JP6834878B2 - 車両用動力伝達装置の油圧制御回路 - Google Patents

車両用動力伝達装置の油圧制御回路 Download PDF

Info

Publication number
JP6834878B2
JP6834878B2 JP2017181660A JP2017181660A JP6834878B2 JP 6834878 B2 JP6834878 B2 JP 6834878B2 JP 2017181660 A JP2017181660 A JP 2017181660A JP 2017181660 A JP2017181660 A JP 2017181660A JP 6834878 B2 JP6834878 B2 JP 6834878B2
Authority
JP
Japan
Prior art keywords
mode
engine
clutch
hydraulic
rotating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017181660A
Other languages
English (en)
Other versions
JP2019056433A (ja
Inventor
広太 藤井
広太 藤井
田端 淳
淳 田端
達也 今村
達也 今村
弘一 奥田
弘一 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017181660A priority Critical patent/JP6834878B2/ja
Publication of JP2019056433A publication Critical patent/JP2019056433A/ja
Application granted granted Critical
Publication of JP6834878B2 publication Critical patent/JP6834878B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

本発明は、機関が動力伝達可能に連結された第1差動機構と、第1回転機の運転状態が制御されることにより差動状態が制御される第2差動機構と、駆動輪と連結されると共に第2回転機が動力伝達可能に連結された出力回転部材とを備えた車両用動力伝達装置の油圧制御回路に関するものである。
車両用動力伝達装置の油圧制御回路が良く知られている。例えば、特許文献1に記載された自動変速機の油圧制御装置がそれである。この特許文献1には、複数の係合装置の内の所定の係合装置を選択的に係合することで複数の変速段を形成可能である自動変速機の油圧制御装置において、各係合装置に係合油圧を供給可能な複数の電磁弁の何れもが故障により非作動(つまり非励磁)となる(すなわちオフフェールしてしまう)オールオフフェール時に、前進段及び後進段の何れかを選択的に形成するリンプホーム機能(故障時であっても車両を駆動可能とする(例えば車両の退避走行を可能とする)機能)を実現可能に構成することが開示されている。
特開2015−124843号公報
ところで、第1回転要素と第2回転要素と第3回転要素とを有して機関が動力伝達可能に連結された第1差動機構と、第4回転要素と第5回転要素と第6回転要素とを有して第1回転機の運転状態が制御されることにより差動状態が制御される第2差動機構と、駆動輪と連結されると共に第2回転機が動力伝達可能に連結された出力回転部材とを備えた車両用動力伝達装置において、第1差動機構における各要素の連結状態を変更する係合装置や第1差動機構と第2差動機構との連結状態を変更する係合装置などの複数の係合装置を追加することで、第2差動機構単独での動力分割比とは異なる動力分割比の差動機構を構成すると共に、複数の係合装置の各々の作動状態を切り替えることにより複数の走行モードを選択的に成立させることが考えられる。異なる動力分割比にて各々差動状態を制御して走行を行うことが可能な車両において、複数の係合装置への係合油圧を各電磁弁にて供給する場合に、それら電磁弁の何れもがオフフェールしてしまうオールオフフェール時に特定の走行モードを成立させてリンプホーム機能を実現することについては検討の余地がある。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、複数の係合装置へ各々係合油圧を供給する複数の電磁弁のオールオフフェール時に特定の走行モードを成立させて退避走行性能を確保することができる車両用動力伝達装置の油圧制御回路を提供することにある。
第1の発明の要旨とするところは、(a)第1回転要素と第2回転要素と第3回転要素とを有して機関が動力伝達可能に連結された第1差動機構と、第4回転要素と第5回転要素と第6回転要素とを有して第1回転機の運転状態が制御されることにより差動状態が制御される第2差動機構と、駆動輪と連結されると共に第2回転機が動力伝達可能に連結された出力回転部材とを備えた車両用動力伝達装置の、油圧制御回路であって、(b)前記第1回転要素は、前記機関が動力伝達可能に連結されており、(c)前記第3回転要素は、前記第6回転要素と連結されており、(d)前記第4回転要素は、前記第1回転機が動力伝達可能に連結されており、(e)前記第5回転要素は、前記出力回転部材に連結されており、(f)前記車両用動力伝達装置は、前記第1回転要素、前記第2回転要素、及び前記第3回転要素のうちの何れか2つの回転要素を連結する第1係合装置と、前記第2回転要素を非回転部材に連結する第2係合装置と、前記第2回転要素と前記第4回転要素及び前記第5回転要素のうちの何れか一方の回転要素とを連結する第3係合装置とを更に備えるものであり、(g)前記車両用動力伝達装置は、前記第1係合装置及び前記第3係合装置のうちの何れか一方の係合装置を係合した状態で前記第2差動機構の差動状態が制御されて前記機関のトルクが前記第5回転要素に機械的に伝達される第1走行モードと、前記第1係合装置及び前記第3係合装置のうちの前記一方の係合装置とは別の係合装置を係合した状態で前記第2差動機構の差動状態が制御されて前記機関のトルクが前記第5回転要素に機械的に伝達される第2走行モードとが選択的に成立させられるものであり、(h)前記第1係合装置へ係合油圧を供給する第1電磁弁と、(i)前記第2係合装置へ係合油圧を供給する第2電磁弁と、(j)前記第3係合装置へ係合油圧を供給する第3電磁弁とを、含むものであり、(k)前記第1電磁弁、前記第2電磁弁、及び前記第3電磁弁の何れもが非作動となる故障状態では、前記第1係合装置及び前記第3係合装置のうちの何れか一方の係合装置に係合油圧を供給することにある。
前記第1の発明によれば、第1電磁弁、第2電磁弁、及び第3電磁弁の何れもが非作動となる故障状態では、第1係合装置及び第3係合装置のうちの何れか一方の係合装置に係合油圧が供給されるので、第1係合装置及び第3係合装置の何れか一方の係合装置が係合されることによる、第1走行モード又は第2走行モードが成立させられて、退避走行することが可能となる。よって、複数の係合装置へ各々係合油圧を供給する複数の電磁弁のオールオフフェール時に特定の走行モードを成立させて退避走行性能を確保することができる。
本発明が適用される車両の走行に関わる各部の概略構成を説明する図であると共に、その各部を制御する為の制御系統の要部を説明する図である。 係合装置の作動状態を制御する油圧制御回路の一例を示す図である。 各走行モードにおける各係合装置の各作動状態を示す図表である。 単独駆動EVモード時の共線図である。 両駆動EVモード時の共線図である。 U/Dインプットスプリットでのスタンバイモード時の共線図である。 O/Dインプットスプリットでのスタンバイモード時の共線図である。 U/Dインプットスプリットでのエンブレ併用モード時の共線図である。 O/Dインプットスプリットでのエンブレ併用モード時の共線図である。 HV走行モードのU/DHVモード時の前進走行での共線図である。 HV走行モードのO/DHVモード時の前進走行での共線図である。 HV走行モードのU/DHVモード時の後進走行での共線図であり、エンジン逆転入力の場合である。 HV走行モードのU/DHVモード時の後進走行での共線図であり、エンジン正転入力の場合である。 HV走行モードのO/DHVモード時の後進走行での共線図であり、エンジン正転入力の場合である。 HV走行モードの固定段モード時の共線図であり、直結の場合である。 HV走行モードの固定段モード時の共線図であり、出力軸固定の場合である。 エンジン走行とモータ走行との切替制御に用いる走行モード切替マップの一例を示す図であって、バッテリ容量を保持した状態で走行する場合である。 エンジン走行とモータ走行との切替制御に用いる走行モード切替マップの一例を示す図であって、バッテリ容量を消費しながら走行する場合である。 電子制御装置の制御作動の要部すなわち油圧制御回路におけるフェールセーフの機能を実現する為の制御作動を説明するフローチャートである。 図19のフローチャートに示す制御作動を実行した場合のタイムチャートの一例を示す図である。 係合装置の作動状態を制御する油圧制御回路の一例を示す図であり、図2の油圧制御回路とは別の実施例である。
本発明の実施形態において、前記第1電磁弁及び前記第3電磁弁のうちの何れか一方の電磁弁は、ノーマリーオープン式の電磁弁であり、前記第1電磁弁及び前記第3電磁弁のうちの前記一方の電磁弁とは別の電磁弁と前記第2電磁弁とは何れも、ノーマリークローズ式の電磁弁である。このようにすれば、第1電磁弁、第2電磁弁、及び第3電磁弁の何れもが非作動となる故障状態では、第1係合装置及び第3係合装置のうちの何れか一方の係合装置に係合油圧が供給される。
或いは、前記第1電磁弁、前記第2電磁弁、及び前記第3電磁弁は何れも、ノーマリークローズ式の電磁弁であり、前記油圧制御回路は、前記第1電磁弁、前記第2電磁弁、及び前記第3電磁弁から供給されるそれぞれの前記係合油圧により作動状態が切り替えられると共に、前記第1電磁弁、前記第2電磁弁、及び前記第3電磁弁の何れからも前記係合油圧が供給されない状態では、前記係合油圧の元圧を前記第1係合装置及び前記第3係合装置のうちの何れか一方の係合装置へ供給する側に切り替えられる切替弁を更に含むものである。このようにすれば、第1電磁弁、第2電磁弁、及び第3電磁弁の何れもが非作動となる故障状態では、第1係合装置及び第3係合装置のうちの何れか一方の係合装置に係合油圧となる元圧が供給される。
前記油圧制御回路は、前記第1電磁弁、前記第2電磁弁、及び前記第3電磁弁の何れもが非作動となる故障状態で前記係合油圧を供給する前記係合装置は、前記第1係合装置及び前記第3係合装置のうちの前記第2走行モードを成立させる係合装置である。例えば、前記ノーマリーオープン式の電磁弁は、前記第1電磁弁及び前記第3電磁弁のうちの前記第2走行モードを成立させる係合装置に前記係合油圧を供給する電磁弁である。或いは、前記切替弁は、前記第1電磁弁、前記第2電磁弁、及び前記第3電磁弁の何れからも前記係合油圧が供給されない状態では、前記係合油圧の元圧を前記第1係合装置及び前記第3係合装置のうちの前記第2走行モードを成立させる係合装置へ供給する側に切り替えられる。このようにすれば、第1電磁弁、第2電磁弁、及び第3電磁弁の何れもが非作動となる故障状態では、第2走行モードを成立させる係合装置に係合油圧が供給されるので、第2走行モードが成立させられて退避走行することが可能となる。この第2走行モードは第1走行モードと比較して高車速領域に対応することが可能であるので、退避走行性能がより確保し易くされる。
以下、本発明の実施例を図面を参照して詳細に説明する。
図1は、本発明が適用される車両10の走行に関わる各部の概略構成を説明する図であると共に、その各部を制御する為の制御系統の要部を説明する図である。図1において、車両10は、走行用の動力源となり得る、エンジン12、第1回転機MG1、及び第2回転機MG2と、車両用動力伝達装置14(以下、動力伝達装置14という)と、駆動輪16とを備えるハイブリッド車両である。尚、本明細書では、「エンジン」との表現は「機関」と同意である。
エンジン12は、例えばガソリンエンジンやディーゼルエンジン等、所定の燃料を燃焼させて動力を出力する公知の内燃機関である。このエンジン12は、後述する電子制御装置90によってスロットル開度或いは吸入空気量、燃料供給量、点火時期等の運転状態が制御されることにより、エンジン12のトルク(以下、エンジントルクTeともいう)が制御される。
第1回転機MG1及び第2回転機MG2は、駆動トルクを発生させる電動機(モータ)としての機能及び発電機(ジェネレータ)としての機能を有する所謂モータジェネレータである。第1回転機MG1及び第2回転機MG2は、インバータ部や平滑コンデンサなどを有する車両10に備えられた電力制御ユニット50を介して、各々電力を授受する蓄電装置としての車両10に備えられたバッテリユニット52に接続されており、後述する電子制御装置90によって電力制御ユニット50が制御されることにより、第1回転機MG1及び第2回転機MG2の各々の出力トルク(力行トルク又は回生トルク)であるMG1トルクTg及びMG2トルクTmが制御される。
動力伝達装置14は、エンジン12と駆動輪16との間の動力伝達経路に備えられている。動力伝達装置14は、車体に取り付けられる非回転部材であるケース18内に、第1回転機MG1、第2回転機MG2、第1動力伝達部20、第2動力伝達部22等を備えている。又、動力伝達装置14は、第1動力伝達部20の出力回転部材である出力軸24に連結されたプロペラシャフト26、プロペラシャフト26に連結されたドライブピニオン28、デフリングギヤ30を介してドライブピニオン28と噛み合うディファレンシャルギヤ32、ディファレンシャルギヤ32に連結されたドライブシャフト34等を備えている。
第1動力伝達部20は、エンジン12のクランク軸に連結された、第1動力伝達部20の入力回転部材である入力軸36と同軸心に配置されており、第1差動機構38、第2差動機構40、第1回転機MG1、クラッチCL1、ブレーキBR1、及びクラッチCLc等を備えている。
第1差動機構38は、第1サンギヤS1、互いに噛み合う複数対の第1ピニオンギヤP1a,P1b、第1ピニオンギヤP1a,P1bを自転及び公転可能に支持する第1キャリアC1、第1ピニオンギヤP1a,P1bを介して第1サンギヤS1と噛み合う第1リングギヤR1を有する公知のダブルピニオン型の遊星歯車機構であり、差動作用を生じる差動機構として機能する。第1差動機構38は、例えば歯車比ρ1(歯車比ρについては後述)を適切にすることを考慮してダブルピニオン型の遊星歯車機構を採用している。又、第2差動機構40は、第2サンギヤS2、第2ピニオンギヤP2、第2ピニオンギヤP2を自転及び公転可能に支持する第2キャリアC2、第2ピニオンギヤP2を介して第2サンギヤS2と噛み合う第2リングギヤR2を有する公知のシングルピニオン型の遊星歯車機構であり、差動作用を生じる差動機構として機能する。
