JP6835037B2 - How to dry blast furnace raw materials - Google Patents

How to dry blast furnace raw materials Download PDF

Info

Publication number
JP6835037B2
JP6835037B2 JP2018114123A JP2018114123A JP6835037B2 JP 6835037 B2 JP6835037 B2 JP 6835037B2 JP 2018114123 A JP2018114123 A JP 2018114123A JP 2018114123 A JP2018114123 A JP 2018114123A JP 6835037 B2 JP6835037 B2 JP 6835037B2
Authority
JP
Japan
Prior art keywords
blast furnace
raw material
furnace raw
sinter
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018114123A
Other languages
Japanese (ja)
Other versions
JP2019218571A (en
Inventor
宗文 中本
宗文 中本
廉 ▲高▼橋
廉 ▲高▼橋
佑治 今井
佑治 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018114123A priority Critical patent/JP6835037B2/en
Publication of JP2019218571A publication Critical patent/JP2019218571A/en
Application granted granted Critical
Publication of JP6835037B2 publication Critical patent/JP6835037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、高炉に装入される高炉原料(焼結鉱、鉄鉱石、塊コークス)の乾燥方法に関する。 The present invention relates to a method for drying blast furnace raw materials (sintered ore, iron ore, coke breeze) charged into a blast furnace.

高炉では、焼結鉱、鉄鉱石、塊コークス等の高炉原料を炉頂から炉内に装入し、炉下部に設けられた羽口から高温空気を炉内へ吹込むことでコークスを燃焼させ、この燃焼により発生する熱とCOガスとを利用して、焼結鉱や鉄鉱石を還元、溶融させて溶銑を製造している。炉頂から装入される高炉原料は、数mmから数十mmの粒径に調整されて炉内に装入される。これにより、炉下部におけるコークスの燃焼によって発生する燃焼ガスは、炉内に充填された粒状の高炉原料の間隙を通り炉頂へ向けて上昇する。 In a blast furnace, blast furnace raw materials such as sintered ore, iron ore, and lump coke are charged into the furnace from the top of the furnace, and high-temperature air is blown into the furnace from the tuyere provided at the bottom of the furnace to burn coke. The heat generated by this combustion and CO gas are used to reduce and melt sintered ore and iron ore to produce blast furnace. The blast furnace raw material charged from the top of the furnace is adjusted to a particle size of several mm to several tens of mm and charged into the furnace. As a result, the combustion gas generated by the combustion of coke in the lower part of the furnace passes through the gaps between the granular blast furnace raw materials filled in the furnace and rises toward the top of the furnace.

高炉内における高炉原料への熱の供給は、この燃焼ガスによる伝熱によって行われるので、炉内における燃焼ガスの流れが適正な状態でないと高炉原料の昇温が不安定になり、焼結鉱や鉄鉱石の還元、溶融に支障をきたすことになる。 Since heat is supplied to the blast furnace raw material in the blast furnace by heat transfer by this combustion gas, the temperature rise of the blast furnace raw material becomes unstable unless the flow of the combustion gas in the furnace is in an appropriate state, and the sinter It will hinder the reduction and melting of iron ore.

したがって、炉内のガス流れを適正な状態に維持するために、炉頂における高炉原料の炉内装入時に、炉内の適正な位置へ適正な粒度の高炉原料を装入できる炉頂装入装置や炉頂装入方法の開発が進められている。 Therefore, in order to maintain the gas flow in the furnace in an appropriate state, when the blast furnace raw material is put into the furnace interior at the furnace top, the blast furnace raw material of the appropriate particle size can be charged to the appropriate position in the furnace. And the development of the furnace top charging method is in progress.

しかしながら、このような高炉原料の装入装置や装入方法を用いて高炉原料を装入しても、高炉原料そのものに粉状の高炉原料が混入すると、粉状の高炉原料によって炉内の高炉原料の間隙が埋められて燃焼ガスの流れが阻害され、当該燃焼ガスの流れの適正化が困難になる。 However, even if the blast furnace raw material is charged using such a charging device or charging method for the blast furnace raw material, if the powdered blast furnace raw material is mixed with the blast furnace raw material itself, the powdered blast furnace raw material causes the blast furnace in the furnace. The gap between the raw materials is filled and the flow of the combustion gas is obstructed, which makes it difficult to optimize the flow of the combustion gas.

高炉原料には、焼結機やコークス炉で製造されて粒度が調整された後、直接、高炉原料槽へ送られてくる高炉原料と、焼結機やコークス炉で製造されて粒度が調整された後にヤードと呼ばれる露天の保管場所にて保管された後にこれを回収して高炉原料槽へ送られてくる高炉原料と、がある。このうち、ヤードに保管された後に高炉原料槽に送られている高炉原料については、ヤード保管時に雨水等による湿潤が進むことが避けられず、水分含有量が数質量%になり、水分含有量が10質量%を超える場合もある。 The blast furnace raw material is manufactured in a sintering machine or a coke oven to adjust the grain size, and then directly sent to the blast furnace raw material tank, and is manufactured in a sintering machine or a coke oven to adjust the particle size. After that, there is a blast furnace raw material that is stored in an open-air storage place called a yard and then collected and sent to a blast furnace raw material tank. Of these, the blast furnace raw material that is stored in the yard and then sent to the blast furnace raw material tank inevitably becomes wet with rainwater or the like during storage in the yard, and the water content becomes several mass%, and the water content. May exceed 10% by mass.

水分含有量が多い高炉原料では、粒状の高炉原料に粉状の高炉原料が水分によって付着するので、篩等によって粒度調整を行っても粒状高炉原料から粉状高炉原料を分離除去できない場合が生じる。また、このように水分を含んだ粉状高炉原料は篩の網そのものにも付着しやすいので篩の目詰まりの原因ともなり、さらに高炉原料の篩分けが困難になる。 In a blast furnace raw material having a high water content, the powdery blast furnace raw material adheres to the granular blast furnace raw material due to water content, so that the powdery blast furnace raw material may not be separated and removed from the granular blast furnace raw material even if the particle size is adjusted by a sieve or the like. .. Further, since the powdery blast furnace raw material containing water easily adheres to the sieve net itself, it may cause clogging of the sieve, and further, it becomes difficult to sieve the blast furnace raw material.

篩により分離除去されなかった粉状高炉原料が付着した粒状高炉原料が炉頂へ搬送されて炉内に装入されると、炉内の熱によって乾燥されて粉状高炉原料が粒状高炉原料の表面から離脱する。この粉状高炉原料は、高炉原料同士の間隙に入り込み、炉内のガス流れを阻害する。 When the granular blast furnace raw material to which the powdered blast furnace raw material that has not been separated and removed by the sieve is transferred to the furnace top and charged into the furnace, it is dried by the heat in the furnace and the powdered blast furnace raw material becomes the granular blast furnace raw material. Depart from the surface. This powdery blast furnace raw material enters the gap between the blast furnace raw materials and obstructs the gas flow in the furnace.

したがって、高炉原料に付着する粉状高炉原料を除去する技術は、高炉炉内への高炉原料装入技術と同じく重要な技術であるといえる。高炉原料に付着する粉状高炉原料を除去するには、水分量の多い高炉原料を乾燥させた後、篩等により高炉原料から粉状高炉原料を分離除去することが考えられる。 Therefore, it can be said that the technology for removing the powdered blast furnace raw material adhering to the blast furnace raw material is as important as the technology for charging the blast furnace raw material into the blast furnace. In order to remove the powdered blast furnace raw material adhering to the blast furnace raw material, it is conceivable to dry the blast furnace raw material having a large amount of water and then separate and remove the powdered blast furnace raw material from the blast furnace raw material by a sieve or the like.

