JP6836704B2 - Manufacturing method of polyarylene sulfide resin - Google Patents

Manufacturing method of polyarylene sulfide resin Download PDF

Info

Publication number
JP6836704B2
JP6836704B2 JP2015248209A JP2015248209A JP6836704B2 JP 6836704 B2 JP6836704 B2 JP 6836704B2 JP 2015248209 A JP2015248209 A JP 2015248209A JP 2015248209 A JP2015248209 A JP 2015248209A JP 6836704 B2 JP6836704 B2 JP 6836704B2
Authority
JP
Japan
Prior art keywords
alkali metal
polyarylene sulfide
parts
sulfide resin
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015248209A
Other languages
Japanese (ja)
Other versions
JP2017114922A (en
Inventor
直浩 三川
直浩 三川
井上 敏
井上  敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2015248209A priority Critical patent/JP6836704B2/en
Publication of JP2017114922A publication Critical patent/JP2017114922A/en
Application granted granted Critical
Publication of JP6836704B2 publication Critical patent/JP6836704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

本発明は、ポリアリーレンスルフィド樹脂の製造方法に関する。より詳しくは、ポリアリーレンスルフィド樹脂の製造工程で排出される極性有機溶媒を、新たなポリアリーレンスルフィド樹脂の製造工程に再利用する、ポリアリーレンスルフィド樹脂の製造方法に関する。 The present invention relates to a method for producing a polyarylene sulfide resin. More specifically, the present invention relates to a method for producing a polyarylene sulfide resin, in which the polar organic solvent discharged in the process for producing the polyarylene sulfide resin is reused in the process for producing a new polyarylene sulfide resin.

ポリフェニレンスルフィド樹脂に代表されるポリアリーレンスルフィド樹脂(PAS樹脂)は、耐熱性、耐薬品性等に優れ、電気電子部品、自動車部品、給湯機部品、繊維、フィルム用途等に幅広く利用されている。特に、リチウムイオン電池用パッキンやガスケット部材といった用途では、近年、特に高分子量ポリアリーレンスルフィド樹脂が、靭性および成形性に優れることから広く用いられている。 Polyphenylene sulfide resin (PAS resin) represented by polyphenylene sulfide resin is excellent in heat resistance, chemical resistance and the like, and is widely used in electrical and electronic parts, automobile parts, water heater parts, fibers, film applications and the like. In particular, in applications such as packings for lithium ion batteries and gasket members, ultra-high molecular weight polyarylene sulfide resins have been widely used in recent years because of their excellent toughness and moldability.

ポリアリーレンスルフィド樹脂は、N−メチル−2−ピロリドン(以下、NMPと略すことがある)などの極性有機溶媒中で、スルフィド化剤と、ポリハロ芳香族化合物とを重合反応させる方法等により得られるが、目的物質のポリアリーレンスルフィド樹脂と共に、溶媒、塩化ナトリウムなどのアルカリ金属含有無機塩や下記一般式(1) The polyarylene sulfide resin can be obtained by a method of polymerizing a sulfidizing agent and a polyhalo aromatic compound in a polar organic solvent such as N-methyl-2-pyrrolidone (hereinafter, may be abbreviated as NMP). However, together with the target substance, polyarylene sulfide resin, a solvent, an alkali metal-containing inorganic salt such as sodium chloride, and the following general formula (1)

Figure 0006836704
(式中、nは0〜2であり、Yはハロゲン原子を、Yは水素原子又はハロゲン原子を、Rは水素原子又は炭素原子数1〜3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3〜5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。)に代表されるカルボキシアルキルアミノ基含有化合物などの副生成物を含有する粗反応生成物が得られる。
Figure 0006836704
(In the formula, n is 0 to 2, Y 1 represents a halogen atom, Y 2 represents a hydrogen atom or a halogen atom, and R 1 represents a hydrogen atom or an alkyl group or a cyclohexyl group having 1 to 3 carbon atoms. R 2 represents an alkylene group having 3 to 5 carbon atoms, and X represents a hydrogen atom or an alkali metal atom.) A crude reaction product containing a by-product such as a carboxyalkylamino group-containing compound is obtained. Be done.

製品として有用なポリアリーレンスルフィド樹脂は種々の後処理工程を経て生成されるが、当該後処理工程で排出される成分は、産業廃棄物として廃棄処理されてきたのが実情で、有効活用されてこなかった。 Polyarylene sulfide resin, which is useful as a product, is produced through various post-treatment processes, but the components discharged in the post-treatment process have been disposed of as industrial waste, and have been effectively utilized. There wasn't.

特に、カルボキシアルキルアミノ基含有化合物は、COD負荷原因となることから、環境負荷低減のために、低減することが求められており、水洗または熱水洗後に得られる廃水中に含まれる当該カルボキシアルキルアミノ基含有化合物を、例えば、NMP等の極性有機溶媒(特許文献1)や、パラジクロロベンゼン等のポリハロ芳香族化合物(特許文献2)や、キシレン等の非水溶性溶媒(特許文献3)を用いて分離・抽出ないし再利用化する方法が提案されていた。 In particular, since the carboxyalkylamino group-containing compound causes a COD load, it is required to reduce it in order to reduce the environmental load, and the carboxyalkylamino contained in the waste water obtained after washing with water or hot water. As the group-containing compound, for example, a polar organic solvent such as NMP (Patent Document 1), a polyhaloaromatic compound such as paradichlorobenzene (Patent Document 2), or a water-insoluble solvent such as xylene (Patent Document 3) is used. A method of separation / extraction or reuse has been proposed.

しかし、上記方法はいずれもポリアリーレンスルフィド樹脂の重合反応後の粗反応生成物を固液分離して得られる固相側に含まれるカルボキシアルキルアミノ基含有化合物の分離・抽出ないし再利用化に関する提案であり、固液分離して得られる液相成分については、産業廃棄物として廃棄処理されてきたのが実情であった。 However, all of the above methods are proposals for separating / extracting or reusing the carboxyalkylamino group-containing compound contained on the solid phase side obtained by solid-liquid separation of the crude reaction product after the polymerization reaction of the polyarylene sulfide resin. In fact, the liquid phase components obtained by solid-liquid separation have been disposed of as industrial waste.

特開2014−005207号公報Japanese Unexamined Patent Publication No. 2014-005207 特開2014−005208号公報Japanese Unexamined Patent Publication No. 2014-005208 特開2014−005317号公報Japanese Unexamined Patent Publication No. 2014-005317

そこで本発明が解決しようとする課題は、ポリアリーレンスルフィド樹脂の製造工程で排出される極性有機溶媒を、新たなポリアリーレンスルフィド樹脂の製造工程に再利用する、ポリアリーレンスルフィド樹脂の製造方法を提供することにある。 Therefore, the problem to be solved by the present invention is to provide a method for producing a polyarylene sulfide resin, which reuses the polar organic solvent discharged in the production process of the polyarylene sulfide resin in the production process of a new polyarylene sulfide resin. To do.

本願発明者らは種々の検討を行った結果、ポリアリーレンスルフィド樹脂の重合反応後の粗反応生成物を固液分離して得られる液相側にも、カルボキシアルキルアミノ基含有化合物が極性有機溶媒に溶解していること、当該極性有機溶媒が新たなポリアリーレンスフィド樹脂の重合反応に再利用できること、ただし、当該カルボキシアルキルアミノ基含有化合物が多くなると、新たなポリアリーレンスフィド樹脂の重合反応に再利用しようとした場合に、重合阻害を引き起こす傾向があることから、再利用に適した濃度範囲があることを見出し、本発明を完成するに至った。 As a result of various studies conducted by the inventors of the present application, a carboxyalkylamino group-containing compound is also a polar organic solvent on the liquid phase side obtained by solid-liquid separation of the crude reaction product after the polymerization reaction of the polyarylene sulfide resin. The polar organic solvent can be reused for the polymerization reaction of the new polyarylene fide resin. However, when the amount of the carboxyalkylamino group-containing compound increases, the polymerization reaction of the new polyarylene fide resin Since it tends to cause polymerization inhibition when it is attempted to be reused, it has been found that there is a concentration range suitable for reuse, and the present invention has been completed.

すなわち、本発明は、工程(1):ポリアリーレンスルフィド樹脂の重合反応後、固液分離により固相成分を除去して、カルボキシアルキルアミノ基含有化合物を含む有機極性溶媒(a)を得る工程、
工程(2):反応容器内に、前記工程(1)で得られた前記有機極性溶媒(a)を供給する工程、
工程(3):反応容器内に、少なくとも、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを供給する工程、
工程(4):前記工程(2)および(3)を経て得られた反応容器内で、少なくとも、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを原料として、カルボキシアルキルアミノ基含有化合物を含む有機極性溶媒中で重合反応させる工程、を有し、かつ、前記工程(4)において、原料を含む有機極性溶媒中において前記カルボキシアルキルアミノ基含有化合物の割合が、原料中の硫黄原子1モルに対して0.004モル以下の範囲であることを特徴とするポリアリーレンスルフィド樹脂の製造方法、に関する。
That is, the present invention comprises step (1): a step of obtaining an organic polar solvent (a) containing a carboxyalkylamino group-containing compound by removing solid phase components by solid-liquid separation after a polymerization reaction of a polyarylene sulfide resin.
Step (2): A step of supplying the organic polar solvent (a) obtained in the step (1) into the reaction vessel.
Step (3): A step of supplying at least a polyhalo aromatic compound and (i) alkali metal sulfide, or (ii) alkali metal hydrosulfide and alkali metal hydroxide into the reaction vessel.
Step (4): In the reaction vessel obtained through the steps (2) and (3), at least the polyhalo aromatic compound and (i) alkali metal sulfide, or (ii) alkali metal water. It has a step of polymerizing a sulfide and an alkali metal hydroxide as raw materials in an organic polar solvent containing a carboxyalkylamino group-containing compound, and in the step (4), the organic polar solvent containing the raw materials. The present invention relates to a method for producing a polyarylene sulfide resin, wherein the ratio of the carboxyalkylamino group-containing compound is in the range of 0.004 mol or less with respect to 1 mol of sulfur atoms in the raw material.

本発明によれば、ポリアリーレンスルフィド樹脂の製造工程で排出される極性有機溶媒を、新たなポリアリーレンスルフィド樹脂の製造工程に再利用する、ポリアリーレンスルフィド樹脂の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a polyarylene sulfide resin, which reuses the polar organic solvent discharged in the process for producing the polyarylene sulfide resin in the process for producing a new polyarylene sulfide resin.

本発明のポリアリーレンスルフィド樹脂の製造方法は、
工程(1):ポリアリーレンスルフィド樹脂の重合反応後、固液分離により固相成分を除去して、カルボキシアルキルアミノ基含有化合物を含む有機極性溶媒(a)を得る工程、
工程(2):反応容器内に、前記工程(1)で得られた前記有機極性溶媒(a)を供給する工程、
工程(3):反応容器内に、少なくとも、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを供給する工程、
工程(4):前記工程(2)および(3)を経て得られた反応容器内で、少なくとも、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを原料として、カルボキシアルキルアミノ基含有化合物を含む有機極性溶媒中で重合反応させる工程、を有し、かつ、前記工程(4)において、原料を含む有機極性溶媒中において前記カルボキシアルキルアミノ基含有化合物の割合が、原料中の硫黄原子1モルに対して0.004モル以下の範囲であることを特徴とする。
The method for producing a polyarylene sulfide resin of the present invention is:
Step (1): A step of obtaining an organic polar solvent (a) containing a carboxyalkylamino group-containing compound by removing solid phase components by solid-liquid separation after the polymerization reaction of the polyarylene sulfide resin.
Step (2): A step of supplying the organic polar solvent (a) obtained in the step (1) into the reaction vessel.
Step (3): A step of supplying at least a polyhalo aromatic compound and (i) alkali metal sulfide, or (ii) alkali metal hydrosulfide and alkali metal hydroxide into the reaction vessel.
Step (4): In the reaction vessel obtained through the steps (2) and (3), at least the polyhalo aromatic compound and (i) alkali metal sulfide, or (ii) alkali metal water. It has a step of polymerizing a sulfide and an alkali metal hydroxide as raw materials in an organic polar solvent containing a carboxyalkylamino group-containing compound, and in the step (4), the organic polar solvent containing the raw materials. Among them, the ratio of the carboxyalkylamino group-containing compound is in the range of 0.004 mol or less with respect to 1 mol of sulfur atoms in the raw material.

本発明は、工程(1)として、ポリアリーレンスルフィド樹脂の重合反応後、固液分離により固相成分を除去して、カルボキシアルキルアミノ基含有化合物を含む有機極性溶媒(a)を得る工程を有する。 The present invention includes, as step (1), a step of obtaining an organic polar solvent (a) containing a carboxyalkylamino group-containing compound by removing solid phase components by solid-liquid separation after a polymerization reaction of a polyarylene sulfide resin. ..

より具体的には、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを原料として極性有機溶媒中で反応させてポリアリーレンスルフィド樹脂とアルカリ金属含有無機塩と前記カルボキシアルキルアミノ基含有化合物と前記極性有機溶媒を含む粗反応混合物を得(重合工程)、その後、粗反応混合物から前記極性有機溶媒を固液分離により固相成分を除去する工程(固液分離工程)を例示することができる。 More specifically, the polyhalo aromatic compound is reacted with (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide as raw materials in a polar organic solvent. A crude reaction mixture containing a polyarylene sulfide resin, an alkali metal-containing inorganic salt, the carboxyalkylamino group-containing compound, and the polar organic solvent is obtained (polymerization step), and then the polar organic solvent is separated from the crude reaction mixture by solid-liquid separation. A step of removing a solid phase component (solid-liquid separation step) can be exemplified.