第1差動機構38において、第1キャリアC1は、入力軸36に一体的に連結され、その入力軸36を介してエンジン12が動力伝達可能に連結された第1回転要素RE1であり、第1差動機構38の入力回転部材として機能する。第1リングギヤR1は、ブレーキBR1を介してケース18に選択的に連結される第2回転要素RE2である。第1サンギヤS1は、第2差動機構40の入力回転部材(すなわち第2差動機構40の第2リングギヤR2)に連結された第3回転要素RE3であり、第1差動機構38の出力回転部材として機能する。
第2差動機構40において、第2サンギヤS2は、第1回転機MG1のロータ軸42に一体的に連結されており、第1回転機MG1が動力伝達可能に連結された反力要素としての第4回転要素RE4である。第2キャリアC2は、出力軸24に連結されており(すなわち出力軸24と一体回転するように設けられており)、駆動輪16に連結された出力要素としての第5回転要素RE5であり、第2差動機構40の出力回転部材として機能する。第2リングギヤR2は、第1差動機構38の出力回転部材(すなわち第1差動機構38の第1サンギヤS1)に連結された入力要素としての第6回転要素RE6であり、第2差動機構40の入力回転部材として機能する。
第1キャリアC1と第1リングギヤR1とは、クラッチCL1を介して選択的に連結される。又、第1リングギヤR1と第2キャリアC2とは、クラッチCLcを介して選択的に連結される。よって、クラッチCL1は、第1回転要素RE1と第2回転要素RE2とを選択的に連結する第1係合装置である。又、ブレーキBR1は、第2回転要素RE2をケース18に選択的に連結する第2係合装置である。又、クラッチCLcは、第2回転要素RE2と第5回転要素RE5とを選択的に連結する第3係合装置である。クラッチCL1、ブレーキBR1、及びクラッチCLcは、好適には何れも湿式の摩擦係合装置であり、油圧アクチュエータによって係合制御される多板型の油圧式摩擦係合装置である。
図2は、各係合装置(クラッチCL1、ブレーキBR1、クラッチCLc)の作動状態(係合や解放などの状態)を制御する、車両10(ここでは動力伝達装置14も同意)に備えられた油圧制御回路60の要部の一例を示す図である。図2において、油圧制御回路60は、プライマリレギュレータバルブ62、第1油路64、第2油路66、第3油路68、及びリニアソレノイドバルブSL1,SL2,SL3等を備えている。プライマリレギュレータバルブ62は、車両10に備えられた機械式のオイルポンプ56(MOP56ともいう)が発生する油圧を元圧として、又は、車両10に備えられた電動式のオイルポンプ58(EOP58ともいう)が発生する油圧を元圧として、ライン油圧PLを調圧する、リリーフ型の調圧弁である。MOP56は、例えばエンジン12の回転に伴って回転する、動力伝達装置14の何れかの回転部材(回転要素も同意)に連結されており、エンジン12によって回転駆動されることで油圧を供給する。EOP58は、例えばエンジン12の回転停止時(例えばエンジン12の運転を停止したモータ走行時)に、後述する電子制御装置90によって制御される不図示の専用のモータによって回転駆動されることで油圧を供給する。リニアソレノイドバルブSL1は、ライン油圧PLを元圧として、クラッチCL1に供給する係合油圧(CL1油圧Pcl1ともいう)を調圧する。リニアソレノイドバルブSL2は、ライン油圧PLを元圧として、ブレーキBR1に供給する係合油圧(BR1油圧Pbr1ともいう)を調圧する。リニアソレノイドバルブSL3は、ライン油圧PLを元圧として、クラッチCLcに供給する係合油圧(CLc油圧Pclcともいう)を調圧する。リニアソレノイドバルブSL1,SL2,SL3は、基本的には何れも同じ構成であり、電子制御装置90によりそれぞれ独立に励磁、非励磁や電流制御が為され、各油圧Pcl1,Pbr1,Pclcを独立に調圧する。第1油路64は、リニアソレノイドバルブSL1に接続されており、CL1油圧Pcl1が流通する油路であって、クラッチCL1に連通する油路である。第2油路66は、リニアソレノイドバルブSL2に接続されており、BR1油圧Pbr1が流通する油路であって、ブレーキBR1に連通する油路である。第3油路68は、リニアソレノイドバルブSL3に接続されており、CLc油圧Pclcが流通する油路であって、クラッチCLcに連通する油路である。従って、リニアソレノイドバルブSL1は、第1油路64を介してクラッチCL1へ第1油圧としてのCL1油圧Pcl1を供給する第1電磁弁である。リニアソレノイドバルブSL2は、第2油路66を介してブレーキBR1へ第2油圧としてのBR1油圧Pbr1を供給する第2電磁弁である。リニアソレノイドバルブSL3は、第3油路68を介してクラッチCLcへ第3油圧としてのCLc油圧Pclcを供給する第3電磁弁である。各係合装置(クラッチCL1、ブレーキBR1、クラッチCLc)は、油圧制御回路60から各々供給される各油圧Pcl1,Pbr1,Pclcに応じて作動状態が切り替えられる。尚、油圧制御回路60は、更に、セカンダリレギュレータバルブ70、第1同時係合防止バルブ72、第2同時係合防止バルブ74、第3同時係合防止バルブ76、及び電磁切替バルブ78等を備えている。これらの詳細な説明については、後述する。
図1に戻り、第1差動機構38は、クラッチCL1及びブレーキBR1の各作動状態を切り替えることにより、直結状態、エンジン12の逆回転変速状態、ニュートラル状態(中立状態)、及び内部ロック状態の4つの状態を形成することが可能である。具体的には、第1差動機構38は、クラッチCL1の係合状態では、第1差動機構38の各回転要素が一体回転される直結状態とされる。又、第1差動機構38は、ブレーキBR1の係合状態では、第1リングギヤR1の回転がゼロ[rpm]とされ、エンジン回転速度Neの正回転に対して第1サンギヤS1(第1差動機構38の出力回転部材)が負回転となるエンジン12の逆回転変速状態とされる。又、第1差動機構38は、クラッチCL1の解放状態且つブレーキBR1の解放状態では、第1差動機構38の差動が許容されるニュートラル状態とされる。又、第1差動機構38は、クラッチCL1の係合状態且つブレーキBR1の係合状態では、第1差動機構38の各回転要素が回転停止となる内部ロック状態とされる。
第2差動機構40は、差動が許容される状態では、第2リングギヤR2に入力されるエンジン12の動力を第1回転機MG1及び第2キャリアC2へ分割(分配も同意)する動力分割機構として機能することが可能である。よって、車両10では、第2リングギヤR2に入力されるエンジントルクTeの反力を第1回転機MG1にて取ることにより、第2キャリアC2へ機械的に伝達される直達トルク(エンジン直達トルクともいう)と、第1回転機MG1に分割された動力による第1回転機MG1の発電電力で駆動される第2回転機MG2によるMG2トルクTmとでエンジン走行することが可能である。これにより、第2差動機構40は、後述する電子制御装置90によって電力制御ユニット50が制御されて第1回転機MG1の運転状態が制御されることによりギヤ比(変速比)を制御する公知の電気式差動部(電気式無段変速機)として機能する。つまり、第2差動機構40は、第1回転機MG1の運転状態が制御されることにより差動状態が制御される電気式変速機構である。
第1動力伝達部20では、第2差動機構40における動力分割比とは異なる動力分割比にて作動する電気式無段変速機を構成することが可能である。すなわち、第1動力伝達部20では、第1サンギヤS1(第3回転要素RE3)と第2リングギヤR2(第6回転要素RE6)とが連結されていることに加え、クラッチCLcを係合状態とすることによって第1リングギヤR1(第2回転要素RE2)と第2キャリアC2(第5回転要素RE5)とが連結されることで、第1差動機構38と第2差動機構40とで1つの差動機構を構成し、第1差動機構38と第2差動機構40との全体を、第2差動機構40単独での動力分割比とは異なる動力分割比にて作動する電気式無段変速機として機能させることが可能となる。
第1動力伝達部20では、上述した4つの状態が形成される第1差動機構38と、第2差動機構40とが連結されており、車両10は、クラッチCLcの作動状態の切替えと合わせて、後述する複数の走行モードを実現することが可能となる。
このように構成された第1動力伝達部20においては、エンジン12の動力や第1回転機MG1の動力は出力軸24へ伝達される。従って、エンジン12及び第1回転機MG1は、第1動力伝達部20を介して駆動輪16に動力伝達可能に連結される。
第2動力伝達部22は、入力軸36(又は出力軸24)と同軸心に配置されており、第2回転機MG2、及び出力軸24に連結されたリダクション機構44を備えている。リダクション機構44は、第3サンギヤS3、第3ピニオンギヤP3、第3ピニオンギヤP3を自転及び公転可能に支持する第3キャリアC3、第3ピニオンギヤP3を介して第3サンギヤS3と噛み合う第3リングギヤR3を有する公知のシングルピニオン型の遊星歯車機構である。第3サンギヤS3は、第2回転機MG2のロータ軸46に連結された入力要素である。第3リングギヤR3は、ケース18に連結された反力要素である。第3キャリアC3は、出力軸24に連結された出力要素である。このように構成されたリダクション機構44は、MG2回転速度Nmを減速して出力軸24に伝達する。これにより、第2動力伝達部22においては、第2回転機MG2の動力は第1動力伝達部20を介すことなく出力軸24へ伝達される。従って、第2回転機MG2は、第1動力伝達部20を介さずに駆動輪16に動力伝達可能に連結される。つまり、第2回転機MG2は、第1動力伝達部20を介さずに動力伝達装置14の出力回転部材であるドライブシャフト34に動力伝達可能に連結された回転機である。尚、動力伝達装置14の出力回転部材は、駆動輪16と連結されると共に第2回転機MG2が動力伝達可能に連結された出力回転部材であり、ドライブシャフト34の他に、出力軸24やプロペラシャフト26なども同意である。
このように構成された動力伝達装置14は、FR(フロントエンジン・リヤドライブ)方式の車両に好適に用いられる。又、動力伝達装置14では、エンジン12の動力や第1回転機MG1の動力や第2回転機MG2の動力は、出力軸24へ伝達され、その出力軸24から、ディファレンシャルギヤ32、ドライブシャフト34等を順次介して駆動輪16へ伝達される。又、動力伝達装置14は、クラッチCL1、ブレーキBR1、及びクラッチCLcの各々の係合装置に供給される各油圧Pcl1,Pbr1,Pclcに応じて係合装置の各々の作動状態が切り替えられることにより複数の走行モードが選択的に成立させられる。
車両10は、エンジン12、動力伝達装置14などの制御に関連する車両10の制御装置を含むコントローラとしての電子制御装置90を備えている。電子制御装置90は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置90は、エンジン12、第1回転機MG1、及び第2回転機MG2の各出力制御、後述する走行モードの切替制御等を実行するようになっており、必要に応じてエンジン制御用、回転機制御用、油圧制御用等に分けて構成される。
電子制御装置90には、車両10に備えられた各種センサ等(例えばエンジン回転速度センサ80、出力回転速度センサ81、レゾルバ等のMG1回転速度センサ82、レゾルバ等のMG2回転速度センサ83、アクセル開度センサ84、シフトポジションセンサ85、バッテリセンサ86など)による検出値に基づく各種信号等(例えばエンジン回転速度Ne、車速Vに対応する出力軸24の回転速度である出力回転速度No、MG1回転速度Ng、MG2回転速度Nm、アクセル開度θacc、「P」,「R」,「N」,「D」等のシフトレバーの操作位置(シフトポジション)POSsh、バッテリユニット52のバッテリ温度THbatやバッテリ充放電電流Ibatやバッテリ電圧Vbatなど)が供給される。又、電子制御装置90からは、車両10に備えられた各装置(例えばスロットルアクチュエータや燃料噴射装置や点火装置等のエンジン制御装置54、電力制御ユニット50、油圧制御回路60、EOP58など)に各種指令信号(例えばエンジン12を制御する為のエンジン制御指令信号Se、第1回転機MG1及び第2回転機MG2を各々制御する為の回転機制御指令信号Smg、各係合装置(クラッチCL1、ブレーキBR1、クラッチCLc)の作動状態を制御する為の油圧制御指令信号Sp、EOP58を駆動する為のポンプ駆動制御指令信号Sopなど)が、それぞれ出力される。尚、電子制御装置90は、例えばバッテリ充放電電流Ibat及びバッテリ電圧Vbatなどに基づいてバッテリユニット52の充電状態を示す値としてのバッテリユニット52の充電容量SOC(バッテリ容量SOCともいう)を算出する。
電子制御装置90は、車両10における各種制御の為の制御機能を実現する為に、ハイブリッド制御手段すなわちハイブリッド制御部92、及び動力伝達切替手段すなわち動力伝達切替部94を備えている。
ハイブリッド制御部92は、電子スロットル弁を開閉制御し、燃料噴射量や噴射時期を制御し、点火時期を制御するエンジン制御指令信号Seを出力して、エンジントルクTeの目標トルクが得られるようにエンジン12の出力制御を実行する。又、ハイブリッド制御部92は、第1回転機MG1や第2回転機MG2の作動を制御する回転機制御指令信号Smgを電力制御ユニット50へ出力して、MG1トルクTgやMG2トルクTmの目標トルクが得られるように第1回転機MG1や第2回転機MG2の出力制御を実行する。
ハイブリッド制御部92は、アクセル開度θacc及び車速Vに基づいて要求駆動トルクを算出し、充電要求値(充電要求パワー)等を考慮して低燃費で排ガス量の少ない運転となるように、エンジン12、第1回転機MG1、及び第2回転機MG2の少なくとも1つから要求駆動トルクを発生させる。
ハイブリッド制御部92は、走行モードとして、モータ走行(EV走行)モードと、ハイブリッド走行(HV走行)モード(エンジン走行モードともいう)とを走行状態に応じて選択的に成立させる。EV走行モードは、エンジン12の運転を停止した状態で、第1回転機MG1及び第2回転機MG2のうちの少なくとも一方の回転機を走行用の動力源として走行するモータ走行を可能とする制御様式である。HV走行モードは、少なくともエンジン12を走行用の動力源として走行する(すなわちエンジン12の動力を駆動輪16へ伝達して走行する)HV走行(エンジン走行)を可能とする制御様式である。尚、エンジン12の動力を第1回転機MG1の発電によって電力に変換し、専らその電力をバッテリユニット52に充電するモードのように、車両10の走行を前提としないモードであっても、エンジン12を運転した状態とするので、HV走行モードに含まれる。
動力伝達切替部94は、ハイブリッド制御部92により成立させられた走行モードに基づいて、クラッチCL1、ブレーキBR1、及びクラッチCLcのそれぞれの作動状態を制御する。動力伝達切替部94は、ハイブリッド制御部92により成立させられた走行モードにて走行する為の動力伝達が可能となるように、クラッチCL1、ブレーキBR1、及びクラッチCLcを各々係合及び/又は解放させる油圧制御指令信号Spを油圧制御回路60へ出力する。