高炉原料を乾燥させる技術として、特許文献1には、製造された高温の焼結鉱の顕熱によってヤードに保管されたヤード焼結鉱を乾燥させる技術が開示されている。特許文献1によれば、クーラー装置のトラフ上に層状に載置された高温の焼結鉱の上にヤード焼結鉱を層状に載置し、高温の焼結鉱によって加熱された熱風によってヤード焼結鉱を加熱し乾燥させることができる。 As a technique for drying the blast furnace raw material, Patent Document 1 discloses a technique for drying the yard sinter stored in the yard by the manifestation heat of the produced high-temperature sinter. According to Patent Document 1, the yard sinter is placed in layers on the high-temperature sinter placed in layers on the trough of the cooler device, and the yard is yarded by hot air heated by the high-temperature sinter. The sinter can be heated and dried.

特開2017−137531号公報JP-A-2017-137531

ヤード焼結鉱をホッパーに充填すると平均粒径が小さい焼結鉱がホッパーの中央側に、平均粒径が大きい焼結鉱がホッパーの側面側に堆積する。このため、ヤード焼結鉱をホッパーに充填し、ホッパーからヤード焼結鉱を切り出して高温の焼結鉱の層の上に層状に載置させると、図1(a)(b)に示すように、トラフ10の幅方向中央部に平均粒径が小さいヤード焼結鉱12の層が形成され、トラフ10の幅方向両端部に平均粒径が大きいヤード焼結鉱14の層が形成される。粒径の小さなヤード焼結鉱12の層は、下層の高温の焼結鉱16によって加熱された熱風の通りが悪く十分に加熱されず、乾燥されない。このため、乾燥後のヤード焼結鉱全体の水分含有量が多くなる、という課題があった。 When the yard sintered ore is filled in the hopper, the sintered ore having a small average particle size is deposited on the center side of the hopper, and the sintered ore having a large average particle size is deposited on the side surface of the hopper. Therefore, when the yard sinter is filled in the hopper, the yard sinter is cut out from the hopper and placed in a layer on the layer of the high temperature sinter, as shown in FIGS. 1 (a) and 1 (b). A layer of yard sinter 12 having a small average particle size is formed at the center of the trough 10 in the width direction, and a layer of yard sinter 14 having a large average particle size is formed at both ends of the trough 10 in the width direction. .. The layer of the yard sinter 12 having a small particle size is not sufficiently heated and is not dried due to poor passage of hot air heated by the lower high temperature sinter 16. Therefore, there is a problem that the water content of the entire yard sinter after drying increases.

本発明は上記課題を鑑みてなされたものであり、その目的は、製造された高温の焼結鉱の顕熱によって高炉原料を効率的に乾燥させ、これにより、乾燥後の高炉原料の水分含有量を少なくできる高炉原料の乾燥方法を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to efficiently dry the blast furnace raw material by the actual heat of the produced high-temperature sinter, thereby containing the water content of the dried blast furnace raw material. It is to provide a method of drying a blast furnace raw material which can reduce the amount.

このような課題を解決するための本発明の特徴は、以下の通りである。
(1)焼結機で製造された高温の焼結鉱をクーラー装置のトラフの上に層状に載置して冷却する冷却工程と、前記冷却工程で冷却されている前記焼結鉱の層の上に高炉原料を層状に載置する載置工程と、を有し、前記載置工程では、高炉原料全体の平均粒径より大きい平均粒径の高炉原料と高炉原料全体の平均粒径より小さい平均粒径の高炉原料とを、前記トラフの進行方向のそれぞれの長さが前記トラフの進行方向に交差する幅方向の前記トラフの寸法の1/2未満になるように前記トラフの進行方向に交互に載置する、高炉原料の乾燥方法。
(2)前記高炉原料は、収容部を有するホッパーに収容され、
前記載置工程では、前記収容部の鉛直方向に垂直となる断面の中心側に堆積した高炉原料と、前記収容部の側面側に堆積した高炉原料とを交互に前記ホッパーから排出させる、(1)に記載の高炉原料の乾燥方法。
(3)前記ホッパーの収容部は、前記収容部の鉛直方向に垂直となる断面形状が矩形である、(2)に記載の高炉原料の乾燥方法。
(4)前記ホッパーの収容部の下方には、前記中心側と前記側面側とを仕切る壁が設けられている、(2)または(3)に記載の高炉原料の乾燥方法。
(5)前記ホッパーの収容部の下方には、前記中心側に堆積した前記高炉原料の排出を許容するシャッターと、前記側面側に堆積した前記高炉原料の排出を許容するシャッターとが設けられている、(2)から(4)の何れか1つに記載の高炉原料の乾燥方法。
(6)前記ホッパーの収容部の下方には、一端辺を軸に左右に揺動するフラップが設けられ、該フラップが左右に揺動することで、前記中心側に堆積した前記高炉原料の排出と、前記側面側に堆積した前記高炉原料の排出とを切り換える、(2)から(4)の何れか1つに記載の高炉原料の乾燥方法。
(7)前記高炉原料は、ヤード焼結鉱である、(1)から(6)の何れか1つに記載の高炉原料の乾燥方法。
The features of the present invention for solving such a problem are as follows.
(1) A cooling step in which a high-temperature sinter produced by a sinter is placed in a layer on a blast furnace of a cooler device to cool the blast furnace, and a layer of the sinter cooled in the cooling step. It has a placement step of placing the blast furnace raw material in layers on the top, and in the above-mentioned placement step, the average particle size of the blast furnace raw material is larger than the average particle size of the entire blast furnace raw material and smaller than the average particle size of the entire blast furnace raw material. The blast furnace raw material having an average particle size is mixed in the traveling direction of the trough so that the length of each in the traveling direction of the trough is less than 1/2 of the dimension of the trough in the width direction intersecting the traveling direction of the trough. A method of drying blast furnace raw materials, which are placed alternately.
(2) The blast furnace raw material is stored in a hopper having a storage portion, and is stored.
In the above-described step, the blast furnace raw material deposited on the center side of the cross section perpendicular to the vertical direction of the housing portion and the blast furnace raw material deposited on the side surface side of the housing portion are alternately discharged from the hopper (1). ). The method for drying the blast furnace raw material.
(3) The method for drying a blast furnace raw material according to (2), wherein the accommodating portion of the hopper has a rectangular cross-sectional shape perpendicular to the vertical direction of the accommodating portion.
(4) The method for drying a blast furnace raw material according to (2) or (3), wherein a wall partitioning the central side and the side surface side is provided below the accommodating portion of the hopper.
(5) Below the accommodating portion of the hopper, a shutter that allows the discharge of the blast furnace raw material deposited on the central side and a shutter that allows the discharge of the blast furnace raw material deposited on the side surface side are provided. The method for drying a blast furnace raw material according to any one of (2) to (4).
(6) A flap that swings left and right about one end side is provided below the accommodating portion of the hopper, and the flap swings left and right to discharge the blast furnace raw material deposited on the center side. The method for drying a blast furnace raw material according to any one of (2) to (4), which switches between the method of discharging the blast furnace raw material deposited on the side surface side and the discharge of the blast furnace raw material.
(7) The method for drying a blast furnace raw material according to any one of (1) to (6), wherein the blast furnace raw material is yard sinter.

本発明に係る高炉原料の乾燥方法を実施することで、高温の焼結鉱の顕熱によって高炉原料を効率的に乾燥でき、これにより、乾燥後の高炉原料の水分含有量を従来よりも少なくできる。このように、高炉原料の水分含有量を少なくできれば、より多くの粉状の高炉原料を篩で除去できるようになるので、粉状の高炉原料がわずかな高炉原料を高炉の操業に用いることで高炉の安定操業に寄与できる。 By implementing the method for drying the blast furnace raw material according to the present invention, the blast furnace raw material can be efficiently dried by the sensible heat of the high-temperature sintered ore, whereby the water content of the blast furnace raw material after drying can be reduced as compared with the conventional case. it can. In this way, if the water content of the blast furnace raw material can be reduced, more powdery blast furnace raw material can be removed by a sieve. It can contribute to the stable operation of the blast furnace.