重合工程は、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを原料として極性有機溶媒中で反応させてポリアリーレンスルフィド樹脂とアルカリ金属含有無機塩と前記カルボキシアルキルアミノ基含有化合物と前記極性有機溶媒を含む粗反応混合物を得る工程である。 In the polymerization step, the polyhalo aromatic compound is reacted with (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide as raw materials in a polar organic solvent to form a polyarylene. This is a step of obtaining a crude reaction mixture containing a sulfide resin, an alkali metal-containing inorganic salt, the carboxyalkylamino group-containing compound, and the polar organic solvent.

ここで、ポリアリーレンスルフィド樹脂の重合工程で用いられるポリハロ芳香族化合物としては、例えば、芳香族環に直接結合した2個以上のハロゲン原子を有するハロゲン化芳香族化合物であり、具体的には、p−ジクロルベンゼン、o−ジクロルベンゼン、m−ジクロルベンゼン、トリクロルベンゼン、テトラクロルベンゼン、ジブロムベンゼン、ジヨードベンゼン、トリブロムベンゼン、ジブロムナフタレン、トリヨードベンゼン、ジクロルジフェニルベンゼン、ジブロムジフェニルベンゼン、ジクロルベンゾフェノン、ジブロムベンゾフェノン、ジクロルジフェニルエーテル、ジブロムジフェニルエーテル、ジクロルジフェニルスルフィド、ジブロムジフェニルスルフィド、ジクロルビフェニル、ジブロムビフェニル等のジハロ芳香族化合物及びこれらの混合物が挙げられ、これらの化合物をブロック共重合してもよい。これらの中でも好ましいのはジハロゲン化ベンゼン類であり、特に好ましいのはp−ジクロルベンゼンを80モル%以上含むものである。 Here, the polyhaloaromatic compound used in the polymerization step of the polyarylene sulfide resin is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to the aromatic ring. p-dichlorobenzene, o-dichlorobenzene, m-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dibrombenzene, diiodobenzene, tribrombenzene, dibromnaphthalene, triiodobenzene, dichlorodiphenylbenzene, Dihalo aromatic compounds such as dibrom diphenylbenzene, dichlorobenzophenone, dibrombenzophenone, dichlorodiphenyl ether, dibrom diphenyl ether, dichlorodiphenyl sulfide, dibrom diphenyl sulfide, dichlorobiphenyl, dibrombiphenyl and mixtures thereof. These compounds may be block copolymerized. Among these, benzene dihalogenates are preferable, and those containing 80 mol% or more of p-dichlorobenzene are particularly preferable.

また、枝分かれ構造とすることによってポリアリーレンスルフィド樹脂の粘度増大を図る目的で、1分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物を分岐剤として所望に応じて用いてもよい。このようなポリハロ芳香族化合物としては、例えば、1,2,4−トリクロルベンゼン、1,3,5−トリクロルベンゼン、1,4,6−トリクロルナフタレン等が挙げられる。 Further, for the purpose of increasing the viscosity of the polyarylene sulfide resin by forming a branched structure, a polyhaloaromatic compound having three or more halogen substituents in one molecule may be used as a branching agent, if desired. Examples of such polyhalo aromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,6-trichloronaphthalene and the like.

更に、アミノ基、チオール基、ヒドロキシル基等の活性水素を持つ官能基を有するポリハロ芳香族化合物を挙げることが出来、具体的には、2,6−ジクロルアニリン、2,5−ジクロルアニリン、2,4−ジクロルアニリン、2,3−ジクロルアニリン等のジハロアニリン類;2,3,4−トリクロルアニリン、2,3,5−トリクロルアニリン、2,4,6−トリクロルアニリン、3,4,5−トリクロルアニリン等のトリハロアニリン類;2,2’−ジアミノ−4,4’−ジクロルジフェニルエーテル、2,4’−ジアミノ−2’,4−ジクロルジフェニルエーテル等のジハロアミノジフェニルエーテル類およびこれらの混合物においてアミノ基がチオール基やヒドロキシル基に置き換えられた化合物などが例示される。 Further, polyhaloaromatic compounds having a functional group having an active hydrogen such as an amino group, a thiol group, and a hydroxyl group can be mentioned, and specifically, 2,6-dichloroaniline and 2,5-dichloroaniline. , 2,4-Dichloroaniline, 2,3-dichloroaniline and other dihaloanilines; 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, Trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenyl ether, 2,4'-diamino-2', 4-dichlorodiphenyl ether And compounds in which the amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof and the like are exemplified.

また、これらの活性水素含有ポリハロ芳香族化合物中の芳香族環を形成する炭素原子に結合した水素原子が他の不活性基、例えばアルキル基などの炭化水素基に置換している活性水素含有ポリハロ芳香族化合物も使用できる。 Further, the active hydrogen-containing polyhalo in which the hydrogen atom bonded to the carbon atom forming the aromatic ring in these active hydrogen-containing polyhaloaromatic compounds is replaced with another inactive group, for example, a hydrocarbon group such as an alkyl group. Aromatic compounds can also be used.

これらの各種活性水素含有ポリハロ芳香族化合物の中でも、好ましいのは活性水素含有ジハロ芳香族化合物であり、特に好ましいのはジクロルアニリンである。 Among these various active hydrogen-containing polyhaloaromatic compounds, an active hydrogen-containing dihaloaromatic compound is preferable, and dichloroaniline is particularly preferable.

ニトロ基を有するポリハロ芳香族化合物としては、例えば、2,4−ジニトロクロルベンゼン、2,5−ジクロルニトロベンゼン等のモノまたはジハロニトロベンゼン類;2−ニトロ−4,4’−ジクロルジフェニルエーテル等のジハロニトロジフェニルエーテル類;3,3’−ジニトロ−4,4’−ジクロルジフェニルスルホン等のジハロニトロジフェニルスルホン類;2,5−ジクロル−3−ニトロピリジン、2−クロル−3,5−ジニトロピリジン等のモノまたはジハロニトロピリジン類;あるいは各種ジハロニトロナフタレン類などが挙げられる。 Examples of the polyhaloaromatic compound having a nitro group include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether and the like. Dihalonitrodiphenyl ethers; dihalonitrodiphenylsulfones such as 3,3'-dinitro-4,4'-dichlorodiphenylsulfone; 2,5-dichloro-3-nitropyridine, 2-chlor-3,5 -Mono or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes and the like.

また、ポリアリーレンスルフィド樹脂の重合工程で用いられるアルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化ルビジウム、硫化セシウム及びこれらの混合物が含まれる。かかるアルカリ金属硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。また、アルカリ金属硫化物はアルカリ金属水硫化物とアルカリ金属水酸化物との反応によっても導くことができる。尚、通常、アルカリ金属硫化物中に微量存在するアルカリ金属水硫化物、チオ硫酸アルカリ金属と反応させるために、少量のアルカリ金属水酸化物を加えても差し支えない。 The alkali metal sulfide used in the polymerization step of the polyarylene sulfide resin includes lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide and a mixture thereof. Such alkali metal sulfides can be used as hydrates, aqueous mixtures or anhydrides. Alkali metal sulfides can also be derived by the reaction of alkali metal hydrosulfides with alkali metal hydroxides. It should be noted that a small amount of alkali metal hydroxide may be added in order to react with the alkali metal hydrosulfide and the alkali metal thiosulfate which are usually present in a trace amount in the alkali metal sulfide.

また、ポリアリーレンスルフィド樹脂の重合工程で用いられるアルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化ルビジウム、水硫化セシウム及びこれらの混合物が含まれる。かかるアルカリ金属水硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。 Further, the alkali metal hydrosulfide used in the polymerization step of the polyarylene sulfide resin includes lithium hydrosulfide, sodium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide and a mixture thereof. Such alkali metal hydrosulfides can be used as hydrates, aqueous mixtures or anhydrides.

また、ポリアリーレンスルフィド樹脂の重合工程で用いられるアルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられるが、これらはそれぞれ単独で用いても良いし、2種以上を混合して用いても良い。これらの中でも、入手が容易なことから水酸化リチウムと水酸化ナトリウム及び水酸化カリウムが好ましく、特に水酸化ナトリウムが好ましい。アルカリ金属水酸化物の使用量は、固形のアルカリ金属硫化物の生成が促進される点から、アルカリ金属水硫化物1モル当たり、0.8〜1.2モルの範囲が好ましく、特に0.9〜1.1モルの範囲がより好ましい。 Examples of the alkali metal hydroxide used in the polymerization step of the polyarylene sulfide resin include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide and the like, but these are independent of each other. It may be used, or two or more kinds may be mixed and used. Among these, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable because they are easily available, and sodium hydroxide is particularly preferable. The amount of the alkali metal hydroxide used is preferably in the range of 0.8 to 1.2 mol per mol of the alkali metal hydrosulfide from the viewpoint of promoting the formation of solid alkali metal sulfide, and in particular, 0. A range of 9 to 1.1 mol is more preferred.

また、ポリアリーレンスルフィド樹脂の重合工程で用いられる極性有機溶媒としては、ホルムアミド、アセトアミド、N−メチルホルムアミド、N,N−ジメチルアセトアミド、テトラメチル尿素、N−メチル−2−ピロリドン、2−ピロリドン、N−メチル−ε−カプロラクタム、ε−カプロラクタム、ヘキサメチルホスホルアミド、N−ジメチルプロピレン尿素、1,3−ジメチル−2−イミダゾリジノン酸などのアミド、尿素及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルフェニルケトン等のケトン類及びこれらの混合物を挙げることができ、これらの中でもN−メチル−2−ピロリドン、2−ピロリドン、N−メチル−ε−カプロラクタム、ε−カプロラクタム、ヘキサメチルホスホルアミド、N−ジメチルプロピレン尿素、1,3−ジメチル−2−イミダゾリジノン酸の脂肪族系環状構造を有するアミドが好ましい。 Examples of the polar organic solvent used in the polymerization step of the polyarylene sulfide resin include formamide, acetamide, N-methylformamide, N, N-dimethylacetamide, tetramethylurea, N-methyl-2-pyrrolidone, 2-pyrrolidone, and the like. Amides such as N-methyl-ε-caprolactam, ε-caprolactam, hexamethylphosphoramide, N-dimethylpropylene urea, 1,3-dimethyl-2-imidazolidinone acid, urea and lactams; sulfolane, dimethylsulfolane, etc. Sulfolans; nitriles such as benzonitrile; ketones such as methylphenylketone and mixtures thereof, among which N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl-ε-caprolactam , Ε-caprolactam, hexamethylphosphoramide, N-dimethylpropylene urea, and 1,3-dimethyl-2-imidazolidinone acid, which have an aliphatic cyclic structure, are preferable.

ポリアリーレンスルフィド樹脂の重合反応は、これらの極性有機溶媒の存在下、スルフィド化剤として上記アルカリ金属硫化物と、ポリハロ芳香族化合物とを反応させる。または、ポリアリーレンスルフィド樹脂の重合反応は、これらの極性有機溶媒の存在下、スルフィド化剤として上記アルカリ金属水硫化物及びアルカリ金属水酸化物と、ポリハロ芳香族化合物とを反応させる。重合条件は一般に、温度200〜330℃の範囲であり、圧力は重合溶媒及び重合モノマーであるポリハロ芳香族化合物を実質的に液相に保持するような範囲であるべきであり、一般には0.1〜20MPaの範囲、好ましくは0.1〜2MPaの範囲より選択される。ポリハロ芳香族化合物の仕込み量は、前記スルフィド化剤の硫黄原子1モルに対して、0.2モル〜5.0モルの範囲が挙げられる。また、極性有機溶媒の仕込み量は、使用する化合物の種類及び系内の水分割合によっても異なり、一概に規定することはできないものの、均一な重合反応が可能な反応系の粘度を保持すること、また、ある程度の生産性を維持するため、その量が、前記スルフィド化剤の硫黄原子1モル当り1.0〜6.0モルとなる範囲であることが好ましく、さらに、生産性を更に高める観点から、1.2〜5.0モルの範囲がより好ましく、更に1.5〜4.5モルなる範囲が最も好ましい。 In the polymerization reaction of the polyarylene sulfide resin, the alkali metal sulfide is reacted with the polyhalo aromatic compound as a sulfidizing agent in the presence of these polar organic solvents. Alternatively, in the polymerization reaction of the polyarylene sulfide resin, the alkali metal hydrosulfide and the alkali metal hydroxide are reacted with the polyhaloaromatic compound as a sulfidizing agent in the presence of these polar organic solvents. The polymerization conditions should generally be in the temperature range of 200-330 ° C., and the pressure should be in the range of substantially retaining the polyhalo aromatic compound, which is the polymerization solvent and the polymerization monomer, in the liquid phase, generally 0. It is selected from the range of 1 to 20 MPa, preferably 0.1 to 2 MPa. The amount of the polyhalo aromatic compound charged may be in the range of 0.2 mol to 5.0 mol with respect to 1 mol of the sulfur atom of the sulfidizing agent. Further, the amount of the polar organic solvent charged varies depending on the type of the compound used and the water content in the system, and although it cannot be unconditionally specified, the viscosity of the reaction system capable of a uniform polymerization reaction should be maintained. Further, in order to maintain a certain degree of productivity, the amount thereof is preferably in the range of 1.0 to 6.0 mol per mol of the sulfur atom of the sulfide agent, and further, from the viewpoint of further enhancing the productivity. Therefore, the range of 1.2 to 5.0 mol is more preferable, and the range of 1.5 to 4.5 mol is most preferable.