ここで、車両10にて実行可能な走行モードについて図3、及び図4−図16を用いて説明する。図3は、各走行モードにおけるクラッチCL1、ブレーキBR1、及びクラッチCLcの各作動状態を示す図表である。図3の図表中の○印は係合装置(クラッチCL1、ブレーキBR1、クラッチCLc)の係合を示し、空欄は解放を示し、△印は運転停止状態のエンジン12を連れ回し状態とするエンジンブレーキ(エンブレともいう)の併用時に、状況に応じて何れか一方を係合すること、又は、両方を係合する場合があることを示している。又、「G」は回転機(MG1,MG2)を主にジェネレータとして機能させることを示し、「M」は回転機(MG1,MG2)を駆動時には主にモータとして機能させ、回生時には主にジェネレータとして機能させることを示している。図3に示すように、車両10は、走行モードとして、EV走行モード及びHV走行モードを選択的に実現することができる。EV走行モードは、第2回転機MG2を単独の動力源とするモータ走行が可能な制御様式である単独駆動EVモードと、第1回転機及び第2回転機MG2を動力源とするモータ走行が可能な制御様式である両駆動EVモードとの2つのモードを有している。HV走行モードは、オーバードライブ(O/D)インプットスプリットモード(以下、O/DHVモードという)と、アンダードライブ(U/D)インプットスプリットモード(以下、U/DHVモードという)と、固定段モードとの3つのモードを有している。
図4−図16は、第1差動機構38及び第2差動機構40の各々における各回転要素RE1−RE6の回転速度を相対的に表すことができる共線図である。この共線図において、各回転要素の回転速度を表す縦線Y1−Y4は紙面向かって左から順に、縦線Y1は第1回転機MG1が連結された第4回転要素RE4である第2サンギヤS2の回転速度を、縦線Y2はエンジン12(図中の「ENG」参照)が連結された第1回転要素RE1である第1キャリアC1の回転速度を、縦線Y3はブレーキBR1を介してケース18に選択的に連結される第2回転要素RE2である第1リングギヤR1の回転速度、及び出力軸24(図中の「OUT」参照)に連結された第5回転要素RE5である第2キャリアC2の回転速度を、縦線Y4は相互に連結された、第3回転要素RE3である第1サンギヤS1及び第6回転要素RE6である第2リングギヤR2の回転速度をそれぞれ示している。出力軸24にはリダクション機構44を介して第2回転機MG2が連結されている。又、白四角印(□)における矢印はMG1トルクTgを、白丸印(○)における矢印はエンジントルクTeを、黒丸印(●)における矢印はMG2トルクTmをそれぞれ示している。又、第1キャリアC1と第1リングギヤR1とを選択的に連結するクラッチCL1が白抜きで表されたものはクラッチCL1の解放状態を、クラッチCL1がハッチング(斜線)で表されたものはクラッチCL1の係合状態をそれぞれ示している。又、第1リングギヤR1をケース18に選択的に連結するブレーキBR1における白菱形印(◇)はブレーキBR1の解放状態を、黒菱形印(◆)はブレーキBR1の係合状態をそれぞれ示している。又、第1リングギヤR1と第2キャリアC2とを選択的に連結するクラッチCLcにおける白菱形印(◇)はクラッチCLcの解放状態を、黒菱形印(◆)はクラッチCLcの係合状態をそれぞれ示している。又、第1差動機構38に関する回転速度を相対的に表す直線は破線で示され、第2差動機構40に関する回転速度を相対的に表す直線は実線で示されている。尚、黒丸印(●)における矢印は、第1回転機MG1に分割されたエンジン12の動力による第1回転機MG1の発電電力、及び/又は、バッテリユニット52から供給される電力で駆動される第2回転機MG2によるMG2トルクTmであり、エンジン直達トルク分は含まれていない。又、クラッチCLcにおける黒菱形印(◆)は、黒丸印(●)と重なっている為、図中では表されていない。又、縦線Y1、Y2、Y3、Y4の相互の間隔は、差動機構38,40の各歯車比ρ1,ρ2に応じて定められている。共線図の縦軸間の関係においてサンギヤとキャリアとの間が「1」に対応する間隔とされるとキャリアとリングギヤとの間が遊星歯車機構の歯車比ρ(=サンギヤの歯数/リングギヤの歯数)に対応する間隔とされる。
図4は、単独駆動EVモード時の共線図である。単独駆動EVモードは、図3の「通常」に示すように、クラッチCL1、ブレーキBR1、及びクラッチCLcを共に解放した状態で実現される。単独駆動EVモードでは、クラッチCL1及びブレーキBR1が解放されており、第1差動機構38の差動が許容され、第1差動機構38はニュートラル状態とされる。ハイブリッド制御部92は、エンジン12の運転を停止させると共に、第2回転機MG2から走行用のMG2トルクTmを出力させる。図4は、第2回転機MG2が正回転(すなわち車両10の前進時における第2キャリアC2の回転方向)にて正トルクを出力している前進時の場合である。後進時は、前進時に対して第2回転機MG2を逆回転させる。車両走行中には、第2回転機MG2の回転(ここでは駆動輪16の回転も同意)に連動して出力軸24に連結された第2キャリアC2が回転させられる。単独駆動EVモードでは、更に、クラッチCLcが解放されているので、エンジン12及び第1回転機MG1は各々連れ回されず、エンジン回転速度Ne及びMG1回転速度Ngをゼロとすることができる。これにより、エンジン12及び第1回転機MG1における各々の引き摺り損失を低減して電費を向上する(すなわち電力消費を抑制する)ことができる。ハイブリッド制御部92は、フィードバック制御によりMG1回転速度Ngをゼロに維持する。或いは、ハイブリッド制御部92は、第1回転機MG1の回転が固定されるように第1回転機MG1に電流を流す制御(d軸ロック制御)を実行して、MG1回転速度Ngをゼロに維持する。或いは、MG1トルクTgをゼロとしても第1回転機MG1のコギングトルクによりMG1回転速度Ngをゼロに維持できるときはMG1トルクTgを加える必要はない。単独駆動EVモードは、クラッチCL1及びクラッチCLcを解放した状態で第2回転機MG2のみを動力源としてモータ走行することが可能な走行モードである。尚、MG1回転速度Ngをゼロに維持する制御を行っても、第1動力伝達部20はMG1トルクTgの反力を取れない中立状態であるので、駆動トルクに影響を与えない。又は、単独駆動EVモードでは、第1回転機MG1を無負荷として空転させても良い。
図5は、両駆動EVモード時の共線図である。両駆動EVモードは、図3の「両駆動」に示すように、クラッチCL1及びブレーキBR1を係合した状態、且つクラッチCLcを解放した状態で実現される。両駆動EVモードでは、クラッチCL1及びブレーキBR1が係合されており、第1差動機構38の差動が規制され、第1リングギヤR1の回転が停止させられる。その為、第1差動機構38は何れの回転要素も回転が停止させられ、第1差動機構38は内部ロック状態とされる。これによって、エンジン12はゼロ回転で停止状態とされ、又、第1サンギヤS1に連結された第2リングギヤR2もゼロ回転で固定される。第2リングギヤR2が回転不能に固定されると、第2リングギヤR2にてMG1トルクTgの反力トルクが取れる為、MG1トルクTgに基づくトルクを第2キャリアC2から機械的に出力させて駆動輪16へ伝達することができる。ハイブリッド制御部92は、エンジン12の運転を停止させると共に、第1回転機MG1及び第2回転機MG2から各々走行用のMG1トルクTg及びMG2トルクTmを出力させる。図5は、第1回転機MG1及び第2回転機MG2が共に正回転にて正トルクを出力している前進時の場合である。後進時は、前進時に対して第1回転機MG1及び第2回転機MG2を逆回転させる。
図4,図5を用いた説明で示したように、単独駆動EVモードは第2回転機MG2のみにて車両10を駆動し、両駆動EVモードは第1回転機MG1及び第2回転機MG2にて車両10を駆動することが可能である。従って、モータ走行する場合、低負荷時は、単独駆動EVモードが成立させられて第2回転機MG2による単独走行とされ、高負荷時は、両駆動EVモードが成立させられて第1回転機MG1及び第2回転機MG2による両駆動とされる。尚、エンジン走行を含め、車両減速中の回生は、主に第2回転機MG2にて実行される。
単独駆動EVモードでの走行中に第2回転機MG2にて回生制御を行う場合、運転が停止されたエンジン12は連れ回されずゼロ回転で停止状態とされるので、回生量を大きく取ることができる。一方で、単独駆動EVモードでの走行時にバッテリユニット52が満充電状態であると、回生エネルギーが取れない為、回生ブレーキにて制動トルクを得ることができない。単独駆動EVモードでの走行時に、バッテリユニット52が満充電状態となり回生エネルギーが取れない場合はエンジンブレーキにて制動トルクを得たり、又は、バッテリユニット52が満充電に近い状態ではエンジンブレーキを併用することが考えられる。又、別の観点では、単独駆動EVモードでの走行時にバッテリ容量SOCが低下して第2回転機MG2へ供給する電力を確保し難くなると、第2回転機MG2を駆動することができない。単独駆動EVモードでの走行時に、バッテリ容量SOCが低下した場合はエンジン走行へ切り替えることが考えられる。以上のことから、EV走行モードでは、エンジンブレーキを速やかに作用させる為の又はエンジン走行へ速やかに切り替える為の準備をしておくスタンバイモード、及びエンジンブレーキを併用するエンブレ併用モードを有している。
図6、図7は、各々、EV走行モードにおけるスタンバイモード時の共線図である。このスタンバイモードは、図3の「スタンバイモード」に示すように、クラッチCL1又はクラッチCLcを係合した状態で実現される。クラッチCL1又はクラッチCLcが係合されるとエンジン12は連れ回し状態とされ得るが、このスタンバイモードでは第1回転機MG1が無負荷で空転させられているので、運転停止中のエンジン12はゼロ回転で停止状態とされる。従って、このスタンバイモードでは、エンジンブレーキを作用させずに、第2回転機MG2にてモータ走行又は回生制御を行うことができる。スタンバイモードの状態から、第1回転機MG1にてエンジン回転速度Neを引き上げてエンジントルクTe(負値)の反力を第1回転機MG1にて取ることで、エンジン回転速度Neに応じたエンジンブレーキを作用させることができる。又、スタンバイモードの状態から、第1回転機MG1にてエンジン回転速度Neを引き上げて点火することで、エンジン走行へ移行することができる。
図6に示すようなクラッチCL1が係合されたスタンバイモードにおける各係合装置(クラッチCL1、ブレーキBR1、クラッチCLc)の作動状態は、後述するHV走行モードのU/DHVモード時の前進走行における各係合装置の作動状態と同じ状態である。スタンバイモードではエンジン12は運転されていないが、便宜上、クラッチCL1が係合されたスタンバイモードを、U/Dインプットスプリットでのスタンバイモードと称する。
図7に示すようなクラッチCLcが係合されたスタンバイモードにおける各係合装置の作動状態は、後述するHV走行モードのO/DHVモード時の前進走行における各係合装置の作動状態と同じ状態である。便宜上、クラッチCLcが係合されたスタンバイモードを、O/Dインプットスプリットでのスタンバイモードと称する。
図8、図9は、各々、EV走行モードにおけるエンブレ併用モード時の共線図である。このエンブレ併用モードは、図3の「エンブレ併用」に示すように、クラッチCL1又はクラッチCLcを係合した状態で実現される。クラッチCL1又はクラッチCLcが係合されるとエンジン12は連れ回し状態とされるので、このエンブレ併用モードでは、第1回転機MG1にてエンジン回転速度Neを制御しつつエンジントルクTe(負値)の反力を取ることで、エンジン回転速度Neに応じたエンジンブレーキを作用させることができる。従って、このエンブレ併用モードでは、第2回転機MG2による回生ブレーキに加えて又は替えて、エンジンブレーキを作用させることができる。尚、クラッチCL1及びクラッチCLcを係合することでもエンジンブレーキを作用させることができる。この場合は、第1回転機MG1にてエンジントルクTe(負値)の反力を取る必要はない。クラッチCL1及びクラッチCLcが係合されたエンブレ併用モードにおける各係合装置(クラッチCL1、ブレーキBR1、クラッチCLc)の作動状態は、後述するHV走行モードの直結固定段モード時における各係合装置の作動状態と同じ状態である。
図8に示すようなクラッチCL1が係合されたエンブレ併用モードにおける各係合装置(クラッチCL1、ブレーキBR1、クラッチCLc)の作動状態は、後述するHV走行モードのU/DHVモード時の前進走行における各係合装置の作動状態と同じ状態である。エンブレ併用モードではエンジン12は運転されていないが、便宜上、クラッチCL1が係合されたエンブレ併用モードを、U/Dインプットスプリットでのエンブレ併用モードと称する。
図9に示すようなクラッチCLcが係合されたエンブレ併用モードにおける各係合装置の作動状態は、後述するHV走行モードのO/DHVモード時の前進走行における各係合装置の作動状態と同じ状態である。便宜上、クラッチCLcが係合されたエンブレ併用モードを、O/Dインプットスプリットでのエンブレ併用モードと称する。
図10は、HV走行モードのU/DHVモード時の前進走行での共線図である。U/DHVモードの前進走行(以下、U/DHVモード(前進)という)は、図3の「U/Dインプットスプリット」の「前進」に示すように、クラッチCL1を係合した状態、且つブレーキBR1及びクラッチCLcを解放した状態で実現される。U/DHVモード(前進)では、クラッチCL1が係合され且つブレーキBR1が解放されており、第1差動機構38は直結状態とされるので、第1キャリアC1に入力されるエンジン12の動力は、第1サンギヤS1に連結された第2リングギヤR2に直接的に伝達される。加えて、U/DHVモード(前進)では、クラッチCLcが解放されており、第2差動機構40単独にて電気式無段変速機が構成される。これによって、第1動力伝達部20では、第2リングギヤR2に入力されるエンジン12の動力を第2サンギヤS2と第2キャリアC2とに分割することができる。すなわち、第1動力伝達部20では、第2リングギヤR2に入力されるエンジントルクTeの反力を第1回転機MG1にて取ることにより、エンジン直達トルクが第2キャリアC2へ機械的に伝達されると共に、第1回転機MG1に分割されたエンジン12の動力による第1回転機MG1の発電電力が所定の電気経路を介して第2回転機MG2に伝達される。ハイブリッド制御部92は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。ハイブリッド制御部92は、第1回転機MG1の発電電力にバッテリユニット52から供給される電力を加えて第2回転機MG2を駆動することもできる。図10は、第2回転機MG2が正回転にて正トルクを出力して前進走行している場合である。
