JP6833581B2 - How to design joints for floor slab connection - Google Patents

How to design joints for floor slab connection Download PDF

Info

Publication number
JP6833581B2
JP6833581B2 JP2017057047A JP2017057047A JP6833581B2 JP 6833581 B2 JP6833581 B2 JP 6833581B2 JP 2017057047 A JP2017057047 A JP 2017057047A JP 2017057047 A JP2017057047 A JP 2017057047A JP 6833581 B2 JP6833581 B2 JP 6833581B2
Authority
JP
Japan
Prior art keywords
engaging
joint
floor slab
connecting member
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017057047A
Other languages
Japanese (ja)
Other versions
JP2018159233A (en
Inventor
輝康 渡邊
輝康 渡邊
明夫 正司
明夫 正司
博 渡瀬
博 渡瀬
恭輔 浅見
恭輔 浅見
芳徳 高松
芳徳 高松
友彰 小野
友彰 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Oriental Shiraishi Corp
Original Assignee
Kumagai Gumi Co Ltd
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd, Oriental Shiraishi Corp filed Critical Kumagai Gumi Co Ltd
Priority to JP2017057047A priority Critical patent/JP6833581B2/en
Publication of JP2018159233A publication Critical patent/JP2018159233A/en
Application granted granted Critical
Publication of JP6833581B2 publication Critical patent/JP6833581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、床版接続用継手の各部分の断面を決定する際の設計方法に関する。 The present invention relates to a design method for determining a cross section of each part of a floor slab connecting joint.

橋軸直角方向(橋幅方向)に並設された複数の主桁上に橋梁用コンクリートプレキャスト製の床版を架け渡し、橋軸方向に沿って隣り合う床版同士をコッター式継手と呼ばれる床版接続用継手を用いて接続する床版接続工法が知られている(特許文献1参照)。 Concrete precast floor slabs for bridges are laid on multiple main girders arranged side by side in the direction perpendicular to the bridge axis (bridge width direction), and the floor slabs adjacent to each other along the bridge axis direction are called cotter type joints. A floor slab connecting method for connecting using a slab connecting joint is known (see Patent Document 1).

特許第5787965号公報Japanese Patent No. 57879665

従来、床版接続用継手の断面形状は、試験を行って決定したり、経験的に決定していた。試験を行って断面形状を決定する場合、床版の版厚が変わる毎に試験を行う必要があり、費用及び期間がかかるという課題があった。また、経験的に断面形状を決定する場合、安全性の面で課題があった。
本発明は、床版接続用継手の各部分の断面を決定する際において、安価かつ迅速に、安全かつ無駄の無い設計を行えるようにした床版接続用継手の設計方法を提供する。
Conventionally, the cross-sectional shape of the floor slab connecting joint has been determined by conducting a test or empirically. When the cross-sectional shape is determined by conducting a test, it is necessary to perform the test every time the plate thickness of the floor slab changes, which causes a problem that it takes a lot of cost and time. In addition, when empirically determining the cross-sectional shape, there is a problem in terms of safety.
The present invention provides a method for designing a floor slab connecting joint so that a safe and efficient design can be performed inexpensively, quickly, and safely when determining the cross section of each part of the floor slab connecting joint.

本発明に係る床版接続用継手の設計方法は、隣り合うコンクリートプレキャスト製の各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の設計方法であって、受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方にモルタルを充填した目地部分を形成したことにより、隣り合う床版と床版とが連結された床版接続構造において、繋ぎ部材が位置される目地部分が各床版のRC構造の挙動に連動するとして当該繋ぎ部材が位置される目地部分を平面保持の仮定が成立するRC構造と見做すこととして、目地に充填されたモルタルを圧縮材と見做すとともに、目地を横切るように位置される繋ぎ部材の連結部の断面を床版の上面から下面に向けた方向に沿って分割された複数段の鉄筋と見做して当該RC構造と見做した目地部分に位置される繋ぎ部材の連結部の断面の応力を計算したことを特徴とするので、当該繋ぎ部材の連結部の断面の形状を決定するに際して、安価かつ迅速に、安全かつ無駄の無い設計を行えるようになった。
また、上述した床版接続構造において、繋ぎ部材が位置される目地部分が各床版のRC構造の挙動に連動するとして当該繋ぎ部材が位置される目地部分を平面保持の仮定が成立するRC構造と見做すこととして、目地に充填されたモルタルを圧縮材と見做すとともに、係合受部に、係合部との係合により生じる軸力である引張力に基づく引張応力度と、曲げモーメントとが作用すると想定し、かつ、係合部の側壁の断面を床版の上面から下面に向けた方向に沿って分割された複数段の鉄筋と見做して、当該係合部の側壁の断面の応力を計算したことを特徴とするので、当該係合部の側壁の断面の形状を決定するに際して、安価かつ迅速に、安全かつ無駄の無い設計を行えるようになった。
さらに、上述した床版接続構造において、繋ぎ部材が位置される目地部分が各床版のRC構造の挙動に連動するとして当該繋ぎ部材が位置される目地部分を平面保持の仮定が成立するRC構造と見做すこととして、目地に充填されたモルタルを圧縮材と見做すとともに、係合受部と定着部との境界位置近傍における定着部の断面に、係合受部と係合部との係合により生じる軸力である引張力に基づく引張応力度と、曲げモーメントとが作用すると想定して、当該定着部の断面の応力を計算したことを特徴とするので、定着部の断面の形状を決定するに際して、安価かつ迅速に、安全かつ無駄の無い設計を行えるようになった。
また、上述した床版接続構造において、繋ぎ部材が位置される目地部分が各床版のRC構造の挙動に連動するとして当該繋ぎ部材が位置される目地部分を平面保持の仮定が成立するRC構造と見做すこととして、目地に充填されたモルタルを圧縮材と見做すとともに、目地を横切るように位置される繋ぎ部材の連結部の断面を床版の上面から下面に向けた方向に沿って分割された複数段の鉄筋と見做して当該RC構造と見做した目地部分に位置される繋ぎ部材の連結部の断面の応力を計算し、かつ、係合受部に、係合部との係合により生じる軸力である引張力に基づく引張応力度と、曲げモーメントとが作用すると想定し、かつ、係合部の側壁の断面を床版の上面から下面に向けた方向に沿って分割された複数段の鉄筋と見做して、当該係合部の側壁の断面の応力を計算し、さらに、係合受部と定着部との境界位置近傍における定着部の断面に、係合受部と係合部との係合により生じる軸力である引張力に基づく引張応力度と、曲げモーメントとが作用すると想定して、当該定着部の断面の応力を計算したことを特徴とするので、床版接続用継手の断面の形状を決定するに際して、安価かつ迅速に、安全かつ無駄の無い設計を行えるようになった。
The method for designing a joint for connecting floor slabs according to the present invention is a receiving member installed on the end side of each adjacent floor slab made of concrete precast and a receiving member installed on the end side of each adjacent floor slab. It is a method of designing a floor slab connecting joint in a floor slab connecting structure that connects adjacent floor slabs and floor slabs by using a floor slab connecting joint provided with a connecting member for connecting the receiving member. , An engaging receiving portion provided with an engaging recess for engaging the engaging portion provided on the connecting member, and a fixing portion fixed to the concrete of the floor slab, and the engaging receiving portion includes a bottom slab and a bottom slab. A wife wall provided to stand up more, left and right side walls extending from both the left and right sides of the wife wall and rising from the bottom slab, and extending in a direction closer to each other from the extension ends of the left and right side walls, both rising from the bottom slab. The left and right engaging walls are provided so as to be provided, and the engaging recess is opened between the upper part and the left and right engaging walls surrounded by the bottom slab, the end wall, the left and right side walls, and the left and right engaging walls. The connecting member is formed by a pair of engaging portions and a pair of engaging portions that engage with each engaging recess of each engaging receiving portion embedded in each end of each floor slab adjacent to each other. The engaging portion is provided with an engaging wall surface that engages with the left and right engaging walls of the engaging receiving portion, and the end faces of the adjacent floor slabs are provided with each other through a gap serving as a joint. Arranged so as to be adjacent to each other, the connecting portion of the connecting member is inserted into the opening between the left and right engaging walls of each engaging receiving portion installed on the end side of each adjacent floor slab from above to form the connecting member. A pair of engaging portions are engaged with each engaging recess, and the engaging portion engaged with the engaging recess and the engaging recess are fixed by fixing means, and joints between the end faces of the adjacent floor slabs are fixed. In addition, by forming a joint portion filled with mortar above the receiving member and the connecting member, in the floor slab connecting structure in which the adjacent floor slabs and floor slabs are connected, the joint portions where the connecting members are located are each. The joint part where the connecting member is located is regarded as an RC structure in which the assumption of flat holding is established as it is linked to the behavior of the RC structure of the floor slab, and the mortar filled in the joint is regarded as a compression material. together, and the cross section of the connecting portion of the connecting member that is positioned across the joint regarded as a rebar plurality of stages divided along a direction toward the lower surface from the upper surface of the slab, the RC structure and considered Since the stress of the cross section of the connecting portion of the connecting member located at the joint portion is calculated, it is inexpensive, quick, safe and wasteful when determining the shape of the cross section of the connecting portion of the connecting member. It became possible to perform a design that does not exist.
Further, in the above-mentioned floor slab connection structure, the RC structure is established in which the assumption that the joint portion where the connecting member is located is held flat is established on the assumption that the joint portion where the connecting member is located is linked to the behavior of the RC structure of each floor slab. as be regarded, together with the compressed material regarded to the filled mortar joints, the engagement receiving portion, based on the axial force der Ru tensile forces occurring Ri by the engagement between the engaging portion tensile stress and assuming a degree, and the bending moment acts, and with a cross-section of the side wall of the engaging portion regarded as a rebar plurality of stages divided along a direction toward the lower surface from the upper surface of the slab, the engagement Since the stress of the cross section of the side wall of the joint is calculated , it has become possible to design cheaply, quickly, safely and without waste when determining the shape of the cross section of the side wall of the engaging part. ..
Further, in the above-mentioned floor slab connection structure, the RC structure holds the assumption that the joint portion where the connecting member is located is held in a plane, assuming that the joint portion where the connecting member is located is linked to the behavior of the RC structure of each floor slab. The mortar filled in the joint is regarded as a compression material, and the cross section of the fixing portion near the boundary position between the engaging receiving portion and the fixing portion includes the engaging receiving portion and the engaging portion. a tensile stress level based on the axial force der Ru tensile forces occurring Ri by the engagement of, assuming the bending moment acts, since, characterized in that to calculate the stress of the cross-section of the fixing unit, the fixing unit In determining the shape of the cross section of the joint, it has become possible to design safely and efficiently at low cost and quickly.
Further, in the above-mentioned floor slab connection structure, the RC structure holds the assumption that the joint portion where the connecting member is located is held in a plane, assuming that the joint portion where the connecting member is located is linked to the behavior of the RC structure of each floor slab. The mortar filled in the joint is regarded as a compression material, and the cross section of the connecting part of the connecting member located across the joint is along the direction from the upper surface to the lower surface of the floor slab. and regarded as rebar divided plural stages Te, the stress of the cross section of the connecting portion of the connecting member is positioned joint portion regarded as the RC structure calculated and the engagement receiving portion, the engagement assuming a tensile stress level based on the axial force der Ru tensile forces occurring Ri by the engagement of the parts, and the bending moment acts, and, toward the lower surface of the cross section of the side wall of the engaging portion from the upper surface of the slab The stress of the cross section of the side wall of the engaging part is calculated by regarding it as a multi-stage reinforcing bar divided along the direction, and further, the fixing part in the vicinity of the boundary position between the engaging receiving part and the fixing part in cross section, it assumes a tensile stress level based on the axial force der Ru tensile forces occurring Ri by the engagement of the engagement receiving portion and the engaging portion, and the bending moment acts, stress of the cross-section of the fixing unit since, characterized in that to calculate the, in determining the shape of the cross section of the floor plate connecting joint, cheap and fast, and able to perform a safe and without waste design.