従来技術におけるヤード焼結鉱の状態を示す図である。It is a figure which shows the state of the yard sinter in the prior art. 圧力損失実験装置20を示す模式図である。It is a schematic diagram which shows the pressure loss experimental apparatus 20. 乾燥実験装置30を示す模式図である。It is a schematic diagram which shows the drying experimental apparatus 30. 本実施形態に係る高炉原料の乾燥方法が実施できる乾燥処理ライン40の一例を示す模式図である。It is a schematic diagram which shows an example of the drying processing line 40 which can carry out the drying method of the blast furnace raw material which concerns on this embodiment. トラフ10上に載置された高温の焼結鉱16の層の上に、ヤード焼結鉱60を載置する状況を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing a situation in which a yard sinter 60 is placed on a layer of a high-temperature sinter 16 placed on a trough 10. ホッパー46に充填されたヤード焼結鉱60が排出される状況を説明する図である。It is a figure explaining the situation which the yard sinter 60 filled in a hopper 46 is discharged. ホッパー90に充填されたヤード焼結鉱60が排出される状況を説明する図である。It is a figure explaining the situation which the yard sinter 60 filled in a hopper 90 is discharged.

まず、本発明をするに至った経緯について説明する。図2は、圧力損失実験装置20を示す模式図である。図2に示した圧力損失実験装置20を用いて、平均粒径が異なる焼結鉱における層厚と圧力損失との関係を確認した。実験は、平均粒径22.4mmと、平均粒径13.0mmの焼結鉱を調整し、これら焼結鉱を直径300mmの焼結容器22に層厚を変えて充填し、層厚の異なるサンプルをそれぞれ作製した。ファン24およびダンパ26を用いて、風速16m/sとなるように空気を送風し、これらサンプルの圧力損失をそれぞれ測定した。図2において、FIは流量計であり、PGは圧力計であり、TGは温度計である。圧力損失実験の結果を下記の表1に示す。また、以下の説明において平均粒径は、算術平均粒径であって、Σ(Vi×di)(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。)で定義される粒径である。 First, the background to the present invention will be described. FIG. 2 is a schematic view showing the pressure loss experimental device 20. Using the pressure drop experimental apparatus 20 shown in FIG. 2, the relationship between the layer thickness and the pressure loss in the sinters having different average particle sizes was confirmed. In the experiment, sintered ore having an average particle size of 22.4 mm and an average particle size of 13.0 mm was prepared, and these sintered ores were filled in a sintered container 22 having a diameter of 300 mm with different layer thicknesses, and the layer thickness was different. Samples were prepared respectively. Air was blown at a wind speed of 16 m / s using a fan 24 and a damper 26, and the pressure loss of each of these samples was measured. In FIG. 2, FI is a flow meter, PG is a pressure gauge, and TG is a thermometer. The results of the pressure loss experiment are shown in Table 1 below. Further, in the following description, the average particle size is the arithmetic average particle size, and is Σ (Vi × di) (however, Vi is the abundance ratio of particles in the i-th particle size range, and di is the i-th particle size range. It is a particle size defined by).

Figure 0006835037
Figure 0006835037

表1に示すように、平均粒径が13.0mmの焼結鉱の圧力損失は、平均粒径が22.4mmの焼結鉱の圧力損失よりも大きく、また、層厚が厚くなるに従い、その差は拡大した。この結果から、平均粒径が小さい焼結鉱は圧力損失が大きく、高温の焼結鉱の下層にヤード焼結鉱を層状に載置させると、下層の高温の焼結鉱によって加熱された空気は、平均粒径が小さいヤード焼結鉱の層を通過しづらくなることがわかる。 As shown in Table 1, the pressure loss of the sinter having an average particle size of 13.0 mm is larger than the pressure loss of the sinter having an average particle size of 22.4 mm, and as the layer thickness increases, The difference has widened. From this result, the sinter with a small average particle size has a large pressure loss, and when the yard sinter is placed in a layer on the lower layer of the high temperature sinter, the air heated by the high temperature sinter in the lower layer. It can be seen that it becomes difficult to pass through the layer of yard sinter having a small average particle size.

図3は、乾燥実験装置30を示す模式図である。図3に示した乾燥実験装置30を用いて、平均粒径が異なる焼結鉱における層厚と伝熱速度との関係を確認した。乾燥実験は、平均粒径45.0mmと、平均粒径15.0mmの焼結鉱を調整し、これらの焼結鉱を直径130mm、高さ350mmの原料容器32に充填量を変えて充填し、層厚の異なるサンプルをそれぞれ作製した。ファン24およびダンパ26を用いて、250℃の熱風を風速0.1m/sになるように原料容器32に送風し、計量器34を用いてサンプルの重量変化を計測した。この重量変化は水分の蒸発によるものであり、蒸発によって減少した水分の顕熱と潜熱の和を伝熱量とし、各サンプルの単位面積当たりの伝熱量をそれぞれ測定した。乾燥実験の結果を下記の表2に示す。 FIG. 3 is a schematic view showing the drying experimental device 30. Using the drying experimental apparatus 30 shown in FIG. 3, the relationship between the layer thickness and the heat transfer rate in the sinters having different average particle sizes was confirmed. In the drying experiment, sinters having an average particle size of 45.0 mm and an average particle size of 15.0 mm were prepared, and these sinters were filled in a raw material container 32 having a diameter of 130 mm and a height of 350 mm with different filling amounts. , Samples with different layer thicknesses were prepared respectively. Using the fan 24 and the damper 26, hot air at 250 ° C. was blown to the raw material container 32 so that the wind speed was 0.1 m / s, and the weight change of the sample was measured using the measuring instrument 34. This change in weight is due to the evaporation of water, and the sum of the sensible heat and the latent heat of the water reduced by evaporation was taken as the heat transfer amount, and the heat transfer amount per unit area of each sample was measured. The results of the drying experiment are shown in Table 2 below.

Figure 0006835037
Figure 0006835037

表2に示すように、平均粒径が15.0mmの焼結鉱の単位面積当たりの伝熱量は、平均粒径45.0mmの焼結鉱の単位面積当たりの伝熱量よりも多かった。また、層厚が厚くなると、その差は拡大した。この結果から、平均粒径が小さい焼結鉱の伝熱効率は、平均粒径が大きい焼結鉱の伝熱効率よりも高いことがわかる。 As shown in Table 2, the amount of heat transfer per unit area of the sinter having an average particle size of 15.0 mm was larger than the amount of heat transfer per unit area of the sinter having an average particle size of 45.0 mm. Moreover, as the layer thickness increased, the difference increased. From this result, it can be seen that the heat transfer efficiency of the sinter having a small average particle size is higher than the heat transfer efficiency of the sinter having a large average particle size.

これらの結果から、発明者らは、平均粒径が小さい高炉原料を乾燥させるには、加熱した空気を通過させるとともに、加熱した空気で平均粒径が大きい高炉原料を加熱し、平均粒径が大きい高炉原料の熱を平均粒径が小さい高炉原料に伝熱させることが好ましいと考えた。そのため、平均粒径が大きい高炉原料の熱を平均粒径が小さい高炉原料に伝熱することを考えると、平均粒径が大きい高炉原料の層と、平均粒径が小さい高炉原料の層を、各層の進行方向の長さが短くなるように交互に載置することが好ましいことがわかる。 From these results, the inventors, in order to dry the blast furnace raw material having a small average particle size, pass heated air and heat the blast furnace raw material having a large average particle size with the heated air to obtain an average particle size. It was considered preferable to transfer the heat of the large blast furnace raw material to the blast furnace raw material having a small average particle size. Therefore, considering that the heat of the blast furnace raw material having a large average particle size is transferred to the blast furnace raw material having a small average particle size, the layer of the blast furnace raw material having a large average particle size and the layer of the blast furnace raw material having a small average particle size are separated. It can be seen that it is preferable to place the layers alternately so that the length in the traveling direction is shortened.