図11は、HV走行モードのO/DHVモード時の前進走行での共線図である。O/DHVモードの前進走行(以下、O/DHVモード(前進)という)は、図3の「O/Dインプットスプリット」の「前進」に示すように、クラッチCL1及びブレーキBR1を解放した状態、且つクラッチCLcを係合した状態で実現される。O/DHVモード(前進)では、クラッチCLcが係合されており、第1差動機構38と第2差動機構40とで1つの差動機構が構成される。加えて、O/DHVモード(前進)では、クラッチCL1及びブレーキBR1が解放されており、第1差動機構38と第2差動機構40との全体にて、第2差動機構40単独での動力分割比とは異なる動力分割比にて作動する電気式無段変速機が構成される。これによって、第1動力伝達部20では、第1キャリアC1に入力されるエンジン12の動力を第2サンギヤS2と第2キャリアC2とに分割することができる。すなわち、第1動力伝達部20では、第1キャリアC1に入力されるエンジントルクTeの反力を第1回転機MG1にて取ることにより、エンジン直達トルクが第2キャリアC2へ機械的に伝達されると共に、第1回転機MG1に分割されたエンジン12の動力による第1回転機MG1の発電電力が所定の電気経路を介して第2回転機MG2に伝達される。ハイブリッド制御部92は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図11は、第2回転機MG2が正回転にて正トルクを出力している前進時の場合である。
図12は、HV走行モードのU/DHVモード時の後進走行での共線図であり、電気式無段変速機としての機能を達成している構成に対して、エンジン12の回転とトルクとが負値に逆転して入力される、エンジン逆転入力の場合である。U/DHVモードのエンジン逆転入力での後進走行(以下、U/DHVモード逆転入力(後進)という)は、図3の「U/Dインプットスプリット」の「後進」の「エンジン逆転入力」に示すように、ブレーキBR1を係合した状態、且つクラッチCL1及びクラッチCLcを解放した状態で実現される。U/DHVモード逆転入力(後進)では、クラッチCL1が解放され且つブレーキBR1が係合されており、第1差動機構38はエンジン12の逆回転変速状態とされるので、第1キャリアC1に入力されるエンジン12の動力は、第1サンギヤS1に連結された第2リングギヤR2に負回転及び負トルクにて伝達される。加えて、U/DHVモード逆転入力(後進)では、クラッチCLcが解放されており、第2差動機構40単独にて電気式無段変速機が構成される。これによって、第1動力伝達部20では、第2リングギヤR2に逆転して入力されるエンジン12の動力を第2サンギヤS2と第2キャリアC2とに分割することができる。ハイブリッド制御部92は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の力行により出力させ、バッテリユニット52から供給される電力により第2回転機MG2からMG2トルクTmを出力させる。図12は、第2回転機MG2が負回転にて負トルクを出力して後進走行している場合である。又、U/DHVモード逆転入力(後進)では、エンジン12の動力が第2リングギヤR2に負回転及び負トルクにて伝達されるので、MG2トルクTmと合わせて後進走行用の駆動トルクを出すことができる。尚、第1回転機MG1の力行に用いる電力を発電する為に第2回転機MG2が負回転にて正トルクを出力しても良く、この場合でも、負トルクとなるエンジン直達トルクの方がMG2トルクTmよりも絶対値が大きくなることから後進走行が可能である。
図13は、HV走行モードのU/DHVモード時の後進走行での共線図であり、エンジン正転入力の場合である。U/DHVモードのエンジン正転入力での後進走行(以下、U/DHVモード正転入力(後進)という)は、図3の「U/Dインプットスプリット」の「後進」の「エンジン正転入力」に示すように、クラッチCL1を係合した状態、且つブレーキBR1及びクラッチCLcを解放した状態で実現される。U/DHVモード正転入力(後進)では、クラッチCL1が係合され且つブレーキBR1が解放されており、第1差動機構38は直結状態とされるので、第1キャリアC1に入力されるエンジン12の動力は、第1サンギヤS1に連結された第2リングギヤR2に直接的に伝達される。加えて、U/DHVモード正転入力(後進)では、クラッチCLcが解放されており、第2差動機構40単独にて電気式無段変速機が構成される。これによって、第1動力伝達部20では、第2リングギヤR2に入力されるエンジン12の動力を第2サンギヤS2と第2キャリアC2とに分割することができる。ハイブリッド制御部92は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図13は、第2回転機MG2が負回転にて負トルクを出力して後進走行している場合である。尚、エンジン直達トルクは正トルクとなるが、第1回転機MG1の発電電力にて駆動される(又は、第1回転機MG1の発電電力にバッテリユニット52から供給される電力を加えて駆動される)第2回転機MG2の出力トルク(負値)はエンジン直達トルクよりも絶対値が大きくなることから後進走行が可能である。
図14は、HV走行モードのO/DHVモード時の後進走行での共線図であり、エンジン正転入力の場合である。O/DHVモードのエンジン正転入力での後進走行(以下、O/DHVモード正転入力(後進)という)は、図3の「O/Dインプットスプリット」の「後進」の「エンジン正転入力」に示すように、クラッチCL1及びブレーキBR1を解放した状態、且つクラッチCLcを係合した状態で実現される。O/DHVモード正転入力(後進)では、クラッチCLcが係合されており、第1差動機構38と第2差動機構40とで1つの差動機構が構成される。加えて、O/DHVモード正転入力(後進)では、クラッチCL1及びブレーキBR1が解放されており、第1差動機構38と第2差動機構40との全体にて、第2差動機構40単独での動力分割比とは異なる動力分割比にて作動する電気式無段変速機が構成される。これによって、第1動力伝達部20では、第1キャリアC1に入力されるエンジン12の動力を第2サンギヤS2と第2キャリアC2とに分割することができる。ハイブリッド制御部92は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図14は、第2回転機MG2が負回転にて負トルクを出力して後進走行している場合である。尚、エンジン直達トルクは正トルクとなるが、U/DHVモード正転入力(後進)の場合と同様に、後進走行が可能である。
図10−図14を用いた説明で示したように、U/DHVモードとO/DHVモードとでは、電気式無段変速機としての機能を達成している構成に対して、エンジン12の動力が入力される回転要素が異なっており、第1動力伝達部20を電気式無段変速機として機能させるときの動力分割比が異なる。すなわち、O/DHVモードとU/DHVモードとで、エンジン12に対する、回転機MG1,MG2の各出力トルクや各回転速度の比率が変えられる。クラッチCLcは、エンジン走行中のエンジン12に対する、回転機MG1,MG2の各出力トルクや各回転速度の比率を変更する為に、作動状態が切り替えられる。
MG1回転速度Ngがゼロとされてエンジン12の動力が電気パス(第1回転機MG1や第2回転機MG2の電力授受に関わる電気経路である電気的な動力伝達経路)を介することなく全て機械的に第2キャリアC2へ伝達される状態となる所謂メカニカルポイントの状態のときに、エンジン12の回転が減速されて第2キャリアC2から出力されるアンダードライブ状態となる場合がU/DHVモードであり、又、エンジン12の回転が増速されて第2キャリアC2から出力されるオーバードライブ状態となる場合がO/DHVモードである。U/DHVモードでのエンジン直達トルクは、エンジントルクTeに対して増大される。一方で、O/DHVモードでのエンジン直達トルクは、エンジントルクTeに対して減少される。
U/DHVモード(前進)、U/DHVモード正転入力(後進)、及びU/Dインプットスプリットでのエンブレ併用モードは、クラッチCL1及びクラッチCLcのうちの何れか一方の係合装置であるクラッチCL1を係合した状態(すなわちクラッチCL1を係合且つクラッチCLcを解放した状態)で、第1回転機MG1の運転状態が制御されることにより第2差動機構40の差動状態が制御されるときには(つまり電気式無段変速機が構成されるときには)、エンジントルクTeよりも増大されたトルクが第2キャリアC2に機械的に伝達される第1走行モードである。一方で、O/DHVモード(前進)、O/DHVモード正転入力(後進)、及びO/Dインプットスプリットでのエンブレ併用モードは、クラッチCL1及びクラッチCLcのうちの前記一方の係合装置とは別の係合装置であるクラッチCLcを係合した状態(すなわちクラッチCL1を解放且つクラッチCLcを係合した状態)で、第1回転機MG1の運転状態が制御されることにより第2差動機構40の差動状態が制御されるときには、エンジントルクTeよりも減少されたトルクが第2キャリアC2に機械的に伝達される第2走行モードである。
図15は、HV走行モードの固定段モード時の共線図であり、第1差動機構38及び第2差動機構40の各回転要素が一体回転させられる、直結の場合である。固定段モードの直結(以下、直結固定段モードという)は、図3の「固定段」の「前進」の「直結」に示すように、クラッチCL1及びクラッチCLcを係合した状態、且つブレーキBR1を解放した状態で実現される。直結固定段モードでは、クラッチCL1が係合され且つブレーキBR1が解放されており、第1差動機構38は直結状態とされる。加えて、直結固定段モードでは、クラッチCLcが係合されており、第1差動機構38及び第2差動機構40の各回転要素が一体回転させられる。これによって、第1動力伝達部20では、エンジン12の動力を直接的に第2キャリアC2から出力することができる。ハイブリッド制御部92は、エンジン12から走行用のエンジントルクTeを出力させる。この直結固定段モードでは、バッテリユニット52からの電力にて第1回転機MG1を駆動して、第1回転機MG1の動力を直接的に第2キャリアC2から出力することもできる。又、この直結固定段モードでは、バッテリユニット52からの電力にて第2回転機MG2を駆動して、第2回転機MG2の動力を駆動輪16へ伝達することもできる。よって、ハイブリッド制御部92は、エンジントルクTeを出力させることに加えて、第1回転機MG1及び第2回転機MG2の少なくとも一方の回転機から走行用のトルクを出力させても良い。つまり、直結固定段モードでは、エンジン12のみで車両10を駆動しても良いし、又、第1回転機MG1及び/又は第2回転機MG2でトルクアシストしても良い。直結固定段モードは、クラッチCL1及びクラッチCLcを共に係合した状態とすることでエンジントルクTeを第2キャリアC2から直接的に出力することができる(見方を換えれば、第1差動機構38及び第2差動機構40の各回転要素が一体回転させられる)走行モードである。
図16は、HV走行モードの固定段モード時の共線図であり、第2キャリアC2が回転不能に固定される、出力軸固定の場合である。固定段モードの出力軸固定(以下、出力軸固定段モードという)は、図3の「固定段」の「前進」の「出力軸固定」に示すように、ブレーキBR1及びクラッチCLcを係合した状態、且つクラッチCL1を解放した状態で実現される。出力軸固定段モードでは、クラッチCLcが係合されており、第1差動機構38と第2差動機構40とで1つの差動機構が構成される。加えて、出力軸固定段モードでは、ブレーキBR1が係合され且つクラッチCL1が解放されており、第2キャリアC2が回転不能に固定される。これによって、第1動力伝達部20では、第1キャリアC1に入力されるエンジン12の動力の反力を第1回転機MG1にて取ることができる。従って、出力軸固定段モードでは、エンジン12の動力による第1回転機MG1の発電電力をバッテリユニット52に充電することができる。ハイブリッド制御部92は、エンジン12を運転(作動)させると共に、第1回転機MG1の発電によってエンジン12の動力に対する反力を取り、第1回転機MG1の発電電力を電力制御ユニット50を介してバッテリユニット52に充電する。この出力軸固定段モードは、第2キャリアC2が回転不能に固定される為、車両10の停止時にバッテリユニット52を専ら充電するモードである。図15,図16を用いた説明で示したように、HV走行モードの直結固定段モードや出力軸固定段モードのときには、クラッチCLcが係合される。
第1動力伝達部20の減速比I(=Ne/No)が比較的大きな領域では、エンジンパワーPeに対するMG1パワーPgの出力比率(Pg/Pe)、及びエンジンパワーPeに対するMG2パワーPmの出力比率(Pm/Pe)の各絶対値は、U/DHVモードの方がO/DHVモードよりも小さくされる。従って、減速比Iが比較的大きな領域では、U/DHVモードを成立させることで、MG1パワーPgの増大及びMG2パワーPmの増大を各々抑制することができる。一方で、減速比Iが「1」よりも小さいような比較的小さな領域では、出力比率(Pm/Pe)が負値となり(すなわち出力比率(Pg/Pe)が正値となり)、出力比率(Pg/Pe)及び出力比率(Pm/Pe)の各絶対値は、U/DHVモードの方がO/DHVモードよりも大きくされる。出力比率(Pm/Pe)が負値となる状態(すなわち出力比率(Pg/Pe)が正値となる状態)は、第2回転機MG2が発電し、その発電電力が第1回転機MG1に供給される動力循環状態である。この動力循環状態となることは、できるだけ回避又は抑制されることが望ましい。その為、減速比Iが比較的小さな領域では、O/DHVモードを成立させることで、動力循環パワーを低減することができる。減速比Iに応じてU/DHVモードとO/DHVモードとを切り替えることで、より低出力(低パワー)の回転機MG1,MG2でエンジンパワーを伝達することができる。
つまり、比較的大きな減速比Iを用いるエンジン12の高負荷時にU/DHVモードを成立させ、比較的小さな減速比Iを用いるエンジン12の低負荷時又は高車速時にO/DHVモードを成立させるように、U/DHVモードとO/DHVモードとを使い分けることで、回転機MG1,MG2の各トルクや各回転速度の増加が防止又は抑制され、高車速時には動力循環パワーが低減される。このことは、電気パスにおけるエネルギ変換損失が減り、燃費の向上につながる。又は、回転機MG1,MG2の小型化につながる。
図17及び図18は、各々、エンジン走行とモータ走行との切替制御に用いる走行モード切替マップの一例を示す図である。これらの走行モード切替マップは、各々、車速Vと車両10の走行負荷(以下、車両負荷という)(例えば要求駆動トルク)とを変数としてエンジン走行領域とモータ走行領域との境界線を有する予め実験的に或いは設計的に求められて記憶された(すなわち予め定められた)関係である。
