー(小型供給機)8a〜8cが接続されている。 As shown in FIG. 2, on the bottom plate 6, the centers Ca, Cb, and Cc are located on the flat upper surface 6a at an opening angle of 120 degrees in the circumferential direction with the common central axis C as the center. Two small circular openings 7a, 7b, 7c are formed through. The small circular openings 7a to 7c (a plurality of small circular openings are collectively indicated by the reference numeral "7") are not limited to the three in the present embodiment, and the diameters of the hopper portion 3 and the lower cylindrical body 4 are not limited to three. , 4, 5, 6, or the like may be used depending on the material to be supplied. These small circular openings 7 are formed through the bottom plate 6 with a uniform opening angle around the common central axis C. Rotating feeders (small feeders) 8a to 8c are connected to the back surface side of these small circular openings 7 via short cylinders 8a'to 8c', respectively.

これら小円形開口部7a,7b,7cは、平面視において、それらの円の外周が上記下部円筒体4の内周面4cに近接する位置に形成されていると共に(図2参照)、各小円形開口部7a,7b,7cの中心(中心軸)Ca,Cb,Ccは、上記共通中心軸Cから半径方向に距離t2の円周上に位置しており、何れも同一の半径t3の円から構成されている。従って、上記ホッパー部3及び下部円筒体4の下部(底盤6)は、上記小円形開口部7a,7b,7cの部分のみが開口し、その他の水平部分は底盤6の平坦な上面6aにより閉鎖された状態となっている。 These small circular openings 7a, 7b, 7c are formed at positions where the outer circumferences of the circles are close to the inner peripheral surface 4c of the lower cylindrical body 4 in a plan view (see FIG. 2), and each small circular opening 7a, 7b, 7c is formed. The centers (central axes) Ca, Cb, and Cc of the circular openings 7a, 7b, and 7c are located on the circumference at a distance t2 in the radial direction from the common central axis C, and all are circles having the same radius t3. It is composed of. Therefore, in the lower part (bottom plate 6) of the hopper portion 3 and the lower cylindrical body 4, only the small circular openings 7a, 7b, 7c are opened, and the other horizontal portions are closed by the flat upper surface 6a of the bottom plate 6. It is in a state of being.

上記各小円形開口部7a,7b,7cには、各々逆截頭円錐形の小ホッパー9a,9b,9cが接続されており、各小ホッパー9a,9b,9cの各下部開口に各々上記回転フィーダー8a〜8cが接続されている。これらの回転フィーダー8a〜8cは、上方から供給される粉粒体材料を底盤23上の回転羽根10の回転(矢印A’方向)により底盤23に形成された排出口11(図3参照)から、下方に定量排出するものである。また、上記短円筒8a’〜8c’にはレベルセンサー24a〜24cが設けられている。これは貯留槽内の粉粒体材料MのレベルQが上記短円筒8a’〜8c’以下に低下したとき、これをレベルセンサー24a〜24cにて検出し、このとき、制御部にて上記中央回転掻き出し羽根14’を正逆回転駆動して、上記底盤6上に残留する粉粒体材料を各小円形開口部7a〜7cに排出する制御を行うものである。 Small hoppers 9a, 9b, 9c having an inverted conical shape are connected to the small circular openings 7a, 7b, 7c, respectively, and the rotations of the lower openings of the small hoppers 9a, 9b, 9c are connected to each of the small hoppers 9a, 9b, 9c. Feeders 8a to 8c are connected. These rotary feeders 8a to 8c allow the powder or granular material supplied from above to be discharged from the discharge port 11 (see FIG. 3) formed in the bottom plate 23 by the rotation of the rotary blade 10 on the bottom plate 23 (direction of arrow A'). , It discharges a fixed amount downward. Further, level sensors 24a to 24c are provided on the short cylinders 8a'to 8c'. This is because when the level Q of the powder or granular material material M in the storage tank drops below the short cylinders 8a'to 8c', this is detected by the level sensors 24a to 24c, and at this time, the control unit controls the center. The rotary scraping blade 14'is driven in the forward and reverse rotations to control the powder and granular material remaining on the bottom plate 6 to be discharged to the small circular openings 7a to 7c.

上記底盤6の裏面6c側の中心部には、正逆回転可能な電動機Mが固定され、該電動機Mの出力軸には減速機を介して、上記共通中心軸Cを中心軸とする回転駆動軸12が接続され、当該回転駆動軸12が上記底盤6の上面6a側に突出形成されている。 An electric motor M capable of forward and reverse rotation is fixed to the central portion of the bottom plate 6 on the back surface 6c side, and a speed reducer is used on the output shaft of the electric motor M to drive the rotation around the common central shaft C as the central axis. A shaft 12 is connected, and the rotation drive shaft 12 is formed so as to project toward the upper surface 6a of the bottom plate 6.

上記底盤6上面6aに突出した上記回転駆動軸12には、共通中心軸Cを中心とする中央円盤13が接続されており、該中央円盤13から中央回転掻き出し羽根14’の3本のスポーク14,14,14が放射状に延出形成されており、上記回転駆動軸12の駆動により各中央回転掻き出し羽根14’は矢印A方向又は矢印A’方向に正逆回転可能となっている。また、上記各スポーク14,14,14の各裏面は上記底盤6上に接することなく、上記底盤6上に近接して位置している。 A central disk 13 centered on the common central axis C is connected to the rotary drive shaft 12 projecting from the upper surface 6a of the bottom disk 6, and three spokes 14 of the central rotary scraping blade 14'from the central disk 13 are connected. , 14 and 14 are formed to extend radially, and each central rotation scraping blade 14'can be rotated forward and reverse in the direction of arrow A or the direction of arrow A'by driving the rotation drive shaft 12. Further, the back surfaces of the spokes 14, 14, and 14 are located close to the bottom plate 6 without being in contact with the bottom plate 6.

また、上記中央回転掻き出し羽根14’の上記中央円盤13の裏面側に、上記底盤6に設けられた近接センサー22により検出される突出部13aを設け、上記近接センサー22の直上に上記突出部13aが到来したときに、各スポーク14,14,14が上記小円形開口部7a,7b,7cを塞ぐことのない位置(図2の位置)に停止し得るように上記スポーク14,14,14の停止位置の制御を行う。 Further, a protruding portion 13a detected by the proximity sensor 22 provided on the bottom plate 6 is provided on the back surface side of the central disk 13 of the central rotation scraping blade 14', and the protruding portion 13a is provided directly above the proximity sensor 22. Spokes 14, 14, 14 of the spokes 14, 14, 14 so that each spoke 14, 14, 14 can stop at a position (position of FIG. 2) that does not block the small circular openings 7a, 7b, 7c when Controls the stop position.

上記各スポーク14の停止位置は、図2に示すように、各スポーク14が後述の3本の支持アーム15の丁度下側に位置するようになっており、当該停止位置においては、上記各スポーク14,14,14に材料荷重が直接かからないように構成されている。上記中央円盤13の裏面中心に設けられた凹部内に上記回転駆動軸12を挿入嵌合することにより、上記各スポーク14,14,14を矢印A又は矢印A’方向に回転可能とする。 As shown in FIG. 2, the stop positions of the spokes 14 are such that the spokes 14 are located just below the three support arms 15 described later, and at the stop positions, the spokes are stopped. It is configured so that the material load is not directly applied to 14, 14 and 14. By inserting and fitting the rotary drive shaft 12 into the recess provided in the center of the back surface of the central disk 13, the spokes 14, 14 and 14 can be rotated in the direction of arrow A or arrow A'.