すなわち、高炉原料を高温の焼結鉱の層の上に層状に載置させるにあたり、平均粒径が大きい高炉原料と、平均粒径が小さい高炉原料とをトラフ10の進行方向の長さがそれぞれ短くなるように交互に載置する。このように高炉原料を載置することで、下層の高温の焼結鉱16によって加熱された空気は、平均粒径が大きい高炉原料の間隙を通過しやすく当該高炉原料を加熱、乾燥させる。そして、加熱された平均粒径が大きい高炉原料の熱を隣接する平均粒径が小さい高炉原料に伝熱させることで、加熱された空気が通過しにくい平均粒径が小さい高炉原料を効率よく加熱、乾燥できることを見出して本発明を完成させた。ここで、平均粒径が小さい高炉原料とは、高炉原料全体の平均粒径より小さい平均粒径の高炉原料を意味し、平均粒径が大きい高炉原料とは、高炉原料全体の平均粒径より小さい平均粒径の高炉原料を意味する。 That is, when the blast furnace raw material is placed in a layer on the layer of the high-temperature sinter, the blast furnace raw material having a large average particle size and the blast furnace raw material having a small average particle size have different lengths in the traveling direction of the trough 10. Place them alternately so that they are shorter. By placing the blast furnace raw material in this way, the air heated by the high-temperature sintered ore 16 in the lower layer easily passes through the gaps between the blast furnace raw materials having a large average particle size, and heats and dries the blast furnace raw material. Then, by transferring the heat of the heated blast furnace raw material having a large average particle size to the adjacent blast furnace raw material having a small average particle size, the blast furnace raw material having a small average particle size, which is difficult for heated air to pass through, is efficiently heated. The present invention was completed by finding that it can be dried. Here, the blast furnace raw material having a small average particle size means a blast furnace raw material having an average particle size smaller than the average particle size of the entire blast furnace raw material, and the blast furnace raw material having a large average particle size is larger than the average particle size of the entire blast furnace raw material. It means a blast furnace raw material having a small average particle size.

なお、従来技術では、図1に示すように、平均粒径が小さいヤード焼結鉱12の層の両端に平均粒径が大きいヤード焼結鉱14の層が形成される。このため、従来技術では、トラフの幅寸法L1に対して平均粒径が小さいヤード焼結鉱12と平均粒径が大きいヤード焼結鉱14との界面が2面存在することになる。単位寸法あたりの当該界面の数が多いほど、加熱された平均粒径が大きいヤード焼結鉱14の熱を平均粒径が小さいヤード焼結鉱12に効率的に伝熱できるといえる。このため、本実施形態に係る高炉原料の乾燥方法では、トラフの進行方向における平均粒径が小さい高炉原料の層の長さおよび平均粒径が大きい高炉原料の層の長さをトラフの幅寸法L1の1/2未満にする。これにより、単位寸法当たりの当該界面の数を従来技術よりも大幅に増やすことができ、平均粒径が小さいヤード焼結鉱などからなる高炉原料を、より効率的に加熱、乾燥できる。 In the prior art, as shown in FIG. 1, layers of yard sinter 14 having a large average particle size are formed at both ends of the layer of yard sinter 12 having a small average particle size. Therefore, in the prior art, there are two interfaces between the yard sinter 12 having a small average particle size and the yard sinter 14 having a large average particle size with respect to the width dimension L1 of the trough. It can be said that the larger the number of the interfaces per unit size, the more efficiently the heat of the heated yard sinter 14 having a large average particle size can be transferred to the yard sinter 12 having a small average particle size. Therefore, in the method for drying the blast furnace raw material according to the present embodiment, the length of the layer of the blast furnace raw material having a small average particle size in the traveling direction of the trough and the length of the layer of the blast furnace raw material having a large average particle size are defined as the width dimension of the trough. Make it less than 1/2 of L1. As a result, the number of the interfaces per unit size can be significantly increased as compared with the prior art, and the blast furnace raw material made of yard sintered ore having a small average particle size can be heated and dried more efficiently.

以下、発明の実施形態を通じて本発明を説明する。本実施形態に係る乾燥方法で乾燥する高炉原料として、一時的にヤードに保管され、雨水等に曝された含有水分率が高いヤード焼結鉱を用いた例を示す。しかしながら、乾燥する高炉原料としては、ヤード焼結鉱に限らず、含有水分率が高い鉄鉱石や塊コークスであってもよい。 Hereinafter, the present invention will be described through embodiments of the invention. An example is shown in which a yard sintered ore having a high moisture content, which is temporarily stored in a yard and exposed to rainwater or the like, is used as a blast furnace raw material to be dried by the drying method according to the present embodiment. However, the raw material for the blast furnace to be dried is not limited to yard sintered ore, but iron ore or coke breeze having a high water content may be used.

図4は、本実施形態に係る高炉原料の乾燥方法が実施できる乾燥処理ライン40の一例を示す模式図である。乾燥処理ライン40は、焼結鉱を製造する焼結機42と、焼結機42で製造された高温(例えば、500〜800℃)の焼結鉱を破砕して粒度を調整するクラッシャー44と、クラッシャー44で粒度が調整された焼結鉱を所定の温度(例えば、100〜200℃)に冷却するクーラー装置50と、当該クーラー装置50にヤード焼結鉱を装入するホッパー46とを有する。クーラー装置50は、例えば、第1ゾーンから第4ゾーンで構成される。第1ゾーンには、#1クーラーファン52が設けられている。同様に、第2ゾーンには#2クーラーファン54が、第3ゾーンには#3クーラーファン56が、第4ゾーンには#4クーラーファン58がそれぞれ設けられている。 FIG. 4 is a schematic view showing an example of a drying treatment line 40 in which the method for drying the blast furnace raw material according to the present embodiment can be carried out. The drying treatment line 40 includes a sinter 42 for producing sinter and a crusher 44 for adjusting the particle size by crushing the high temperature (for example, 500 to 800 ° C.) sinter produced by the sinter 42. It has a cooler device 50 for cooling the sinter whose grain size has been adjusted by the crusher 44 to a predetermined temperature (for example, 100 to 200 ° C.), and a hopper 46 for charging the yard sinter into the cooler device 50. .. The cooler device 50 is composed of, for example, zones 1 to 4. A # 1 cooler fan 52 is provided in the first zone. Similarly, a # 2 cooler fan 54 is provided in the second zone, a # 3 cooler fan 56 is provided in the third zone, and a # 4 cooler fan 58 is provided in the fourth zone.

また、クーラー装置50には、高温の焼結鉱16を冷却した際に排出される高温の空気を取込んで排熱を回収するボイラー48が取り付けられていてもよい。本実施形態のクーラー装置50では、第1ゾーンにボイラー48が取り付けられている。したがって、図1に示した例では、第1ゾーンが排熱回収ゾーンになり、第2〜第4ゾーンが非排熱回収ゾーンになる。 Further, the cooler device 50 may be equipped with a boiler 48 that takes in high-temperature air discharged when the high-temperature sinter 16 is cooled and recovers the exhaust heat. In the cooler device 50 of the present embodiment, the boiler 48 is attached to the first zone. Therefore, in the example shown in FIG. 1, the first zone is the exhaust heat recovery zone, and the second to fourth zones are the non-exhaust heat recovery zones.

焼結機42で製造された高温の焼結鉱16は、クーラー装置50のトラフ上に層状に載置され、第1ゾーン、第2ゾーン、第3ゾーンおよび第4ゾーンにおける各クーラーファンにより冷却される。クーラー装置50による高温の焼結鉱の冷却が本実施形態における冷却工程である。 The high-temperature sinter 16 produced by the sinter 42 is placed in a layer on the trough of the cooler device 50 and cooled by each cooler fan in the first zone, the second zone, the third zone and the fourth zone. Will be done. Cooling the high-temperature sinter by the cooler device 50 is the cooling step in the present embodiment.