図17は、バッテリ容量SOCを保持した状態で走行するCS(Charge Sustain)走行での動力伝達装置14の状態遷移(つまり車両10の走行モードの切替え)を示している。この図17は、車両10が、例えばバッテリ容量SOCが元々比較的少なく設定されたハイブリッド車両等である場合に用いられる。又は、この図17は、車両10が、例えばバッテリ容量SOCが元々比較的多く設定されたプラグインハイブリッド車両、レンジエクステンデッド車両等においてバッテリ容量SOCを保持するモードが成立された場合に用いられる。一方で、図18は、バッテリ容量SOCを消費しながら走行するCD(Charge Depleting)走行での動力伝達装置14の状態遷移(つまり車両10の走行モードの切替え)を示している。この図18は、車両10が、例えばバッテリ容量SOCが元々比較的多く設定されたプラグインハイブリッド車両やレンジエクステンデッド車両等においてバッテリ容量SOCを消費するモードが成立された場合に用いられる。車両10が、例えばバッテリ容量SOCが元々比較的少なく設定されたハイブリッド車両等である場合には、この図18を用いないことが好ましい。
図17において、高負荷時にはU/DHVモードが成立され、低負荷時又は高車速時にはO/DHVモードが成立され易いように、車速V及び車両負荷等の走行状態に応じた各走行モードの領域が設定されている。又、バッテリユニット52の電力持ち出しが可能である場合(或いはエンジン12の暖機やエンジン12の運転による各装置の暖機が完了している場合)、エンジン12の運転効率が悪くなる領域では、モータ走行において第2回転機MG2の力行を行う。その為、破線に示すような低車速且つ低負荷となる領域で、単独駆動EVモードの領域が設定されている。又、車両負荷が負の場合、U/DHVモード又はO/DHVモードにおいて、エンジン12の負トルクを用いたエンジンブレーキを作用させる減速走行が行われる。バッテリユニット52の電力受け入れが可能である場合、モータ走行において第2回転機MG2による回生制御を行う。その為、一点鎖線に示すような車両負荷が負となる領域で、単独駆動EVモードの領域が設定されている。このように設定されたCS走行での走行モード切替マップでは、例えば発進時は、前後進走行共にU/DHVモードが成立させられる。これにより、エンジンパワーPeをより有効に使える為、発進加速性能が向上する。前進走行で車速Vの上昇と共に、第1動力伝達部20の減速比Iが「1」付近になる。この状態で、直結固定段モードに移行させても良い。低車速走行では、エンジン回転速度Neが極低回転となる為、U/DHVモードから直接O/DHVモードに移行させる。直結固定段モードは、回転機MG1,MG2を介した動力伝達が無い為、機械エネルギーと電気エネルギーとの変換に伴う熱損失が無くなる。よって、燃費向上や発熱回避に有利である。その為、トーイング等の高負荷時や高車速時は、積極的に直結固定段モードに移行させても良い。尚、モータ走行を選択するスイッチが運転者によって操作されてモータ走行が選択されているときには、破線に示すような領域で単独駆動EVモードが成立させられる。
図18において、車両負荷が低い領域では単独駆動EVモードが成立され、車両負荷が高い領域では両駆動EVモードが成立されるように、車速V及び車両負荷等の走行状態に応じた各走行モードの領域が設定されている。両駆動EVモードでは、第1回転機MG1及び第2回転機MG2の運転効率に基づいて(例えば電費向上、回転機MG1,MG2の温度低下、電力制御ユニット50の温度低下等を目的として)、第1回転機MG1と第2回転機MG2とのパワー分担割合が決められる。又、バッテリユニット52の最大出力や回転機MG1,MG2の最大出力によっては、又は、モータ走行時における車速Vの上昇による動力伝達装置14の何れかの回転要素の回転速度の上昇がエンジン12を運転することで緩和されるような場合には、図18に示すように、高負荷領域や高車速領域にてHV走行モードの領域が設定されて、エンジン12を走行用の動力源とした状態に移行させても良い。又、車両負荷が負となる領域では、モータ走行において第2回転機MG2による回生制御が行われるように、単独駆動EVモードの領域が設定されている。このように設定されたCD走行での走行モード切替マップでは、例えば車速Vが上昇すると、回転機MG1,MG2、差動機構38,40等の各要素の回転速度が増大する為、CS走行での走行モード切替マップで設定されたようなHV走行モードに移行させて、各要素の回転速度が制限内とされるように制御される。尚、単独駆動EVモードでは、第1回転機MG1とエンジン12とが切り離される(つまり第1回転機MG1とエンジン12との相互間の動力伝達が遮断される)為、単独駆動EVモードの高車速側の領域を両駆動EVモードよりも高車速側に広げても良い。車両負荷が負となる領域での回生制御は、単独駆動EVモードに替えて、両駆動EVモードとしても良い。又、駆動トルクや車速Vに上限を設けて、エンジン12が始動しないようにして、燃料消費しないようにしても良い。
ハイブリッド制御部92は、図17又は図18に示すような走行モード切替マップに車速V及び車両負荷(例えば要求駆動トルク)を適用することで、成立させる走行モードが何れの走行モードであるかを判断する。ハイブリッド制御部92は、判断した走行モードが現在の走行モードである場合には、現在の走行モードをそのまま成立させる一方で、判断した走行モードが現在の走行モードとは異なる場合には、現在の走行モードに替えてその判断した走行モードを成立させる。
ハイブリッド制御部92は、単独駆動EVモードを成立させた場合には、第2回転機MG2のみを走行用の動力源とするモータ走行を可能とする。ハイブリッド制御部92は、両駆動EVモードを成立させた場合には、第1回転機MG1及び第2回転機MG2の両方を走行用の動力源とするモータ走行を可能とする。
ハイブリッド制御部92は、U/DHVモード又はO/DHVモードを成立させた場合には、エンジン12の動力に対する反力を第1回転機MG1の発電により受け持つことで第2キャリアC2にエンジン直達トルクを伝達すると共に第1回転機MG1の発電電力により第2回転機MG2を駆動することで駆動輪16にトルクを伝達して走行するエンジン走行を可能とする。ハイブリッド制御部92は、U/DHVモード又はO/DHVモードでは、公知のエンジン12の最適燃費線を考慮したエンジン動作点(すなわちエンジン回転速度NeとエンジントルクTeとで表されるエンジン動作点)にてエンジン12を作動させる。尚、このU/DHVモード又はO/DHVモードでは、第1回転機MG1の発電電力にバッテリユニット52からの電力を加えて第2回転機MG2を駆動することも可能である。
ハイブリッド制御部92は、直結固定段モードを成立させた場合には、エンジン12の動力を直接的に第2キャリアC2から出力して走行するエンジン走行を可能とする。ハイブリッド制御部92は、直結固定段モードでは、エンジン12の動力に加えて、バッテリユニット52からの電力にて第1回転機MG1を駆動して、第1回転機MG1の動力を直接的に第2キャリアC2から出力したり、バッテリユニット52からの電力にて第2回転機MG2を駆動して、第2回転機MG2の動力を駆動輪16に伝達して走行することも可能である。
ハイブリッド制御部92は、車両停止時に、バッテリ容量SOCがバッテリユニット52の充電が必要であると判断される予め定められた所定容量以下の場合には、出力軸固定段モードを成立させる。ハイブリッド制御部92は、出力軸固定段モードを成立させた場合には、エンジン12の動力に対する反力を第1回転機MG1の発電により受け持つと共に第1回転機MG1の発電電力を電力制御ユニット50を介してバッテリユニット52に充電する。
U/DHVモードとO/DHVモードとは、どちらも第1動力伝達部20が電気式無段変速機として機能させられる。又、第1動力伝達部20の減速比Iが「1」となる状態は、クラッチCL1及びクラッチCLcが共に係合された直結固定段モードの状態(図15参照)と同等の状態である。従って、ハイブリッド制御部92は、クラッチCL1が係合されたU/DHVモードと、クラッチCLcが係合されたO/DHVモードとの切替えを、減速比Iが「1」の同期状態のときにクラッチCL1とクラッチCLcとの各作動状態を切り替えることで(直結固定段モードと同等の状態を介して)実行する。又は、ハイブリッド制御部92は、クラッチCL1が係合されたU/DHVモードと、クラッチCLcが係合されたO/DHVモードとの切替えを、クラッチCL1とクラッチCLcとで掴み替えを行う、所謂クラッチツゥクラッチの変速制御にて実行しても良い。
単独駆動EVモードでは、クラッチCL1又はクラッチCLcを係合することで、エンジン12が連れ回し状態とされる。よって、ハイブリッド制御部92は、単独駆動EVモードでのモータ走行中にエンジン12を始動する場合には、クラッチCL1又はクラッチCLcを係合し、エンジン回転速度Neを引き上げて点火する。この際、ハイブリッド制御部92は、必要に応じて第1回転機MG1にてエンジン回転速度Neを引き上げても良い。
又は、ハイブリッド制御部92は、単独駆動EVモードでのモータ走行中にエンジン12を始動する場合には、エンジン回転速度Neがゼロ[rpm]の状態でクラッチCL1又はクラッチCLcを係合した状態と同じ状態となるように、第1回転機MG1で差動機構38,40の各要素の回転速度を同期制御した後、クラッチCL1を係合した状態と同じ状態ではクラッチCL1を係合し、又は、クラッチCLcを係合した状態と同じ状態ではクラッチCLcを係合し、第1回転機MG1にてエンジン回転速度Neを引き上げて点火する。つまり、ハイブリッド制御部92は、単独駆動EVモードでのモータ走行中にエンジン12を始動する場合には、スタンバイモードを成立させる為の係合装置(クラッチCL1又はクラッチCLc)は未だ解放されているが差動機構38,40の各要素の回転速度はそのスタンバイモードと同等の状態となるように第1回転機MG1で同期制御した後、そのスタンバイモードを成立させる為の係合装置を係合してスタンバイモードを一旦成立させ、そのスタンバイモードの状態から、第1回転機MG1にてエンジン回転速度Neを引き上げて点火する。このように、単独駆動EVモードでのモータ走行中にエンジン12を始動する場合には、スタンバイモードを経由してエンジン走行に移行しても良い。この場合、エンジン走行時の走行モード(U/DHVモード又はO/DHVモード)に合わせて、経由するスタンバイモード(U/Dインプットスプリット又はO/Dインプットスプリット)が成立させられれば良い。
エンジン12の始動に際して、駆動輪16に連結された第2キャリアC2には、エンジン回転速度Neを上昇させる為の反力として、運転停止中のエンジン12の回転を引き上げることに伴うエンジン12の負トルク(エンジン引き込みトルクともいう)が伝達される為、駆動トルクの落ち込みが生じる。ハイブリッド制御部92は、単独駆動EVモードでのモータ走行中にエンジン12を始動する場合には、エンジン始動時のショックを抑制する為に、駆動トルクの落ち込みを補償するトルク(反力キャンセルトルクともいう)を第2回転機MG2により追加で出力させる。
クラッチCL1及びブレーキBR1が係合された状態である両駆動EVモードでは、ブレーキBR1を解放することで、エンジン12が連れ回し状態とされる。よって、ハイブリッド制御部92は、両駆動EVモードでのモータ走行中にエンジン12を始動する場合には、ブレーキBR1を解放した後にクラッチCLcを係合し、エンジン回転速度Neを引き上げて点火する。この際、ハイブリッド制御部92は、必要に応じて第1回転機MG1にてエンジン回転速度Neを引き上げても良い。又は、ハイブリッド制御部92は、両駆動EVモードでのモータ走行中にエンジン12を始動する場合には、ブレーキBR1を解放し、第1回転機MG1にてエンジン回転速度Neを引き上げて点火する。又は、両駆動EVモードでは、クラッチCL1及びブレーキBR1を解放することで単独駆動EVモードと同等の状態とされるので、クラッチCL1及びブレーキBR1を解放して、上述した単独駆動EVモードでのエンジン始動を行うことも可能である。ハイブリッド制御部92は、両駆動EVモードでのモータ走行中にエンジン12を始動する場合には、反力キャンセルトルクを第2回転機MG2により追加で出力させる。
ここで、複数の走行モードにおいては、1つの係合装置のみの係合(以下、1要素係合ともいう)によって成立させられる走行モードや2つの係合装置の係合(以下、2要素係合ともいう)によって成立させられる走行モードがある。1要素係合での走行モードでの走行中には、例えばその走行モードでは解放されている係合装置の係合油圧が何らかのフェールによって供給されても、その解放されている係合装置の係合を防止すること(つまり、2つの係合装置が同時に係合される同時係合を防止すること)が望ましい。但し、同時係合を防止すると、2要素係合であるべきときに2要素係合ができなくなり2要素係合での走行モードを成立させることができない。2要素係合であるべきときには、2要素係合が許容されることが望ましい。
油圧制御回路60は、1要素係合による走行モードの成立中に同時係合を回避すると共に同時係合による走行モードも成立させられるという機能を実現する為に、図2にて前述したように、セカンダリレギュレータバルブ70、第1同時係合防止バルブ72、第2同時係合防止バルブ74、第3同時係合防止バルブ76、及び電磁切替バルブ78等を備えている。
図2に戻り、セカンダリレギュレータバルブ70は、プライマリレギュレータバルブ62によるライン油圧PLの調圧の際にプライマリレギュレータバルブ62から排出された油圧を元圧として第2ライン油圧PL2を調圧する、リリーフ型の調圧弁である。
第1同時係合防止バルブ72は、CL1油圧Pcl1が流通する第1油路64に設けられており、第1油路64を断接することが可能である。第1同時係合防止バルブ72には、BR1油圧Pbr1が流通する第2油路66及びCLc油圧Pclcが流通する第3油路68が各々接続されている。又、第1同時係合防止バルブ72には、自身とクラッチCL1との間における第1油路64が接続されている。第1同時係合防止バルブ72は、BR1油圧Pbr1、CLc油圧Pclc、及び自身を通過してクラッチCL1へ供給されるCL1油圧Pcl1(以下、CL1FB油圧Pcl1ともいう)を信号圧として受け入れることで作動状態が切り替えられる。第1同時係合防止バルブ72は、上記信号圧が何れも入力されていない状態では、バネ力によって、クラッチCL1へCL1油圧Pcl1を供給可能に第1油路64を連通する側(以下、連通側ともいう)に作動状態が固定される(図2における第1同時係合防止バルブ72の状態参照)。
一方で、第1同時係合防止バルブ72は、CL1FB油圧Pcl1が信号圧として入力されていないときに(すなわちクラッチCL1が解放されているときに)、BR1油圧Pbr1又はCLc油圧Pclcが信号圧として入力されている状態(例えばブレーキBR1又はクラッチCLcが係合されている状態)では、BR1油圧Pbr1又はCLc油圧Pclcによって、クラッチCL1へのCL1油圧Pcl1を供給不能に第1油路64を遮断すると共にクラッチCL1内のCL1油圧Pcl1を排出可能にクラッチCL1側の第1油路64をドレン油路に接続する側(以下、遮断側ともいう)に作動状態が切り替えられる。従って、ブレーキBR1又はクラッチCLcの係合時にCL1油圧Pcl1が供給されたとしても、クラッチCL1の係合が防止される。