床版接続構造を上方から見た図。The figure which looked at the floor slab connection structure from above. 図1のA−A断面図。A cross-sectional view taken along the line AA of FIG. 受部材と繋ぎ部材とを示す斜視図。The perspective view which shows the receiving member and the connecting member. 各受部材の係合凹部に繋ぎ部材の一対の係合部を嵌め込んだ状態を示す斜視図。A perspective view showing a state in which a pair of engaging portions of connecting members are fitted into engaging recesses of each receiving member. 実施形態に係る設計方法の説明図。Explanatory drawing of the design method which concerns on embodiment. 設計の結果を示すグラフ。 A graph showing the results of the design. 実施形態に係る設計方法の説明図。Explanatory drawing of the design method which concerns on embodiment. 実施形態に係る設計方法の説明図。Explanatory drawing of the design method which concerns on embodiment. 設計の結果を示すグラフ。 A graph showing the results of the design. 設計の結果を示すグラフ。 A graph showing the results of the design. 実施形態に係る設計方法の説明図。Explanatory drawing of the design method which concerns on embodiment. 実施形態に係る設計方法の説明図。Explanatory drawing of the design method which concerns on embodiment. 設計の結果を示すグラフ。 A graph showing the results of the design. 従来方法において断面を決定する際に用いる試験装置を示す図。The figure which shows the test apparatus used when determining a cross section in a conventional method. 従来方法において使用する回転ばね係数を説明するための図。The figure for demonstrating the rotary spring constant used in the conventional method.

図1に示すように、橋軸直角方向(橋幅方向)Yに並設された図外の複数の主桁上に架け渡されて橋軸方向Xに沿って隣り合う床版10,10同士を連結する継手である床版接続用継手1は、橋軸方向Xに沿って隣り合う各床版10,10の端部11側にそれぞれ設置された受部材2と、橋軸方向Xに沿って隣り合う各床版10,10の端部11側にそれぞれ設置された受部材2を繋ぐ繋ぎ部材3とを備え、ボルト12などの固定手段により繋ぎ部材3と受部材2とが固定されることによって、橋軸方向Xに沿って隣り合う床版10と床版10とを連結する継手である。当該床版接続用継手1は、例えば、型枠に鋳鉄を流し込んで成型される。 As shown in FIG. 1, floor slabs 10 and 10 adjacent to each other along the bridge axis direction X are bridged over a plurality of non-figure main girders juxtaposed in the bridge axis perpendicular direction (bridge width direction) Y. The floor slab connecting joint 1, which is a joint for connecting the above, is a receiving member 2 installed on the end 11 side of each of the adjacent floor slabs 10 and 10 along the bridge axis direction X, and along the bridge axis direction X. A connecting member 3 for connecting the receiving members 2 installed on the end 11 side of each of the adjacent floor slabs 10 and 10 is provided, and the connecting member 3 and the receiving member 2 are fixed by a fixing means such as a bolt 12. This is a joint that connects the adjacent floor slabs 10 and the floor slabs 10 along the bridge axis direction X. The floor slab connecting joint 1 is molded by pouring cast iron into a formwork, for example.

図3に示すように、受部材2は、繋ぎ部材3に設けられた係合部7が係合する係合凹部4を備えた係合受部5と、床版10のコンクリートに定着される例えば定着筋等の鋼材により形成された定着部6とを備える。
繋ぎ部材3は、互いに隣り合う各床版10の各端部11にそれぞれ設置された受部材2の各係合凹部4,4に係合する一対の係合部7,7と、一対の係合部7,7を繋ぐ連結部8とを備える。
As shown in FIG. 3, the receiving member 2 is fixed to the engaging receiving portion 5 provided with the engaging recess 4 to which the engaging portion 7 provided in the connecting member 3 engages, and the concrete of the floor slab 10. For example, it includes a fixing portion 6 formed of a steel material such as a fixing bar.
The connecting member 3 has a pair of engaging portions 7 and 7 that engage with the engaging recesses 4 and 4 of the receiving member 2 installed at each end 11 of each floor slab 10 adjacent to each other, and a pair of engagement members. It is provided with a connecting portion 8 for connecting the joint portions 7 and 7.

受部材2の係合受部5は、底版51と妻壁52と側壁53と係合壁54とを備え、これら底版51と妻壁52と側壁53と係合壁54とで囲まれた係合凹部4を備える。即ち、係合受部5は、底版51と、底版51より立ち上がるように設けられた妻壁52と、妻壁52の左右両側より延長するとともに底版51より立ち上がるように設けられた左右の側壁53,53と、左右の側壁53,53の延長端53e,53eより互いに近づく方向に延長するともに底版51より立ち上がるように設けられた左右の係合壁54,54とを備える。
尚、側壁53の外周面には、せん断抵抗を大きくするとともに床版のコンクリートとの付着力を大きくするために、凹凸部59が形成されている。
The engaging receiving portion 5 of the receiving member 2 includes a bottom slab 51, a gable wall 52, a side wall 53, and an engaging wall 54, and is surrounded by the bottom slab 51, the gable wall 52, the side wall 53, and the engaging wall 54. A joint recess 4 is provided. That is, the engaging receiving portion 5 extends from the bottom slab 51, the gable wall 52 provided so as to rise from the bottom slab 51, and the left and right side walls 53 extending from both the left and right sides of the gable wall 52 and rising from the bottom slab 51. , 53, and left and right engaging walls 54, 54 provided so as to extend in a direction closer to each other than the extension ends 53e, 53e of the left and right side walls 53, 53 and to rise from the bottom slab 51.
An uneven portion 59 is formed on the outer peripheral surface of the side wall 53 in order to increase the shear resistance and the adhesive force of the floor slab to the concrete.