ヤード焼結鉱60は、ホッパー46に収容される。ホッパー46に収容されたヤード焼結鉱60は、ホッパー46から切り出されて、クーラー装置50の第2ゾーンと第3ゾーンとの間で冷却されている焼結鉱の層の上に層状に載置される。 The yard sinter 60 is housed in the hopper 46. The yard sinter 60 housed in the hopper 46 is cut out from the hopper 46 and layered on a layer of sinter that is cooled between the second and third zones of the cooler device 50. Placed.

各ゾーンに設けられたクーラーファン52〜58は、下方から上方に向かって流れる上昇気流を形成させる。この上昇気流により、下層の高温の焼結鉱によって加熱された高温の空気が上昇し、高温の焼結鉱の層の上に載置されたヤード焼結鉱が加熱、乾燥される。これにより、新たに熱源を用いることなく、水分含有率の高いヤード焼結鉱を乾燥できる。 Cooler fans 52 to 58 provided in each zone form an updraft flowing from below to above. Due to this updraft, the hot air heated by the high temperature sinter in the lower layer rises, and the yard sinter placed on the layer of the high temperature sinter is heated and dried. As a result, the yard sinter having a high water content can be dried without using a new heat source.

図5は、トラフ10上に載置された高温の焼結鉱16の層の上に、ヤード焼結鉱60を載置する状況を示す断面模式図である。図5(a)は、側面断面模式図であり、図5(b)は、上面図である。図5(a)(b)を用いて、高温の焼結鉱16の層の上に、ヤード焼結鉱60を載置する載置工程の詳細を説明する。 FIG. 5 is a schematic cross-sectional view showing a situation in which the yard sinter 60 is placed on the layer of the high temperature sinter 16 placed on the trough 10. FIG. 5A is a schematic side sectional view, and FIG. 5B is a top view. The details of the placement step of placing the yard sinter 60 on the layer of the high temperature sinter 16 will be described with reference to FIGS. 5 (a) and 5 (b).

ホッパー46には、ヤード焼結鉱60が収容される。ホッパー46は、側面に囲まれ、ヤード焼結鉱60を収容する収容部70と、収容部70内に設けられた仕切り壁72と、開口部が設けられたシャッター73、74、75と、排出スロープ76とを有する。 The hopper 46 houses the yard sinter 60. The hopper 46 is surrounded by side surfaces and accommodates a yard sintered ore 60, a partition wall 72 provided in the accommodating portion 70, shutters 73, 74, 75 provided with openings, and discharge. It has a slope 76 and.

収容部70にヤード焼結鉱60を充填する際、中心部が山状になるようにヤード焼結鉱60を供給すると、平均粒径が大きいヤード焼結鉱は、山の斜面を落下する一方で、平均粒径が小さいヤード焼結鉱は山の斜面をあまり落下しない。このため、山の斜面を落下する過程でヤード焼結鉱60は粒度偏析し、収容部70の中心側に平均粒径が小さいヤード焼結鉱12が堆積し、収容部70の側面側に平均粒径が大きいヤード焼結鉱14が堆積する。 When the accommodating portion 70 is filled with the yard sinter 60, if the yard sinter 60 is supplied so that the central portion has a mountain shape, the yard sinter 60 having a large average particle size falls on the slope of the mountain. So, yard sinter with a small average particle size does not fall much on mountain slopes. Therefore, the yard sinter 60 segregates the particle size in the process of falling down the slope of the mountain, and the yard sinter 12 having a small average particle size is deposited on the center side of the accommodating portion 70, and averages on the side surface side of the accommodating portion 70. Yard sinter 14 having a large particle size is deposited.

3枚のシャッター73、74、75は、スライドすることで、収容部70の中心側に堆積したヤード焼結鉱12の排出と、収容部70側面側に堆積したヤード焼結鉱14の排出とを切り換える。図5(a)に示した例では、シャッター73、74の開口部を収容部70の下方に位置させ、これにより、収容部70の側面側に堆積したヤード焼結鉱14を排出させている。排出スロープ76は、ヤード焼結鉱60を高温の焼結鉱16の上に案内する部材である。 By sliding the three shutters 73, 74, and 75, the yard sinter 12 deposited on the central side of the accommodating portion 70 and the yard sinter 14 deposited on the side surface side of the accommodating portion 70 are discharged. To switch. In the example shown in FIG. 5A, the openings of the shutters 73 and 74 are located below the accommodating portion 70, whereby the yard sinter 14 deposited on the side surface side of the accommodating portion 70 is discharged. .. The discharge slope 76 is a member that guides the yard sinter 60 onto the high temperature sinter 16.

仕切り壁72は、収容部70の下方において、ヤード焼結鉱60の移動を規制する板である。このように、収容部70に仕切り壁72を設けることで、粒度偏析によって収容部70の中心側に堆積したヤード焼結鉱12と収容部70の側面側に堆積したヤード焼結鉱14の移動が規制され、中心側のヤード焼結鉱12の排出時に側面側のヤード焼結鉱14が排出されることが抑制され、側面側のヤード焼結鉱14の排出時に中心側のヤード焼結鉱12が排出されることが抑制される。 The partition wall 72 is a plate that regulates the movement of the yard sinter 60 below the accommodating portion 70. By providing the partition wall 72 in the accommodating portion 70 in this way, the yard sinter 12 deposited on the central side of the accommodating portion 70 and the yard sinter 14 deposited on the side surface side of the accommodating portion 70 are moved by the particle size segregation. Is regulated so that the side yard sinter 14 is not discharged when the center yard sinter 12 is discharged, and the center yard sinter 14 is discharged when the side yard sinter 14 is discharged. It is suppressed that 12 is discharged.

シャッター73、74、75による排出の制御により、ホッパー46から、平均粒径が大きいヤード焼結鉱14と、平均粒径が小さいヤード焼結鉱12とが、排出スロープ76から交互に排出される。また、平均粒径が小さいヤード焼結鉱12のトラフ進行方向の長さL2および平均粒径が大きいヤード焼結鉱14のトラフ進行方向の長さL3は、トラフの進行方向に交差する方向の幅寸法L1の1/2未満となるようにシャッター73、74およびシャッター75の動作が制御される。シャッター73、74およびシャッター75の動作(切り換え時間、動作速度等)は、ヤード焼結鉱60およびホッパー46を用いた排出実験を予め行うことで定めることができる。なお、トラフ進行方向の長さL2およびL3が、幅寸法L1に対して短くなりすぎると、高温の焼結鉱16上で、平均粒径が小さいヤード焼結鉱12と平均粒径が大きいヤード焼結鉱14とが、トラフ等の振動により混合しやすくなって乾燥が不十分になるおそれがある。このため、トラフ進行方向の長さL2およびL3を幅寸法L1の1/10以上とすることが好ましい。 By controlling the discharge by the shutters 73, 74, and 75, the yard sinter 14 having a large average particle size and the yard sinter 12 having a small average particle size are alternately discharged from the discharge slope 76 from the hopper 46. .. Further, the length L2 of the yard sinter 12 having a small average particle size in the trough traveling direction and the length L3 of the yard sinter 14 having a large average particle size in the trough traveling direction intersect with each other in the trough traveling direction. The operations of the shutters 73, 74 and 75 are controlled so as to be less than 1/2 of the width dimension L1. The operations (switching time, operating speed, etc.) of the shutters 73, 74 and the shutter 75 can be determined by conducting a discharge experiment using the yard sintered ore 60 and the hopper 46 in advance. If the lengths L2 and L3 in the trough traveling direction are too short with respect to the width dimension L1, the yard sintered ore 12 having a small average particle size and the yard having a large average particle size on the high temperature sinter 16 The sinter 14 may be easily mixed with the sinter 14 due to the vibration of the trough or the like, resulting in insufficient drying. Therefore, it is preferable that the lengths L2 and L3 in the trough traveling direction are 1/10 or more of the width dimension L1.