上記した極性有機溶媒の存在下、スルフィド化剤とポリハロ芳香族化合物とを重合させる具体的態様としては、例えば、
1)アルカリ金属カルボン酸塩またはハロゲン化リチウム等の重合助剤を使用する方法、
2)芳香族ポリハロゲン化合物等の架橋剤を使用する方法、
3)少量の水の存在下に重合反応を行い次いで水を追加してさらに重合する方法、
4)アルカリ金属硫化物と芳香族ジハロゲン化合物との反応中に、反応釜の気相部分を冷却して反応釜内の気相の一部を凝縮させ液相に還流させる方法、などが挙げられる。
5)ポリハロ芳香族化合物の存在下、アルカリ金属硫化物、又は、含水アルカリ金属水硫化物及びアルカリ金属水酸化物と、脂肪族環状構造を有するアミド、尿素またはラクタムとを、脱水させながら反応させて固形のアルカリ金属硫化物を含むスラリーを製造する工程、該スラリーを製造した後、更にNMPなどの極性有機溶媒を加え、水を留去して脱水を行う工程、次いで、脱水工程を経て得られたスラリー中で、ポリハロ芳香族化合物と、アルカリ金属水硫化物と、前記脂肪族環状構造を有するアミド、尿素またはラクタムの加水分解物のアルカリ金属塩とを、NMPなどの極性有機溶媒1モルに対して反応系内に現存する水分量が0.02モル以下で反応させて重合を行う工程を必須の製造工程として有するポリアリーレンスルフィド樹脂の製造方法が挙げられる。
Specific embodiments for polymerizing the sulfidating agent and the polyhaloaromatic compound in the presence of the polar organic solvent described above include, for example.
1) A method using a polymerization aid such as alkali metal carboxylate or lithium halide,
2) Method using a cross-linking agent such as an aromatic polyhalogen compound,
3) A method in which a polymerization reaction is carried out in the presence of a small amount of water, and then water is added to further polymerize.
4) During the reaction between the alkali metal sulfide and the aromatic dihalogen compound, a method of cooling the gas phase portion of the reaction kettle to condense a part of the gas phase in the reaction kettle and reflux it to the liquid phase can be mentioned. ..
5) In the presence of a polyhalo aromatic compound, an alkali metal sulfide or a hydrous alkali metal hydrosulfide and an alkali metal hydroxide are reacted with an amide, urea or lactam having an aliphatic cyclic structure while dehydrating. A step of producing a slurry containing a solid alkali metal sulfide, a step of producing the slurry, a step of further adding a polar organic solvent such as NMP, distilling off water to perform dehydration, and then a dehydration step. In the resulting slurry, a polyhalo aromatic compound, an alkali metal hydrosulfide, and an alkali metal salt of an amide, urea, or lactam hydrolyzate having the aliphatic cyclic structure are mixed in 1 mol of a polar organic solvent such as NMP. On the other hand, there is a method for producing a polyarylene sulfide resin, which comprises a step of reacting with an existing water content of 0.02 mol or less in the reaction system to carry out polymerization as an essential production step.

このうち1)〜4)の重合方法でポリアリーレンスルフィド樹脂を製造すると、副生成物の生成がより多くなる傾向にあるため、本発明の方法により、カルボキシアルキルアミノ基含有化合物を低減することが好ましい。 Of these, when the polyarylene sulfide resin is produced by the polymerization methods 1) to 4), the production of by-products tends to increase, and therefore, the carboxyalkylamino group-containing compound can be reduced by the method of the present invention. preferable.

ポリアリーレンスルフィド樹脂の重合終了後に、ポリアリーレンスルフィド樹脂とアルカリ金属含有無機塩と前記カルボキシアルキルアミノ基含有化合物と前記極性有機溶媒を含む粗反応混合物を得ることができる。 After completion of the polymerization of the polyarylene sulfide resin, a crude reaction mixture containing the polyarylene sulfide resin, an alkali metal-containing inorganic salt, the carboxyalkylamino group-containing compound, and the polar organic solvent can be obtained.

次に、固液分離工程は、得られた粗反応混合物から極性有機溶媒を固液分離させて、極性有機溶媒を主成分とする液相成分と、ポリアリーレンスルフィド樹脂およびアルカリ金属含有無機塩と前記カルボキシアルキルアミノ基含有化合物を含む反応混合物からなる固相成分とを分離し、固相成分を除去して、極性有機溶媒を主成分とする液相成分を得る。該固液分離には大きく分けて、後述するフラッシュ法とクウェンチ法の2種類がある。フラッシュ法は、溶媒を蒸発させて溶媒回収し、同時に固形物を回収する方法であり、一般的に、減圧下に130〜200℃に加熱して溶媒を留去することにより行われる。フラッシュ法で溶媒回収した直後の溶媒温度はおおむね130〜200℃の範囲であるが、通常、室温(例えば、20℃。以下同じ。)環境下での作業のため70〜150℃の範囲まで冷却される傾向にある。このため、工程(1)において、フラッシュ法の場合、得られる前記有機極性溶媒(a)の温度としては、70〜200℃の範囲である。 Next, in the solid-liquid separation step, the polar organic solvent is solid-liquid separated from the obtained crude reaction mixture, and a liquid phase component containing the polar organic solvent as a main component, a polyarylene sulfide resin, and an alkali metal-containing inorganic salt are used. The solid phase component composed of the reaction mixture containing the carboxyalkylamino group-containing compound is separated, and the solid phase component is removed to obtain a liquid phase component containing a polar organic solvent as a main component. The solid-liquid separation is roughly divided into two types, a flash method and a Quench method, which will be described later. The flash method is a method of evaporating a solvent to recover the solvent and at the same time recovering a solid substance, and is generally carried out by heating to 130 to 200 ° C. under reduced pressure to distill off the solvent. The solvent temperature immediately after the solvent is recovered by the flash method is generally in the range of 130 to 200 ° C., but is usually cooled to the range of 70 to 150 ° C. for work in a room temperature (for example, 20 ° C., the same applies hereinafter) environment. Tends to be. Therefore, in the step (1), in the case of the flash method, the temperature of the obtained organic polar solvent (a) is in the range of 70 to 200 ° C.

一方、クウェンチ法は、重合反応物を、除冷して粒子状のポリアリーレンスルフィド樹脂を回収する方法であり、一般的に、反応釜内で反応スラリーを必要に応じて貧溶媒を加えながら冷却し、ポリアリーレンスルフィド樹脂を晶析させた後に固液分離する方法が挙げられる。クウェンチ法における固液分離は、濾過やスクリューデカンター等の遠心分離機を用いて分離した後、得られた濾過残渣に直接水を加えスラリー化したのち、固液分離を繰り返し行う方法や、得られた濾過残渣を非酸化性雰囲気下で加熱して、残存する溶媒を除去する方法などが挙げられる。クエンチ法で溶媒回収した直後の溶媒温度は130〜200℃の範囲であり、通常、室温環境下での作業のため70〜150℃の範囲までさらに冷却される傾向にある。このため、工程(1)において、クエンチ法の場合にも、得られる前記有機極性溶媒(a)の温度としては、70〜200℃の範囲である。フラッシュ法は、固形物を比較的簡便に回収することができる点で好ましく、クウェンチ法は、ポリアリーレンスルフィド樹脂の粒度を制御しやすい点や晶析時にポリマー粒子にアルカリ金属含有無機塩やその他の不純物を取り込みにくくなるため、高純度のポリマーが得られる点で好ましい。 On the other hand, the Quench method is a method in which the polymerization reaction product is cooled to recover the particulate polyarylene sulfide resin. Generally, the reaction slurry is cooled in the reaction vessel while adding a poor solvent as needed. Then, a method of solid-liquid separation after crystallizing the polyarylene sulfide resin can be mentioned. The solid-liquid separation in the Quench method can be obtained by a method of separating by filtration or using a centrifuge such as a screw decanter, then directly adding water to the obtained filtration residue to form a slurry, and then repeating solid-liquid separation. Examples thereof include a method of removing the residual solvent by heating the filtered residue in a non-oxidizing atmosphere. The solvent temperature immediately after the solvent is recovered by the quench method is in the range of 130 to 200 ° C., and usually tends to be further cooled to the range of 70 to 150 ° C. for work in a room temperature environment. Therefore, in the step (1), even in the case of the quench method, the temperature of the obtained organic polar solvent (a) is in the range of 70 to 200 ° C. The flash method is preferable because the solid matter can be recovered relatively easily, and the Quench method is preferable because the particle size of the polyarylene sulfide resin can be easily controlled, and the polymer particles contain alkali metal-containing inorganic salts and other substances during crystallization. It is preferable in that a high-purity polymer can be obtained because it becomes difficult to take in impurities.

こうして得られた液相成分には、極性有機溶媒を主成分として、少なくとも前記カルボキシアルキルアミノ基含有化合物が含まれ、その他に水や線状ないし環状のPASオリゴマーなどが含まれる。極性有機溶媒中のカルボキシアルキルアミノ基含有化合物やその他に含まれる水やオリゴマーの含有濃度は重合条件や固液分離条件によって大きく異なるため一概にその範囲を決めることはできないが、得られた液相成分の一部を公知の分析方法で測定することで、容易に知ることができる。 The liquid phase component thus obtained contains at least the above-mentioned carboxyalkylamino group-containing compound with a polar organic solvent as a main component, and also contains water, linear or cyclic PAS oligomers, and the like. Since the concentration of water or oligomer contained in the carboxyalkylamino group-containing compound and others in the polar organic solvent varies greatly depending on the polymerization conditions and solid-liquid separation conditions, the range cannot be unconditionally determined, but the obtained liquid phase It can be easily known by measuring a part of the components by a known analysis method.

前記カルボキシアルキルアミノ基含有化合物としては下記一般式(1) The carboxyalkylamino group-containing compound has the following general formula (1).

Figure 0006836704
(式中、nは0〜2であり、Yはハロゲン原子を、Yは水素原子又はハロゲン原子を、Rは水素原子又は炭素原子数1〜3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3〜5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。)で表されるカルボキシアルキルアミノ基含有化合物が挙げられる。このうち、Xのアルカリ金属原子は、重合工程で原料として用いたアルカリ金属硫化物またはアルカリ金属水硫化物のアルカリ金属と同様である。
Figure 0006836704
(In the formula, n is 0 to 2, Y 1 represents a halogen atom, Y 2 represents a hydrogen atom or a halogen atom, and R 1 represents a hydrogen atom or an alkyl group or a cyclohexyl group having 1 to 3 carbon atoms. R 2 is an alkylene group having 3 to 5 carbon atoms, X is carboxymethyl alkylamino group-containing compound represented by the representative.) a hydrogen atom or an alkali metal atom. Of these, the alkali metal atom of X is the same as the alkali metal of the alkali metal sulfide or alkali metal hydrosulfide used as a raw material in the polymerization step.

さらに、ポリアリーレンスルフィド樹脂の製造時に、ポリアリーレンスルフィド樹脂の製造原料として、例えば、極性有機溶媒がN−メチル−2−ピロリドン、ポリハロ芳香族化合物がp−ジクロロベンゼンである場合には前記カルボキシアルキルアミノ基含有化合物として、下記一般式(2) Further, when the polyarylene sulfide resin is produced, for example, when the polar organic solvent is N-methyl-2-pyrrolidone and the polyhaloaromatic compound is p-dichlorobenzene, the carboxyalkyl is used as a raw material for producing the polyarylene sulfide resin. As an amino group-containing compound, the following general formula (2)

Figure 0006836704
(式中、Xは水素原子又はアルカリ金属原子を表す。)で表されるものが得られる(この化合物を“CP−MABA”と略記し、特にXが水素原子の場合を“CP−MABA(水素型)”、アルカリ金属原子の場合を“CP−MABA(アルカリ金属塩型)”、特にXがナトリウム原子の場合は“CP−MABA(Na塩型)”と略記することがある)。
Figure 0006836704
(In the formula, X represents a hydrogen atom or an alkali metal atom.) (This compound is abbreviated as "CP-MABA", and particularly when X is a hydrogen atom, "CP-MABA (" Hydrogen type) ”, the case of alkali metal atom may be abbreviated as“ CP-MABA (alkali metal salt type) ”, and in particular, when X is a sodium atom, it may be abbreviated as“ CP-MABA (Na salt type) ”).