係合凹部4は、底版51と対向する上部開口であって係合部7を係合凹部4に挿入するための挿入口となる係合部挿入用開口41と、妻壁52と対向する開口であって連結部8を挿入するための挿入溝となる連結部挿入用開口42とを備える。
係合部挿入用開口41は、妻壁52の上端と左右の側壁53,53の上端と左右の係合壁54,54の上端とで囲まれた開口であって、上方から繋ぎ部材3の係合部7を係合凹部4に挿入可能な開口により形成される。
連結部挿入用開口42は、左の係合壁54と右の係合壁54との間の間隔により形成されて係合部挿入用開口41から連続して底版51まで到達する溝であって、上方から繋ぎ部材3の連結部8を挿入可能な間隔の溝幅に形成される。
The engaging recess 4 is an opening 41 for inserting an engaging portion, which is an upper opening facing the bottom slab 51 and serving as an insertion port for inserting the engaging portion 7 into the engaging recess 4, and an opening facing the gable wall 52. It is provided with a connecting portion insertion opening 42 that serves as an insertion groove for inserting the connecting portion 8.
The engagement portion insertion opening 41 is an opening surrounded by the upper end of the gable wall 52, the upper ends of the left and right side walls 53, 53, and the upper ends of the left and right engaging walls 54, 54, and is an opening of the connecting member 3 from above. The engaging portion 7 is formed by an opening that can be inserted into the engaging recess 4.
The connecting portion insertion opening 42 is a groove formed by the distance between the left engaging wall 54 and the right engaging wall 54 and continuously reaches the bottom slab 51 from the engaging portion insertion opening 41. , The connecting portion 8 of the connecting member 3 is formed with a groove width at an interval that allows the connecting portion 8 to be inserted from above.

受部材2は、係合凹部4の係合部挿入用開口41及び連結部挿入用開口42を外部に露出させた状態で係合受部5が床版10の端部11に埋め込まれ、妻壁52から床版10の中央側に延長するように設けられた定着部6が床版10に埋め込まれている。
即ち、受部材2の係合凹部4の係合部挿入用開口41及び連結部挿入用開口42が外部に露出して他の部分が床版10のコンクリートに埋設されるように受部材2を型枠に設置した後に型枠内にコンクリートを流し込んで硬化させることで、端部11側に受部材2が設置された床版10が形成される。
尚、受部材2は、床版10の橋軸直角方向Yに沿って延長する端部11において橋軸直角方向Yに沿って所定の間隔を隔てて複数個埋設されている。
In the receiving member 2, the engaging receiving portion 5 is embedded in the end portion 11 of the floor slab 10 in a state where the engaging portion insertion opening 41 and the connecting portion insertion opening 42 of the engaging recess 4 are exposed to the outside. A fixing portion 6 provided so as to extend from the wall 52 to the center side of the floor slab 10 is embedded in the floor slab 10.
That is, the receiving member 2 is provided so that the engaging portion insertion opening 41 and the connecting portion insertion opening 42 of the engaging recess 4 of the receiving member 2 are exposed to the outside and the other portion is embedded in the concrete of the floor slab 10. After installing in the formwork, concrete is poured into the formwork and hardened to form a floor slab 10 in which the receiving member 2 is installed on the end portion 11 side.
A plurality of receiving members 2 are embedded at the end 11 extending along the bridge axis perpendicular direction Y of the floor slab 10 at a predetermined interval along the bridge axis perpendicular direction Y.

繋ぎ部材3の係合部7は、係合凹部4の内周壁に対向する外周壁を備えた構成であり、妻壁52の内壁面と左右の側壁53,53の内壁面とに対向する外壁面71を備えた固定部72と、左右の係合壁54,54の内壁面55,55に対向する係合壁面73を備えた係合壁部74とを備える。
固定部72には、当該固定部72を上下に貫通するボルト挿入孔75が形成されている。
尚、係合受部5の左右の係合壁54,54の内壁面55,55は、底版51の板面と直交する面により形成された左右の係合壁54,54の外壁面56,56に対して傾斜する傾斜面に形成されている。この傾斜面は、上部の係合部挿入用開口41側から底版51に近付くほど係合壁54の外壁面56との間の距離が漸次大きくなるような傾斜面に形成されている。そして、一対の係合部7,7の各係合壁面73,73は、繋ぎ部材3の上下方向に延長する中心線31を基準として各係合壁面73,73間の距離が上端から下端に近付くにつれて漸次大きくなるように形成されている。
The engaging portion 7 of the connecting member 3 has a configuration provided with an outer peripheral wall facing the inner peripheral wall of the engaging recess 4, and is an outer wall facing the inner wall surface of the gable wall 52 and the inner wall surfaces of the left and right side walls 53 and 53. A fixing portion 72 having a wall surface 71 and an engaging wall portion 74 having an engaging wall surface 73 facing the inner wall surfaces 55 and 55 of the left and right engaging walls 54 and 54 are provided.
The fixing portion 72 is formed with a bolt insertion hole 75 that penetrates the fixing portion 72 vertically.
The inner wall surfaces 55, 55 of the left and right engaging walls 54, 54 of the engaging receiving portion 5 are the outer wall surfaces 56 of the left and right engaging walls 54, 54 formed by the surfaces orthogonal to the plate surface of the bottom slab 51. It is formed on an inclined surface that is inclined with respect to 56. The inclined surface is formed so that the distance between the upper engaging portion insertion opening 41 side and the outer wall surface 56 of the engaging wall 54 gradually increases as it approaches the bottom slab 51. Then, in the engaging wall surfaces 73, 73 of the pair of engaging portions 7, 7, the distance between the engaging wall surfaces 73, 73 is from the upper end to the lower end with reference to the center line 31 extending in the vertical direction of the connecting member 3. It is formed so that it gradually increases as it approaches.

従って、橋軸方向Xに沿って隣り合う各床版10,10の端部11,11にそれぞれ埋設された各係合受部5,5の各係合凹部4,4の上方から繋ぎ部材3の各係合部7,7を各係合凹部4,4の上部の係合部挿入用開口41を介して各係合凹部4,4内に挿入するとともに、繋ぎ部材3の連結部8を各係合凹部4,4の連結部挿入用開口42に挿入していくことで、一対の係合部7,7の各係合壁面73,73が左右の係合壁54,54の内壁面55,55にガイドされながら一対の係合部7,7がそれぞれ係合凹部4,4内に嵌め込まれることになる(図2,図4参照)。
即ち、各係合受部5の左右の係合壁54,54が楔となって繋ぎ部材3の一対の係合部7,7間に嵌まり込むコッター式継手が構成されることになる。
そして、図2に示すように、係合凹部4内に嵌め込まれた係合部7の固定部に形成されたボルト挿入孔75に固定手段としてのボルト12を挿入し、底版51に形成されたねじ孔58にボルト12を締結することによって、繋ぎ部材3と係合受部5とが固定される。
Therefore, the connecting member 3 is connected from above the engaging recesses 4 and 4 of the engaging receiving portions 5 and 5 embedded in the ends 11 and 11 of the adjacent floor slabs 10 and 10 along the bridge axis direction X, respectively. The engaging portions 7 and 7 of the above are inserted into the engaging recesses 4 and 4 via the engaging portion insertion opening 41 at the upper part of the engaging recesses 4 and 4, and the connecting portion 8 of the connecting member 3 is inserted. By inserting the engaging recesses 4 and 4 into the opening for inserting the connecting portion 42, the engaging wall surfaces 73 and 73 of the pair of engaging portions 7 and 7 become the inner wall surfaces of the left and right engaging walls 54 and 54. While being guided by 55 and 55, the pair of engaging portions 7 and 7 are fitted into the engaging recesses 4 and 4, respectively (see FIGS. 2 and 4).
That is, the left and right engaging walls 54, 54 of each engaging receiving portion 5 form a wedge to form a cotter type joint that fits between the pair of engaging portions 7, 7 of the connecting member 3.
Then, as shown in FIG. 2, the bolt 12 as a fixing means was inserted into the bolt insertion hole 75 formed in the fixing portion of the engaging portion 7 fitted in the engaging recess 4, and formed in the bottom slab 51. By fastening the bolt 12 to the screw hole 58, the connecting member 3 and the engaging receiving portion 5 are fixed.