上記中央円盤13の上側には、中央円錐体16が3本の支持アーム(減圧用三角梁)15,15,15により、その頂点を上記共通中心軸Cに一致させた状態で固定されている。上記中央円盤13は、上記中央円錐体16の下面の範囲内に存在し、上記ホッパー部3内に充填された粉粒体材料の荷重が直接かからないように構成されている。また、上記中央円盤13の上面と上記3本の支持アーム15の中央部との間には間隙t5が形成されている。 On the upper side of the central disk 13, the central cone 16 is fixed by three support arms (triangular beams for decompression) 15, 15, 15 in a state where the apex of the central cone 16 is aligned with the common central axis C. .. The central disk 13 exists within the range of the lower surface of the central cone 16 and is configured so that the load of the powder or granular material material filled in the hopper portion 3 is not directly applied. Further, a gap t5 is formed between the upper surface of the central disk 13 and the central portion of the three support arms 15.

上記支持アーム15は、図2に示すように共通中心軸Cを中心に互いに120度の角度で3方向に設けられている。これらの各支持アーム15は、半径方向に水平に延びる上端15cに、半径方向の頂部Rを有する横断面二等辺三角形状の板であり、上記各支持アーム15の内側(三角形状の内側)において、上記頂部Rに沿って垂直板17を幅方向のリブ17aにて中央位置に垂直に固定し(図1参照)、各垂直板17の半径方向の先端17bに各々垂直短板18をボルト止めし、各垂直短板18の半径方向外縁を上記逆截頭円錐部5の内周面(貯留槽の内周面)5aに各々溶接固定し、これにより上記中央円錐体16をその頂点が上記共通中心軸Cに一致するように固定している。この中央円錐体16と上記支持アーム15は、粉粒体材料の圧力が底盤6に直接作用することを防止して、各回転フィーダー8a〜8cにおける排出を円滑に行わせると共に、中央回転掻き出し羽根14’に粉粒体材料の圧力が直接作用することを防止して、円滑に回転させるものである。 As shown in FIG. 2, the support arms 15 are provided in three directions at an angle of 120 degrees with respect to the common central axis C. Each of these support arms 15 is an isosceles triangular plate having a radial top R at the upper end 15c extending horizontally in the radial direction, and is inside each of the support arms 15 (inside the triangle shape). Along the top R, the vertical plate 17 is fixed vertically to the center position by the rib 17a in the width direction (see FIG. 1), and the vertical short plate 18 is bolted to the radial tip 17b of each vertical plate 17. Then, the radial outer edge of each vertical short plate 18 is welded and fixed to the inner peripheral surface (inner peripheral surface of the storage tank) 5a of the inverted head cone portion 5, whereby the central cone 16 is fixed at its apex. It is fixed so as to coincide with the common central axis C. The central cone 16 and the support arm 15 prevent the pressure of the powder or granular material material from directly acting on the bottom plate 6 to facilitate discharge in each of the rotary feeders 8a to 8c, and the central rotary scraping blade. It prevents the pressure of the powder or granular material from directly acting on 14'and allows it to rotate smoothly.

上記構成により、上記各支持アーム15の半径方向外縁15aと上記逆截頭円錐部5の内周面(貯留槽の内周面)5aとの間には間隔(支持アーム用小間隙)t4(例えば150mm)の間隙が形成されている。これは、横断面三角形状の上記支持アーム15をそのまま逆截頭円錐部5の内周面5aに固定すると、支持アーム15の左右の傾斜面15’と上記内周面5aに緩やかな稜線が形成され、この稜線を起点として粉粒体材料のブリッジが発生し易くなる。そこで、上記支持アーム15と上記内周面5aとは上記垂直短板18にて接続するように構成し、上記内周面5a近傍において、上記支持アーム15の上側に積層する粉粒体材料が、上記間隔t4から下方に落下し得るように構成し、即ち、粉粒体材料が下降する際の抵抗を少なくして、上述のようなブリッジの発生を防止したのである。尚、ここで、上記垂直板17と垂直短板18を「垂直板」という。 With the above configuration, there is a gap (small gap for the support arm) t4 (small gap for the support arm) between the radial outer edge 15a of each support arm 15 and the inner peripheral surface (inner peripheral surface of the storage tank) 5a of the inverted head conical portion 5. For example, a gap of 150 mm) is formed. This is because when the support arm 15 having a triangular cross section is fixed to the inner peripheral surface 5a of the inverted conical portion 5 as it is, gentle ridges are formed on the left and right inclined surfaces 15'and the inner peripheral surface 5a of the support arm 15. It is formed, and bridging of the powder or granular material is likely to occur starting from this ridgeline. Therefore, the support arm 15 and the inner peripheral surface 5a are configured to be connected by the vertical short plate 18, and in the vicinity of the inner peripheral surface 5a, the powder or granular material material laminated on the upper side of the support arm 15 is formed. The structure is such that the powder or granular material can fall downward from the interval t4, that is, the resistance when the powder or granular material material descends is reduced to prevent the formation of the bridge as described above. Here, the vertical plate 17 and the vertical short plate 18 are referred to as "vertical plates".

また、上記支持アーム15の半径方向外縁15aを上記内周面5aに隙間なく接続すると、上記半径方向外縁15aと上記内周面5aの接続部が、粉粒体材料降下時に抵抗となるため、上記抵抗を無くし、円滑に粉粒体材料が降下し得るようにするためである。 Further, when the radial outer edge 15a of the support arm 15 is connected to the inner peripheral surface 5a without a gap, the connecting portion between the radial outer edge 15a and the inner peripheral surface 5a becomes a resistance when the powder or granular material material is lowered. This is to eliminate the above resistance and allow the powder or granular material to descend smoothly.

上記中央円錐体16は、その頂点を上記共通中心軸Cに一致させた状態で、上記3本の支持アーム15の中央接合部15bの上側に固定されている。具体的には、図4に示すように、上記各支持アーム15の中央接合部15bにおいて、上記共通中心軸Cから同一距離の3か所の上記頂部Rに上向きの固定板19を設け、一方、上記中央円錐体16の下縁の上記固定板19に対応する位置の内側(3か所)に、上記固定板19に対応する下向きの固定板20(3か所)を突設し、上記中央円錐体16をその頂点を上記共通中心軸Cに一致させた状態で上記各支持アーム15の中央接合部15b上に載置し、その後、3か所の固定板20と対応する上記固定板19とをボルトBにて固定することにより、上記中央円錐体16は、上記支持アーム15の中心部であって上記各頂部Rの上に載置されるように固定される。 The central cone 16 is fixed to the upper side of the central joint portion 15b of the three support arms 15 in a state where the apex of the central cone 16 is aligned with the common central axis C. Specifically, as shown in FIG. 4, in the central joint portion 15b of each of the support arms 15, upward fixing plates 19 are provided at three top portions R at the same distance from the common central axis C. , The downward fixing plate 20 (3 places) corresponding to the fixing plate 19 is projected inside (3 places) of the lower edge of the central cone 16 corresponding to the fixing plate 19 and described above. The central cone 16 is placed on the central joint portion 15b of each of the support arms 15 with its apex aligned with the common central axis C, and then the fixing plates 20 corresponding to the three fixing plates 20 are placed. By fixing 19 and 19 with bolts B, the central cone 16 is fixed so as to be placed on each of the top portions R at the center of the support arm 15.