他方で、第1同時係合防止バルブ72は、CL1FB油圧Pcl1が信号圧として入力されている状態(すなわちクラッチCL1が係合されている状態)では、BR1油圧Pbr1又はCLc油圧Pclcが信号圧として入力されたとしても(例えばフェールによりBR1油圧Pbr1又はCLc油圧Pclcが供給されたとしても)、バネ力及びCL1FB油圧Pcl1によって、連通側に作動状態が固定(維持)される。従って、クラッチCL1の係合時にBR1油圧Pbr1又はCLc油圧Pclcが供給されたとしても、クラッチCL1の係合が維持される。
このように、第1同時係合防止バルブ72は、第1油路64に設けられて、BR1油圧Pbr1及びCLc油圧Pclcのうちの少なくとも一方の油圧により第1油路64を遮断可能であると共に、BR1油圧Pbr1及びCLc油圧Pclcのうちの何れか一方の油圧に対しては自身を通過してクラッチCL1へ既に供給されているCL1油圧Pcl1(特にはCL1FB油圧Pcl1)により第1油路64を遮断不能である第1遮断装置である。
第2同時係合防止バルブ74は、第2油路66に設けられており、第2油路66を断接することが可能である。第2同時係合防止バルブ74には、第1油路64及び第3油路68が各々接続されている。又、第2同時係合防止バルブ74には、自身とブレーキBR1との間における第2油路66が接続されている。第2同時係合防止バルブ74は、CL1油圧Pcl1、CLc油圧Pclc、及び自身を通過してブレーキBR1へ供給されるBR1油圧Pbr1(以下、BR1FB油圧Pbr1ともいう)を信号圧として受け入れることで作動状態が切り替えられる。第2同時係合防止バルブ74は、上記信号圧が何れも入力されていない状態では、バネ力によって、ブレーキBR1へBR1油圧Pbr1を供給可能に第2油路66を連通する側(以下、連通側ともいう)に作動状態が固定される。
一方で、第2同時係合防止バルブ74は、BR1FB油圧Pbr1が信号圧として入力されていないときに(すなわちブレーキBR1が解放されているときに)、CL1油圧Pcl1又はCLc油圧Pclcが信号圧として入力されている状態(例えばクラッチCL1又はクラッチCLcが係合されている状態)では、CL1油圧Pcl1又はCLc油圧Pclcによって、ブレーキBR1へのBR1油圧Pbr1を供給不能に第2油路66を遮断すると共にブレーキBR1内のBR1油圧Pbr1を排出可能にブレーキBR1側の第2油路66をドレン油路に接続する側(以下、遮断側ともいう)に作動状態が切り替えられる(図2における第2同時係合防止バルブ74の状態参照)。従って、クラッチCL1又はクラッチCLcの係合時にBR1油圧Pbr1が供給されたとしても、ブレーキBR1の係合が防止される。
他方で、第2同時係合防止バルブ74は、BR1FB油圧Pbr1が信号圧として入力されている状態(すなわちブレーキBR1が係合されている状態)では、CL1油圧Pcl1又はCLc油圧Pclcが信号圧として入力されたとしても(例えばフェールによりCL1油圧Pcl1又はCLc油圧Pclcが供給されたとしても)、バネ力及びBR1FB油圧Pbr1によって、連通側に作動状態が固定(維持)される。従って、ブレーキBR1の係合時にCL1油圧Pcl1又はCLc油圧Pclcが供給されたとしても、ブレーキBR1の係合が維持される。
このように、第2同時係合防止バルブ74は、第2油路66に設けられて、CL1油圧Pcl1及びCLc油圧Pclcのうちの少なくとも一方の油圧により第2油路66を遮断可能であると共に、CL1油圧Pcl1及びCLc油圧Pclcのうちの何れか一方の油圧に対しては自身を通過してブレーキBR1へ既に供給されているBR1油圧Pbr1(特にはBR1FB油圧Pbr1)により第2油路66を遮断不能である第2遮断装置である。
第3同時係合防止バルブ76は、第3油路68に設けられており、第3油路68を断接することが可能である。第3同時係合防止バルブ76には、第1油路64及び第2油路66が各々接続されている。又、第3同時係合防止バルブ76には、自身とクラッチCLcとの間における第3油路68が接続されている。第3同時係合防止バルブ76は、CL1油圧Pcl1、BR1油圧Pbr1、及び自身を通過してクラッチCLcへ供給されるCLc油圧Pclc(以下、CLcFB油圧Pclcともいう)を信号圧として受け入れることで作動状態が切り替えられる。第3同時係合防止バルブ76は、上記信号圧が何れも入力されていない状態では、バネ力によって、クラッチCLcへCLc油圧Pclcを供給可能に第3油路68を連通する側(以下、連通側ともいう)に作動状態が固定される。
一方で、第3同時係合防止バルブ76は、CLcFB油圧Pclcが信号圧として入力されていないときに(すなわちクラッチCLcが解放されているときに)、CL1油圧Pcl1又はBR1油圧Pbr1が信号圧として入力されている状態(例えばクラッチCL1又はブレーキBR1が係合されている状態)では、CL1油圧Pcl1又はBR1油圧Pbr1によって、クラッチCLcへのCLc油圧Pclcを供給不能に第3油路68を遮断すると共にクラッチCLc内のCLc油圧Pclcを排出可能にクラッチCLc側の第3油路68をドレン油路に接続する側(以下、遮断側ともいう)に作動状態が切り替えられる(図2における第3同時係合防止バルブ76の状態参照)。従って、クラッチCL1又はブレーキBR1の係合時にCLc油圧Pclcが供給されたとしても、クラッチCLcの係合が防止される。
他方で、第3同時係合防止バルブ76は、CLcFB油圧Pclcが信号圧として入力されている状態(すなわちクラッチCLcが係合されている状態)では、CL1油圧Pcl1又はBR1油圧Pbr1が信号圧として入力されたとしても(例えばフェールによりCL1油圧Pcl1又はBR1油圧Pbr1が供給されたとしても)、バネ力及びCLcFB油圧Pclcによって、連通側に作動状態が固定(維持)される。従って、クラッチCLcの係合時にCL1油圧Pcl1又はBR1油圧Pbr1が供給されたとしても、クラッチCLcの係合が維持される。
このように、第3同時係合防止バルブ76は、第3油路68に設けられて、CL1油圧Pcl1及びBR1油圧Pbr1のうちの少なくとも一方の油圧により第3油路68を遮断可能であると共に、CL1油圧Pcl1及びBR1油圧Pbr1のうちの何れか一方の油圧に対しては自身を通過してクラッチCLcへ既に供給されているCLc油圧Pclc(特にはCLcFB油圧Pclc)により第3油路68を遮断不能である第3遮断装置である。
油圧制御回路60に第1同時係合防止バルブ72、第2同時係合防止バルブ74、及び第3同時係合防止バルブ76が備えられることで、クラッチCL1の係合によって成立する走行モードでの走行中に、BR1油圧Pbr1が供給されたとしてもブレーキBR1の係合が防止され、又、CLc油圧Pclcが供給されたとしてもクラッチCLcの係合が防止され、又、BR1油圧Pbr1又はCLc油圧Pclcが供給されたとしてもクラッチCL1の係合によって成立する走行モードが維持される。これにより、例えばクラッチCL1の係合によって成立するU/DHVモード正転入力(後進)での走行中に、同時係合により後進走行が不可となることが防止される。
又、ブレーキBR1の係合によって成立する走行モードでの走行中に、CL1油圧Pcl1が供給されたとしてもクラッチCL1の係合が防止され、又、CLc油圧Pclcが供給されたとしてもクラッチCLcの係合が防止され、又、CL1油圧Pcl1又はCLc油圧Pclcが供給されたとしてもブレーキBR1の係合によって成立する走行モードが維持される。これにより、例えばブレーキBR1の係合によって成立するU/DHVモード逆転入力(後進)での走行中に、同時係合により後進走行が不可となることが防止される。
又、クラッチCLcの係合によって成立する走行モードでの走行中に、CL1油圧Pcl1が供給されたとしてもクラッチCL1の係合が防止され、又、BR1油圧Pbr1が供給されたとしてもブレーキBR1の係合が防止され、又、CL1油圧Pcl1又はBR1油圧Pbr1が供給されたとしてもクラッチCLcの係合によって成立する走行モードが維持される。これにより、例えばクラッチCLcの係合によって成立するO/DHVモード正転入力(後進)での走行中に、同時係合により後進走行が不可となることが防止される。
電磁切替バルブ78は、第2ライン油圧PL2を元圧として、電子制御装置90により励磁、非励磁が為されることで第4油圧としての解除油圧Prelを出力する。電磁切替バルブ78には、油圧制御回路60に備えられた第4油路79が接続されている。第4油路79は、解除油圧Prelが流通する油路である。
第1同時係合防止バルブ72には、更に、第4油路79が接続されている。第1同時係合防止バルブ72は、解除油圧Prelを信号圧として受け入れることでも作動状態が切り替えられる。第1同時係合防止バルブ72は、解除油圧Prelが信号圧として入力されている状態(すなわち電磁切替バルブ78から解除油圧Prelが出力されている状態)では、BR1油圧Pbr1又はCLc油圧Pclcが信号圧として入力されたとしても、バネ力及び解除油圧Prelによって、連通側に作動状態が固定(維持)される。従って、ブレーキBR1又はクラッチCLcの係合時であっても電磁切替バルブ78から解除油圧Prelが出力されれば、CL1油圧Pcl1の供給によりクラッチCL1が係合される。
第2同時係合防止バルブ74には、更に、第4油路79が接続されている。第2同時係合防止バルブ74は、解除油圧Prelを信号圧として受け入れることでも作動状態が切り替えられる。第2同時係合防止バルブ74は、解除油圧Prelが信号圧として入力されている状態(すなわち電磁切替バルブ78から解除油圧Prelが出力されている状態)では、CL1油圧Pcl1又はCLc油圧Pclcが信号圧として入力されたとしても、バネ力及び解除油圧Prelによって、連通側に作動状態が固定(維持)される。従って、クラッチCL1又はクラッチCLcの係合時に電磁切替バルブ78から解除油圧Prelが出力されれば、BR1油圧Pbr1の供給によりブレーキBR1が係合される。
このように、電磁切替バルブ78は、第1同時係合防止バルブ72及び第2同時係合防止バルブ74における各油路64,66の遮断を不能にすることが可能な油圧である解除油圧Prelを出力する遮断不能装置である。
油圧制御回路60に電磁切替バルブ78が備えられることで、クラッチCL1とブレーキBR1との同時係合が可能となり、クラッチCL1及びブレーキBR1の係合によって両駆動EVモードが成立させられ得る。又、クラッチCL1とクラッチCLcとの同時係合が可能となり、クラッチCL1及びクラッチCLcの係合によって直結固定段モードが成立させられ得る。又、ブレーキBR1とクラッチCLcとの同時係合が可能となり、ブレーキBR1及びクラッチCLcの係合によって出力軸固定段モードが成立させられ得る。
尚、第3同時係合防止バルブ76において同時係合時に連通側に作動状態が固定(維持)されるにはCLcFB油圧Pclcが信号圧として入力される必要がある為、クラッチCLcの係合が必要な固定段モードについては、クラッチCL1又はブレーキBR1の係合よりも先にクラッチCLcにCLc油圧Pclcが供給されている必要がある。
電子制御装置90は、両駆動EVモード、直結固定段モード、及び出力軸固定段モードを各々成立させる場合には、電磁切替バルブ78により解除油圧Prelが出力されるように油圧制御回路60に指令信号を出力する。
ところで、リニアソレノイドバルブSL1,SL2,SL3のうちの少なくとも1つのリニアソレノイドバルブが、何らかの原因(例えば電源線又はアース線の断線等)による電源オフの故障によって作動不能(励磁不能)となる(つまり非励磁となる)オフフェールが発生する可能性がある。このようなリニアソレノイドバルブSL1,SL2,SL3のオフフェール時には、特定の走行モードを成立させて退避走行を可能とするフェールセーフを確立することが望ましい。油圧制御回路60においてフェールセーフを確立することについて検討する。
リニアソレノイドバルブSL1,SL2,SL3の何れもがオフフェールしてしまうオールオフフェールが発生した場合のフェールセーフについて説明する。このようなオールオフフェール時には、クラッチCL1及びクラッチCLcのうちの何れか一方の係合装置が係合されれば、HV走行モードにて前後進の走行が可能になると共に、EV走行モードと比べて高車速領域での走行が有利になる。又、HV走行モードは、EV走行モードと比べて、バッテリ容量SOCに依存しないので、航続距離を長く確保できる。
そこで、油圧制御回路60は、リニアソレノイドバルブSL1,SL2,SL3の何れもが非作動となる故障状態(すなわちリニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態)では、クラッチCL1及びクラッチCLcのうちの何れか一方の係合装置に係合油圧を供給する構成とされている。
具体的には、リニアソレノイドバルブSL1,SL3のうちの何れか一方の電磁弁は、ノーマリーオープン式の電磁弁であり、リニアソレノイドバルブSL1,SL3のうちの前記一方の電磁弁とは別の電磁弁とリニアソレノイドバルブSL2とは何れも、ノーマリークローズ式の電磁弁である。ノーマリークローズ式の電磁弁は、オフフェール時には油圧を出力しない(つまり出力油圧が無い)一方で、ノーマリーオープン式の電磁弁は、オフフェール時には油圧を出力する(つまり出力油圧が有る)。従って、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態では、クラッチCL1及びクラッチCLcのうちの何れか一方の係合装置に係合油圧が供給されて、その何れか一方の係合装置が係合させられる。
例えば、油圧制御回路60では、リニアソレノイドバルブSL1がノーマリーオープン式の電磁弁であり、リニアソレノイドバルブSL2,SL3がノーマリークローズ式の電磁弁である。この場合、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態では、クラッチCL1に係合油圧が供給されてクラッチCL1だけが係合させられる。クラッチCL1の係合によってU/DHVモード(前進)及びU/DHVモード正転入力(後進)を成立させることが可能となる。
或いは、油圧制御回路60では、リニアソレノイドバルブSL3がノーマリーオープン式の電磁弁であり、リニアソレノイドバルブSL1,SL2がノーマリークローズ式の電磁弁である。この場合、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態では、クラッチCLcに係合油圧が供給されてクラッチCLcだけが係合させられる。クラッチCLcの係合によってO/DHVモード(前進)及びO/DHVモード正転入力(後進)を成立させることが可能となる。