橋軸方向Xに沿って隣り合う床版10,10同士が床版接続用継手1で接続された後、固定された繋ぎ部材3と係合受部5との上方にモルタル等の充填材16を充填するとともに、隣り合う床版10,10の端面18,18間の隙間である目地15に充填材16を充填することにより、互いに隣り合う床版10,10同士の接合が完了する。 After the floor slabs 10, 10 adjacent to each other along the bridge axis direction X are connected by the floor slab connecting joint 1, a filler 16 such as mortar is placed above the fixed connecting member 3 and the engaging receiving portion 5. And filling the joint 15 which is a gap between the end faces 18 and 18 of the adjacent floor slabs 10 and 10 with the filler 16 completes the joining of the adjacent floor slabs 10 and 10 to each other.

即ち、隣り合う各床版10,10の端面18,18同士を目地15となる隙間を介して互いに隣り合うように配置して、繋ぎ部材3の連結部8を隣り合う各床版10,10の端部11,11側に設置された各係合受部5,5の左右の係合壁54,54間の開口である連結部挿入用開口42に上方から挿入することで繋ぎ部材3の一対の係合部7,7を各係合凹部4,4に係合させて、係合凹部4に係合された係合部7と係合凹部4とをボルト12等の固定手段で固定するとともに、隣り合う各床版10,10の端面18,18間の目地15及び受部材2と繋ぎ部材3との上方に充填材16を充填することにより、橋軸方向Xに沿って隣り合う床版10と床版10とが連結された床版接続構造が構成される。この場合、係合部7と係合凹部4とをボルト12等の固定手段で固定した後に目地15及び受部材2と繋ぎ部材3との上方に充填材16を充填してもよいし、目地15及び受部材2と繋ぎ部材3との上方に充填材16を充填した後に係合部7と係合凹部4とをボルト12等の固定手段で固定するようにしてもよい。
尚、係合受部5の係合凹部4を上から見た形状が「C」状に似ていることから、受部材2の係合受部5はC型金物と呼ばれる場合がある。また、繋ぎ部材3の係合壁部74と連結部8とを上から見た形状が「H」状に似ていることから、繋ぎ部材3はH型金物と呼ばれる場合がある。
That is, the end faces 18 and 18 of the adjacent floor slabs 10 and 10 are arranged so as to be adjacent to each other through a gap serving as a joint 15, and the connecting portion 8 of the connecting member 3 is arranged adjacent to each other. The connecting member 3 can be inserted into the connecting portion insertion opening 42, which is an opening between the left and right engaging walls 54, 54 of the engaging receiving portions 5, 5 installed on the end portions 11, 11 side of the above. The pair of engaging portions 7 and 7 are engaged with the engaging recesses 4 and 4, and the engaging portions 7 and the engaging recesses 4 engaged with the engaging recesses 4 are fixed by fixing means such as bolts 12. At the same time, by filling the joints 15 between the end faces 18 and 18 of the adjacent floor slabs 10 and 10 and the filler 16 above the receiving member 2 and the connecting member 3, they are adjacent to each other along the bridge axis direction X. A floor slab connecting structure is constructed in which the floor slab 10 and the floor slab 10 are connected. In this case, after fixing the engaging portion 7 and the engaging recess 4 with a fixing means such as a bolt 12, the filler 16 may be filled above the joint 15 and the receiving member 2 and the connecting member 3, or the joint may be filled. After filling the filler 16 above the 15 and the receiving member 2 and the connecting member 3, the engaging portion 7 and the engaging recess 4 may be fixed by a fixing means such as a bolt 12.
Since the shape of the engaging recess 4 of the engaging receiving portion 5 when viewed from above is similar to a "C" shape, the engaging receiving portion 5 of the receiving member 2 may be called a C-shaped metal fitting. Further, since the shape of the engaging wall portion 74 and the connecting portion 8 of the connecting member 3 when viewed from above is similar to an "H" shape, the connecting member 3 may be called an H-shaped metal fitting.

実施形態に係る床版接続用継手の設計方法では、橋軸方向Xに沿って隣り合うRC構造(鉄筋コンクリート構造)の各床版10,10の端部11,11側にそれぞれ受部材2,2が組み込まれていて、これら受部材2,2を目地部分において繋ぎ部材3で連結しているので、当該目地部分は各床版10,10のRC構造の挙動に連動すると考え、当該繋ぎ部材3が位置される目地部分を平面保持(平面を形成していた任意位置の切断面は変形後も平面を保持する)の仮定が成立するRC構造と見做して当該目地部分の応力を計算することで、目地15を横切るように位置される繋ぎ部材3の連結部8の断面8Aの形状を設計するようにした。
具体的には、上述した床版接続構造において、目地15を横切るように位置される繋ぎ部材3の連結部8の断面8Aの形状を決定する際に、目地に充填された充填材16を圧縮材と見做すとともに、当該繋ぎ部材3の連結部8の断面8Aを、分割された複数段の鉄筋と見做して、断面8Aの応力を計算することにより、断面8Aの経済性、安全性を評価するようにした。
In the method for designing a joint for connecting floor slabs according to the embodiment, receiving members 2 and 2 are located on the ends 11 and 11 of the floor slabs 10 and 10 of the RC structures (reinforced concrete structures) adjacent to each other along the bridge axis direction X, respectively. Is incorporated, and these receiving members 2 and 2 are connected by a connecting member 3 at the joint portion. Therefore, it is considered that the joint portion is linked to the behavior of the RC structure of each floor slab 10 and 10, and the connecting member 3 Calculate the stress of the joint part by assuming that the joint part where is located is held in a plane (the cut surface at an arbitrary position that formed the plane holds the plane even after deformation) as an RC structure. As a result, the shape of the cross section 8A of the connecting portion 8 of the connecting member 3 located so as to cross the joint 15 is designed .
Specifically, in the above-mentioned floor slab connecting structure, when determining the shape of the cross section 8A of the connecting portion 8 of the connecting member 3 located so as to cross the joint 15, the filler 16 filled in the joint is compressed. The economic and safety of the cross section 8A is calculated by regarding the cross section 8A of the connecting portion 8 of the connecting member 3 as a material and the stress of the cross section 8A by regarding it as a divided multi-stage reinforcing bar. I tried to evaluate the sex.

RC構造と見做した当該目地部分において、曲げモーメントに対するコンクリートの応力σc、圧縮側及引張側の鉄筋の応力σsiを求める。σcは以下の数式1により求まる。σsiは以下の数式2により求まる。
ここで、xは中立軸の位置であり、実施形態では、目地部分に位置される繋ぎ部材3の連結部8の断面8Aを分割された複数段の鉄筋(複層鉄筋)と見做すので、以下の数式3により求める。
また、Iiは断面二次モーメントであり、以下の数式4により求まる。また、nはヤング係数比である。Mは曲げモーメントである。
また、図5に示すように、Aiは断面8Aを分割した各分割部分の断面積、bは断面8Aの断面幅、diは床版10の上面10tから各分割部分の中心位置(便宜上、各分割部分の断面の真ん中に鉄筋があると仮定する)までの距離である。
In the joint portion regarded as an RC structure, the stress σc of concrete with respect to the bending moment and the stress σsi of the reinforcing bars on the compression side and the tension side are obtained. σc can be obtained by the following mathematical formula 1. σsi can be obtained by the following mathematical formula 2.
Here, x is the position of the neutral axis, and in the embodiment, the cross section 8A of the connecting portion 8 of the connecting member 3 located at the joint portion is regarded as a divided multi-stage reinforcing bar (multi-layer reinforcing bar). , Calculated by the following formula 3.
Further, Ii is the moment of inertia of area and can be obtained by the following mathematical formula 4. Further, n is a Young's modulus ratio. M is the bending moment.
Further, as shown in FIG. 5, Ai is the cross-sectional area of each divided portion of the cross section 8A, b is the cross-sectional width of the cross section 8A, and di is the center position of each divided portion from the upper surface 10t of the floor slab 10. It is the distance to (assuming that there is a reinforcing bar in the middle of the cross section of the divided part).

数式1Formula 1

Figure 0006833581
Figure 0006833581

数式2Formula 2

Figure 0006833581
Figure 0006833581

数式3Formula 3

Figure 0006833581
Figure 0006833581

数式4Formula 4

Figure 0006833581
Figure 0006833581

従って、数式3により、RC構造と見做した目地部分の中立軸の位置xを求めるとともに、数式4により連結部8の断面8Aを分割した複数段の各鉄筋の部分の各断面二次モーメントIiを求め、これらを数式1,2に代入して、コンクリートの応力σc、連結部8の断面8Aを分割した複数段の各鉄筋の位置での応力σsiを求める。 Therefore, the position x of the neutral axis of the joint portion regarded as the RC structure is obtained by the mathematical formula 3, and the geometrical moment of inertia of each section of each of the plurality of stages of the reinforcing bars obtained by dividing the cross section 8A of the connecting portion 8 by the mathematical formula 4 is obtained. And substituting these into Equations 1 and 2, the stress σc of the concrete and the stress σsi at the positions of the reinforcing bars in the plurality of stages obtained by dividing the cross section 8A of the connecting portion 8 are obtained.