このように構成すると、上記中央円錐体16の下面側と上記支持アーム15の頂部Rの両側斜面15’との間に空間Sが形成されるため(図4(c)参照)、上記ホッパー3内に充填された粉粒体材料のレベルが徐々に低下して行き、そのレベルQが、上記中央円錐体16から上記支持アーム15を通って下方に低下していくとき、上記中央円錐体16下面と上記支持アーム15との間は、上記固定板19,20の3か所以外に接合部が存在せず、上記空間Sが形成されているため、上記中央円錐体16の下縁16’から下降する粉粒体材料は、上記下縁16’から直ちに上記支持アーム15の両傾斜面15’に沿って下降することになり、上記中央円錐体16と上記各支持アーム15との接続部に、ブリッジの起点となる緩やかな稜線が生成されず、粉粒体材料によるブリッジの発生を防止することができる。 With this configuration, a space S is formed between the lower surface side of the central cone 16 and the slopes 15'on both sides of the top R of the support arm 15 (see FIG. 4C), so that the hopper 3 When the level of the powder or granular material material filled therein gradually decreases and the level Q decreases downward from the central cone 16 through the support arm 15, the central cone 16 Since there are no joints between the lower surface and the support arm 15 other than the three fixing plates 19 and 20, and the space S is formed, the lower edge 16'of the central cone 16 is formed. The powder or granular material material descending from the lower edge 16'will immediately descend along both inclined surfaces 15'of the support arm 15, and the connecting portion between the central cone 16 and each of the support arms 15 In addition, the gentle ridge line that is the starting point of the bridge is not generated, and the generation of the bridge due to the powder or granular material can be prevented.

さらに、図1、図2に示すように、3本の上記各支持アーム15,15,15の各上縁15c,15c,15cと、上記各上縁15c,15c,15cに対応する上記上部円筒体(貯留槽)2の内周面2a(3か所)との間に、各々上記内周面2aから上記共通中心軸Cに向かう板状の3枚の仕切板21,21,21(例えば鋼板製)を垂直方向に各々設け、これらの仕切板21,21,21により上記貯留槽2及びホッパー部3(貯留槽)の内周面2a,3aを周方向に複数個所(本実施形態の場合は、図2、図6(b)に示すように、エリアK1,K2,K3の3か所)に分割するように構成する。即ち、上記各支持アーム15,15,15の各上縁15c,15c,15cと、上記貯留槽(上部円筒体2)の内周面2aとの間に、上記内周面2aから上記共通中心軸Cに向かう板状の仕切板21,21,21を各々設け、これらの仕切板21,21,21により上記貯留槽の上記内周面2a,3aを周方向に複数(本実施形態の場合は3つ)に分割する。 Further, as shown in FIGS. 1 and 2, the upper edges 15c, 15c, 15c of the three support arms 15, 15, 15 and the upper cylinders corresponding to the upper edges 15c, 15c, 15c are respectively. Three plate-shaped partition plates 21, 21, 21 (for example) between the inner peripheral surface 2a (three places) of the body (storage tank) 2 and the inner peripheral surface 2a toward the common central axis C, respectively. (Made of steel plate) are provided in the vertical direction, and the inner peripheral surfaces 2a and 3a of the storage tank 2 and the hopper portion 3 (storage tank) are provided at a plurality of locations (in the present embodiment) in the circumferential direction by the partition plates 21, 21, 21. In this case, as shown in FIGS. 2 and 6 (b), the area is divided into three areas (K1, K2, and K3). That is, between the upper edges 15c, 15c, 15c of the support arms 15, 15, 15 and the inner peripheral surface 2a of the storage tank (upper cylindrical body 2), the common center from the inner peripheral surface 2a. Plate-shaped partition plates 21, 21, 21 and 21 facing the shaft C are provided, respectively, and the inner peripheral surfaces 2a, 3a of the storage tank are provided in a plurality of circumferential directions by the partition plates 21, 21, 21, 21 (in the case of the present embodiment). Is divided into three).

具体的には、図2に示すように、これら3枚の仕切板21,21,21は、互いに120度を角度差を以って、共通中心軸Cに向けて、上記内周面2a,3aを3分割するように設けられている。 Specifically, as shown in FIG. 2, these three partition plates 21, 21, 21 have an angle difference of 120 degrees from each other toward the common central axis C, and the inner peripheral surfaces 2a, It is provided so as to divide 3a into three parts.

上記3枚の仕切板21,21,21の構成は同一なので、図1の仕切板21について説明すると、上記仕切板21の下縁の幅t6は、上記ホッパー部3の内周面3aから上記共通中心軸Cに向けて、上記支持アーム15の上縁15cの長さt7の半分程度の幅又は上記支持アーム15の上縁15cの長さの半分より若干狭い幅にて構成されている。 Since the configurations of the three partition plates 21, 21, 21 are the same, the partition plate 21 of FIG. 1 will be described. The width t6 of the lower edge of the partition plate 21 is the width t6 from the inner peripheral surface 3a of the hopper portion 3 to the above. The width is about half the length t7 of the upper edge 15c of the support arm 15 or slightly narrower than half the length of the upper edge 15c of the support arm 15 toward the common central axis C.

そして、当該仕切板21は、上記幅t6にて、上記共通中心軸C側の内縁21aが、上記下端から上記ホッパー部3の内周面3aと同様の傾斜角度θにて、上記上部円筒体2の内周面2aまで延長形成されている。その結果、上記仕切板21の上記回転中心軸C側の内縁21aと上記支持アーム15の上縁15cとのなす角度θは70度となっている。尚、上記角度θは、好ましくは55度〜80度、より好ましくは60度〜70度の範囲内(90度より小さい鋭角)の何れかの角度とする。 Then, the partition plate 21 has the upper cylindrical body having the width t6 and the inner edge 21a on the common central axis C side from the lower end at the same inclination angle θ as the inner peripheral surface 3a of the hopper portion 3. It is extended to the inner peripheral surface 2a of 2. As a result, the angle θ formed by the inner edge 21a of the partition plate 21 on the rotation center axis C side and the upper edge 15c of the support arm 15 is 70 degrees. The angle θ is preferably any angle within the range of 55 degrees to 80 degrees, more preferably 60 degrees to 70 degrees (acute angle smaller than 90 degrees).