U/DHVモードとO/DHVモードとでは、図17等で示したように、O/DHVモードの方がより高車速領域まで対応可能である。O/DHVモードはU/DHVモードと比較して高車速領域に対応することが可能であるので、退避走行性能がより確保し易くされる。その為、油圧制御回路60においては、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態で係合油圧を供給する係合装置は、クラッチCL1及びクラッチCLcのうちのO/DHVモードを成立させるクラッチCLcであることが有利である。つまり、ノーマリーオープン式の電磁弁は、リニアソレノイドバルブSL1,SL3のうちのO/DHVモードを成立させる係合装置に係合油圧を供給するリニアソレノイドバルブSL3であることが有利である。
尚、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態となってもライン油圧PLが発生していなければ何れの係合装置も係合されない。その為、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール時に、エンジン12を回転停止し且つEOP58を回転駆動しなければ、ライン油圧PLが発生させられず、単独駆動EVモードでの走行が可能となる。
以下、油圧制御回路60では、リニアソレノイドバルブSL3がノーマリーオープン式の電磁弁であり、リニアソレノイドバルブSL1,SL2がノーマリークローズ式の電磁弁であるとして説明する。
リニアソレノイドバルブSL1,SL2,SL3のうちの何れか1つの電磁弁がオフフェールしてしまう単独オフフェールが発生した場合のフェールセーフについて説明する。
例えば、クラッチCL1が係合されたU/DHVモード(前進)での走行中にリニアソレノイドバルブSL1がオフフェールすると、CL1油圧Pcl1が供給されずクラッチCL1が解放される。この場合、電子制御装置90はリニアソレノイドバルブSL3を非励磁としてリニアソレノイドバルブSL3からCLc油圧Pclcを供給させてクラッチCLcを係合する。これにより、O/DHVモード(前進)での走行が可能になる。
又、ブレーキBR1が係合されたU/DHVモード逆転入力(後進)での走行中にリニアソレノイドバルブSL2がオフフェールすると、BR1油圧Pbr1が供給されずブレーキBR1が解放される。この場合、電子制御装置90はリニアソレノイドバルブSL1を励磁してリニアソレノイドバルブSL1からCL1油圧Pcl1を供給させてクラッチCL1を係合する。これにより、U/DHVモード正転入力(後進)での走行が可能になる。
又、クラッチCL1が係合されたU/DHVモード正転入力(後進)での走行中にリニアソレノイドバルブSL1がオフフェールすると、CL1油圧Pcl1が供給されずクラッチCL1が解放される。この場合、電子制御装置90はリニアソレノイドバルブSL2を励磁してリニアソレノイドバルブSL2からBR1油圧Pbr1を供給させてブレーキBR1を係合する。これにより、U/DHVモード逆転入力(後進)での走行が可能になる。
又、クラッチCL1が係合されたエンブレ併用モードでの走行中にリニアソレノイドバルブSL1がオフフェールすると、CL1油圧Pcl1が供給されずクラッチCL1が解放される。この場合、電子制御装置90はリニアソレノイドバルブSL3を非励磁としてリニアソレノイドバルブSL3からCLc油圧Pclcを供給させてクラッチCLcを係合する。これにより、クラッチCLcが係合されたエンブレ併用モードでの走行が可能になる。
又、クラッチCL1及びブレーキBR1が係合された両駆動EVモードでの走行中にリニアソレノイドバルブSL1又はリニアソレノイドバルブSL2がオフフェールしてクラッチCL1及びブレーキBR1のうちの何れか一方の係合装置が解放された場合には、電子制御装置90は係合されている方の係合装置も解放し、両駆動EVモードを禁止して単独駆動EVモードを成立させる。例えば、両駆動EVモードでの走行中にリニアソレノイドバルブSL1がオフフェールしてCL1油圧Pcl1が供給されずクラッチCL1が解放された場合、電子制御装置90はリニアソレノイドバルブSL2を非励磁としてリニアソレノイドバルブSL2からBR1油圧Pbr1を供給させず、ブレーキBR1を解放する。これにより、単独駆動EVモードでの走行が可能になる。又、両駆動EVモードでの走行中にリニアソレノイドバルブSL2がオフフェールしてBR1油圧Pbr1が供給されずブレーキBR1が解放された場合、電子制御装置90はリニアソレノイドバルブSL1を非励磁としてリニアソレノイドバルブSL1からCL1油圧Pcl1を供給させず、クラッチCL1を解放する。これにより、単独駆動EVモードでの走行が可能になる。
尚、クラッチCLcが係合された走行モードであるときにリニアソレノイドバルブSL3がオフフェールした場合には、非励磁とされたノーマリーオープン式のリニアソレノイドバルブSL3からはCLc油圧Pclcが供給され続けるので、クラッチCLcが係合された走行モードを継続することが可能である。
電子制御装置90は、上述したような油圧制御回路60におけるフェールセーフの機能を実現する為に、更に、状態判定手段すなわち状態判定部96を備えている。
状態判定部96は、リニアソレノイドバルブSL1,SL2,SL3においてオールオフフェールが発生したか否かを判定する。又、状態判定部96は、リニアソレノイドバルブSL1,SL2,SL3において単独オフフェールが発生したか否かを判定する。又、状態判定部96は、リニアソレノイドバルブSL1,SL2,SL3のうちの何れか2つの電磁弁がオフフェールしてしまうダブルオフフェールが発生したか否かを判定する。
図19は、電子制御装置90の制御作動の要部すなわち油圧制御回路60におけるフェールセーフの機能を実現する為の制御作動を説明するフローチャートであり、例えば繰り返し実行される。図20は、図19のフローチャートに示す制御作動を実行した場合のタイムチャートの一例である。
図19において、先ず、状態判定部96の機能に対応するステップ(以下、ステップを省略する)S10において、リニアソレノイドバルブSL1,SL2,SL3においてオールオフフェールが発生したか否かが判定される。このS10の判断が否定される場合は状態判定部96の機能に対応するS20において、リニアソレノイドバルブSL1,SL2,SL3において単独オフフェール(単独フェールともいう)が発生したか否かが判定される。このS20の判断が否定される場合は状態判定部96の機能に対応するS30において、リニアソレノイドバルブSL1,SL2,SL3においてダブルオフフェール(ダブルフェールともいう)が発生したか否かが判定される。このS30の判断が否定される場合は本ルーチンが終了させられる。このS30の判断が肯定される場合はハイブリッド制御部92及び動力伝達切替部94の機能に対応するS40において、ダブルフェールに対応したフェールセーフが実施される。一方で、上記S20の判断が肯定される場合はハイブリッド制御部92及び動力伝達切替部94の機能に対応するS50において、上述した単独フェールに対応したフェールセーフが実施される。他方で、上記S10の判断が肯定される場合はS60において、上述した油圧制御回路60にてハード的に決まる走行モードへ遷移される。例えば、油圧制御回路60において、リニアソレノイドバルブSL3がノーマリーオープン式の電磁弁であり、リニアソレノイドバルブSL1,SL2がノーマリークローズ式の電磁弁である場合、HV走行時(つまりエンジン12の駆動時)には、走行モードがO/DHVモードとされる。又は、EV走行時には、走行モードがクラッチCLcが係合されたエンブレ併用モードとされる。
図20は、車両10がU/DHVモード正転入力(後進)で走行中にリニアソレノイドバルブSL1の単独オフフェールが発生したことでU/DHVモード逆転入力(後進)へ切り替えるフェールセーフ処理を実行した場合のタイムチャートの一例を示す図である。図20において、t1時点は、アクセルの増大操作が開始された時点を示している。アクセル開度θaccが増加し、運転者が大きな後進駆動力を必要とする場面が近づいたと判定された場面が想定される。t2時点は、リニアソレノイドバルブSL1の単独オフフェールが発生したと判定された時点を示している。これに伴って、U/DHVモード逆転入力(後進)への切替えが判定される。リニアソレノイドバルブSL1の単独オフフェールによってCL1油圧Pcl1が低下させられると共に、リニアソレノイドバルブSL2の励磁によってBR1油圧Pbr1が増加させられる(t2時点−t3時点参照)。これにより、クラッチCL1が解放されると共にブレーキBR1が係合されて、U/DHVモード逆転入力(後進)へ切り替えられる(t3時点以降参照)。
上述のように、本実施例によれば、油圧制御回路60において、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態では、クラッチCL1及びクラッチCLcのうちの何れか一方の係合装置に係合油圧が供給されるので、クラッチCL1及びクラッチCLcの何れか一方の係合装置が係合されることによる、U/DHVモード又はO/DHVモードが成立させられて、退避走行することが可能となる。よって、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール時に特定の走行モードを成立させて退避走行性能を確保することができる。
次に、本発明の他の実施例を説明する。尚、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
前述の実施例1では、リニアソレノイドバルブSL1,SL3のうちの何れか一方の電磁弁にノーマリーオープン式の電磁弁を用いることで、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態でクラッチCL1及びクラッチCLcのうちの何れか一方の係合装置に係合油圧を供給する油圧制御回路60を例示した。本実施例では、ノーマリーオープン式の電磁弁を用いることなく、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態でクラッチCLcに係合油圧を供給する油圧制御回路100を例示する。
図21は、各係合装置(クラッチCL1、ブレーキBR1、クラッチCLc)の作動状態を制御する、車両10に備えられた油圧制御回路100の要部の一例を示す図であり、前述の実施例1の油圧制御回路60とは別の実施例である。図21において、油圧制御回路100では、リニアソレノイドバルブSL1,SL2,SL3は何れも、ノーマリークローズ式の電磁弁である。又、油圧制御回路100は、切替弁102を更に備えている。
切替弁102は、ライン油圧PLをクラッチCLcに供給するライン圧油路104に設けられており、ライン圧油路104を断接することが可能である。切替弁102には、第1油路64、第2油路66、及び第3油路68が各々接続されている。切替弁102は、CL1油圧Pcl1、BR1油圧Pbr1、及びCLc油圧Pclcを信号圧として受け入れることで作動状態が切り替えられる。切替弁102は、上記信号圧が何れも入力されていない状態では、バネ力によって、クラッチCLcへライン油圧PLを供給可能にライン圧油路104を連通する側(以下、連通側ともいう)に作動状態が固定される(図21における切替弁102の破線の状態参照)。切替弁102は、上記信号圧の何れか1つでも入力されている状態では、クラッチCLcへのライン油圧PLを供給不能にライン圧油路104を遮断すると共にクラッチCLc内の油圧を排出可能にクラッチCLc側のライン圧油路104をドレン油路に接続する側(以下、遮断側ともいう)に作動状態が切り替えられる(図21における切替弁102の実線の状態参照)。このように、切替弁102は、リニアソレノイドバルブSL1,SL2,SL3から供給されるそれぞれの係合油圧であるCL1油圧Pcl1,BR1油圧Pbr1,CLc油圧Pclcにより作動状態が切り替えられると共に、リニアソレノイドバルブSL1,SL2,SL3の何れからもそれらの係合油圧が供給されない状態では、それらの係合油圧の元圧であるライン油圧PLをクラッチCLcへ供給する側に切り替えられる。
加えて、油圧制御回路100は、シャトル弁106を備えている。従って、クラッチCLcには、CLc油圧Pclc及び切替弁102を介したライン油圧PLのうちの何れか供給された油圧がシャトル弁106を介して供給される。又、CLc油圧Pclcが供給されているときには、切替弁102は遮断側(実線側)に作動状態が切り替えられるが、シャトル弁106があるので、CLc油圧Pclcは排出されず、クラッチCLcは係合される。又、上記信号圧が何れも入力されないと、切替弁102の作動状態が連通側(破線側)に固定されてライン油圧PLがクラッチCLcに係合油圧として供給されるが、このライン油圧PLは第3油路68には入らないので、切替弁102はこのライン油圧PLによって遮断側(実線側)に作動状態が切り替えられることが防止される。
これにより、油圧制御回路100では、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態では、クラッチCLcに係合油圧となる元圧(ここではライン油圧PL)が供給される。尚、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態となってもライン油圧PLが発生していなければ何れの係合装置も係合されない。その為、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール時に、エンジン12を回転停止し且つEOP58を回転駆動しなければ、ライン油圧PLが発生させられず、単独駆動EVモードでの走行が可能となる。
上述のように、本実施例によれば、前述の実施例1と同様の効果が得られる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例2では、油圧制御回路100は、ノーマリーオープン式の電磁弁を用いることなく、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態でクラッチCL1に係合油圧を供給する構成としても良い。この場合、切替弁102は、ライン油圧PLをクラッチCL1に供給するライン圧油路に設けられ、クラッチCL1にはCL1油圧Pcl1及び切替弁102を介したライン油圧PLのうちの何れか供給された油圧がシャトル弁106を介して供給される。要は、油圧制御回路100では、リニアソレノイドバルブSL1,SL2,SL3は何れも、ノーマリークローズ式の電磁弁であり、油圧制御回路100は、係合油圧としてのCL1油圧Pcl1,BR1油圧Pbr1,CLc油圧Pclcにより作動状態が切り替えられると共に、リニアソレノイドバルブSL1,SL2,SL3の何れからもそれらの係合油圧が供給されない状態では、それらの係合油圧の元圧であるライン油圧PLをクラッチCL1及びクラッチCLcのうちの何れか一方の係合装置へ供給する側に切り替えられる切替弁102を備えていれば良い。このようにすれば、油圧制御回路100では、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態では、クラッチCL1及びクラッチCLcのうちの何れか一方の係合装置に係合油圧となる元圧(ここではライン油圧PL)が供給される。尚、フェールセーフの機能を高車速領域まで対応可能として退避走行性能をより確保し易くすることを考慮すれば、油圧制御回路100においては、リニアソレノイドバルブSL1,SL2,SL3のオールオフフェール状態で係合油圧を供給する係合装置は、クラッチCL1及びクラッチCLcのうちのO/DHVモードを成立させるクラッチCLcであることが有利である。つまり、切替弁102は、係合油圧となる元圧(ここではライン油圧PL)をO/DHVモードを成立させるクラッチCLcへ供給する側に切り替えられることが有利である。