実施形態のように、連結部8の断面8Aを分割された複数段の鉄筋と見做すようにした理由は、RC構造と見做した目地部分の1か所に鉄筋があると見做した場合には、断面二次モーメントが小さく計算されて、応力が大きくなり、無駄に大きな断面を設計してしまうことになり、合理的な設計ができないからである。一方、実施形態のように、連結部8の断面8Aを分割された複数段の鉄筋と見做すようにすれば、実現象に合った合理的な設計が可能となる。また、目地部分を平面保持の仮定が成立するRC構造と見做すので、分割数iは多くても良く、また、任意の断面形状であっても評価できるようになる。例えば、1つの分割区域は、10mm〜15mmの範囲で区切るようにすればよい。 As in the embodiment, the reason why the cross section 8A of the connecting portion 8 is regarded as a divided multi-stage reinforcing bar is that the reinforcing bar is regarded as one of the joint portions regarded as the RC structure. In this case, the moment of inertia of area is calculated to be small, the stress becomes large, and a uselessly large cross section is designed, which makes rational design impossible. On the other hand, if the cross section 8A of the connecting portion 8 is regarded as a divided multi-stage reinforcing bar as in the embodiment, a rational design suitable for the actual phenomenon becomes possible. Further, since the joint portion is regarded as an RC structure in which the assumption of holding the plane is established, the number of divisions i may be large, and any cross-sectional shape can be evaluated. For example, one divided area may be divided in the range of 10 mm to 15 mm.

また、隣り合う各床版10,10の端部11,11側に設置された各係合受部5,5の左右の側壁53,53及び底版51の断面を設計する際に、係合受部5に、図7に示すような、係合部7との係合により生じる軸力である引張力T1に基づく引張応力度と、曲げモーメントM1とが作用すると想定し、かつ、図8に示すように、側壁53の断面53Aを分割された複数段の鉄筋と見做して応力を計算することにより、断面53Aの経済性、安全性を評価するようにした。
曲げモーメントM1が作用する際の断面53Aの応力は、断面53Aを分割された複数段の鉄筋と見做すため、上述した連結部8の断面8Aの応力を求めた方法と同様の方法で算出する。
また、引張力T1が作用する際の断面53Aの応力は、既知の構造計算により、係合部7が係合する係合壁54の上端と下端の応力を求め、当該係合壁54の上端と下端にかけての三角形応力分布から、断面54Aを分割した複数段の各鉄筋の位置での応力を求める。
そして、断面54Aを分割した複数段の各鉄筋の位置毎に、曲げモーメントM1に対する応力と引張力T1に対する応力とを足した合成応力を求めて、断面53Aの経済性、安全性を評価するようにした。
Further, when designing the cross sections of the left and right side walls 53, 53 and the bottom slab 51 of the engaging receiving portions 5, 5 installed on the end portions 11 and 11 sides of the adjacent floor slabs 10 and 10, the engaging receiving portions 5 and 5 are designed. in part 5, as shown in FIG. 7, assuming a tensile stress level based on the tensile force T1 Ru axial force der occurring Ri by the engagement between the engaging portion 7, and a bending moment M1 acts, and, As shown in FIG. 8, the economic efficiency and safety of the cross section 53A are evaluated by calculating the stress by regarding the cross section 53A of the side wall 53 as a divided multi-stage reinforcing bar.
The stress of the cross section 53A when the bending moment M1 acts is calculated by the same method as the method for obtaining the stress of the cross section 8A of the connecting portion 8 described above because the cross section 53A is regarded as a divided multi-stage reinforcing bar. To do.
Further, for the stress of the cross section 53A when the tensile force T1 acts, the stress of the upper end and the lower end of the engaging wall 54 with which the engaging portion 7 is engaged is obtained by a known structural calculation, and the upper end of the engaging wall 54 is obtained. From the triangular stress distribution from the above to the lower end, the stress at the position of each reinforcing bar in a plurality of stages in which the cross section 54A is divided is obtained.
Then, the combined stress obtained by adding the stress with respect to the bending moment M1 and the stress with respect to the tensile force T1 is obtained for each position of the reinforcing bars in the plurality of stages obtained by dividing the cross section 54A, and the economic efficiency and safety of the cross section 53A are evaluated. I made it.

また、係合受部5と定着部6との境界位置近傍における定着筋などの定着部6の断面6Aを設計する際に、図12に示す断面6Aに、図11に示すような、係合受部5と係合部7との係合により生じる軸力である引張力T1に基づく引張応力度と、曲げモーメントM2とが作用すると想定して、当該断面6Aの応力を計算することにより、断面6Aの経済性、安全性を評価するようにした。
曲げモーメントM2が作用する際の断面6Aの応力は、上述した式(2)により求める。尚、図12において60は上筋、61は下筋である。この上筋60の断面、定着部6の断面6A、下筋61の断面を、複数鉄筋として、これら断面の応力を上述した式(2)により求めても良い。
また、引張力T1が作用する際の断面6Aの応力は、既知の構造計算に基づいて求める。
そして、曲げモーメントM2に対する応力と引張力T1に対する応力とを足した合成応力を求めて、断面6Aの経済性、安全性を評価するようにした。
Further, when designing the cross section 6A of the fixing portion 6 such as the fixing bar near the boundary position between the engaging receiving portion 5 and the fixing portion 6, the cross section 6A shown in FIG. 12 is engaged with the cross section 6A as shown in FIG. assuming tensile and tensile stress level based on the force T1 Ru axial force der occurring Ri by the engagement of the receiving part 5 and the engaging portion 7, and the bending moment M2 acts to calculate the stress of the cross-section 6A Therefore, the economic efficiency and safety of the cross section 6A were evaluated.
The stress of the cross section 6A when the bending moment M2 acts is obtained by the above equation (2). In FIG. 12, 60 is an upper bar and 61 is a lower bar. The cross section of the upper bar 60, the cross section 6A of the fixing portion 6, and the cross section of the lower bar 61 may be used as a plurality of reinforcing bars, and the stress of these cross sections may be obtained by the above formula (2).
Further, the stress of the cross section 6A when the tensile force T1 acts is obtained based on a known structural calculation.
Then, the combined stress obtained by adding the stress with respect to the bending moment M2 and the stress with respect to the tensile force T1 was obtained, and the economic efficiency and safety of the cross section 6A were evaluated.

実施形態による設計方法により製作した床版接続用継手1の実際の挙動が計算値(理論値)に対応しているかどうかを検証した。 It was verified whether or not the actual behavior of the floor slab connecting joint 1 manufactured by the design method according to the embodiment corresponds to the calculated value (theoretical value).

図6は、実施形態による設計方法により製作した床版接続用継手1における断面8Aの位置での曲げモーメント−応力の関係を示す図である。
尚、図6において、計測値とは、実施形態の設計方法によって製作した2つの床版接続用継手1を用いて、1000mm×1450mmの大きさの2つの床版を接続した試験体を作製し、この試験体において各床版接続用継手1の受部材2と定着部6との境界線に沿った2つの載荷位置に載荷した際の曲げモーメントMに対する断面8Aの応力を、図5に示す断面8Aの位置における6つの計測点Gに歪ゲージを取付けて計測した歪に基づいて求めた値である。尚、応力は、図5に示す断面8Aの位置における6つの計測点Gで計測した歪値の最大値を、応力−歪曲線に照合して求めた。図6の継手1は一方の床版接続用継手1の断面8Aでの計測値、継手2は他方の床版接続用継手1の断面8Aでの計測値である。
また、図6において、計算値とは、実施形態の設計方法で製作した床版接続用継手1の断面8Aの曲げモーメントMに対する応力を計算した値(理論値)である。尚、計算値は、断面8Aに最初からひび割れが起きているとの前提での計算値である。
図6からわかるように、計測値は、断面8Aにひび割れが生じるまでは全断面有効の勾配に沿った値を示し、曲げモーメント44kNm程度で断面8Aにひび割れが生じた後は、徐々に計算値に近付いていくことが分かった。即ち、計測値の応力は、計算値の応力よりも小さく、かつ、断面8Aにひび割れが生じた後は、徐々に計算値に近付いていくことから、実施形態による設計方法により製作した床版接続用継手1では、計算値よりも安全で、かつ、無駄の無い断面8Aを設計できたことがわかる。即ち、断面8Aの設計を合理的に行えることが実証できた。
FIG. 6 is a diagram showing the relationship between bending moment and stress at the position of the cross section 8A in the floor slab connecting joint 1 manufactured by the design method according to the embodiment.
In addition, in FIG. 6, the measured value is a test body in which two floor slabs having a size of 1000 mm × 1450 mm are connected by using two floor slab connecting joints 1 manufactured by the design method of the embodiment. FIG. 5 shows the stress of the cross section 8A with respect to the bending moment M when the test piece is loaded at two loading positions along the boundary line between the receiving member 2 and the fixing portion 6 of each floor slab connecting joint 1. It is a value obtained based on the strain measured by attaching a strain gauge to the six measurement points G at the position of the cross section 8A. The stress was obtained by collating the maximum value of the strain values measured at the six measurement points G at the position of the cross section 8A shown in FIG. 5 with the stress-strain curve. The joint 1 in FIG. 6 is a measured value of one floor slab connecting joint 1 in a cross section 8A, and the joint 2 is a measured value of the other floor slab connecting joint 1 in a cross section 8A.
Further, in FIG. 6, the calculated value is a value (theoretical value) obtained by calculating the stress with respect to the bending moment M of the cross section 8A of the floor slab connecting joint 1 manufactured by the design method of the embodiment. The calculated value is a calculated value on the assumption that the cross section 8A is cracked from the beginning.
As can be seen from FIG. 6, the measured value shows a value along the gradient effective for the entire cross section until the cross section 8A is cracked, and is gradually calculated after the crack is generated in the cross section 8A at a bending moment of about 44 kNm. It turned out to be approaching. That is, the stress of the measured value is smaller than the stress of the calculated value, and after the cross section 8A is cracked, it gradually approaches the calculated value. Therefore, the floor slab connection manufactured by the design method according to the embodiment. It can be seen that the joint 1 was able to design a cross section 8A that is safer than the calculated value and has no waste. That is, it was demonstrated that the design of the cross section 8A can be rationalized.