さらに、上記各仕切板21の上記上部円筒体2の内周面2a側の外縁21bは、上記上部円筒体(貯留槽)2の内周面2aと隙間なく接続され、上記各仕切板21の上記ホッパー部(貯留槽)3の内周面3a側の外縁21cと上記ホッパー部3の内周面3aとの間には、間隙(仕切板用小間隙)t8(例えば50mm)が設けられている。この間隙t8は、ホッパー部3の上端部の内周面3aからホッパー3の内周面3aの下端まで一定の幅(t8)にて連続しており、上記間隙t8の下端は、上記間隙(支持アーム用小間隙)t4に連通している。即ち、上記各仕切板21の上記内周面側の外縁21cと上記内周面3aとの間には、仕切板用小間隙t8が設けられている。 Further, the outer edge 21b of each of the partition plates 21 on the inner peripheral surface 2a side of the upper cylindrical body 2 is connected to the inner peripheral surface 2a of the upper cylindrical body (storage tank) 2 without a gap, and the partition plates 21 of the above. A gap (small gap for partition plate) t8 (for example, 50 mm) is provided between the outer edge 21c on the inner peripheral surface 3a side of the hopper portion (storage tank) 3 and the inner peripheral surface 3a of the hopper portion 3. There is. The gap t8 is continuous with a constant width (t8) from the inner peripheral surface 3a of the upper end portion of the hopper portion 3 to the lower end of the inner peripheral surface 3a of the hopper 3, and the lower end of the gap t8 is the gap (the gap (t8). (Small gap for support arm) It communicates with t4. That is, a small gap t8 for the partition plate is provided between the outer edge 21c on the inner peripheral surface side of each of the partition plates 21 and the inner peripheral surface 3a.

上記間隙t8を設けたのは、上記仕切板21の外縁21cと上記ホッパー部(貯留槽)3の内周面3aとを隙間なく接続すると、その仕切板21と上記内周面3aとの接合部が粉粒体材料降下時に抵抗となるため、上記抵抗を無くし、スムーズに粉粒体材料を降下させるためである。 The gap t8 is provided when the outer edge 21c of the partition plate 21 and the inner peripheral surface 3a of the hopper portion (storage tank) 3 are connected without a gap, and the partition plate 21 and the inner peripheral surface 3a are joined. This is because the portion becomes a resistance when the powder or granular material is lowered, so that the above resistance is eliminated and the powder or granular material is smoothly lowered.

また、上記間隙t8の下端は、上記間隙(支持アーム用小間隙)t4と連通しているので、仕切板21近傍の粉粒体材料が、ホッパー部3の内周面3aから逆截頭円錐部5の内周面5aに移行しても、粉粒体材料降下時の抵抗が増加することなく、円滑に粉粒体材料を降下させることができる。 Further, since the lower end of the gap t8 communicates with the gap (small gap for the support arm) t4, the powder or granular material in the vicinity of the partition plate 21 is an inverted head cone from the inner peripheral surface 3a of the hopper portion 3. Even if it shifts to the inner peripheral surface 5a of the portion 5, the powder or granular material can be smoothly lowered without increasing the resistance when the powder or granular material is lowered.

図2に示すように、上記3本支持アーム15,15,15は、上記共通中心軸Cを中心とする一定の開き角度(本実施形態の場合は120度)であって、上記小円形開口部7a,7b,7cを塞がない位置に各々固定されており、上記各仕切板21,21,21は、上記各支持アーム15,15,15の上に各々設けられている。即ち、各仕切板21,21,21も上記共通中心軸Cを中心とする一定の開き角度(本実施形態の場合は120度)の位置に設けられている。 As shown in FIG. 2, the three support arms 15, 15, and 15 have a constant opening angle (120 degrees in the case of the present embodiment) about the common central axis C, and have the small circular opening. The portions 7a, 7b, and 7c are fixed at positions where they are not blocked, and the partition plates 21, 21, 21, and 21 are provided on the support arms 15, 15, and 15, respectively. That is, each partition plate 21, 21, 21 is also provided at a position of a constant opening angle (120 degrees in the case of the present embodiment) about the common central axis C.

本発明は上述のように構成されるので、次に本発明のマルチフィーダーの動作を説明する。 Since the present invention is configured as described above, the operation of the multi-feeder of the present invention will be described next.

本実施形態の場合は、粉粒体材料は大きさが25mm×35mm程度、厚み7mm〜8mm程度の木質チップ(短冊形状原料)とする。貯留槽の直径は8m、下部円筒体4の直径は6mで図2に示すように底盤6上に3つの小円形開口部7を有し、3台の回転フィーダー8を有するものとする。 In the case of the present embodiment, the powder or granular material is a wood chip (strip-shaped raw material) having a size of about 25 mm × 35 mm and a thickness of about 7 mm to 8 mm. It is assumed that the diameter of the storage tank is 8 m, the diameter of the lower cylindrical body 4 is 6 m, the bottom plate 6 has three small circular openings 7, and three rotary feeders 8 are provided.

まず、垂直コンベア等で木質チップ(粉粒体材料Mの上端レベルQ(図3参照))を上記貯留槽内に上部円筒体2の上面開口から投入する。貯留槽内には、底盤6から上部円筒体2の上縁のレベルQまで粉粒体材料Mが収納された状態となり(図6(a)の状態)、さらに粉粒体材料Mは、底盤6から各小円形開口部7a〜7cを介して小ホッパー9a〜9c内に投入され、各回転フィーダー8a〜8cの各々の底盤23上まで投入された状態となる(図3、図6参照)。 First, wood chips (upper end level Q of the powder or granular material M (see FIG. 3)) are put into the storage tank through the upper opening of the upper cylindrical body 2 by a vertical conveyor or the like. In the storage tank, the powder or granular material material M is stored from the bottom plate 6 to the level Q of the upper edge of the upper cylindrical body 2 (state in FIG. 6A), and the powder or granular material material M is further stored in the bottom plate. It is put into the small hoppers 9a to 9c from 6 through the small circular openings 7a to 7c, and is put into the bottom 23 of each of the rotary feeders 8a to 8c (see FIGS. 3 and 6). ..

この状態で、3台の回転フィーダー8a〜8cを連続的に回転する。具体的には各駆動モータM’により各回転フィーダー8a〜8cの回転羽根10を矢印A’方向に回転駆動する。すると、上記底盤23上に存在する粉粒体材料は、各回転フィーダー8a〜8cにおいて各回転羽根10の回転により回転しながら各底盤23周辺方向に移送され、各底盤23上に設けられた各排出口11から下方に定量排出されて行く(図3矢印E方向)。尚、上記排出口11の下側には排出シュート11aが設けられており、該排出シュート11aの下端には搬送コンベア(図示せず)が配置され、当該配送コンベアにより目的とする場所に搬送される。 In this state, the three rotary feeders 8a to 8c are continuously rotated. Specifically, the rotary blades 10 of the rotary feeders 8a to 8c are rotationally driven in the direction of the arrow A'by each drive motor M'. Then, the powder or granular material material existing on the bottom plate 23 is transferred in the peripheral direction of each bottom plate 23 while rotating by the rotation of each rotary blade 10 in each of the rotary feeders 8a to 8c, and each provided on each bottom plate 23. A fixed amount is discharged downward from the discharge port 11 (FIG. 3, arrow E direction). A discharge chute 11a is provided below the discharge port 11, and a conveyor (not shown) is arranged at the lower end of the discharge chute 11a, and is transported to a target location by the delivery conveyor. Conveyor belt.

このように上記サイロ(貯留槽)1の底盤6より下側の各回転フィーダー7a〜7bにより、当該サイロ1内の粉粒体材料が下方に排出されていくと、上記小円形開口部7a〜7bの上部に堆積する粉粒体材料が徐々に下方に排出されて行く。このとき貯留槽の下半部がホッパー(ホッパー部3及び逆截頭円錐部5)により形成されているので、該ホッパーにより、仕切板21,21,21によって囲まれた各エリアK1〜K3における粉粒体材料の底盤6に対する圧力が低減されつつ、粉粒体材料の下降をより円滑に行うことができる。 As described above, when the powder or granular material in the silo 1 is discharged downward by the rotary feeders 7a to 7b below the bottom plate 6 of the silo (storage tank) 1, the small circular openings 7a to 7a to The powder or granular material deposited on the upper part of 7b is gradually discharged downward. At this time, since the lower half of the storage tank is formed by the hoppers (hopper portion 3 and inverted head cone portion 5), the hoppers in the areas K1 to K3 surrounded by the partition plates 21, 21, 21. While the pressure on the bottom plate 6 of the powder or granular material material is reduced, the powder or granular material can be lowered more smoothly.