このようにして得られたカルボキシアルキルアミノ基含有化合物を含む極性有機溶媒は、ポリアリーレンスフィド樹脂の原料に混ぜて、新たなポリアリーレンスルフィド樹脂の製造方法に使用(再利用)することができる。新たなポリアリーレンスルフィド樹脂の製造方法に使用(再利用)する場合には、原料に対する前記カルボキシアルキルアミノ基含有化合物の割合が、硫黄原子1モルに対して、0.004モル以下の範囲、好ましくは0.003モル以下の範囲となるように調整する。一方、カルボキシアルキルアミノ基含有化合物がPASの重合阻害の原因と考えられるため、前記カルボキシアルキルアミノ基含有化合物の割合は低いほど好ましく、このため、下限値は検出限界以下であってよいが、現実的には原料に対する前記カルボキシアルキルアミノ基含有化合物の割合が、硫黄原子1モルに対して、0.0001モル以上の範囲となるように調整することが好ましい。 The polar organic solvent containing the carboxyalkylamino group-containing compound thus obtained can be mixed with the raw material of the polyarylene fide resin and used (reused) in a new method for producing a polyarylene sulfide resin. .. When used (reused) in a new method for producing a polyarylene sulfide resin, the ratio of the carboxyalkylamino group-containing compound to the raw material is preferably in the range of 0.004 mol or less with respect to 1 mol of the sulfur atom. Is adjusted to be in the range of 0.003 mol or less. On the other hand, since the carboxyalkylamino group-containing compound is considered to be the cause of the polymerization inhibition of PAS, the lower the ratio of the carboxyalkylamino group-containing compound is, the more preferable. Therefore, the lower limit value may be below the detection limit, but in reality. Specifically, it is preferable to adjust the ratio of the carboxyalkylamino group-containing compound to the raw material so as to be in the range of 0.0001 mol or more with respect to 1 mol of the sulfur atom.

なお、重合反応はアルカリ環境下で行うため、重合工程および固液分離工程後に得られるカルボキシアルキルアミノ基含有化合物も、酸性化処理を行わない限りアルカリ金属塩を形成している。このため、上記の原料に対する前記カルボキシアルキルアミノ基含有化合物の割合は、原料に対する前記カルボキシアルキルアミノ基含有化合物のアルカリ金属塩の割合として調製することが生産性の観点から好ましい。 Since the polymerization reaction is carried out in an alkaline environment, the carboxyalkylamino group-containing compound obtained after the polymerization step and the solid-liquid separation step also forms an alkali metal salt unless the acidification treatment is performed. Therefore, it is preferable to prepare the ratio of the carboxyalkylamino group-containing compound to the raw material as the ratio of the alkali metal salt of the carboxyalkylamino group-containing compound to the raw material from the viewpoint of productivity.

前記工程(1)で得られた前記有機極性溶媒(a)は、一旦、容器に収容して保管してもよい。一旦、容器に収容して保管する場合は、固液分離工程直後の前記有機極性溶媒が室温よりも高い温度であることから、有機極性溶媒、前記カルボキシアルキルアミノ基含有化合物、その他の副生成物などが空気中の酸素で酸化が必要以上すすむ場合があり、その後のポリアリーレンスルフィド樹脂の重合反応に利用(再利用)した際に、重合阻害を引き起こす恐れがあるため、さらには突沸等や作業環境の問題から容器外へ飛散する場合があるため、密閉機構を備えた容器を用いて密閉することが好ましい。密閉機構としては、テンション締付け型ロック機構などが挙げられる。 The organic polar solvent (a) obtained in the step (1) may be temporarily stored in a container. Once stored in a container, the organic polar solvent immediately after the solid-liquid separation step has a temperature higher than room temperature, so that the organic polar solvent, the carboxyalkylamino group-containing compound, and other by-products Etc. may proceed more than necessary due to the oxygen in the air, and when used (reused) for the subsequent polymerization reaction of the polyarylene sulfide resin, it may cause polymerization inhibition. Since it may be scattered outside the container due to environmental problems, it is preferable to use a container provided with a sealing mechanism to seal the container. Examples of the sealing mechanism include a tension tightening type lock mechanism.

本発明は、続いて、工程(2)として、反応容器内に、前記工程(1)で得られた前記有機極性溶媒(a)を供給する工程を有する。前記工程(1)で得られた前記有機極性溶媒(a)は、工程(1)の固液分離装置から、一旦、容器に収容し、当該容器から取り出し、反応容器に移して使用すればよい。 The present invention subsequently has, as step (2), a step of supplying the organic polar solvent (a) obtained in the step (1) into the reaction vessel. The organic polar solvent (a) obtained in the step (1) may be temporarily contained in a container from the solid-liquid separation device in the step (1), taken out from the container, and transferred to a reaction vessel for use. ..

本発明は、さらに、工程(3)として、反応容器内に、少なくとも、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを供給する工程を有する。当該工程(2)と工程(3)はどちらか一方の工程を先に行っても、また、同時に行っても、いずれでも良い。工程(3)において、必要に応じ有機極性溶媒を反応容器内に供給することができ、工程(2)で反応容器内に仕込んだ有機極性溶媒の仕込み量が重合反応に必要な仕込み量に対して不足する場合に必要量を加えることができる。 The present invention further comprises, as step (3), at least a polyhalo aromatic compound and (i) alkali metal sulfide, or (ii) alkali metal hydrosulfide and alkali metal hydroxide in a reaction vessel. Has a step of supplying. The step (2) and the step (3) may be performed either of the steps first or at the same time. In the step (3), the organic polar solvent can be supplied into the reaction vessel as needed, and the amount of the organic polar solvent charged in the reaction vessel in the step (2) is relative to the amount required for the polymerization reaction. If there is a shortage, the required amount can be added.

次に、本発明は、工程(4)として、前記工程(2)および(3)を経て得られた反応容器内で、少なくとも、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを原料として、カルボキシアルキルアミノ基含有化合物を含む有機極性溶媒中で重合反応させる工程を有する。すなわち、前記カルボキシアルキルアミノ基含有化合物を含む極性有機溶媒を原料に混ぜて、ポリアリーレンスルフィド樹脂の重合反応を行う。 Next, in the present invention, as step (4), at least the polyhalo aromatic compound and (i) alkali metal sulfide are contained in the reaction vessel obtained through the steps (2) and (3). Alternatively, (ii) has a step of polymerizing the alkali metal hydrosulfide and the alkali metal hydroxide as raw materials in an organic polar solvent containing a carboxyalkylamino group-containing compound. That is, the polar organic solvent containing the carboxyalkylamino group-containing compound is mixed with the raw material to carry out the polymerization reaction of the polyarylene sulfide resin.

工程(3)および工程(4)は、反応溶媒として用いる有機極性溶媒の一部に、工程(2)で調製した、カルボキシアルキルアミノ基含有化合物を含む有機極性溶媒を用いること以外は、基本的に、前記工程(1)で説明したポリアリーレンスルフィド樹脂の重合反応と同様である。したがって、工程(4)として重合反応を行った後、固液分離工程を行い、固液分離工程後の固相成分からは、その後必要な後処理工程を施して、ポリアリーレンスルフィド樹脂を製造することができるし、一方の、液相成分からは、カルボキシアルキルアミノ基含有化合物を含む極性有機溶媒を再度得ることができ、この物は、さらに、新規のポリアリーレンスフィド樹脂の原料に混ぜて使用(再利用)することができる。ただし、極性有機溶媒中のカルボキシアルキルアミノ基含有化合物の含有濃度は、再利用を繰り返すうちに高くなる傾向にあるため、原料に対する前記カルボキシアルキルアミノ基含有化合物の割合が、硫黄原子1モルに対して、上記範囲となるよう調整して用いる。 Steps (3) and (4) are basic except that the organic polar solvent containing the carboxyalkylamino group-containing compound prepared in step (2) is used as a part of the organic polar solvent used as the reaction solvent. The same is true for the polymerization reaction of the polyarylene sulfide resin described in the step (1). Therefore, after the polymerization reaction is carried out as the step (4), the solid-liquid separation step is carried out, and then the necessary post-treatment step is carried out from the solid phase component after the solid-liquid separation step to produce a polyarylene sulfide resin. On the other hand, a polar organic solvent containing a carboxyalkylamino group-containing compound can be obtained again from the liquid phase component, and this product is further mixed with a raw material of a novel polyarylene fide resin. It can be used (reused). However, since the concentration of the carboxyalkylamino group-containing compound in the polar organic solvent tends to increase as the reuse is repeated, the ratio of the carboxyalkylamino group-containing compound to the raw material is relative to 1 mol of the sulfur atom. Therefore, it is adjusted and used so as to be within the above range.

その後必要な後処理工程としては、特に制限されるものではないが、例えば、(a)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、或いは、(b)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともポリアリーレンスルフィドに対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィドや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、(c)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法、(d)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法、(e)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、更に水洗浄、濾過および乾燥する方法、等が挙げられる。 The post-treatment step required thereafter is not particularly limited, but for example, (a) after completion of the polymerization reaction, the reaction mixture is first used as it is, or an acid or base is added, and then the solvent is used under reduced pressure or normal pressure. Is distilled off, and then the solid after distilling off the solvent is used once or twice with a solvent such as water, a reaction solvent (or an organic solvent having equivalent solubility in a low molecular weight polymer), acetone, methyl ethyl ketone, and alcohols. The method of washing, further neutralizing, washing with water, filtering and drying, or (b) after completion of the polymerization reaction, water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons are added to the reaction mixture. , A solvent such as an aliphatic hydrocarbon (a solvent that is soluble in the polymerization solvent used and is poor at least for polyarylene sulfide) is added as a precipitant to add polyarylene sulfide, an inorganic salt, or the like. A method of precipitating solid products and filtering, washing, and drying them, or (c) a reaction solvent (or an organic solvent having the same solubility as a low molecular weight polymer) in the reaction mixture after completion of the polymerization reaction. After adding and stirring, the low molecular weight polymer is removed by filtration, and then washed once or twice or more with a solvent such as water, acetone, methyl ethyl ketone, alcohols, etc., and then neutralized, washed with water, filtered and dried. (D) After completion of the polymerization reaction, water is added to the reaction mixture for washing with water, filtration, and if necessary, acid is added at the time of washing with water for acid treatment and drying, and (e) completion of the polymerization reaction. After that, a method of filtering the reaction mixture, washing with a reaction solvent once or twice or more, and further washing with water, filtering and drying, and the like can be mentioned.

尚、上記(a)〜(e)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。 In the post-treatment methods illustrated in (a) to (e) above, the polyarylene sulfide resin may be dried in vacuum, in air, or in an atmosphere of an inert gas such as nitrogen. You may.

このようにして得られたポリアリーレンスルフィド樹脂は、機械的強度を更に改善するために、充填材を含有することができる。本発明で用いる充填剤は必須成分ではないが、添加する場合は、前記ポリアリーレンスルフィド樹脂100質量部に対して0質量部より多く、通常は1質量部以上、より好ましくは10質量部以上、かつ600質量部以下の範囲で加えることによって、目的に応じた各種性能を向上させることができる。 The polyarylene sulfide resin thus obtained can contain a filler in order to further improve the mechanical strength. The filler used in the present invention is not an essential component, but when added, it is more than 0 parts by mass, usually 1 part by mass or more, more preferably 10 parts by mass or more, based on 100 parts by mass of the polyarylene sulfide resin. Moreover, by adding in the range of 600 parts by mass or less, various performances according to the purpose can be improved.

該充填材としては、本発明の効果を損なうものでなければ公知慣用の材料を用いることもでき、例えば、繊維状のものや、粒状や板状などの非繊維状のものなど、さまざまな形状の充填材等が挙げられる。具体的には、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、硫酸カルシウム、珪酸カルシウム等の繊維、ウォラストナイト等の天然繊維等の繊維状充填材が使用でき、またガラスビーズ、ガラスフレーク、硫酸バリウム、硫酸カルシウム、クレー、パイロフィライト、ベントナイト、セリサイト、ゼオライト、マイカ、雲母、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ等の非繊維状充填剤も使用できる。 As the filler, a known and commonly used material can be used as long as it does not impair the effect of the present invention, and has various shapes such as a fibrous material and a non-fibrous material such as granular or plate-like. Filling material and the like. Specifically, fibers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium sulfate, calcium silicate, and natural fiber such as wollastonite. Fillers can be used, as well as glass beads, glass flakes, barium sulfate, calcium sulfate, clay, pyrophyllite, bentonite, sericite, zeolite, mica, mica, talc, attapulsite, ferrite, calcium silicate, calcium carbonate, carbon dioxide. Non-fibrous fillers such as magnesium and glass beads can also be used.

更に、本発明のポリアリーレンスルフィド樹脂は、さらに用途に応じて、適宜、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四弗化エチレン樹脂、ポリ二弗化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂、或いは、弗素ゴム等のエラストマーなどを配合したポリアリーレンスルフィド樹脂組成物として使用してもよい。また、これらの樹脂の使用量は、それぞれの目的に応じて異なり、一概に規定することはできないが、ポリアリーレンスルフィド樹脂100質量部に対して0.01〜1000質量部の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。 Further, the polyarylene sulfide resin of the present invention is further suitable for polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulphon resin, polyethersulphon resin, poly. Ether ether ketone resin, polyether ketone resin, polyarylene resin, polyethylene resin, polypropylene resin, polytetrafluorinated ethylene resin, polydifluorinated ethylene resin, polystyrene resin, ABS resin, phenol resin, urethane resin, liquid crystal polymer, etc. It may be used as a polyarylene sulfide resin composition containing a synthetic resin or an elastomer such as fluororubber. The amount of these resins used varies depending on the intended purpose and cannot be unconditionally specified, but the present invention is in the range of 0.01 to 1000 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. It may be adjusted and used as appropriate according to the purpose and application so as not to impair the effect of.