また、排出スロープ76から排出されたヤード焼結鉱60の層厚が厚くなることを規制するカットゲート78を設けてもよい。カットゲート78を設けることでヤード焼結鉱60の層厚の変動を小さくできる。 In addition, a cut gate 78 may be provided to regulate the thickness of the yard sintered ore 60 discharged from the discharge slope 76. By providing the cut gate 78, the variation in the layer thickness of the yard sinter 60 can be reduced.

本実施形態に係る高炉原料の乾燥方法では、高温の焼結鉱16の層上に、平均粒径が小さいヤード焼結鉱12のトラフ進行方向の長さL2と、平均粒径が大きいヤード焼結鉱14のトラフ進行方向の長さL3とが、トラフ10の進行方向に交差する方向のトラフ10の幅寸法L1の1/2未満となるように、各ヤード焼結鉱を載置する。上述したように、平均粒径が大きいヤード焼結鉱14は圧力損失が小さく通気性がよいので、下層の高温の焼結鉱16により加熱された空気で容易に加熱、乾燥できる。平均粒径が小さいヤード焼結鉱12は伝熱効率が高いので、加熱された平均粒径が大きいヤード焼結鉱14の熱で効率よく加熱、乾燥できる。この結果、平均粒径が大きいヤード焼結鉱14および平均粒径が小さいヤード焼結鉱12ともに加熱、乾燥され、乾燥後のヤード焼結鉱60全体の含有水分率は、従来の乾燥方法で乾燥されたヤード焼結鉱の含有水分率より低くなる。 In the method for drying the blast furnace raw material according to the present embodiment, the length L2 of the yard sinter 12 having a small average particle size in the trough traveling direction and the yard baking having a large average particle size are placed on the layer of the high temperature sinter 16. Each yard sinter is placed so that the length L3 of the blast furnace 14 in the trough traveling direction is less than 1/2 of the width dimension L1 of the trough 10 in the direction intersecting the traveling direction of the trough 10. As described above, since the yard sinter 14 having a large average particle size has a small pressure loss and good air permeability, it can be easily heated and dried by the air heated by the high temperature sinter 16 in the lower layer. Since the yard sinter 12 having a small average particle size has high heat transfer efficiency, it can be efficiently heated and dried by the heat of the yard sinter 14 having a large average particle size. As a result, both the yard sinter 14 having a large average particle size and the yard sinter 12 having a small average particle size are heated and dried, and the moisture content of the entire yard sinter 60 after drying is determined by the conventional drying method. It is lower than the moisture content of the dried yard sinter.

図6は、ホッパー46に充填されたヤード焼結鉱60が排出される状況を説明する図である。図6(a)は、収容部70の側面側に堆積した平均粒径が大きいヤード焼結鉱14が排出される状態を示している。図6(b)は、収容部70の中心側に堆積した平均粒径が小さいヤード焼結鉱12が排出される状態を示している。図6の右上に示した矢印方向を、ホッパー46の上下左右前後方向と定義する。 FIG. 6 is a diagram illustrating a situation in which the yard sintered ore 60 filled in the hopper 46 is discharged. FIG. 6A shows a state in which the yard sintered ore 14 having a large average particle size deposited on the side surface side of the accommodating portion 70 is discharged. FIG. 6B shows a state in which the yard sintered ore 12 having a small average particle size deposited on the central side of the accommodating portion 70 is discharged. The arrow direction shown in the upper right of FIG. 6 is defined as the up / down / left / right / front / rear direction of the hopper 46.

シャッター75は、開口部80が設けられた板状の部材であり、収容部70の中心側の位置の下方に設けられる。図6(a)の状態からシャッター75を後方向にスライドさせると、開口部80は収容部70の下方に移動し、収容部70の中心側に堆積したヤード焼結鉱12の排出を許容する。 The shutter 75 is a plate-shaped member provided with an opening 80, and is provided below the position on the center side of the accommodating portion 70. When the shutter 75 is slid backward from the state of FIG. 6A, the opening 80 moves below the accommodating portion 70 and allows the discharge of the yard sinter 12 deposited on the central side of the accommodating portion 70. ..

シャッター73、74は、開口部82が設けられた板状の部材であり、収容部70の側面側の位置の下方にそれぞれ設けられる。図6(a)の状態からシャッター73、74を前方向にスライドさせると、開口部82は収容部70の下方から移動し、収容部70の側面側に堆積したヤード焼結鉱14の排出が停止する。シャッター73、74とシャッター75とを交互にスライドさせることにより、平均粒径の大きいヤード焼結鉱14と平均粒径の小さいヤード焼結鉱12とを交互に排出できる。なお、シャッター73、74、75は、収容部70の鉛直方向に垂直となる断面の中心側に堆積したヤード焼結鉱12の排出と、側面側に堆積したヤード焼結鉱14の排出とを切り替える部材の一例である。 The shutters 73 and 74 are plate-shaped members provided with openings 82, and are provided below the positions on the side surface side of the accommodating portion 70, respectively. When the shutters 73 and 74 are slid forward from the state shown in FIG. 6A, the opening 82 moves from below the accommodating portion 70, and the yard sinter 14 deposited on the side surface side of the accommodating portion 70 is discharged. Stop. By alternately sliding the shutters 73 and 74 and the shutter 75, the yard sinter 14 having a large average particle size and the yard sinter 12 having a small average particle size can be alternately discharged. The shutters 73, 74, and 75 discharge the yard sinter 12 deposited on the center side of the cross section perpendicular to the vertical direction of the accommodating portion 70 and the yard sinter 14 deposited on the side surface side. This is an example of a member to be switched.

また、収容部70の上下方向(鉛直方向)に垂直となる断面形状は、左右方向の寸法が前後方向の寸法より長い矩形であることが好ましい。上述したようにヤード焼結鉱60は、山の斜面を落下する過程で粒度偏析する。このため、収容部70の断面形状が左右方向の寸法が長い矩形であると、左右方向の粒度偏析は、前後方向の粒度偏析より大きくなり、この結果、シャッター73、74と、シャッター75によって排出が切り換えられる平均粒径が大きいヤード焼結鉱14と、平均粒径が小さいヤード焼結鉱12の粒度差が拡大する。 Further, the cross-sectional shape of the accommodating portion 70 perpendicular to the vertical direction (vertical direction) is preferably a rectangle whose dimensions in the left-right direction are longer than those in the front-rear direction. As described above, the yard sinter 60 segregates the particle size in the process of falling down the slope of the mountain. Therefore, if the cross-sectional shape of the accommodating portion 70 is a rectangle having a long horizontal dimension, the particle size segregation in the left-right direction is larger than the particle size segregation in the front-rear direction, and as a result, the particles are discharged by the shutters 73, 74 and the shutter 75. The particle size difference between the yard sintered ore 14 having a large average particle size and the yard sintered ore 12 having a small average particle size is widened.

図7は、ホッパー90に充填されたヤード焼結鉱60が排出される状況を示す図である。図7(a)は、収容部92の側面側に堆積したヤード焼結鉱14が排出される状態を示している。図7(b)は、収容部92の中心側に堆積したヤード焼結鉱12が排出される状態を示している。なお、図7(a)(b)において、図5(a)と共通する要素には同じ参照番号を付して重複する説明を省略する。 FIG. 7 is a diagram showing a situation in which the yard sintered ore 60 filled in the hopper 90 is discharged. FIG. 7A shows a state in which the yard sinter 14 deposited on the side surface side of the accommodating portion 92 is discharged. FIG. 7B shows a state in which the yard sinter 12 deposited on the central side of the accommodating portion 92 is discharged. In FIGS. 7 (a) and 7 (b), the same reference numbers are given to the elements common to those in FIG. 5 (a), and duplicate description will be omitted.