ここで、貯留槽としての上部円筒体2及びホッパー部3の内周面2a,3aには、3か所に共通中心軸Cに向かう仕切板21,21,21が存在するので、これらの仕切板21,21,21の存在により、これら仕切板21,21,21の存在する位置において、粉粒体材料Mの周方向の相互の絡み合いが分断されている。即ち、図2において、上部円筒体2の内周面2a,3a近傍に位置する粉粒体材料は、3枚の仕切り板21,21,21により、予め切れ目が入れられている状態となり、その結果、上記粉粒体材料は、120度毎のエリアK1、エリアK2、エリアK3の3つのエリアにおいて分割された状態となっている。 Here, the upper cylindrical body 2 as the storage tank and the inner peripheral surfaces 2a and 3a of the hopper portion 3 have partition plates 21, 21, 21 and 21 facing the common central axis C at three locations, and thus these partitions. Due to the presence of the plates 21, 21, 21, the entanglement of the powder and granular material M in the circumferential direction is divided at the positions where the partition plates 21, 21, 21 are present. That is, in FIG. 2, the powder or granular material material located in the vicinity of the inner peripheral surfaces 2a, 3a of the upper cylindrical body 2 is in a state of being pre-cut by three partition plates 21, 21, 21. As a result, the powder or granular material is in a state of being divided into three areas of area K1, area K2, and area K3 every 120 degrees.

従って、上記各回転フィーダー7a〜7cによる定量排出が進み、上記小円形開口部7a〜7c上に体積する粉粒体材料が下方に排出されていくと、上記エリアK1に位置する粉粒体材料Mは、エリアK1に対応する小円形開口部7aの上部に体積する粉粒体材料Mが排出されていくことにより、エリアK1の貯留槽の内周面2a,3aの近傍に位置する粉粒体材料Mも、矢印G方向に同様に下降して行く(図6(b)参照)。これは、エリアK1の貯留槽の内面2a,3a近傍に位置する粉粒体材料Mは、両側の仕切板21,21により周方向の絡み合いが分断されており、周方向の相互の絡み合いの力が弱いので、上記小円形開口部7aの上部に堆積する粉粒体材料Mが下降していくと、当該下降に誘発されて、エリアK1の貯留槽の上部(上部円筒体2)の内周面2a,3aの近傍に位置する粉粒体材料も同様に、全体が下降していくことになるからである。 Therefore, when the quantitative discharge by each of the rotary feeders 7a to 7c proceeds and the powder or granular material material having a volume on the small circular opening 7a to 7c is discharged downward, the powder or granular material material located in the area K1 is discharged. M is a powder or granular material located in the vicinity of the inner peripheral surfaces 2a and 3a of the storage tank of the area K1 by discharging the powder or granular material material M which is volumetrically above the small circular opening 7a corresponding to the area K1. The body material M also descends in the direction of arrow G (see FIG. 6B). This is because the powder or granular material M located near the inner surfaces 2a and 3a of the storage tank in the area K1 is entangled in the circumferential direction by the partition plates 21 and 21 on both sides, and the entanglement force in the circumferential direction is divided. As the powder or granular material material M deposited on the upper part of the small circular opening 7a descends, the inner circumference of the upper part (upper cylindrical body 2) of the storage tank in the area K1 is induced by the descending. This is because the powder or granular material material located in the vicinity of the surfaces 2a and 3a also descends as a whole.

また、エリアK2,エリアK3に存在する粉粒体材料も同様である。即ち、上記各回転フィーダー7a〜7cによる定量排出が進み、上記小円形開口部7b,7c上に体積する粉粒体材料が下方に排出されていくと、上記エリアK2(K3)に位置する粉粒体材料Mは、エリアK2(K3)に対応する小円形開口部7b(7c)の上に体積する粉粒体材料Mが排出されていくことにより、エリアK2(K3)の貯留槽の内周面2a,3a近傍に位置する粉粒体材料Mも矢印G方向に同様に下降して行く(図6(b)参照)。 The same applies to the powder or granular material materials existing in areas K2 and K3. That is, when the quantitative discharge by each of the rotary feeders 7a to 7c proceeds and the powder or granular material having a volume on the small circular openings 7b and 7c is discharged downward, the powder located in the area K2 (K3) is discharged. The granular material M is contained in the storage tank of the area K2 (K3) by discharging the powder / granular material M which is volumetrically formed on the small circular opening 7b (7c) corresponding to the area K2 (K3). The powder or granular material material M located near the peripheral surfaces 2a and 3a also descends in the direction of arrow G (see FIG. 6B).

これは、同様に、エリアK2(K3)の貯留槽の内周面2a,3a近傍に位置する粉粒体材料Mは、両側の仕切板21,21により周方向の絡み合いが分断されており、周方向の相互の絡み合いの力が弱いので、上記小円形開口部7b(7c)の上側に体積する粉粒体材料Mが下降していくと、当該下降に誘発されて、エリアK2(K3)の上部円筒体2の内周面2a,3aの近傍に位置する粉粒体材料Mも同様に、全体が下降していくことになるからである。 Similarly, the powder or granular material material M located near the inner peripheral surfaces 2a and 3a of the storage tank in the area K2 (K3) is entangled in the circumferential direction by the partition plates 21 and 21 on both sides. Since the force of mutual entanglement in the circumferential direction is weak, when the powder or granular material material M that has a volume above the small circular opening 7b (7c) descends, it is induced by the descending and the area K2 (K3). This is because the whole of the powder or granular material material M located in the vicinity of the inner peripheral surfaces 2a and 3a of the upper cylindrical body 2 of the above is similarly lowered.

また、上記各仕切板21,21,21と上記ホッパー部(貯留槽)3の内周面3a間には間隔t8(仕切板用小間隙)が形成されているので、粉粒体材料Mが上記ホッパー部3の内周面3aを下降するとき、仕切板21の内縁21cと上記内周面3a近傍に位置する粉粒体材料Mが下降する上で、抵抗となる状況は生じることはなく、各エリアK1,K2,K3において、両側の仕切板21の内縁21c,21c近傍に位置する粉粒体材料Mも円滑に下降することができる。 Further, since an interval t8 (small gap for the partition plate) is formed between each of the partition plates 21, 21, 21 and the inner peripheral surface 3a of the hopper portion (storage tank) 3, the powder or granular material material M can be used. When the inner peripheral surface 3a of the hopper portion 3 is lowered, the inner edge 21c of the partition plate 21 and the powder or granular material material M located in the vicinity of the inner peripheral surface 3a are lowered, and a situation of resistance does not occur. In each of the areas K1, K2, and K3, the powder or granular material material M located near the inner edges 21c and 21c of the partition plates 21 on both sides can also be smoothly lowered.