更に、本発明のポリアリーレンスルフィド樹脂は、本発明の効果を損ねない範囲であれば、成形加工の際に添加剤として、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤、カップリング剤等の各種添加剤を含有させることができる。これらの添加剤の使用量は、それぞれの目的に応じて異なり、一概に規定することはできないが、ポリアリーレンスルフィド樹脂100質量部に対して0.01〜1000質量部の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。 Further, the polyarylene sulfide resin of the present invention can be used as an additive during molding, as long as it does not impair the effects of the present invention, such as a colorant, a heat-resistant stabilizer, an ultraviolet stabilizer, a foaming agent, and a rust preventive. Various additives such as flame retardants, lubricants, and coupling agents can be contained. The amount of these additives used varies depending on the intended purpose and cannot be unconditionally specified, but is in the range of 0.01 to 1000 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin of the present invention. It may be adjusted and used as appropriate according to the purpose and application so as not to impair the effect.

本発明のポリアリーレンスルフィド樹脂組成物の製造方法としては特に制限なく、本発明の製造方法で得られたポリアリーレンスルフィド樹脂と、上記の必要に応じて加える充填材等のその他の添加剤を、粉末、ベレット、細片など様々な形態でリボンブレンター、ヘンシェルミキサー、Vブレンターなどに投入してドライブレンドした後、バンバリーミキサーミキシングロール、単軸または2軸の押出機およびニーターなどを用いて溶融混練する方法などが挙げられる。なかでも十分な混練力を有する単軸または2軸の押出機を用いて溶融混練する方法が代表的である。 The method for producing the polyarylene sulfide resin composition of the present invention is not particularly limited, and the polyarylene sulfide resin obtained by the production method of the present invention and other additives such as a filler to be added as needed may be added. It is put into a ribbon blender, Henschel mixer, V blender, etc. in various forms such as powder, bellet, and strips, dried and blended, and then melted using a Banbury mixer mixing roll, a single-screw or twin-screw extruder, and a kneer. Examples include a method of kneading. Among them, a method of melt-kneading using a single-screw or twin-screw extruder having sufficient kneading power is typical.

このようにして得られたポリアリーレンスルフィド樹脂組成物は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に離形性に優れるため射出成形用途に適している。 得られたポリアリーレンスルフィド樹脂組成物の成形品は、シリコーン樹脂との接着性に優れる。このため、例えば、ポリアリーレンスルフィド樹脂組成物からなる板状、箱型の成形品にシリコーン樹脂で封止または接合した後、当該硬化性樹脂を硬化することにより、ポリアリーレンスルフィド樹脂組成物を成形してなる成形体と、硬化性樹脂からなる硬化物とが接着して得られる複合成形品が得られる。 The polyarylene sulfide resin composition thus obtained can be used for various moldings such as injection molding, compression molding, extrusion molding of composites, sheets and pipes, drawing molding, blow molding and transfer molding. , Especially suitable for injection molding because of its excellent releasability. The obtained molded product of the polyarylene sulfide resin composition has excellent adhesiveness to the silicone resin. Therefore, for example, the polyarylene sulfide resin composition is molded by sealing or bonding the plate-shaped or box-shaped molded product made of the polyarylene sulfide resin composition with a silicone resin and then curing the curable resin. A composite molded product obtained by adhering a molded product made of a product and a cured product made of a curable resin can be obtained.

複合成形品の主な用途例として箱型の電気・電子部品集積モジュール用保護・支持部材・複数の個別半導体またはモジュール、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モータ、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスク・DVDディスク・ブルーレイディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品、あるいは給湯機や風呂の湯量、温度センサなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライタ、タイプライタなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクタ、ICレギュレータ、ライトディヤ用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、ブレーキパットウェアーセンサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモーター関係部品、デュストリビュータ、スタータースイッチ、イグニッションコイルおよびそのボビン、モーターインシュレータ、モーターロータ、モーターコア、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース等の自動車・車両関連部品、その他各種用途にも適用可能である。 Main applications of composite molded products include box-shaped protection / support members for integrated modules of electrical and electronic components, multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, Condenser, variable condenser case, optical pickup, oscillator, various terminal boards, transformer, plug, printed board, tuner, speaker, microphone, headphone, small motor, magnetic head base, power module, terminal block, semiconductor, liquid crystal, FDD carriage , FDD chassis, motor brush holder, parabolic antenna, computer-related parts, and other electrical and electronic parts; VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave parts, acoustic parts, audio / laser discs.・ Audio / video equipment parts such as compact discs, DVD discs, and Blu-ray discs, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, or water supply equipment parts such as water heaters, bath water volume, and temperature sensors. Household and office electrical product parts represented by; office computer related parts, telephone equipment related parts, facsimile related parts, copying machine related parts, cleaning jigs, motor parts, writer, type writer, etc. : Optical equipment such as microscopes, binoculars, cameras, clocks, precision machinery related parts; Alternator terminals, alternator connectors, IC regulators, potentiometer bases for light sensors, relay blocks, inhibitor switches, exhaust gas valves, etc. , Fuel-related / exhaust system / intake system pipes, air intake nozzle snorkel, intake manifold, fuel pump, engine cooling water joint, carburetor main body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor, brake pad wear sensor , Throttle position sensor, crank shaft position sensor, air flow meter, brake pad wear sensor, thermostat base for air conditioner, heating hot air flow control valve, brush holder for radiator motor, water pump impeller, turbine vane, wiper motor related parts, du Stributor, starter switch, ignition coil and its bobbin, motor insulator, motor rotor, motor core, starter reel, to Wire harness for lance mission, window washer nozzle, air conditioner panel switch board, coil for fuel-related electromagnetic valve, fuse connector, horn terminal, electrical component insulation plate, step motor rotor, lamp socket, lamp reflector, lamp housing, brake piston, It can also be applied to automobile / vehicle-related parts such as solenoid bobbins, engine oil filters, and ignition device cases, and various other applications.

以下に実施例を挙げて本発明を具体的に説明する。これら例は例示的なものであって限定的なものではない。 Hereinafter, the present invention will be specifically described with reference to examples. These examples are exemplary and not limiting.

〔溶融粘度の測定法〕
得られたポリマーの溶融粘度(η)は、高化式フローテスター(島津製作所製「CFT−500D型」フローテスター)を用い、300℃、20kgf/cm、L/D=10mm/1mmで6分間保持した後に測定した値である。
[Measurement method of melt viscosity]
The melt viscosity (η) of the obtained polymer was 6 at 300 ° C., 20 kgf / cm 2 , L / D = 10 mm / 1 mm using a high-grade flow tester (“CFT-500D type” flow tester manufactured by Shimadzu Corporation). It is a value measured after holding for a minute.

〔ろ液中の組成の測定法:CP−MABA〕
よく攪拌したろ液から、1mlをサンプリングし、そこにHPLCの移動相を9ml加え、ろ液を測定サンプルとした。測定サンプルのHPLC測定を行い、下記の方法で作成した標準サンプルと同じ保持時間のピーク面積と検量線とから液中の濃度を求めた。HPLC測定条件は以下の通り。
装置名:株式会社 島津製作所製「高速液体クロマトグラム Prominence」
カラム:株式会社 島津ジーエルシー製
「Phenomenex Luna 5u C18(2) 100A」
検出器:DAD (Diode Array Detector)
データ処理:株式会社 島津製作所製「LCsolution」
測定条件:カラム温度40℃
移動相:水
流速 1.0ml/分
[Measurement method of composition in filtrate: CP-MABA]
1 ml was sampled from the well-stirred filtrate, 9 ml of the mobile phase of HPLC was added thereto, and the filtrate was used as a measurement sample. The HPLC measurement of the measurement sample was performed, and the concentration in the liquid was determined from the peak area and the calibration curve having the same retention time as the standard sample prepared by the following method. The HPLC measurement conditions are as follows.
Device name: "High Performance Liquid Chromatogram Prominence" manufactured by Shimadzu Corporation
Column: "Phenomenex Luna 5u C18 (2) 100A" manufactured by Shimadzu LLC Co., Ltd.
Detector: DAD (Diode Array Detector)
Data processing: "LC solution" manufactured by Shimadzu Corporation
Measurement conditions: Column temperature 40 ° C
Mobile phase: Water flow rate 1.0 ml / min

(標準物質:CP−MABAの合成)
48%NaOH水溶液83.40g(1.000モル)とN−メチル−2−ピロリドン297.4g(3.000モル)を、撹拌機付き耐圧容器に仕込み、230℃で3時間撹拌した。この撹拌が終了した後、温度230℃のままバルブを開き、放圧し、N−メチル−2−ピロリドンの蒸気圧程度である230℃において0.1MPaまで圧力を低下させ、水を留去した。その後、再び密閉し200℃程度まで温度を低下させた。
(Standard substance: Synthesis of CP-MABA)
83.40 g (1.00 mol) of a 48% NaOH aqueous solution and 297.4 g (3.000 mol) of N-methyl-2-pyrrolidone were placed in a pressure-resistant container equipped with a stirrer and stirred at 230 ° C. for 3 hours. After the stirring was completed, the valve was opened at a temperature of 230 ° C., the pressure was released, the pressure was lowered to 0.1 MPa at 230 ° C., which is about the vapor pressure of N-methyl-2-pyrrolidone, and water was distilled off. Then, it was sealed again and the temperature was lowered to about 200 ° C.

p−ジクロロベンゼン147.0g(1.000モル)を60℃以上の温度条件下で加熱溶解して反応混合物中に投入し、250℃まで昇温後4時間撹拌した。この撹拌が終了した後、室温まで冷却した。p−ジクロロベンゼンの反応率は31モル%であった。冷却後、内容物を取り出し、水を加えて撹拌後、未反応のp−ジクロロベンゼンが不溶物となって残ったものをろ過によって取り除いた。 147.0 g (1.00 mol) of p-dichlorobenzene was heated and dissolved under a temperature condition of 60 ° C. or higher, charged into the reaction mixture, heated to 250 ° C., and stirred for 4 hours. After this stirring was completed, the mixture was cooled to room temperature. The reaction rate of p-dichlorobenzene was 31 mol%. After cooling, the contents were taken out, water was added, and the mixture was stirred. Then, unreacted p-dichlorobenzene was removed as an insoluble matter by filtration.

次いで、ろ液である水溶液に塩酸を加えて該水溶液のpHを4に調整した。このとき水溶液中に褐色オイル状のCP−MABA(水素型)が生じた。そこにクロロホルムを加えて褐色オイル状物質を抽出した。このときの水相には、N−メチル−2−ピロリドン及びその開環物である4−メチルアミノ酪酸(以下「MABA」と略記する。)が含まれるため水相は廃棄した。クロロホルム相は水洗を2回繰り返した。 Next, hydrochloric acid was added to the aqueous solution as a filtrate to adjust the pH of the aqueous solution to 4. At this time, a brown oil-like CP-MABA (hydrogen type) was generated in the aqueous solution. Chloroform was added thereto to extract a brown oily substance. Since the aqueous phase at this time contained N-methyl-2-pyrrolidone and 4-methylaminobutyric acid (hereinafter abbreviated as "MABA") which is a ring-opening product thereof, the aqueous phase was discarded. The chloroform phase was washed twice with water.

クロロホルム相に水を加えてスラリー化した状態で48%NaOH水溶液を加え、該スラリーのpHを13に調整した。このときCP−MABAはナトリウム塩となって水相に移り、クロロホルム相には副生成物であるp−クロロ−N−メチルアニリン及びN−メチルアニリンが溶解しているためクロロホルム相は廃棄した。水相はクロロホルム洗浄を2回繰り返した。 Water was added to the chloroform phase to form a slurry, and a 48% NaOH aqueous solution was added to adjust the pH of the slurry to 13. At this time, CP-MABA became a sodium salt and moved to the aqueous phase, and the chloroform phase was discarded because the by-products p-chloro-N-methylaniline and N-methylaniline were dissolved in the chloroform phase. The aqueous phase was washed with chloroform twice.

水溶液に希塩酸を加えて該水溶液のpHを1以下に調整した。このときCP−MABAは塩酸塩となって水溶液中にとどまるので、水溶液にクロロホルムを加えて、副生成物であるp−クロロフェノールを抽出した。p−クロロフェノールが溶解したクロロホルム相は廃棄した。 Dilute hydrochloric acid was added to the aqueous solution to adjust the pH of the aqueous solution to 1 or less. At this time, CP-MABA became a hydrochloride and remained in the aqueous solution, so chloroform was added to the aqueous solution to extract p-chlorophenol as a by-product. The chloroform phase in which p-chlorophenol was dissolved was discarded.

残った水溶液に48%NaOH水溶液を加え、該水溶液のpHを4に調整した。これにより、CP−MABAの塩酸塩が中和され、褐色オイル状のCP−MABA(水素型)が水溶液から析出した。CP−MABA(水素型)をクロロホルムで抽出し、クロロホルムを減圧除去することによってCP−MABA(水素型)を得た。さらに、得られたCP−MABA(水素型)に48%NaOH水溶液を加え、pHを13に調整し、CP−MABA(Na塩型)を得た。 A 48% NaOH aqueous solution was added to the remaining aqueous solution to adjust the pH of the aqueous solution to 4. As a result, the hydrochloride salt of CP-MABA was neutralized, and CP-MABA (hydrogen type) in the form of brown oil was precipitated from the aqueous solution. CP-MABA (hydrogen type) was extracted with chloroform, and chloroform was removed under reduced pressure to obtain CP-MABA (hydrogen type). Further, a 48% NaOH aqueous solution was added to the obtained CP-MABA (hydrogen type) to adjust the pH to 13, and CP-MABA (Na salt type) was obtained.