ホッパー90は、シャッター73、74、75に代えて、2枚のフラップ94を有する点においてホッパー46(図5)と異なる。図7(a)(b)に示すように、収容部92の下方に設けられた2枚のフラップ94は、一端辺93を中心軸に図面の左右に揺動し、中心側に堆積したヤード焼結鉱12の排出と、側面側に堆積したヤード焼結鉱14の排出とを切り替える。なお、フラップ94は、収容部70の中心側に堆積したヤード焼結鉱12の排出と、収容部70の側面側に堆積したヤード焼結鉱14の排出とを切り替える部材の他の例である。 The hopper 90 differs from the hopper 46 (FIG. 5) in that it has two flaps 94 instead of the shutters 73, 74, 75. As shown in FIGS. 7A and 7B, the two flaps 94 provided below the accommodating portion 92 swing to the left and right of the drawing with one end side 93 as the central axis, and the yard is deposited on the central side. The discharge of the sinter 12 and the discharge of the yard sinter 14 deposited on the side surface side are switched. The flap 94 is another example of a member that switches between discharging the yard sinter 12 deposited on the central side of the accommodating portion 70 and discharging the yard sinter 14 deposited on the side surface side of the accommodating portion 70. ..

このように、ホッパー90を用いても、一端辺93を軸に2枚のフラップ94を左右に揺動させることで、平均粒径が大きいヤード焼結鉱14と、平均粒径が小さいヤード焼結鉱12とを交互に排出させることができる。なお、2枚のフラップ94の各動作(切り換え時間、揺動速度等)は、ヤード焼結鉱60およびホッパー90を用いた切り出し実験を予め行うことで定めることができる。 In this way, even if the hopper 90 is used, by swinging the two flaps 94 left and right around one end side 93, the yard sinter 14 having a large average particle size and the yard baking having a small average particle size are used. The sinter 12 can be discharged alternately. Each operation (switching time, rocking speed, etc.) of the two flaps 94 can be determined by performing a cutting experiment using the yard sintered ore 60 and the hopper 90 in advance.

以上、説明したように、本実施形態に係る高炉原料の乾燥方法では、平均粒径が大きい高炉原料と、平均粒径が小さい高炉原料とをホッパーから交互に切り出し、クーラー装置で冷却されている高温の焼結鉱の層の上にトラフの進行方向のそれぞれの長さが、トラフの幅寸法L1の1/2未満になるようにトラフの進行方向に交互に載置する。これにより、高温の焼結鉱の顕熱によって高炉原料を効率的に乾燥でき、乾燥後の高炉原料の水分含有量を従来よりも少なくできる。 As described above, in the method for drying the blast furnace raw material according to the present embodiment, the blast furnace raw material having a large average particle size and the blast furnace raw material having a small average particle size are alternately cut out from the hopper and cooled by the cooler device. On the layer of the high-temperature sinter, the troughs are alternately placed in the traveling direction so that the length of each in the traveling direction of the trough is less than 1/2 of the width dimension L1 of the trough. As a result, the blast furnace raw material can be efficiently dried by the sensible heat of the high-temperature sintered ore, and the water content of the dried blast furnace raw material can be reduced as compared with the conventional case.

次に、図4に示した乾燥処理ライン40を用いて、ヤード焼結鉱を乾燥処理した実施例を説明する。本実施例では、焼結機42で製造されクラッシャー44で粒度が調整された600℃の焼結鉱を、層厚が0.8mになるように、クーラー装置50のトラフの上に層状に載置した。その後、図6に示したホッパー46を用いて、高温の焼結鉱の層の上に収容部70の中心側に堆積したヤード焼結鉱と、収容部70の側面側に堆積したヤード焼結鉱を交互に排出させ、平均粒径が大きいヤード焼結鉱の層と、平均粒径が小さいヤード焼結鉱の層とをトラフの進行方向に交互に形成させた。本実施例において、平均粒径が小さいヤード焼結鉱の層の長さL2は0.6mであり、平均粒径が大きいヤード焼結鉱の層の長さL3は0.6mであり、層厚は0.2mである。また、クーラー装置50のトラフの幅寸法L1は、2.4mである。 Next, an example in which the yard sinter is dried using the drying treatment line 40 shown in FIG. 4 will be described. In this embodiment, the sinter of 600 ° C. manufactured by the sinter 42 and whose particle size is adjusted by the crusher 44 is layered on the trough of the cooler device 50 so that the layer thickness is 0.8 m. Placed. Then, using the hopper 46 shown in FIG. 6, the yard sinter deposited on the central side of the accommodating portion 70 and the yard sinter deposited on the side surface side of the accommodating portion 70 on the layer of the high temperature sinter. The ore was discharged alternately, and layers of yard sinter having a large average particle size and layers of yard sinter having a small average particle size were alternately formed in the traveling direction of the trough. In this embodiment, the length L2 of the layer of the yard sinter having a small average particle size is 0.6 m, and the length L3 of the layer of the yard sinter having a large average particle size is 0.6 m. The thickness is 0.2 m. Further, the width dimension L1 of the trough of the cooler device 50 is 2.4 m.

比較例では、ホッパーの中心側に堆積したヤード焼結鉱と、側面側に堆積したヤード焼結鉱とを同時に排出させる従来のホッパーを用いて、高温の焼結鉱の層の上に幅方向中央部に平均粒径が小さいヤード焼結鉱、幅方向端部に平均粒径が大きいヤード焼結鉱とするヤード焼結鉱の層を形成させて乾燥させた。実施例および比較例で用いた焼結鉱の平均粒径、ヤード焼結鉱の平均粒径、および、乾燥前後のヤード焼結鉱の含有水分率を下記表3に示す。また、本実施例において、平均粒径が大きいヤード焼結鉱の平均粒径は25.5mmであり、平均粒径が小さいヤード焼結鉱の平均粒径は8.6mmであった。 In the comparative example, a conventional hopper that simultaneously discharges the yard sinter deposited on the center side of the hopper and the yard sinter deposited on the side surface is used in the width direction on the layer of the hot sinter. A layer of yard sinter having a small average particle size was formed in the center and a layer of yard sinter having a large average particle size was formed at the end in the width direction and dried. Table 3 below shows the average particle size of the sinter used in Examples and Comparative Examples, the average particle size of the yard sinter, and the moisture content of the yard sinter before and after drying. Further, in this example, the average particle size of the yard sinter having a large average particle size was 25.5 mm, and the average particle size of the yard sinter having a small average particle size was 8.6 mm.

Figure 0006835037
Figure 0006835037

表3に示すように、発明例における乾燥後の含有水分率は、比較例における乾燥後の含有水分率より低くなった。これにより、ホッパーの中心側に堆積したヤード焼結鉱と、側面側に堆積したヤード焼結鉱とを交互に排出させ、図5(b)に示したように、平均粒径の大きいヤード焼結鉱の層と、平均粒径の小さいヤード焼結鉱の層とをトラフの進行方向に交互に形成させて乾燥させることで、従来よりも乾燥後の高炉原料の含有水分量を少なくできることが確認された。 As shown in Table 3, the moisture content after drying in the invention example was lower than the moisture content after drying in the comparative example. As a result, the yard sinter deposited on the center side of the hopper and the yard sinter deposited on the side surface side are alternately discharged, and as shown in FIG. 5 (b), the yard sinter having a large average particle size is discharged. By alternately forming a layer of ore and a layer of yard-sintered ore having a small average particle size in the traveling direction of the trough and drying it, the water content of the blast furnace raw material after drying can be reduced as compared with the conventional case. confirmed.