さらに、各支持アーム15の各半径方向外縁15aと内周面5aの間も間隔t4が形成されているので、上記支持アーム15の傾斜面15’,15’(図4(c)参照)上に存在する粉粒体材料と上記貯留槽の内周面5aとの間においてブリッジが形成されることはなく、上記傾斜面15’,15’上の粉粒体材料Mは円滑に下降していく。このとき、上記間隔t8と上記間隔t4が連通していることから、上記仕切板21の外縁21cと貯留槽の内周面3a近傍の粉粒体材料が円滑に下降して行き、引き続いて上記支持アーム15の半径方向外縁15a近傍の傾斜面15’,15’を円滑に下降していくことができ、上記仕切板21の外縁21cと上記内周面3a、上記支持アーム15の半径方向外縁15aと内周面5aが粉粒体粉粒体材料の下降の際の抵抗になることはない。 Further, since a distance t4 is also formed between each radial outer edge 15a and the inner peripheral surface 5a of each support arm 15, the inclined surfaces 15'and 15'of the support arm 15 (see FIG. 4C). No bridge is formed between the powder or granular material material existing in the above-mentioned storage tank and the inner peripheral surface 5a of the storage tank, and the powder or granular material material M on the inclined surfaces 15'and 15'is smoothly lowered. I will go. At this time, since the interval t8 and the interval t4 are in communication with each other, the powder or granular material material in the vicinity of the outer edge 21c of the partition plate 21 and the inner peripheral surface 3a of the storage tank smoothly descends, and subsequently, the above. The inclined surfaces 15'and 15'near the radial outer edge 15a of the support arm 15 can be smoothly descended, and the outer edge 21c of the partition plate 21, the inner peripheral surface 3a, and the radial outer edge of the support arm 15 can be smoothly descended. The 15a and the inner peripheral surface 5a do not serve as resistance when the powder or granular material is lowered.

そして、上記貯留槽内の粉粒体材料のレベルQが上記ホッパー部3内を低下して行き、さらに各小円形開口部7a〜7c内の短円筒8a’〜8c’を下降し、上記レベルQが全ての検出センサー24a,24b,24cの位置より下方に移行し、粉粒体材料の排出が最終段階に達した時、これを上記レベルセンサー24a,24b,24cによって検出すると、制御部(図示せず)が、駆動モータMを正逆回転駆動する。これにより、上記中央回転掻き出し羽根14’が矢印A方向及び矢印A’方向に一定時間(例えば10秒間から20秒間)正逆回転し、上記小円形開口部7a〜7cの周辺の底盤6上面6aに残留する粉粒体材料Mを上記各小円形開口部7a〜7cに排出する。 Then, the level Q of the powder or granular material material in the storage tank is lowered in the hopper portion 3, and further lowered in the short cylinders 8a'to 8c'in each of the small circular openings 7a to 7c, and the level is further lowered. When Q shifts below the positions of all the detection sensors 24a, 24b, 24c and the discharge of the powder or granular material reaches the final stage, when this is detected by the level sensors 24a, 24b, 24c, the control unit ( (Not shown) drives the drive motor M in forward and reverse rotation. As a result, the central rotation scraping blade 14'rotates forward and reverse for a certain period of time (for example, 10 to 20 seconds) in the direction of arrow A and the direction of arrow A', and the upper surface 6a of the bottom plate 6 around the small circular openings 7a to 7c. The powder or granular material material M remaining in the above-mentioned small circular openings 7a to 7c is discharged.

上記スポーク14の回転範囲は、例えば、矢印A方向は、上記スポーク14の矢印A方向の前端が隣接する小円形開口部7a〜7cの開口のエッジに位置するまで(図2の小円形開口部7aの位置a)、矢印A’方向は、上記スポーク14の矢印A’方向の前端が隣接する小円形開口部7a〜7cの開口のエッジに位置するまで(図2の小円形開口部7cの位置b)であり、この範囲(a,bの範囲)を正逆方向に、一定時間駆動する。 The rotation range of the spoke 14 is, for example, in the arrow A direction until the front end of the spoke 14 in the arrow A direction is located at the edge of the adjacent small circular opening 7a to 7c (small circular opening in FIG. 2). At position a) of 7a, the direction of arrow A'is until the front end of the spoke 14 in the direction of arrow A'is located at the edge of the adjacent small circular opening 7a to 7c (of the small circular opening 7c in FIG. 2). Position b), and this range (range of a and b) is driven in the forward and reverse directions for a certain period of time.

従って、小円形開口部7a〜7cの周辺の底盤6の上面6aに位置する粉粒体材料Mをも略完全に、小円形開口部7a〜7c内に排出することができる。 Therefore, the powder or granular material M located on the upper surface 6a of the bottom plate 6 around the small circular openings 7a to 7c can be almost completely discharged into the small circular openings 7a to 7c.

また、上述のような定量排出動作を継続中に、上記貯留槽内の上部(上部円筒体2の上部)から順次、新たな粉物体材料が投入されたとしても、上記と同様に、粉粒体材料は順次、各エリアK1〜K3において、矢印G方向に円滑に下降していくので、貯留槽の内周面2a,3a,5aに排出されない粉粒体材料が環状に残る、ということはなく、投入された粉粒体材料Mは、略投入された順序で、順次定量排出されていく。 Further, even if new powder material is sequentially introduced from the upper part (upper part of the upper cylindrical body 2) in the storage tank while the quantitative discharge operation as described above is being continued, the powder particles are similarly charged as described above. Since the body material sequentially descends smoothly in the direction of arrow G in each of the areas K1 to K3, it means that the powder or granular material that is not discharged remains in a ring shape on the inner peripheral surfaces 2a, 3a, 5a of the storage tank. Rather, the charged powder or granular material material M is sequentially and quantitatively discharged in the order in which it is charged.

本発明は以上のように、貯留槽内に収納された粉粒体材料は、複数の仕切板21,21,21により、周方向の絡み合いが複数個所で分断されるため、底盤6の小型供給機8a〜8cにより下方に排出されていくと、仕切板21によって囲まれたエリアK1〜K3における粉粒体材料は円滑に下降していくことができ、貯留槽内の内周面に周方向に粉粒体材料が残留することはない。 As described above, in the present invention, the powder or granular material material stored in the storage tank is divided into entanglements in the circumferential direction at a plurality of places by the plurality of partition plates 21, 21, 21. Therefore, the bottom plate 6 is supplied in a small size. When the powder or granular material is discharged downward by the machines 8a to 8c, the powder or granular material in the areas K1 to K3 surrounded by the partition plate 21 can be smoothly lowered, and the powder or granular material can be smoothly lowered to the inner peripheral surface in the storage tank in the circumferential direction. No powder or granular material remains in the material.

また、貯留槽の下半部をホッパーにより形成することにより、仕切板21によって囲まれた各エリアK1〜K3における粉粒体材料の下降をより円滑に行うことができる。 Further, by forming the lower half of the storage tank with a hopper, it is possible to more smoothly lower the powder or granular material in each of the areas K1 to K3 surrounded by the partition plate 21.

また、支持アーム15と仕切板21との角度θを鋭角とすることにより、貯留槽内における粉粒体粉粒体材料のブリッジを効果的に低減することができる。 Further, by setting the angle θ between the support arm 15 and the partition plate 21 to be an acute angle, it is possible to effectively reduce the bridge of the powder or granular material in the storage tank.