〔ろ液中の組成の測定法:水〕
水分量の測定は、カールフィッシャー水分測定機(平沼産業株式会社製カールフィッシャー水分計AQV−300)を用いて行った。
[Measurement method of composition in filtrate: water]
The water content was measured using a Karl Fischer titer (Karl Fischer titer AQV-300 manufactured by Hiranuma Sangyo Co., Ltd.).

〔ろ液中の組成の測定法:NMP〕
NMPは、アセトンで10倍希釈してGCで定量した。GC測定条件は以下の通り。
装置名:株式会社島津製作所社製「ガスクロマトグラフ GC−2014」
カラム:財団法人化学物質評価研究機構製「Gカラム G−300」
キャリアガス:He(76kPa)
分析温度:140℃(5分)→3℃/分昇温→200℃(20分) 計45分
注入口温度:250℃
検出器:FID(250℃)
[Measurement method of composition in filtrate: NMP]
NMP was diluted 10-fold with acetone and quantified by GC. The GC measurement conditions are as follows.
Device name: "Gas Chromatograph GC-2014" manufactured by Shimadzu Corporation
Column: "G Column G-300" manufactured by Chemical Substances Evaluation and Research Institute
Carrier gas: He (76 kPa)
Analysis temperature: 140 ° C (5 minutes) → 3 ° C / min temperature rise → 200 ° C (20 minutes) Total 45 minutes Injection port temperature: 250 ° C
Detector: FID (250 ° C)

〔ろ液中の組成の測定法:オリゴマー〕
よく攪拌したろ液を200℃で120分間加熱した後、不揮発分量を測定し、ろ液中に含まれる不揮発分濃度を算出した。次に、前記CP−MABA濃度を差し引き、オリゴマー濃度とした。
[Measurement method of composition in filtrate: Oligomer]
After heating the well-stirred filtrate at 200 ° C. for 120 minutes, the non-volatile content was measured and the concentration of the non-volatile content contained in the filtrate was calculated. Next, the CP-MABA concentration was subtracted to obtain the oligomer concentration.

1.参考例1 ポリアリーレンスルフォド樹脂製造
オートクレーブに、フレーク状硫化ソーダ(60.75wt%NaS)205.5質量部と、NMP358.7質量部を仕込んだ。窒素気流下攪拌しながら212℃まで昇温して、水49.10質量部を留出させた。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン(以下、p−DCBと略すことがある)230.2質量部とNMP228.0質量部を仕込んだ。液温165℃で窒素ガスを用いて108,000Paに加圧して昇温を開始した。液温240℃まで135分かけて昇温し30分保持した。その後40分かけて液温250℃まで昇温し73分保持して反応を完結させ、その後、3時間かけて120℃まで冷却してスラリー(1)を得た。
1. 1. Reference Example 1 205.5 parts by mass of flake-shaped sodium sulfide (60.75 wt% Na 2 S) and 358.7 parts by mass of NMP were charged into an autoclave for producing a polyarylene sulphod resin. The temperature was raised to 212 ° C. with stirring under a nitrogen stream to distill out 49.10 parts by mass of water. Then, the autoclave was sealed and cooled to 180 ° C., and 230.2 parts by mass of paradichlorobenzene (hereinafter, may be abbreviated as p-DCB) and 228.0 parts by mass of NMP were charged. The temperature was increased to 108,000 Pa using nitrogen gas at a liquid temperature of 165 ° C. to start the temperature rise. The temperature was raised to 240 ° C. over 135 minutes and maintained for 30 minutes. After that, the liquid temperature was raised to 250 ° C. over 40 minutes and held for 73 minutes to complete the reaction, and then cooled to 120 ° C. over 3 hours to obtain a slurry (1).

得られたスラリー(1)100.0質量部をろ過して溶媒を除去し、次に、ろ過残渣に残ったNMPと副生成物の塩化ナトリウムを溶解するため、60℃の温水400質量部に分散し10分間撹拌した後、さらにろ過し、ろ過ケーキに60℃の温水400質量部を通過させた。この操作を3回繰り返した後、含水ろ過ケーキは、120℃において3時間熱風循環乾燥機中で乾燥し、白色粉末状のポリマー(1)を得た。溶融粘度を測定したところ、40Pa・sであった。 100.0 parts by mass of the obtained slurry (1) was filtered to remove the solvent, and then 400 parts by mass of warm water at 60 ° C. was used to dissolve the NMP remaining in the filtration residue and sodium chloride as a by-product. After being dispersed and stirred for 10 minutes, the mixture was further filtered, and 400 parts by mass of warm water at 60 ° C. was passed through the filtered cake. After repeating this operation three times, the hydrous filtered cake was dried in a hot air circulation dryer at 120 ° C. for 3 hours to obtain a white powdery polymer (1). The melt viscosity was measured and found to be 40 Pa · s.

2.実施例1
参考例1と同様にしてスラリー(1)を得た。得られたスラリー(1)をろ過して溶媒を含むろ液(1)を得た。このろ液(1)の主な組成は、オリゴマー1.440wt%、CP−MABA(Na塩型)0.510wt%、水3.050wt%、NMP94.71wt%であった。ろ液(1)は、テンション締付け型ロック機構付き容器に収容して、30分間放置し、室温まで冷却し、保管した。
2. 2. Example 1
A slurry (1) was obtained in the same manner as in Reference Example 1. The obtained slurry (1) was filtered to obtain a filtrate (1) containing a solvent. The main composition of this filtrate (1) was 1.440 wt% of oligomer, 0.510 wt% of CP-MABA (Na salt type), 3.050 wt% of water, and 94.71 wt% of NMP. The filtrate (1) was housed in a container with a tension-tightening lock mechanism, left for 30 minutes, cooled to room temperature, and stored.

オートクレーブに、フレーク状硫化ソーダ(60.75wt%NaS)202.4質量部と、NMP196.1質量部および前記容器から取り出した上記ろ液(1)183.0質量部を仕込んだ。窒素気流下攪拌しながら212℃まで昇温して、水54.00質量部を留出させた。その後、オートクレーブを密閉して180℃まで冷却し、p−DCB227.3質量部(1.546モル部)とNMP238.0質量部を仕込んだ。液温165℃で窒素ガスを用いて108,000Paに加圧して昇温を開始した。液温240℃まで135分かけて昇温し30分保持した。その後40分かけて液温250℃まで昇温し73分保持して反応を完結させ、その後、3時間かけて120℃まで冷却してスラリー(2)を得た。 The autoclave was charged with flaky sodium sulfide (60.75wt% Na 2 S) 202.4 parts by mass, the NMP196.1 parts by mass and the filtrate was taken out from the container (1) 183.0 parts by mass. The temperature was raised to 212 ° C. with stirring under a nitrogen stream to distill 54.00 parts by mass of water. Then, the autoclave was sealed and cooled to 180 ° C., and p-DCB 227.3 parts by mass (1.546 mol parts) and NMP 238.0 parts by mass were charged. The temperature was increased to 108,000 Pa using nitrogen gas at a liquid temperature of 165 ° C. to start the temperature rise. The temperature was raised to 240 ° C. over 135 minutes and maintained for 30 minutes. After that, the liquid temperature was raised to 250 ° C. over 40 minutes and held for 73 minutes to complete the reaction, and then cooled to 120 ° C. over 3 hours to obtain a slurry (2).

なお、原料中における、フレーク状硫化ソーダ(60.75wt%NaS)由来の硫黄原子(1.575モル部)と、上記ろ液(1)中のオリゴマー由来の硫黄原子(0.02438モル部。ただし、オリゴマーの重量をPPSの繰り返し単位の分子量(108.1)で除した値より算出するものとする。以下同様。)とを合算すると、硫黄原子は1.599モル部であった。上記ろ液(1)由来のCP−MABA(Na塩型)0.940質量部(0.003756モル部)が原料中に加わっていることから、原料に加えたCP−MABA(Na塩型)の割合は、原料に含まれる硫黄原子1モルに対して、0.002375モルであった。 In addition, a sulfur atom (1.575 mol part) derived from flaky sodium sulfide (60.75 wt% Na 2 S) and a sulfur atom (0.02438 mol) derived from an oligomer in the filtrate (1) in the raw material. However, when the weight of the oligomer is calculated by dividing the weight of the oligomer by the molecular weight (108.1) of the repeating unit of PPS, the same shall apply hereinafter), the sulfur atom is 1.599 mol parts. .. Since 0.940 parts by mass (0.003756 mol) of CP-MABA (Na salt type) derived from the filtrate (1) is added to the raw material, CP-MABA (Na salt type) added to the raw material The ratio of was 0.0023175 mol to 1 mol of sulfur atom contained in the raw material.

次に、得られたスラリー(2)100.0質量部をろ過(桐山ロートに保留粒子1μmのセルロースろ紙を引き、スラリーを入れたビーカーをウォーターバスにかけ、スラリー温度が50℃になってから、ロートに投入し、水流ポンプでの減圧ろ過)して溶媒を除去し、ろ過残渣に残ったNMPと副生成物の塩化ナトリウムを溶解するため60℃の温水400質量部に分散し10分間撹拌した後、さらにろ過し、ろ過ケーキに60℃の温水400質量部を通過させた。この操作を3回繰り返した後、含水ろ過ケーキは、120℃において3時間熱風循環乾燥機中で乾燥し、白色粉末状のポリマー(2)を得た。溶融粘度を測定したところ、46Pa・sであった。 Next, 100.0 parts by mass of the obtained slurry (2) was filtered (a cellulose filter paper having 1 μm of reserved particles was drawn on a Kiriyama funnel, a beaker containing the slurry was placed in a water bath, and after the slurry temperature reached 50 ° C., It was put into a funnel and filtered under reduced pressure with a water flow pump) to remove the solvent, and in order to dissolve the NMP remaining in the filtration residue and sodium chloride as a by-product, it was dispersed in 400 parts by mass of warm water at 60 ° C. and stirred for 10 minutes. After that, it was further filtered, and 400 parts by mass of warm water at 60 ° C. was passed through the filtered cake. After repeating this operation three times, the hydrous filtered cake was dried in a hot air circulation dryer at 120 ° C. for 3 hours to obtain a white powdery polymer (2). The melt viscosity was measured and found to be 46 Pa · s.

3.実施例2
実施例1と同様にしてろ液(1)を得た。このろ液(1)の主な組成は、オリゴマー1.440wt%、CP−MABA(Na塩型)0.510wt%、水3.050wt%、NMP94.71wt%であった。ろ液(1)は、テンション締付け型ロック機構付き容器に収容して、30分間放置し、室温まで冷却し、保管した。
3. 3. Example 2
A filtrate (1) was obtained in the same manner as in Example 1. The main composition of this filtrate (1) was 1.440 wt% of oligomer, 0.510 wt% of CP-MABA (Na salt type), 3.050 wt% of water, and 94.71 wt% of NMP. The filtrate (1) was housed in a container with a tension-tightening lock mechanism, left for 30 minutes, cooled to room temperature, and stored.

オートクレーブに、フレーク状硫化ソーダ(60.75wt%NaS)205.5質量部と、NMP198.3質量部および前記容器から取り出した上記ろ液(1)183.0質量部を仕込んだ。窒素気流下攪拌しながら212℃まで昇温して、水55.20質量部を留出させた。その後、オートクレーブを密閉して180℃まで冷却し、p−DCB229.5質量部(1.560モル部)とNMP231.4質量部を仕込んだ。液温165℃で窒素ガスを用いて108,000Paに加圧して昇温を開始した。液温240℃まで135分かけて昇温し30分保持した。その後40分かけて液温250℃まで昇温し73分保持して反応を完結させ、その後、3時間かけて120℃まで冷却してスラリー(3)を得た。 The autoclave was charged with flaky sodium sulfide (60.75wt% Na 2 S) 205.5 parts by mass, the NMP198.3 parts by mass and the filtrate was taken out from the container (1) 183.0 parts by mass. The temperature was raised to 212 ° C. with stirring under a nitrogen stream to distill out 55.20 parts by mass of water. Then, the autoclave was sealed and cooled to 180 ° C., and 229.5 parts by mass (1.560 mol parts) of p-DCB and 231.4 parts by mass of NMP were charged. The temperature was increased to 108,000 Pa using nitrogen gas at a liquid temperature of 165 ° C. to start the temperature rise. The temperature was raised to 240 ° C. over 135 minutes and maintained for 30 minutes. After that, the liquid temperature was raised to 250 ° C. over 40 minutes and held for 73 minutes to complete the reaction, and then cooled to 120 ° C. over 3 hours to obtain a slurry (3).

なお、原料中における、フレーク状硫化ソーダ(60.75wt%NaS)由来の硫黄原子(1.600モル部)と、上記ろ液中のオリゴマー由来の硫黄原子(0.02438モル部)とを合算すると、硫黄原子は1.624モル部であった。上記ろ液(1)由来のCP−MABA(Na塩型)0.940質量部(0.003783モル部)が原料中に加わっていることから、原料に加えたCP−MABA(Na塩型)の割合は、原料に含まれる硫黄原子1モルに対して、0.002330モルであった。 In addition, a sulfur atom (1.60 mol part) derived from flaky sodium sulfide (60.75 wt% Na 2 S) and a sulfur atom (0.02438 mol part) derived from an oligomer in the above filtrate in the raw material. In total, the sulfur atom was 1.624 mol parts. Since 0.940 parts by mass (0.003783 mol) of CP-MABA (Na salt type) derived from the filtrate (1) is added to the raw material, CP-MABA (Na salt type) added to the raw material The ratio of was 0.002330 mol to 1 mol of sulfur atom contained in the raw material.