また、前述の実施例1において、油圧制御回路60は、1要素係合による走行モードの成立中に同時係合を回避すると共に同時係合による走行モードも成立させられるという機能を必ずしも備える必要はない。この場合、油圧制御回路60は、セカンダリレギュレータバルブ70、第1同時係合防止バルブ72、第2同時係合防止バルブ74、第3同時係合防止バルブ76、電磁切替バルブ78、及び第4油路79を備える必要はない。
また、前述の実施例において、U/DHVモード(前進)、U/DHVモード正転入力(後進)などは第1走行モードである一方で、O/DHVモード(前進)、O/DHVモード正転入力(後進)などは第2走行モードであったが、この態様に限らない。第1走行モードは、クラッチCL1及びクラッチCLcのうちの何れか一方の係合装置を係合した状態で第2差動機構40の差動状態が制御されてエンジントルクTeが第2キャリアC2に機械的に伝達される走行モードであり、第2走行モードは、クラッチCL1及びクラッチCLcのうちの前記一方の係合装置とは別の係合装置を係合した状態で第2差動機構40の差動状態が制御されてエンジントルクTeが第2キャリアC2に機械的に伝達される走行モードであれば良い。その為、U/DHVモード又はO/DHVモードを成立させて退避走行を可能とするという観点で見れば、O/DHVモードが第1走行モードであり、U/DHVモードが第2走行モードであっても良い。
また、前述の実施例では、第1係合装置として、第1回転要素RE1と第2回転要素RE2とを選択的に連結するクラッチCL1を例示したが、この態様に限らない。例えば、第1係合装置は、第2回転要素RE2と第3回転要素RE3とを選択的に連結するクラッチでも良いし、第1回転要素RE1と第3回転要素RE3とを選択的に連結するクラッチでも良い。要は、第1係合装置は、第1回転要素RE1、第2回転要素RE2、及び第3回転要素RE3のうちの何れか2つの回転要素を連結するクラッチであれば良い。
また、前述の実施例では、第1差動機構38及び第2差動機構40の各々における各回転要素RE1−RE6の回転速度を相対的に表すことができる共線図(図4−図16参照)において、縦線Y1は第1回転機MG1が連結された第4回転要素RE4の回転速度を、縦線Y2はエンジン12が連結された第1回転要素RE1の回転速度を、縦線Y3はブレーキBR1を介してケース18に選択的に連結される第2回転要素RE2の回転速度、及び出力軸24に連結された第5回転要素RE5の回転速度を、縦線Y4は相互に連結された、第3回転要素RE3及び第6回転要素RE6の回転速度をそれぞれ示していたが、この態様に限らない。例えば、縦線Y1はブレーキBR1を介してケース18に選択的に連結される第2回転要素RE2の回転速度、及び第1回転機MG1が連結された第4回転要素RE4の回転速度を、縦線Y2はエンジン12が連結された第1回転要素RE1の回転速度を、縦線Y3は出力軸24に連結された第5回転要素RE5の回転速度を、縦線Y4は相互に連結された、第3回転要素RE3及び第6回転要素RE6の回転速度をそれぞれ示す共線図にて各回転要素RE1−RE6の回転速度が相対的に表されるように、第1差動機構及び第2差動機構が構成されていても良い。この場合には、クラッチCLcは、第2回転要素RE2と第4回転要素RE4とを選択的に連結する第3係合装置である。尚、この場合には、ブレーキBR1を係合した状態で実現される、U/DHVモード逆転入力(後進)を成立させることはできない。U/DHVモード(前進)において、クラッチCL1を係合した状態で実現される、エンジン回転速度Neが等速で入力されるロー入力の場合と、ブレーキBR1を係合した状態で実現される、エンジン回転速度Neが増速されて入力されるハイ入力の場合とを成立させることができる。
また、前述の実施例では、クラッチCL1を係合した状態でU/DHVモードが成立させられ、又、クラッチCLcを係合した状態でO/DHVモードが成立させられたが、この態様に限らない。例えば、クラッチCLcを係合した状態でU/DHVモードが成立させられ、又、クラッチCL1を係合した状態でO/DHVモードが成立させられるように、第1差動機構及び第2差動機構が構成されていても良い。
この場合には、第1差動機構及び第2差動機構の各々における各回転要素RE1−RE6の回転速度を相対的に表すことができる共線図において、縦線Y1は第1回転機MG1が連結された第4回転要素RE4の回転速度を、縦線Y2は相互に連結された、第3回転要素RE3及び第6回転要素RE6の回転速度を、縦線Y3はブレーキBR1を介してケース18に選択的に連結される第2回転要素RE2の回転速度、及び出力軸24に連結された第5回転要素RE5の回転速度を、縦線Y4はエンジン12が連結された第1回転要素RE1の回転速度をそれぞれ示す。この構成では、クラッチCLcは、第2回転要素RE2と第5回転要素RE5とを選択的に連結する第3係合装置である。
或いは、第1差動機構及び第2差動機構の各々における各回転要素RE1−RE6の回転速度を相対的に表すことができる共線図において、縦線Y1はブレーキBR1を介してケース18に選択的に連結される第2回転要素RE2の回転速度、及び第1回転機MG1が連結された第4回転要素RE4の回転速度を、縦線Y2は相互に連結された、第3回転要素RE3及び第6回転要素RE6の回転速度を、縦線Y3は出力軸24に連結された第5回転要素RE5の回転速度を、縦線Y4はエンジン12が連結された第1回転要素RE1の回転速度をそれぞれ示す。この構成では、クラッチCLcは、第2回転要素RE2と第4回転要素RE4とを選択的に連結する第3係合装置である。
また、前述の実施例では、第1差動機構38はダブルピニオン型の遊星歯車機構であり、第2差動機構40はシングルピニオン型の遊星歯車機構であったが、この態様に限らない。例えば、シングルピニオン型の遊星歯車機構で第1差動機構が構成されていても良い。又は、ダブルピニオン型の遊星歯車機構で第2差動機構が構成されていても良い。従って、第1差動機構における第1サンギヤS1、第1キャリアC1、及び第1リングギヤR1と、第1回転要素RE1、第2回転要素RE2、及び第3回転要素RE3との対応関係、及び、第2差動機構における第2サンギヤS2、第2キャリアC2、及び第2リングギヤR2と、第4回転要素RE4、第5回転要素RE5、及び第6回転要素RE6との対応関係は、前述の実施例における第1差動機構38及び第2差動機構40で示した対応関係に限らないことは言うまでもないことである。
また、前述の実施例では、クラッチCL1、ブレーキBR1、及びクラッチCLcは、湿式の油圧式摩擦係合装置であったが、電気動力によって作動状態が切り替えられる係合装置であっても良い。
また、前述の実施例では、車両10は、第2動力伝達部22が入力軸36と同軸心に配置されるような連結関係のギヤトレーンであったが、例えば第2動力伝達部22が入力軸36の軸心とは別の軸心上に配置されるような連結関係のギヤトレーンなどであっても良い。又、FR方式の車両10に好適に用いられる動力伝達装置14を用いて発明を説明したが、本発明は、例えばFF方式、RR方式など他の方式の車両に用いられる動力伝達装置においても適宜適用することができる。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
12:エンジン(機関)
14:車両用動力伝達装置
16:駆動輪
18:ケース(非回転部材)
24:出力軸(出力回転部材)
38:第1差動機構
C1:第1キャリア(第1回転要素)
R1:第1リングギヤ(第2回転要素)
S1:第1サンギヤ(第3回転要素)
40:第2差動機構
S2:第2サンギヤ(第4回転要素)
C2:第2キャリア(第5回転要素)
R2:第2リングギヤ(第6回転要素)
60:油圧制御回路
100:油圧制御回路
CL1:クラッチ(第1係合装置)
BR1:ブレーキ(第2係合装置)
CLc:クラッチ(第3係合装置)
MG1:第1回転機
MG2:第2回転機
SL1:リニアソレノイドバルブ(第1電磁弁)
SL2:リニアソレノイドバルブ(第2電磁弁)
SL3:リニアソレノイドバルブ(第3電磁弁)

Claims (1)

  1. 第1回転要素と第2回転要素と第3回転要素とを有して機関が動力伝達可能に連結された第1差動機構と、第4回転要素と第5回転要素と第6回転要素とを有して第1回転機の運転状態が制御されることにより差動状態が制御される第2差動機構と、駆動輪と連結されると共に第2回転機が動力伝達可能に連結された出力回転部材とを備えた車両用動力伝達装置の、油圧制御回路であって、
    前記第1回転要素は、前記機関が動力伝達可能に連結されており、
    前記第3回転要素は、前記第6回転要素と連結されており、
    前記第4回転要素は、前記第1回転機が動力伝達可能に連結されており、
    前記第5回転要素は、前記出力回転部材に連結されており、
    前記車両用動力伝達装置は、前記第1回転要素、前記第2回転要素、及び前記第3回転要素のうちの何れか2つの回転要素を連結する第1係合装置と、前記第2回転要素を非回転部材に連結する第2係合装置と、前記第2回転要素と前記第4回転要素及び前記第5回転要素のうちの何れか一方の回転要素とを連結する第3係合装置とを更に備えるものであり、
    前記車両用動力伝達装置は、前記第1係合装置及び前記第3係合装置のうちの何れか一方の係合装置を係合した状態で前記第2差動機構の差動状態が制御されて前記機関のトルクが前記第5回転要素に機械的に伝達される第1走行モードと、前記第1係合装置及び前記第3係合装置のうちの前記一方の係合装置とは別の係合装置を係合した状態で前記第2差動機構の差動状態が制御されて前記機関のトルクが前記第5回転要素に機械的に伝達される第2走行モードとが選択的に成立させられるものであり、
    前記第1係合装置へ係合油圧を供給する第1電磁弁と、
    前記第2係合装置へ係合油圧を供給する第2電磁弁と、
    前記第3係合装置へ係合油圧を供給する第3電磁弁と
    を、含むものであり、
    前記第1電磁弁、前記第2電磁弁、及び前記第3電磁弁の何れもが非作動となる故障状態では、前記第1係合装置及び前記第3係合装置のうちの何れか一方の係合装置に係合油圧を供給することを特徴とする車両用動力伝達装置の油圧制御回路。
JP2017181660A 2017-09-21 2017-09-21 車両用動力伝達装置の油圧制御回路 Active JP6834878B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017181660A JP6834878B2 (ja) 2017-09-21 2017-09-21 車両用動力伝達装置の油圧制御回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017181660A JP6834878B2 (ja) 2017-09-21 2017-09-21 車両用動力伝達装置の油圧制御回路

Publications (2)

Publication Number Publication Date
JP2019056433A JP2019056433A (ja) 2019-04-11
JP6834878B2 true JP6834878B2 (ja) 2021-02-24

Family

ID=66107088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017181660A Active JP6834878B2 (ja) 2017-09-21 2017-09-21 車両用動力伝達装置の油圧制御回路

Country Status (1)

Country Link
JP (1) JP6834878B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952150A4 (en) 2019-03-25 2022-05-18 NEC Corporation OPTICAL ADD/DROP MULTIPLEXER AND METHOD OF OPTICAL TRANSMISSION

Also Published As

Publication number Publication date
JP2019056433A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6801617B2 (ja) 車両の制御装置
JP6888497B2 (ja) 車両用動力伝達装置の制御装置
JP5884897B2 (ja) ハイブリッド車両の駆動制御装置
WO2013140544A1 (ja) ハイブリッド車両の駆動制御装置
CN109532455B (zh) 车辆的控制装置
JP6834878B2 (ja) 車両用動力伝達装置の油圧制御回路
JP6834879B2 (ja) 車両の制御装置
JP6946889B2 (ja) 車両用動力伝達装置の制御装置
JP6900861B2 (ja) 車両
JP6888498B2 (ja) 車両用動力伝達装置の制御装置
JP6801615B2 (ja) 車両用動力伝達装置の油圧制御回路
JP6881183B2 (ja) 車両の動力伝達装置
JP6801614B2 (ja) 車両の制御装置
JP6915471B2 (ja) 車両用動力伝達装置の制御装置
JP6825523B2 (ja) 車両用動力伝達装置の制御装置
JP6809424B2 (ja) 車両用動力伝達装置の制御装置
JP6825524B2 (ja) 車両用動力伝達装置の制御装置
JP6911667B2 (ja) 車両用動力伝達装置の制御装置
JP6863198B2 (ja) 車両用動力伝達装置の制御装置
JP6863197B2 (ja) 車両の制御装置
JP6870549B2 (ja) 車両用動力伝達装置の制御装置
JP6900860B2 (ja) 車両の制御装置
JP6801616B2 (ja) 車両の制御装置
JP2018030423A (ja) 車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6834878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151