従来、目地15を横切るように位置される繋ぎ部材3の連結部8の断面8Aの形状は、図14に示すような実験装置を用いて、図15に示すθ及びθを計測し、以下の数式5に基づいて回転角θを算出し、かつ、以下の数式6に基づいて算出した回転ばね係数Kθを用いて、構造計算を行うことにより、決定するようにしていた。尚、図14の実験装置において、10Sは床版の試験体、80はジャッキ、81はロードセル、82は載荷板、83は反力板、84は支持脚、85変位計である。 Conventionally, the shape of the cross section 8A of the connecting portion 8 of the connecting member 3 positioned so as to cross the joint 15 is measured by measuring θ 1 and θ 2 shown in FIG. 15 using an experimental device as shown in FIG. The rotation angle θ is calculated based on the following mathematical formula 5, and the rotation spring coefficient K θ calculated based on the following mathematical formula 6 is used to perform a structural calculation to determine the rotation angle. In the experimental apparatus of FIG. 14, 10S is a floor slab test piece, 80 is a jack, 81 is a load cell, 82 is a loading plate, 83 is a reaction force plate, 84 is a support leg, and an 85 displacement meter.

数式5Formula 5

Figure 0006833581
Figure 0006833581

数式6Formula 6

Figure 0006833581
Figure 0006833581

しかしながら、床版支間長等の条件により、発生する断面力が異なってくるため、従来のように実験によって断面8Aの形状を設計する場合、条件が変わる毎に実験を行う必要があり、費用及び期間がかかっていた。
実施形態によれば、条件が変わる毎に実験を行う必要がなくなり、条件が変わる毎に計算により断面8Aの形状を容易且つ合理的に設計することができるようになる。
However, since the generated cross-sectional force differs depending on the conditions such as the span length of the floor slab, when designing the shape of the cross-section 8A by an experiment as in the conventional case, it is necessary to carry out the experiment every time the conditions change, and the cost and It took a long time.
According to the embodiment, it is not necessary to carry out an experiment every time the conditions change, and the shape of the cross section 8A can be easily and rationally designed by calculation every time the conditions change.

図9は、実施形態による設計方法により製作した床版接続用継手1の断面53Aの位置における各計測点Gでの降伏時の応力分布を示した図である。
図10は、実施形態による設計方法により製作した床版接続用継手1の断面53Aの位置における最大応力発生位置(図8に示す上下方向の下から2番目の計測点)での曲げモーメント−応力の関係を示す図である。
図9の計測値とは、上述したように、実施形態の設計方法によって製作した2つの床版接続用継手1を用いて、1000mm×1450mmの大きさの2つの床版を接続した試験体を作製し、この試験体において各床版接続用継手1の受部材2と定着部6との境界線に沿った2つの載荷位置に載荷した際の曲げモーメントMに対する断面53Aの応力を、図8に示す断面53A位置における6つの計測点Gに歪ゲージを取付けて計測した歪値に基づいて求めた値である。図10の計測値とは、図8に示す上下方向の下から2番目の計測点Gで計測した歪に基づいて求めた値である。尚、応力は、図8に示す上下方向での3つの計測点Gに位置する左右一対の計測点Gで計測された歪の平均値を、応力−歪曲線に照合して求めた。
また、図9での計算値とは、実施形態の設計方法で製作した床版接続用継手1の断面53Aの位置における各計測点での終局時の応力分布を計算した値(理論値)である。
また、図10での計算値とは、実施形態の設計方法で製作した床版接続用継手1の断面53Aの曲げモーメントM1、引張力T1に対する合成応力を計算した値(理論値)である。
図9からわかるように、計測値による応力分布は、計算値(理論値)に近くなることがわかった。また、図10からわかるように、計測値による応力は、計算値(理論値)に近くなることがわかった。
即ち、実施形態による設計方法により製作した断面53Aを備えた床版接続用継手1では、安全で、かつ、無駄の無い断面53Aを設計できたことがわかる。即ち、断面53Aの設計を合理的に行えることが実証できた。
FIG. 9 is a diagram showing the stress distribution at the time of yielding at each measurement point G at the position of the cross section 53A of the floor slab connecting joint 1 manufactured by the design method according to the embodiment.
FIG. 10 shows the bending moment -stress at the maximum stress generation position (the second measurement point from the bottom in the vertical direction shown in FIG. 8) at the position of the cross section 53A of the floor slab connecting joint 1 manufactured by the design method according to the embodiment. It is a figure which shows the relationship of.
The measured value in FIG. 9 is a test piece in which two floor slabs having a size of 1000 mm × 1450 mm are connected by using two floor slab connecting joints 1 manufactured by the design method of the embodiment as described above. FIG. 8 shows the stress of the cross section 53A with respect to the bending moment M when the test piece was prepared and loaded at two loading positions along the boundary line between the receiving member 2 and the fixing portion 6 of each floor slab connecting joint 1. It is a value obtained based on the strain value measured by attaching a strain gauge to the six measurement points G at the position of the cross section 53A shown in 1. The measured value in FIG. 10 is a value obtained based on the strain measured at the second measurement point G from the bottom in the vertical direction shown in FIG. The stress was obtained by comparing the average value of the strains measured at the pair of left and right measurement points G located at the three measurement points G in the vertical direction shown in FIG. 8 with the stress-strain curve.
Further, the calculated value in FIG. 9 is a value (theoretical value) obtained by calculating the stress distribution at the final point at each measurement point at the position of the cross section 53A of the floor slab connecting joint 1 manufactured by the design method of the embodiment. is there.
Further, the calculated value in FIG. 10 is a value (theoretical value) obtained by calculating the combined stress with respect to the bending moment M1 and the tensile force T1 of the cross section 53A of the floor slab connecting joint 1 manufactured by the design method of the embodiment.
As can be seen from FIG. 9, it was found that the stress distribution based on the measured values is close to the calculated value (theoretical value). Further, as can be seen from FIG. 10, it was found that the stress based on the measured value is close to the calculated value (theoretical value).
That is, it can be seen that the floor slab connecting joint 1 provided with the cross section 53A manufactured by the design method according to the embodiment was able to design a safe and lean cross section 53A. That is, it was demonstrated that the design of the cross section 53A can be rationalized.

従来、側壁53の断面53Aの形状は、経験的に、上述した連結部8の断面8Aよりも大きな断面とするようにしていただけであるので、安全性に問題があったが、実施形態によれば、側壁53の断面53Aの応力を上記のように計算して断面53Aを設計するようにしたので、側壁53の断面53Aの形状を決定するに際して、安全で、かつ、無駄の無い合理的な設計を行えるようになった。 Conventionally, the shape of the cross section 53A of the side wall 53 has only been empirically made larger than the cross section 8A of the connecting portion 8 described above, so that there is a problem in safety. For example, since the stress of the cross section 53A of the side wall 53 is calculated as described above to design the cross section 53A, it is safe and rational when determining the shape of the cross section 53A of the side wall 53. You can now design.