得られたスラリー(3)から、実施例1と同様にして、白色粉末状のポリマー(3)を得た。溶融粘度を測定したところ、43Pa・sであった。 From the obtained slurry (3), a white powdery polymer (3) was obtained in the same manner as in Example 1. The melt viscosity was measured and found to be 43 Pa · s.

4.実施例3
実施例1と同様にしてろ液(1)を得た。このろ液(1)の主な組成は、オリゴマー1.440wt%、CP−MABA(Na塩型)0.510wt%、水3.050wt%、NMP94.71wt%であった。ろ液(1)は、テンション締付け型ロック機構付き容器に収容して、30分間放置し、室温まで冷却し、保管した。
4. Example 3
A filtrate (1) was obtained in the same manner as in Example 1. The main composition of this filtrate (1) was 1.440 wt% of oligomer, 0.510 wt% of CP-MABA (Na salt type), 3.050 wt% of water, and 94.71 wt% of NMP. The filtrate (1) was housed in a container with a tension-tightening lock mechanism, left for 30 minutes, cooled to room temperature, and stored.

オートクレーブに、フレーク状硫化ソーダ(60.75wt%NaS)205.5質量部と、NMP138.0質量部および前記容器から取り出した上記ろ液(1)244.5質量部を仕込んだ。窒素気流下攪拌しながら212℃まで昇温して、水55.20質量部を留出させた。その後、オートクレーブを密閉して180℃まで冷却し、p−DCB225.6質量部(1.534モル部)とNMP235.3質量部を仕込んだ。液温165℃で窒素ガスを用いて108,000Paに加圧して昇温を開始した。液温240℃まで135分かけて昇温し30分保持した。その後40分かけて液温250℃まで昇温し73分保持して反応を完結させ、その後、3時間かけて120℃まで冷却してスラリー(4)を得た。 The autoclave was charged with flaky sodium sulfide (60.75wt% Na 2 S) 205.5 parts by mass, the NMP138.0 parts by mass and the filtrate was taken out from the container (1) 244.5 parts by mass. The temperature was raised to 212 ° C. with stirring under a nitrogen stream to distill out 55.20 parts by mass of water. Then, the autoclave was sealed and cooled to 180 ° C., and 225.6 parts by mass (1.534 mol parts) of p-DCB and 235.3 parts by mass of NMP were charged. The temperature was increased to 108,000 Pa using nitrogen gas at a liquid temperature of 165 ° C. to start the temperature rise. The temperature was raised to 240 ° C. over 135 minutes and maintained for 30 minutes. After that, the liquid temperature was raised to 250 ° C. over 40 minutes and held for 73 minutes to complete the reaction, and then cooled to 120 ° C. over 3 hours to obtain a slurry (4).

なお、原料中における、フレーク状硫化ソーダ(60.75wt%NaS)由来の硫黄原子(1.600モル部)と、上記ろ液(1)中のオリゴマー由来の硫黄原子(0.03257モル部)とを合算すると、硫黄原子は1.633モル部であった。上記ろ液(1)由来のCP−MABA(Na塩型)1.260質量部(0.005071モル部)が原料中に加わっていることから、原料に加えたCP−MABA(Na塩型)の割合は、原料に含まれる硫黄原子1モルに対して、0.003106モルであった。 The sulfur atom (1.60 mol parts) derived from flaky sodium sulfide (60.75 wt% Na 2 S) and the sulfur atom (0.03257 mol) derived from the oligomer in the filtrate (1) in the raw material. The total amount of sulfur atoms was 1.633 mol parts. Since 1.260 parts by mass (0.005071 mol) of CP-MABA (Na salt type) derived from the filtrate (1) is added to the raw material, CP-MABA (Na salt type) added to the raw material. The ratio of was 0.003106 mol with respect to 1 mol of the sulfur atom contained in the raw material.

得られたスラリー(4)から、実施例1と同様にして、白色粉末状のポリマー(4)を得た。溶融粘度を測定したところ、39Pa・sであった。 From the obtained slurry (4), a white powdery polymer (4) was obtained in the same manner as in Example 1. The melt viscosity was measured and found to be 39 Pa · s.

5.実施例4
実施例1と同様にしてスラリー(2)を得た。得られたスラリー(2)をろ過して溶媒を含むろ液(2)を得た。このろ液(2)の主な組成は、オリゴマー1.450wt%、CP−MABA(Na塩型)0.650wt%、水3.020wt%、NMP94.30wt%であった。ろ液(2)は、テンション締付け型ロック機構付き容器に収容して、30分間放置し、室温まで冷却し、保管した。
5. Example 4
A slurry (2) was obtained in the same manner as in Example 1. The obtained slurry (2) was filtered to obtain a filtrate (2) containing a solvent. The main composition of this filtrate (2) was 1.450 wt% of oligomer, 0.650 wt% of CP-MABA (Na salt type), 3.020 wt% of water, and 94.30 wt% of NMP. The filtrate (2) was housed in a container with a tension-tightening lock mechanism, left for 30 minutes, cooled to room temperature, and stored.

オートクレーブに、フレーク状硫化ソーダ(60.75wt%NaS)202.3質量部と、NMP196.1質量部および前記容器から取り出した上記ろ液(2)183.0質量部を仕込んだ。窒素気流下攪拌しながら212℃まで昇温して、水54.00質量部を留出させた。その後、オートクレーブを密閉して180℃まで冷却し、p−DCB226.9質量部(1.543モル部)とNMP238.8質量部を仕込んだ。液温165℃で窒素ガスを用いて108,000Paに加圧して昇温を開始した。液温240℃まで135分かけて昇温し30分保持した。その後40分かけて液温250℃まで昇温し73分保持して反応を完結させ、その後、3時間かけて120℃まで冷却してスラリー(5)を得た。 The autoclave was charged with 202.3 parts by mass of flaky sodium sulfide (60.75 wt% Na 2 S), 196.1 parts by mass of NMP, and 183.0 parts by mass of the filtrate (2) taken out from the container. The temperature was raised to 212 ° C. with stirring under a nitrogen stream to distill 54.00 parts by mass of water. Then, the autoclave was sealed and cooled to 180 ° C., and p-DCB 226.9 parts by mass (1.543 mol parts) and NMP 238.8 parts by mass were charged. The temperature was increased to 108,000 Pa using nitrogen gas at a liquid temperature of 165 ° C. to start the temperature rise. The temperature was raised to 240 ° C. over 135 minutes and maintained for 30 minutes. After that, the liquid temperature was raised to 250 ° C. over 40 minutes and held for 73 minutes to complete the reaction, and then cooled to 120 ° C. over 3 hours to obtain a slurry (5).

なお、原料中における、フレーク状硫化ソーダ(60.75wt%NaS)由来の硫黄原子(1.575モル部)と、上記ろ液(2)中のオリゴマー由来の硫黄原子(0.02455モル部)とを合算すると、硫黄原子は1.600モル部であった。上記ろ液(2)由来のCP−MABA(Na塩型)1.190質量部(0.004790モル部)が原料中に加わっていることから、原料に加えたCP−MABA(Na塩型)の割合は、原料に含まれる硫黄原子1モルに対して、0.002994モルであった。 In addition, a sulfur atom (1.575 mol part) derived from flaky sodium sulfide (60.75 wt% Na 2 S) and a sulfur atom (0.02455 mol) derived from an oligomer in the above filtrate (2) in the raw material. The total amount of sulfur atoms was 1.600 mol. Since 1.190 parts by mass (0.004790 mol parts) of CP-MABA (Na salt type) derived from the filtrate (2) is added to the raw material, CP-MABA (Na salt type) added to the raw material. The ratio of was 0.002994 mol to 1 mol of the sulfur atom contained in the raw material.

得られたスラリー(5)から、実施例1と同様にして、白色粉末状のポリマー(5)を得た。溶融粘度を測定したところ、44Pa・sであった。 From the obtained slurry (5), a white powdery polymer (5) was obtained in the same manner as in Example 1. The melt viscosity was measured and found to be 44 Pa · s.

6.実施例5
実施例4と同様にしてスラリー(5)を得た。得られたスラリー(5)をろ過して溶媒を含むろ液(3)を得た。このろ液(3)の主な組成は、オリゴマー1.480wt%、CP−MABA(Na塩型)0.790wt%、水3.090wt%、NMP94.27wt%であった。ろ液(3)は、テンション締付け型ロック機構付き容器に収容して、30分間放置し、室温まで冷却し、保管した。
6. Example 5
A slurry (5) was obtained in the same manner as in Example 4. The obtained slurry (5) was filtered to obtain a filtrate (3) containing a solvent. The main composition of the filtrate (3) was 1.480 wt% oligomer, 0.790 wt% CP-MABA (Na salt type), 3.090 wt% water, and 94.27 wt% NMP. The filtrate (3) was housed in a container with a tension-tightening lock mechanism, left for 30 minutes, cooled to room temperature, and stored.

オートクレーブに、フレーク状硫化ソーダ(60.75wt%NaS)202.3質量部と、NMP196.1質量部および前記容器から取り出した上記ろ液(3)183.0質量部を仕込んだ。窒素気流下攪拌しながら212℃まで昇温して、水54.00質量部を留出させた。その後、オートクレーブを密閉して180℃まで冷却し、p−DCB226.9質量部(1.543モル部)とNMP238.8質量部を仕込んだ。液温165℃で窒素ガスを用いて108,000Paに加圧して昇温を開始した。液温240℃まで135分かけて昇温し30分保持した。その後40分かけて液温250℃まで昇温し73分保持して反応を完結させ、その後、3時間かけて120℃まで冷却してスラリー(6)を得た。 The autoclave was charged with flaky sodium sulfide (60.75wt% Na 2 S) 202.3 parts by mass, the NMP196.1 parts by mass and the filtrate was taken out from the container (3) 183.0 parts by mass. The temperature was raised to 212 ° C. with stirring under a nitrogen stream to distill 54.00 parts by mass of water. Then, the autoclave was sealed and cooled to 180 ° C., and p-DCB 226.9 parts by mass (1.543 mol parts) and NMP 238.8 parts by mass were charged. The temperature was increased to 108,000 Pa using nitrogen gas at a liquid temperature of 165 ° C. to start the temperature rise. The temperature was raised to 240 ° C. over 135 minutes and maintained for 30 minutes. After that, the liquid temperature was raised to 250 ° C. over 40 minutes and held for 73 minutes to complete the reaction, and then cooled to 120 ° C. over 3 hours to obtain a slurry (6).

なお、原料中における、フレーク状硫化ソーダ(60.75wt%NaS)由来の硫黄原子(1.575モル部)と、上記ろ液(3)中のオリゴマー由来の硫黄原子(0.02505モル部)とを合算すると、硫黄原子は1.600モル部であった。上記ろ液(3)由来のCP−MABA(Na塩型)1.450質量部(0.005836モル部)が原料中に加わっていることから、原料に加えたCP−MABA(Na塩型)の割合は、原料に含まれる硫黄原子1モルに対して、0.003648モルであった。 In addition, a sulfur atom (1.575 mol part) derived from flaky sodium sulfide (60.75 wt% Na 2 S) and a sulfur atom (0.02505 mol) derived from an oligomer in the above filtrate (3) in the raw material. The total amount of sulfur atoms was 1.600 mol. Since 1.450 parts by mass (0.005836 mol parts) of CP-MABA (Na salt type) derived from the filtrate (3) is added to the raw material, CP-MABA (Na salt type) added to the raw material The ratio of was 0.003648 mol to 1 mol of the sulfur atom contained in the raw material.

得られたスラリー(6)から、実施例1と同様にして、白色粉末状のポリマー(6)を得た。溶融粘度を測定したところ、44Pa・sであった。 From the obtained slurry (6), a white powdery polymer (6) was obtained in the same manner as in Example 1. The melt viscosity was measured and found to be 44 Pa · s.

7.比較例1
「上記ろ液(1)183.0質量部」に替えて「上記ろ液(1)370.0質量部」としたこと以外は全て実施例1と同様にして、スラリー(7)を得た。
7. Comparative Example 1
A slurry (7) was obtained in the same manner as in Example 1 except that "the above-mentioned filtrate (1) 370.0 parts by mass" was replaced with "the above-mentioned filtrate (1) 183.0 parts by mass". ..

なお、原料中における、フレーク状硫化ソーダ(60.75wt%NaS)由来の硫黄原子(1.575モル部)と、上記ろ液(1)中のオリゴマー由来の硫黄原子(0.04929モル部)とを合算すると、硫黄原子は1.624モル部であった。上記ろ液(1)由来のCP−MABA(Na塩型)1.900質量部(0.007647モル部)が原料中に加わっていることから、原料に加えたCP−MABA(Na塩型)の割合は、原料に含まれる硫黄原子1モルに対して、0.004709モルであった。 In addition, a sulfur atom (1.575 mol part) derived from flaky sodium sulfide (60.75 wt% Na 2 S) and a sulfur atom (0.04929 mol) derived from an oligomer in the above filtrate (1) in the raw material. In total, the sulfur atom was 1.624 mol parts. Since 1.900 parts by mass (0.007647 mol parts) of CP-MABA (Na salt type) derived from the filtrate (1) is added to the raw material, CP-MABA (Na salt type) added to the raw material The ratio of was 0.004709 mol to 1 mol of the sulfur atom contained in the raw material.