また、貯留槽内の支持アーム15の位置において、仕切板21により、貯留槽内の粉粒体材料に、共通中心軸C方向の十分な切れ目を設けることができ、仕切板21により囲まれた各エリアK1〜K3毎に、より円滑に粉粒体材料を下降させることができる。 Further, at the position of the support arm 15 in the storage tank, the partition plate 21 can provide a sufficient cut in the powder or granular material in the storage tank in the common central axis C direction, and is surrounded by the partition plate 21. The powder or granular material can be lowered more smoothly in each of the areas K1 to K3.

また、仕切板用小間隙t8の存在により、各仕切板21の外縁21cと上記内周面間の近傍において、粉粒体材料が下降する際の抵抗を少なくすることができ、より円滑に粉粒体材料を下降させることができる。 Further, due to the presence of the small gap t8 for the partition plate, the resistance when the powder or granular material material descends in the vicinity between the outer edge 21c of each partition plate 21 and the inner peripheral surface can be reduced, and the powder can be powdered more smoothly. The granular material can be lowered.

また、支持アーム用小間隙t4の存在により、各支持アーム15の半径方向外縁15aと上記内周面間の近傍において、粉粒体材料が下降する際の抵抗を少なくすることができ、しかも、仕切板用小間隙t8と支持アーム用小間隙t4が連通しているので、より円滑に粉粒体材料を下降することができる。 Further, due to the presence of the small gap t4 for the support arm, the resistance when the powder or granular material material descends in the vicinity between the radial outer edge 15a of each support arm 15 and the inner peripheral surface can be reduced, and moreover, the resistance when the powder or granular material material descends can be reduced. Since the partition plate small gap t8 and the support arm small gap t4 communicate with each other, the powder or granular material can be lowered more smoothly.

また、仕切板21によって囲まれたエリアK1〜K3に、各々対応して小型供給機7a〜7cが存在することになり、各エリアの粉粒体材料を対応する小型供給機により円滑に排出することができる。 Further, the small feeders 7a to 7c are present in the areas K1 to K3 surrounded by the partition plate 21, respectively, and the powder or granular material of each area is smoothly discharged by the corresponding small feeder. be able to.

また、貯留槽内の粉粒体材料の排出が略終了段階において、中央回転掻き出し羽根14’を回転することにより、隣接する小円形開口部7a〜7c間の底盤6上に残留する粉粒体材料等を小円形開口部7a〜7cに排出することができ、底盤6近傍に残留する粉粒体材料を略完全に排出することが可能となる。 Further, at the stage where the discharge of the powder or granular material material in the storage tank is substantially completed, the powder or granular material remaining on the bottom plate 6 between the adjacent small circular openings 7a to 7c by rotating the central rotary scraping blade 14'. The material or the like can be discharged into the small circular openings 7a to 7c, and the powder or granular material remaining in the vicinity of the bottom plate 6 can be discharged almost completely.

また、スポーク14に粉粒体材料の圧力が作用しないので、より低出力の駆動モータMにより中央回転掻き出し羽根14’を駆動することができる。 Further, since the pressure of the powder or granular material does not act on the spokes 14, the central rotation scraping blade 14'can be driven by the lower output drive motor M.

尚、上記実施形態では、小円形開口部は3個の場合を説明したが、小円形開口部は、共通中心軸Cの周りに、均等開き角度で4個、5個でも良くその数は限定されない。勿論、小円形開口部が4個、5個の場合は、回転フィーダーもそれに対応して4個、5個が設けられ、中央円錐体の支持アームも小円形開口部が4個、5個の場合は、各小円形開口部を塞がない位置に、4本、5本が設けられる。さらに、中央回転掻き出し羽根のスポークも、上記支持アームに下方に4本、5本設けられることになる。この場合、仕切板21は、支持アームに対応して、支持アーム上に4枚、又は、5枚設けられる。 In the above embodiment, the case where the number of small circular openings is three has been described, but the number of small circular openings may be four or five at an even opening angle around the common central axis C, and the number thereof is limited. Not done. Of course, when there are 4 or 5 small circular openings, 4 or 5 rotary feeders are provided correspondingly, and the support arm of the central cone also has 4 or 5 small circular openings. In this case, four or five are provided at positions where each small circular opening is not blocked. Further, four or five spokes of the central rotation scraping blade will be provided downward on the support arm. In this case, four or five partition plates 21 are provided on the support arm corresponding to the support arm.

また、上記実施形態では、貯留槽は、上部円筒体2とホッパー部3と下部円筒体4から構成されたものを説明したが、これに限定されず、全体が円筒形状の貯留槽でも良い。 Further, in the above embodiment, the storage tank is described as being composed of the upper cylindrical body 2, the hopper portion 3, and the lower cylindrical body 4, but the storage tank is not limited to this, and a storage tank having a cylindrical shape as a whole may be used.

本発明によれば、例えば木質チップのような粉粒体材料の貯留層内の周方向の絡み合いを分断することができ、例えば粉粒体材料を貯留槽内に連続投入しても、略投入した順に順次定量排出することができ、広く利用されることが期待される。 According to the present invention, the entanglement of the powder or granular material such as wood chips in the storage layer in the circumferential direction can be divided. For example, even if the powder or granular material is continuously charged into the storage tank, it is substantially charged. It is expected that it will be widely used because it can be discharged in a fixed quantity in the order in which it was used.

2 上部円筒体
2a 内周面
3 ホッパー部
3a 内周面
5 逆截頭円錐部
5a 内周面
6 底盤
7a〜7c 小円形開口部
8a〜8c 回転フィーダー(小型供給機)
14 スポーク
14’ 中央回転掻き出し羽根
15 支持アーム
15a 半径方向外縁
15c 上縁
16 中央円錐体
18 垂直短板
21 仕切板
21a 内縁
21c 外縁
t4 支持アーム用小間隙
t6 幅
t8 仕切板用小間隙
θ 角度
R 頂部
2 Upper cylinder 2a Inner peripheral surface 3 Hopper part 3a Inner peripheral surface 5 Inverted conical part 5a Inner peripheral surface 6 Bottom plate 7a to 7c Small circular opening 8a to 8c Rotating feeder (small feeder)
14 Spokes 14'Central rotation scraping blade 15 Support arm 15a Radial outer edge 15c Upper edge 16 Central cone 18 Vertical short plate 21 Partition plate 21a Inner edge 21c Outer edge t4 Small gap for support arm t6 Width t8 Small gap for partition plate θ Angle R Top

Claims (4)