図13は、実施形態による設計方法により製作した床版接続用継手1における断面6Aの位置での曲げモーメント−引張力の関係を示す図である。
図13において、計測値とは、上述したように、実施形態の設計方法によって製作した2つの床版接続用継手1を用いて、1000mm×1450mmの大きさの2つの床版を接続した試験体を作製し、この試験体において各床版接続用継手1の受部材2と定着部6との境界線に沿った2つの載荷位置に載荷した際の曲げモーメントMに対する断面6Aの引張力を、図11に示す係合受部5と定着部6との境界位置での定着部(定着筋)6の上下側の2つの計測点Gに歪ゲージを取付けて計測した際の計測値(歪値)に基づいて求めた値である。即ち、当該引張力は、図11に示す2つの計測点Gで計測された歪値の平均値にヤング係数比nを乗じて断面6Aの応力σsを求め、さらに当該応力σsに断面6Aの断面積を乗じて求めた値である。
また、計算値とは、実施形態の設計方法で製作した床版接続用継手1の断面6Aの曲げモーメントMに対する引張力を計算した値(理論値)である。
また、従来の計算値とは、断面6Aに係合受部5と係合部7との係合による引張力T1のみが作用すると想定した従来の手法による引張力を計算した値(理論値)である。
尚、図13中の不連続部分は、曲げによるひび割れが生じたことを示している。
図13からわかるように、実施形態による設計方法により製作した断面6Aを備えた床版接続用継手1では、計測値による引張力が、計算値(理論値)に近くなることがわかった。
FIG. 13 is a diagram showing the relationship between the bending moment and the tensile force at the position of the cross section 6A in the floor slab connecting joint 1 manufactured by the design method according to the embodiment.
In FIG. 13, the measured value is a test piece in which two floor slabs having a size of 1000 mm × 1450 mm are connected by using two floor slab connecting joints 1 manufactured by the design method of the embodiment as described above. The tensile force of the cross section 6A with respect to the bending moment M when the test piece was loaded at two loading positions along the boundary line between the receiving member 2 and the fixing portion 6 of each floor slab connecting joint 1 in this test piece. Measured value (strain value) when strain gauges are attached to two measurement points G on the upper and lower sides of the fixing portion (fixing muscle) 6 at the boundary position between the engaging receiving portion 5 and the fixing portion 6 shown in FIG. ) Is the value obtained. That is, the tensile force is obtained by multiplying the mean value of the strain values measured at the two measurement points G shown in FIG. 11 by the Young's modulus ratio n to obtain the stress σs of the cross section 6A, and further multiplying the stress σs by the disconnection of the cross section 6A. It is a value obtained by multiplying the area.
The calculated value is a value (theoretical value) obtained by calculating the tensile force with respect to the bending moment M of the cross section 6A of the floor slab connecting joint 1 manufactured by the design method of the embodiment.
Further, the conventional calculated value is a value (theoretical value) obtained by calculating the tensile force by the conventional method assuming that only the tensile force T1 due to the engagement between the engaging receiving portion 5 and the engaging portion 7 acts on the cross section 6A. Is.
The discontinuous portion in FIG. 13 indicates that a crack has occurred due to bending.
As can be seen from FIG. 13, in the floor slab connecting joint 1 having the cross section 6A manufactured by the design method according to the embodiment, it was found that the tensile force based on the measured value is close to the calculated value (theoretical value).

即ち、従来は、係合受部5と係合部7との係合による引張力T1のみが作用すると想定した応力のみを考慮していたため、断面力を過小評価してしまう虞があって安全性に問題があったが、実施形態によれば、定着部6の断面6Aの応力を上記のように計算して断面6Aを設計するようにしたので、定着部6の断面6Aの形状を決定するに際して、安全で、かつ、無駄の無い断面6Aを設計できたことがわかる。即ち、断面6Aの設計を合理的に行えることが実証できた。 That is, conventionally, since only the stress assuming that only the tensile force T1 due to the engagement between the engaging receiving portion 5 and the engaging portion 7 acts is considered, there is a risk of underestimating the cross-sectional force, which is safe. Although there was a problem with the property, according to the embodiment, the stress of the cross section 6A of the fixing portion 6 was calculated as described above to design the cross section 6A, so that the shape of the cross section 6A of the fixing portion 6 was determined. It can be seen that a safe and lean cross-section 6A could be designed. That is, it was demonstrated that the design of the cross section 6A can be rationalized.

以上のように、本願発明によれば、床版接続用継手1の各部分の断面の設計を上述したように行うことで、床版接続用継手1の各部分の断面を決定するに際して、安価かつ迅速に、安全かつ無駄の無い設計、即ち、合理的な設計を行えるようになった。 As described above, according to the present invention, by designing the cross section of each part of the floor slab connecting joint 1 as described above, it is inexpensive to determine the cross section of each part of the floor slab connecting joint 1. Moreover, it has become possible to quickly, safely and efficiently design, that is, rational design.

尚、受部材2を、床版10の橋軸方向Xに沿って延長する端部において橋軸方向Xに沿って所定の間隔を隔てて複数個埋設して、橋軸直角方向(橋幅方向)Yに沿って隣り合う床版10,10同士を連結するように構成された床版接続用継手1の設計も同様に行える。
即ち、本願発明の床版接続用継手の設計方法は、床版接続用継手1は、橋軸直角方向(橋幅方向)Yに沿って隣り合う各床版10,10の端部側にそれぞれ設置された受部材2と、橋軸直角方向Yに沿って隣り合う各床版10,10の端部側にそれぞれ設置された受部材2を繋ぐ繋ぎ部材3とを備え、ボルト12などの固定手段により繋ぎ部材3と受部材2とが固定されることによって、橋軸直角方向Yに沿って隣り合う床版10と床版10とを連結する床版接続用継手1の設計も同様に行える。
In addition, a plurality of receiving members 2 are embedded along the bridge axis direction X at a predetermined end portion extending along the bridge axis direction X of the floor slab 10, and the bridge axis perpendicular direction (bridge width direction). ) Similarly, the design of the floor slab connecting joint 1 configured to connect the floor slabs 10 and 10 adjacent to each other along Y can be performed in the same manner.
That is, in the method of designing the floor slab connecting joint of the present invention, the floor slab connecting joint 1 is located on the end side of each of the floor slabs 10 and 10 adjacent to each other along the bridge axis perpendicular direction (bridge width direction) Y, respectively. A receiving member 2 installed and a connecting member 3 connecting the receiving members 2 installed on the end sides of the adjacent floor slabs 10 and 10 along the bridge axis perpendicular direction Y are provided, and a bolt 12 or the like is fixed. By fixing the connecting member 3 and the receiving member 2 by means, the floor slab connecting joint 1 for connecting the adjacent floor slabs 10 and the floor slab 10 along the bridge axis perpendicular direction Y can be similarly designed. ..

また、上記では、繋ぎ部材3と受部材2とがボルト12で固定されることで係合受部4の左右の係合壁54,54と繋ぎ部材3の係合壁面73とが係合するように構成された床版接続用継手1を例示したが、受部材2の妻壁52の内壁面と繋ぎ部材3の外壁面71との間に間隙を形成して、当該間隙に上方から楔を嵌入して繋ぎ部材3と受部材2と固定することで、当該楔を介して係合受部4の左右の係合壁54,54と繋ぎ部材3の係合壁面73とが係合するように構成された床版接続用継手1であってもよい。 Further, in the above, the connecting member 3 and the receiving member 2 are fixed by the bolt 12, so that the left and right engaging walls 54 and 54 of the engaging receiving portion 4 and the engaging wall surface 73 of the connecting member 3 are engaged with each other. Although the floor slab connecting joint 1 configured as described above is illustrated, a gap is formed between the inner wall surface of the gable wall 52 of the receiving member 2 and the outer wall surface 71 of the connecting member 3, and a wedge is formed in the gap from above. By fitting and fixing the connecting member 3 and the receiving member 2, the left and right engaging walls 54 and 54 of the engaging receiving portion 4 and the engaging wall surface 73 of the connecting member 3 engage with each other via the wedge. The floor slab connecting joint 1 configured as described above may be used.

尚、上記では、橋脚用の床版を接続する床版接続用継手1の設計方法を例に説明したが、本願の床版接続用継手の設計方法は、道路用の床版を接続する床版接続用継手の設計、あるいは、空港用の床版を接続する床版接続用継手の設計にも使用可能である。 In the above description, the design method of the floor slab connecting joint 1 for connecting the floor slabs for piers has been described as an example, but the design method for the floor slab connecting joints of the present application is the floor connecting the floor slabs for roads. plate connection joint design, or it can also be used in the slab connection joint design for connecting the deck for airports.