得られたスラリー(7)から、実施例1と同様にして、白色粉末状のポリマー(7)を得た。溶融粘度を測定したところ、32Pa・sであった。 From the obtained slurry (7), a white powdery polymer (7) was obtained in the same manner as in Example 1. The melt viscosity was measured and found to be 32 Pa · s.

8.比較例2
実施例5と同様にしてスラリー(6)を得た。得られたスラリー(6)をろ過して溶媒を含むろ液(4)を得た。このろ液(4)の主な組成は、オリゴマー1.490wt%、CP−MABA(Na塩型)0.990wt%、水3.020wt%、NMP94.04wt%であった。ろ液(4)は、テンション締付け型ロック機構付き容器に収容して、30分間放置し、室温まで冷却し、保管した。
8. Comparative Example 2
A slurry (6) was obtained in the same manner as in Example 5. The obtained slurry (6) was filtered to obtain a filtrate (4) containing a solvent. The main composition of this filtrate (4) was 1.490 wt% of oligomer, 0.990 wt% of CP-MABA (Na salt type), 3.020 wt% of water, and 94.04 wt% of NMP. The filtrate (4) was housed in a container with a tension-tightening lock mechanism, left for 30 minutes, cooled to room temperature, and stored.

オートクレーブに、フレーク状硫化ソーダ(60.75wt%NaS)202.3質量部と、NMP196.1質量部および前記容器から取り出した上記ろ液(4)183.0質量部を仕込んだ。窒素気流下攪拌しながら212℃まで昇温して、水54.00質量部を留出させた。その後、オートクレーブを密閉して180℃まで冷却し、p−DCB226.9質量部(1.543モル部)とNMP238.8質量部を仕込んだ。液温165℃で窒素ガスを用いて108,000Paに加圧して昇温を開始した。液温240℃まで135分かけて昇温し30分保持した。その後40分かけて液温250℃まで昇温し73分保持して反応を完結させ、その後、3時間かけて120℃まで冷却してスラリー(8)を得た。 The autoclave was charged with flaky sodium sulfide (60.75wt% Na 2 S) 202.3 parts by mass, the NMP196.1 parts by mass and the filtrate was taken out from the container (4) 183.0 parts by mass. The temperature was raised to 212 ° C. with stirring under a nitrogen stream to distill 54.00 parts by mass of water. Then, the autoclave was sealed and cooled to 180 ° C., and p-DCB 226.9 parts by mass (1.543 mol parts) and NMP 238.8 parts by mass were charged. The temperature was increased to 108,000 Pa using nitrogen gas at a liquid temperature of 165 ° C. to start the temperature rise. The temperature was raised to 240 ° C. over 135 minutes and maintained for 30 minutes. After that, the liquid temperature was raised to 250 ° C. over 40 minutes and held for 73 minutes to complete the reaction, and then cooled to 120 ° C. over 3 hours to obtain a slurry (8).

なお、原料中における、フレーク状硫化ソーダ(60.75wt%NaS)由来の硫黄原子(1.575モル部)と、上記ろ液(4)中のオリゴマー由来の硫黄原子(0.02522モル部)とを合算すると、硫黄原子は1.600モル部であった。上記ろ液(4)由来のCP−MABA(Na塩型)1.810質量部(0.007285モル部)が原料中に加わっていることから、原料に加えたCP−MABA(Na塩型)の割合は、原料に含まれる硫黄原子1モルに対して、0.004553モルであった。 In addition, a sulfur atom (1.575 mol part) derived from flaky sodium sulfide (60.75 wt% Na 2 S) and a sulfur atom (0.02522 mol) derived from an oligomer in the above filtrate (4) in the raw material. The total amount of sulfur atoms was 1.600 mol. Since 1.810 parts by mass (0.007285 mol) of CP-MABA (Na salt type) derived from the filtrate (4) is added to the raw material, CP-MABA (Na salt type) added to the raw material. The ratio of was 0.004553 mol to 1 mol of sulfur atom contained in the raw material.

得られたスラリー(8)から、実施例1と同様にして、白色粉末状のポリマー(8)を得た。溶融粘度を測定したところ、32Pa・sであった。 From the obtained slurry (8), a white powdery polymer (8) was obtained in the same manner as in Example 1. The melt viscosity was measured and found to be 32 Pa · s.

Claims (5)

工程(1):極性有機溶媒の存在下、アルカリ金属硫化物、または、アルカリ金属水硫化物及びアルカリ金属水酸化物と、ポリハロ芳香族化合物とを反応させるポリアリーレンスルフィド樹脂の重合反応後、重合反応で得られた粗反応混合物から前記極性有機溶媒を固液分離させて、前記極性有機溶媒を主成分として、少なくともカルボキシアルキルアミノ基含有化合物が含まれる液相成分と、ポリアリーレンスルフィド樹脂およびアルカリ金属含有無機塩と前記カルボキシアルキルアミノ基含有化合物を含む反応混合物からなる固相成分とを分離し、固相成分を除去して、カルボキシアルキルアミノ基含有化合物を含む有機極性溶媒(a)を得る工程、
工程(2):反応容器内に、前記工程(1)で得られた前記有機極性溶媒(a)を供給する工程、
工程(3):反応容器内に、少なくとも、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを供給する工程、
工程(4):反応容器内で、前記工程(2)および(3)を経て得られた、少なくとも、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを原料として、カルボキシアルキルアミノ基含有化合物を含む有機極性溶媒中で重合反応させる工程、を有し、かつ、前記工程(4)において、原料を含む有機極性溶媒中において前記カルボキシアルキルアミノ基含有化合物の割合が、原料中の硫黄原子1モルに対して0.004モル以下の範囲であることを特徴とするポリアリーレンスルフィド樹脂の製造方法。
Step (1): Polymerization after a polymerization reaction of a polyarylene sulfide resin in which an alkali metal sulfide or an alkali metal hydrosulfide or an alkali metal hydroxide is reacted with a polyhalo aromatic compound in the presence of a polar organic solvent. and wherein the polar organic solvent is solid-liquid separated from the crude reaction mixture obtained in the reaction, the polar organic solvent as a main component, a liquid phase component that is part of at least carboxyalkyl amino group-containing compounds, polyarylene sulfide The solid phase component composed of the reaction mixture containing the resin and alkali metal-containing inorganic salt and the carboxyalkylamino group-containing compound is separated, the solid phase component is removed, and the organic polar solvent containing the carboxyalkylamino group-containing compound (a). ) To obtain the process,
Step (2): A step of supplying the organic polar solvent (a) obtained in the step (1) into the reaction vessel.
Step (3): A step of supplying at least a polyhalo aromatic compound and (i) alkali metal sulfide, or (ii) alkali metal hydrosulfide and alkali metal hydroxide into the reaction vessel.
Step (4): In the reaction vessel, at least the polyhalo aromatic compound obtained through the steps (2) and (3) and (i) alkali metal sulfide, or (ii) alkali metal. It has a step of polymerizing hydrosulfide and alkali metal hydroxide as raw materials in an organic polar solvent containing a carboxyalkylamino group-containing compound, and in the step (4), the organic polarity containing the raw materials. A method for producing a polyarylene sulfide resin, wherein the ratio of the carboxyalkylamino group-containing compound in the solvent is in the range of 0.004 mol or less with respect to 1 mol of sulfur atoms in the raw material.
前記カルボキシアルキルアミノ基含有化合物が、下記一般式(1)
Figure 0006836704
(式中、nは0〜2であり、Yはハロゲン原子を、Yは水素原子又はハロゲン原子を、Rは水素原子又は炭素原子数1〜3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3〜5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。)で表されるものである請求項1記載のポリアリーレンスルフィド樹脂の製造方法。
The carboxyalkylamino group-containing compound has the following general formula (1).
Figure 0006836704
(In the formula, n is 0 to 2, Y 1 represents a halogen atom, Y 2 represents a hydrogen atom or a halogen atom, and R 1 represents a hydrogen atom or an alkyl group or a cyclohexyl group having 1 to 3 carbon atoms. R 2 is an alkylene group having 3 to 5 carbon atoms, X is a manufacturing method of the polyarylene sulfide resin according to claim 1, wherein is represented by the representative.) a hydrogen atom or an alkali metal atom.
前記カルボキシアルキルアミノ基含有化合物が、アルカリ金属塩である請求項1または2記載のポリアリーレンスルフィド樹脂の製造方法。 The method for producing a polyarylene sulfide resin according to claim 1 or 2, wherein the carboxyalkylamino group-containing compound is an alkali metal salt. 前記工程(1)を経て得られた前記有機極性溶媒(a)が、ポリアリーレンスルフィド樹脂オリゴマーを含むものである請求項1〜3のいずれか一項記載のポリアリーレンスルフィド樹脂の製造方法。 The method for producing a polyarylene sulfide resin according to any one of claims 1 to 3, wherein the organic polar solvent (a) obtained through the step (1) contains a polyarylene sulfide resin oligomer. 前記工程(1)で得られた前記有機極性溶媒(a)を、密閉機構を備えた容器内で保存する工程を有し、かつ、前記工程(2)が、当該容器から前記有機極性溶媒(a)を取り出して反応容器内に供給する工程である請求項1〜4の何れか一項記載のポリアリーレンスルフィド樹脂の製造方法。 The organic polar solvent (a) obtained in the step (1) is stored in a container provided with a sealing mechanism, and the step (2) is performed from the container to the organic polar solvent (a). The method for producing a polyarylene sulfide resin according to any one of claims 1 to 4, which is a step of taking out a) and supplying it into a reaction vessel.
JP2015248209A 2015-12-21 2015-12-21 Manufacturing method of polyarylene sulfide resin Active JP6836704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248209A JP6836704B2 (en) 2015-12-21 2015-12-21 Manufacturing method of polyarylene sulfide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248209A JP6836704B2 (en) 2015-12-21 2015-12-21 Manufacturing method of polyarylene sulfide resin

Publications (2)

Publication Number Publication Date
JP2017114922A JP2017114922A (en) 2017-06-29
JP6836704B2 true JP6836704B2 (en) 2021-03-03

Family

ID=59233496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248209A Active JP6836704B2 (en) 2015-12-21 2015-12-21 Manufacturing method of polyarylene sulfide resin

Country Status (1)

Country Link
JP (1) JP6836704B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160165A (en) * 2022-07-26 2022-10-11 浙江大学 Synthetic method of sodium N-methyl-N- (4-chlorophenyl) -4-aminobutyrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201274A (en) * 2000-12-28 2002-07-19 Dic Ep Inc Process for preparing polyarylene sulfide
JP2002293937A (en) * 2001-03-30 2002-10-09 Petroleum Energy Center Method for polyarylene sulfide by-product salt
JP5888142B2 (en) * 2012-06-21 2016-03-16 Dic株式会社 Method for producing solution containing carboxyalkylamino group-containing compound and aprotic polar solvent, and method for producing composition containing alkali metal-containing inorganic salt and aprotic polar solvent
JP6003345B2 (en) * 2012-07-27 2016-10-05 Dic株式会社 Method for producing polyarylene sulfide resin
US20180171079A1 (en) * 2015-06-12 2018-06-21 Kureha Corporation Method of manufacturing polyarylene sulfide, and polyarylene sulfide

Also Published As

Publication number Publication date
JP2017114922A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP5794468B2 (en) Method for producing polyarylene sulfide resin
JP6402971B2 (en) Sulfiding agent and method for producing polyarylene sulfide resin
JP5888118B2 (en) Method for producing oligoarylene sulfide and carboxyalkylamino group-containing compound
JP6836705B2 (en) Manufacturing method of polyarylene sulfide resin
JP6003345B2 (en) Method for producing polyarylene sulfide resin
JP2017071752A (en) Method for producing polyarylene sulfide resin
JP6136292B2 (en) Process for producing polyarylene sulfide
JP6836704B2 (en) Manufacturing method of polyarylene sulfide resin
JP2007009128A (en) Method for producing slurry containing alkali metal sulfide and method for producing polyarylene sulfide by using the same
JP6120054B2 (en) Method for producing polyarylene sulfide resin
JP2017114921A (en) Manufacturing method of polyarylene sulfide resin
JP6699163B2 (en) Method for producing polyarylene sulfide resin
JP6136293B2 (en) Method for producing crosslinked polyarylene sulfide
JP6256734B2 (en) Process for producing polyarylene sulfide
JP6003346B2 (en) Method for producing polyarylene sulfide resin
JP7214997B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP6003347B2 (en) Method for producing polyarylene sulfide resin
JP5888142B2 (en) Method for producing solution containing carboxyalkylamino group-containing compound and aprotic polar solvent, and method for producing composition containing alkali metal-containing inorganic salt and aprotic polar solvent
JP2017210559A (en) Method for producing composition containing carboxyalkylamino group-containing compound and oligomer
JP6390079B2 (en) Process for producing branched polyarylene sulfide resin
JP6390083B2 (en) Process for producing polyarylene sulfide
JP2020015843A (en) Method for producing and separating polyarylene sulfide resin
JP2024021681A (en) Production method of polyarylene sulfide resin
JP6194566B2 (en) Method for producing aqueous solution containing alkali metal-containing inorganic salt and method for producing solution containing carboxyalkylamino group-containing compound and water-insoluble solution
JP5888143B2 (en) Method for producing aqueous solution containing alkali metal-containing inorganic salt and method for producing composition containing carboxyalkylamino group-containing compound and polyhaloaromatic compound

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R151 Written notification of patent or utility model registration

Ref document number: 6836704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250