10 トラフ
12 ヤード焼結鉱
14 ヤード焼結鉱
16 高温の焼結鉱
20 圧力損失実験装置
22 焼結容器
24 ファン
26 ダンパ
30 乾燥実験装置
32 原料容器
34 計量器
40 乾燥処理ライン
42 焼結機
44 クラッシャー
46 ホッパー
48 ボイラー
50 クーラー装置
52 クーラーファン
54 クーラーファン
56 クーラーファン
58 クーラーファン
60 ヤード焼結鉱
70 収容部
72 仕切り壁
73 シャッター
74 シャッター
75 シャッター
76 排出スロープ
78 カットゲート
80 開口部
82 開口部
90 ホッパー
92 収容部
93 一端辺
94 フラップ
10 Traf 12 yard sinter 14 yard sinter 16 High temperature sinter 20 Pressure loss experimental equipment 22 Sintering vessel 24 Fan 26 Damper 30 Drying experimental equipment 32 Raw material container 34 Weighing instrument 40 Drying processing line 42 Sintering machine 44 Crusher 46 Hopper 48 Boiler 50 Cooler device 52 Cooler fan 54 Cooler fan 56 Cooler fan 58 Cooler fan 60 yards Sintered ore 70 Containment part 72 Partition wall 73 Shutter 74 Shutter 75 Shutter 76 Discharge slope 78 Cut gate 80 Opening 82 Opening Hopper 92 Housing 93 One end 94 Flap

Claims (7)

焼結機で製造された高温の焼結鉱をクーラー装置のトラフの上に層状に載置して冷却する冷却工程と、
前記冷却工程で冷却されている前記焼結鉱の層の上に高炉原料を層状に載置する載置工程と、を有し、
前記載置工程では、高炉原料全体の平均粒径より大きい平均粒径の高炉原料と高炉原料全体の平均粒径より小さい平均粒径の高炉原料とを、前記トラフの進行方向のそれぞれの長さが前記トラフの進行方向に交差する幅方向の前記トラフの寸法の1/2未満になるように前記トラフの進行方向に交互に載置する、高炉原料の乾燥方法。
A cooling process in which the high-temperature sinter produced by the sinter is placed in layers on the trough of the cooler device and cooled.
It has a mounting step of placing the blast furnace raw material in a layer on the layer of the sinter cooled in the cooling step.
In the above-described step, the blast furnace raw material having an average particle size larger than the average particle size of the entire blast furnace raw material and the blast furnace raw material having an average particle size smaller than the average particle size of the entire blast furnace raw material are each lengthed in the traveling direction of the trough. A method for drying a blast furnace raw material, in which the blast furnace raw materials are alternately placed in the traveling direction of the blast furnace so that is less than 1/2 of the size of the trough in the width direction intersecting the traveling direction of the trough.
前記高炉原料は、収容部を有するホッパーに収容され、
前記載置工程では、前記収容部の鉛直方向に垂直となる断面の中心側に堆積した高炉原料と、前記収容部の側面側に堆積した高炉原料とを交互に前記ホッパーから排出させる、請求項1に記載の高炉原料の乾燥方法。
The blast furnace raw material is housed in a hopper having a housing part, and is stored.
In the above-described step, the blast furnace raw material deposited on the center side of the cross section perpendicular to the vertical direction of the housing portion and the blast furnace raw material deposited on the side surface side of the housing portion are alternately discharged from the hopper. The method for drying a blast furnace raw material according to 1.
前記ホッパーの収容部は、前記収容部の鉛直方向に垂直となる断面形状が矩形である、請求項2に記載の高炉原料の乾燥方法。 The method for drying a blast furnace raw material according to claim 2, wherein the accommodating portion of the hopper has a rectangular cross-sectional shape perpendicular to the vertical direction of the accommodating portion. 前記ホッパーの収容部の下方には、前記中心側と前記側面側とを仕切る壁が設けられている、請求項2または請求項3に記載の高炉原料の乾燥方法。 The method for drying a blast furnace raw material according to claim 2 or 3, wherein a wall partitioning the central side and the side surface side is provided below the accommodating portion of the hopper. 前記ホッパーの収容部の下方には、前記中心側に堆積した前記高炉原料の排出を許容するシャッターと、前記側面側に堆積した前記高炉原料の排出を許容するシャッターとが設けられている、請求項2から請求項4の何れか一項に記載の高炉原料の乾燥方法。 A shutter that allows the discharge of the blast furnace raw material deposited on the central side and a shutter that allows the discharge of the blast furnace raw material deposited on the side surface side are provided below the accommodating portion of the hopper. The method for drying a blast furnace raw material according to any one of items 2 to 4. 前記ホッパーの収容部の下方には、一端辺を軸に左右に揺動するフラップが設けられ、
該フラップが左右に揺動することで、前記中心側に堆積した前記高炉原料の排出と、前記側面側に堆積した前記高炉原料の排出とを切り換える、請求項2から請求項4の何れか一項に記載の高炉原料の乾燥方法。
A flap that swings left and right around one end is provided below the accommodating portion of the hopper.
Any one of claims 2 to 4, wherein the flap swings left and right to switch between the discharge of the blast furnace raw material deposited on the central side and the discharge of the blast furnace raw material deposited on the side surface side. The method for drying blast furnace raw materials according to the section.
前記高炉原料は、ヤード焼結鉱である、請求項1から請求項6の何れか一項に記載の高炉原料の乾燥方法。 The method for drying a blast furnace raw material according to any one of claims 1 to 6, wherein the blast furnace raw material is yard sintered ore.
JP2018114123A 2018-06-15 2018-06-15 How to dry blast furnace raw materials Active JP6835037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018114123A JP6835037B2 (en) 2018-06-15 2018-06-15 How to dry blast furnace raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018114123A JP6835037B2 (en) 2018-06-15 2018-06-15 How to dry blast furnace raw materials

Publications (2)

Publication Number Publication Date
JP2019218571A JP2019218571A (en) 2019-12-26
JP6835037B2 true JP6835037B2 (en) 2021-02-24

Family

ID=69095888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018114123A Active JP6835037B2 (en) 2018-06-15 2018-06-15 How to dry blast furnace raw materials

Country Status (1)

Country Link
JP (1) JP6835037B2 (en)

Also Published As

Publication number Publication date
JP2019218571A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
CN107916312B (en) Steel slag dry process and waste heat recycling and electricity-generating method
JP5799102B2 (en) Dry granulation of metallurgical slag
JP6447614B2 (en) Raw material charging method to blast furnace
CN105180662B (en) High-temperature particulate material stage cooling method and device
CN105939798B (en) Moulding sand preparing machine
JP6835037B2 (en) How to dry blast furnace raw materials
JP5749267B2 (en) Supply chute for sintered material
CN210773373U (en) Horizontal cement clinker grate type particle grading cooler
JPS5844958B2 (en) Heat recovery method for high-temperature particulate matter
JP5239450B2 (en) Heat drying hopper of blast furnace raw material and temperature adjustment method thereof
JP5861392B2 (en) Blast furnace operation method
JP6792337B2 (en) How to dry blast furnace raw materials
CN110715547B (en) Horizontal cement clinker grate type particle grading cooler and cooling method
JPS5925011B2 (en) Sinter cooling equipment
KR102065065B1 (en) Cooling device and sintering device including the same
KR102470480B1 (en) Charging Apparatus for raw material and method thereof
JP2007254837A (en) Apparatus for drying and preheating raw material for blast furnace and controlling method therefor
JPS584918Y2 (en) Sintered ore cooling equipment
JP6572867B2 (en) Blast furnace raw material drying method
JP6904322B2 (en) How to use hopper equipment
KR101942003B1 (en) Sintering Apparatus For Manufacturing Artificial Lightweight Aggregate, And Manufacturing System For Artificial Lightweight Aggregate Comprising The Same
RU94177U1 (en) FORMING SAND ENRICHMENT LINE BY THE BOUNDARY VALUE OF GRAINS BY THE DRY DRAWING METHOD
JP2005281810A (en) Method and apparatus for feeding sintered ore to moving trough type cooling machine
JP2019167615A (en) Charging method of raw material for bell-less blast furnace
JPH0237284A (en) Sintering material cooling device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6835037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250