粉粒体材料を貯留する円筒形状の貯留槽が設けられ、
上記貯留槽は上部円筒体とそれに接続されたホッパー部とそれに接続された下部円筒体により構成され、
上記貯留槽の下面は水平の底盤にて閉鎖され、当該底盤に上記円筒形状の共通中心軸の周りに一定の開き角度で複数の小円形開口部が貫設され、
上記各小円形開口部に小型供給機が各々接続され、
上記底盤の上方に上記共通中心軸を中心とする中央円錐体が設けられ、該中央円錐体は上記貯留槽の内周面との間に放射状に設けられた複数の支持アームにより固定され、
上記各支持アームは上記共通中心軸の周りに上記一定の開き角度で上記小円形開口部を塞がない位置において、上記ホッパー部に接続された逆截頭円錐部の内周面に各々固定されており、
上記各支持アームの各上縁と上記上部円筒体の内周面との間に、上記貯留槽の内周面から上記共通中心軸に向かう板状の仕切板を、上記共通中心軸を中心とする上記一定の開き角度の位置で各々設けることで、上記各仕切板が上記各支持アームの上記各上縁と上記上部円筒体の内周面に接続固定され、これらの仕切板により上記貯留槽の内周面周方向に複数のエリアに分割され
上記各仕切板の各下縁の幅は、上記貯留槽の内周面側から上記回転中心軸に向けて、上記支持アームの上縁の長さの半分程度の幅又は上記支持アームの上縁の長さの半分より若干狭い幅にて構成され、
上記各仕切板の内縁と上記各支持アームの上縁とのなす角度は90度より小さい鋭角であり、
かつ、上記各仕切板の各外縁と上記上部円筒体の内周面とは各々隙間なく接続され、上記仕切板の各外縁と上記ホッパー部の内周面との間には、各々仕切板用小間隙が設けられ、
上記各仕切板によって囲まれた上記各エリアに各々対応して上記各小型供給機が存在するものであるマルチフィーダー。
A cylindrical water tank is provided to store the powder or granular material.
The storage tank is composed of an upper cylinder, a hopper connected to the upper cylinder, and a lower cylinder connected to the hopper.
The lower surface of the storage tank is closed by a horizontal bottom plate, and a plurality of small circular openings are formed in the bottom plate at a constant opening angle around the common central axis of the cylindrical shape.
A small feeder is connected to each of the above small circular openings,
A central cone centered on the common central axis is provided above the bottom plate, and the central cone is fixed by a plurality of support arms radially provided between the central cone and the inner peripheral surface of the storage tank.
Each of the support arms is fixed to the inner peripheral surface of the inverted conical portion connected to the hopper portion at a position where the small circular opening is not blocked at the constant opening angle around the common central axis. And
Between each upper edge of each of the support arms and the inner peripheral surface of the upper cylinder, a plate-shaped partition plate extending from the inner peripheral surface of the storage tank toward the common central axis is centered on the common central axis. in each provided Rukoto at a position above a certain opening angle of, each partition plate is fixedly connected to the inner peripheral surface of the respective upper edge and the upper cylinder of the respective support arms, said reservoir by these partition plates is divided into a plurality of areas the inner circumferential surface of the bath in the circumferential direction,
The width of each lower edge of each of the partition plates is about half the length of the upper edge of the support arm or the upper edge of the support arm from the inner peripheral surface side of the storage tank toward the rotation center axis. Consists of a width slightly narrower than half the length of
The angle formed by the inner edge of each of the partition plates and the upper edge of each of the support arms is an acute angle smaller than 90 degrees.
In addition, each outer edge of each of the partition plates and the inner peripheral surface of the upper cylinder are connected without a gap, and each outer edge of the partition plate and the inner peripheral surface of the hopper portion are used for the partition plate. A small gap is provided,
A multi-feeder in which each of the small feeders exists in each of the areas surrounded by the partition plates.
上記各支持アームは横断面三角形状に形成され、各頂部を形成する各上縁に上記各仕切板が接続固定され、
上記各支持アームの半径方向外縁には垂直板が各々固定され、上記各垂直板が上記逆截頭円錐部の内周面に各々接続されることで上記各支持アームが固定されており、
上記逆截頭円錐部の内周面と上記各支持アームの各半径方向外縁との間には、支持アーム用小間隙が各々設けられており、
上記各仕切板用小間隙と上記各支持アーム用小間隙とは連通されているものである請求項1記載のマルチフィーダー。
Each of the support arms is formed in a triangular cross section, and each of the partition plates is connected and fixed to each upper edge forming each top.
A vertical plate is fixed to the outer edge in the radial direction of each of the support arms, and each of the support arms is fixed by connecting each of the vertical plates to the inner peripheral surface of the inverted head cone.
A small gap for the support arm is provided between the inner peripheral surface of the inverted head cone and the outer edge of each support arm in the radial direction.
The multi-feeder according to claim 1, wherein the small gaps for each partition plate and the small gaps for each support arm are communicated with each other.
上記底盤上であって上記中央円錐体の下側に、上記共通中心軸を中心とする回転駆動軸を突設し、該回転駆動軸に上記底盤上を放射状に延びる複数のスポークを有する中央回転掻き出し羽根を接続したものである請求項1又は2記載のマルチフィーダー。 A rotation drive shaft centered on the common central axis is projected on the bottom plate and below the central cone, and the rotation drive shaft has a plurality of spokes extending radially on the bottom plate. The multi-feeder according to claim 1 or 2, wherein the scraping blades are connected. 上記中央回転掻き出し羽根の上記各スポークは、その停止位置において、上記各支持アームの下方に位置しているものである請求項3に記載のマルチフィーダー。 The multi-feeder according to claim 3 , wherein each spoke of the central rotary scraping blade is located below each support arm at its stop position.
JP2017088158A 2017-04-27 2017-04-27 Multi-feeder Active JP6836785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017088158A JP6836785B2 (en) 2017-04-27 2017-04-27 Multi-feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017088158A JP6836785B2 (en) 2017-04-27 2017-04-27 Multi-feeder

Publications (2)

Publication Number Publication Date
JP2018184275A JP2018184275A (en) 2018-11-22
JP6836785B2 true JP6836785B2 (en) 2021-03-03

Family

ID=64355365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017088158A Active JP6836785B2 (en) 2017-04-27 2017-04-27 Multi-feeder

Country Status (1)

Country Link
JP (1) JP6836785B2 (en)

Also Published As

Publication number Publication date
JP2018184275A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP5856037B2 (en) Metering feeder
US2860598A (en) Production of granulated materials consisting of a core and one or more shells
EP2344270A1 (en) Apparatus and method for metering, mixing and packaging solid particulate material
CN106536132B (en) Shot-treating apparatus
JP2007145415A (en) Feeder and calculation filling machine
JP6836785B2 (en) Multi-feeder
WO2015199084A1 (en) Multi-feeder and method for operating same
CN201703813U (en) Vertical feeding device
CN1955092B (en) Screw-type material feeding device
CN207890022U (en) A kind of polarization combination scale
CN112752607A (en) Device for supplying fibrous dewatering aid
JP2012224409A (en) Powder feeder
CN108454906A (en) A kind of polarization combination scale
RU2017136142A (en) SYSTEM AND METHOD OF MANUFACTURING A BITUMEN MEMBRANE WITH A SURFACE COATING FROM FINE-GRIND DECORATIVE ELEMENTS
JP6708899B2 (en) Granular Distributor
JP4316954B2 (en) Table feeder
JP2003251631A (en) Quantitative feeder for resin pellets
JP2017019665A (en) Entangled parts separation device
CN218258984U (en) Rotary automatic vibration feeding mechanism
JP7002099B2 (en) Quantitative feeder device for powder and granular material
CN107434152A (en) Vibrating disc and the automatic packaging machine with the vibrating disc
JPH061537Y2 (en) Lower drum for belt lifting of bucket elevator
CN212150566U (en) Ejection of compact tilting mechanism
JP7385841B2 (en) Powder quantitative feeder
CN109012891B (en) Discharging device for planetary ball mill and discharging control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R150 Certificate of patent or registration of utility model

Ref document number: 6836785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250