1 床版接続用継手、2 受部材、3 繋ぎ部材、4 係合凹部、5 係合受部、
6 定着部、6A 定着部の断面、7 係合部、8 連結部、8A 連結部の断面、
10 床版、11 床版の端部、12 ボルト(固定手段)、15 目地、
16 充填材、41 係合部挿入用開口(開口)、42 連結部挿入用開口(開口)、
51 底版、52 妻壁、53 側壁、53A 側壁の断面、54 係合壁、
73 係合壁面。
1 Floor slab connection joint, 2 receiving member, 3 connecting member, 4 engaging recess, 5 engaging receiving part,
6 Fixing part, 6A Cross section of fixing part, 7 Engaging part, 8 Connecting part, 8A Cross section of connecting part,
10 floor slabs, 11 floor slab edges, 12 bolts (fixing means), 15 joints,
16 Filler, 41 Engagement insertion opening (opening), 42 Connecting part insertion opening (opening),
51 bottom slab, 52 gable wall, 53 side wall, 53A side wall cross section, 54 engaging wall,
73 Engaging wall surface.

Claims (4)

隣り合うコンクリートプレキャスト製の各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の設計方法であって、
受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、
係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、
係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、
繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、
係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、
隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方にモルタルを充填した目地部分を形成したことにより、隣り合う床版と床版とが連結された床版接続構造において、
繋ぎ部材が位置される目地部分が各床版のRC構造の挙動に連動するとして当該繋ぎ部材が位置される目地部分を平面保持の仮定が成立するRC構造と見做すこととして、目地に充填されたモルタルを圧縮材と見做すとともに、目地を横切るように位置される繋ぎ部材の連結部の断面を床版の上面から下面に向けた方向に沿って分割された複数段の鉄筋と見做して当該RC構造と見做した目地部分に位置される繋ぎ部材の連結部の断面の応力を計算したことを特徴とする床版接続用継手の設計方法。
For floor slab connection, which includes a receiving member installed on the end side of each adjacent concrete precast floor slab and a connecting member connecting the receiving members installed on the end side of each adjacent floor slab. It is a method of designing a floor slab connection joint in a floor slab connection structure that connects adjacent floor slabs and floor slabs using a joint.
The receiving member includes an engaging receiving portion provided with an engaging recess for engaging the engaging portion provided on the connecting member, and a fixing portion fixed to the concrete of the floor slab.
The engaging receiving part is from the bottom slab, the gable wall provided so as to stand up from the bottom slab, the left and right side walls extending from both the left and right sides of the gable wall and rising from the bottom slab, and the extension ends of the left and right side walls. It is equipped with left and right engaging walls that extend in the direction of approaching each other and stand up from the bottom slab.
The engaging recess is formed by a recess formed by an opening between the upper part and the left and right engaging walls surrounded by the bottom plate, the gable wall, the left and right side walls, and the left and right engaging walls.
The connecting member includes a pair of engaging portions that engage with each engaging recess of each engaging receiving portion embedded in each end of each floor slab adjacent to each other, and a connecting portion that connects the pair of engaging portions. With
The engaging portion includes an engaging wall surface that engages with the left and right engaging walls of the engaging receiving portion.
The end faces of the adjacent floor slabs are arranged so as to be adjacent to each other through a gap serving as a joint, and the connecting portion of the connecting member is arranged on the end side of each adjacent floor slab. Insert from above into the opening between the left and right engaging walls to engage a pair of engaging portions of the connecting member with each engaging recess, and engage the engaging portion and the engaging recess engaged with the engaging recess. The adjacent floor slabs and floor slabs are connected by fixing with fixing means and forming a joint portion between the end faces of the adjacent floor slabs and a joint portion filled with mortar above the receiving member and the connecting member. In the floor slab connection structure
Assuming that the joint part where the connecting member is located is linked to the behavior of the RC structure of each floor slab, the joint part where the connecting member is located is regarded as an RC structure that holds the assumption of flatness, and the joint is filled. The mortar is regarded as a compression material, and the cross section of the connecting part of the connecting member located so as to cross the joint is regarded as a multi-stage reinforcing bar divided along the direction from the upper surface to the lower surface of the floor slab. and做method of designing a deck connecting joint, characterized in that to calculate the stress of the cross section of the connecting portion of the connecting member is positioned joint portion regarded as the RC structure.
隣り合うコンクリートプレキャスト製の各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の設計方法であって、
受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、
係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、
係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、
繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、
係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、
隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方にモルタルを充填した目地部分を形成したことにより、隣り合う床版と床版とが連結された床版接続構造において、
繋ぎ部材が位置される目地部分が各床版のRC構造の挙動に連動するとして当該繋ぎ部材が位置される目地部分を平面保持の仮定が成立するRC構造と見做すこととして、目地に充填されたモルタルを圧縮材と見做すとともに、係合受部に、係合部との係合により生じる軸力である引張力に基づく引張応力度と、曲げモーメントとが作用すると想定し、かつ、係合部の側壁の断面を床版の上面から下面に向けた方向に沿って分割された複数段の鉄筋と見做して、当該係合部の側壁の断面の応力を計算したことを特徴とする床版接続用継手の設計方法。
For floor slab connection, which includes a receiving member installed on the end side of each adjacent concrete precast floor slab and a connecting member connecting the receiving members installed on the end side of each adjacent floor slab. It is a method of designing a floor slab connection joint in a floor slab connection structure that connects adjacent floor slabs and floor slabs using a joint.
The receiving member includes an engaging receiving portion provided with an engaging recess for engaging the engaging portion provided on the connecting member, and a fixing portion fixed to the concrete of the floor slab.
The engaging receiving part is from the bottom slab, the gable wall provided so as to stand up from the bottom slab, the left and right side walls extending from both the left and right sides of the gable wall and rising from the bottom slab, and the extension ends of the left and right side walls. It is equipped with left and right engaging walls that extend in the direction of approaching each other and stand up from the bottom slab.
The engaging recess is formed by a recess formed by an opening between the upper part and the left and right engaging walls surrounded by the bottom plate, the gable wall, the left and right side walls, and the left and right engaging walls.
The connecting member includes a pair of engaging portions that engage with each engaging recess of each engaging receiving portion embedded in each end of each floor slab adjacent to each other, and a connecting portion that connects the pair of engaging portions. With
The engaging portion includes an engaging wall surface that engages with the left and right engaging walls of the engaging receiving portion.
The end faces of the adjacent floor slabs are arranged so as to be adjacent to each other through a gap serving as a joint, and the connecting portion of the connecting member is arranged on the end side of each adjacent floor slab. Insert from above into the opening between the left and right engaging walls to engage a pair of engaging portions of the connecting member with each engaging recess, and engage the engaging portion and the engaging recess engaged with the engaging recess. The adjacent floor slabs and floor slabs are connected by fixing with fixing means and forming a joint portion between the end faces of the adjacent floor slabs and a joint portion filled with mortar above the receiving member and the connecting member. In the floor slab connection structure
Assuming that the joint part where the connecting member is located is linked to the behavior of the RC structure of each floor slab, the joint part where the connecting member is located is regarded as an RC structure that holds the assumption of flatness, and the joint is filled. It assumed with struts regarded to mortar that is, the engagement receiving portion, and the tensile stress level based on the axial force der Ru tensile forces occurring Ri by the engagement between the engaging portion, and the bending moment acts However, the stress of the cross section of the side wall of the engaging portion is calculated by regarding the cross section of the side wall of the engaging portion as a multi-stage reinforcing bar divided along the direction from the upper surface to the lower surface of the floor slab. A method of designing joints for connecting floor slabs, which is characterized by the fact that
隣り合うコンクリートプレキャスト製の各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の設計方法であって、
受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、
係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、
係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、
繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、
係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、
隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方にモルタルを充填した目地部分を形成したことにより、隣り合う床版と床版とが連結された床版接続構造において、
繋ぎ部材が位置される目地部分が各床版のRC構造の挙動に連動するとして当該繋ぎ部材が位置される目地部分を平面保持の仮定が成立するRC構造と見做すこととして、目地に充填されたモルタルを圧縮材と見做すとともに、係合受部と定着部との境界位置近傍における定着部の断面に、係合受部と係合部との係合により生じる軸力である引張力に基づく引張応力度と、曲げモーメントとが作用すると想定して、当該定着部の断面の応力を計算したことを特徴とする床版接続用継手の設計方法。
For floor slab connection, which includes a receiving member installed on the end side of each adjacent concrete precast floor slab and a connecting member connecting the receiving members installed on the end side of each adjacent floor slab. It is a method of designing a floor slab connection joint in a floor slab connection structure that connects adjacent floor slabs and floor slabs using a joint.
The receiving member includes an engaging receiving portion provided with an engaging recess for engaging the engaging portion provided on the connecting member, and a fixing portion fixed to the concrete of the floor slab.
The engaging receiving part is from the bottom slab, the gable wall provided so as to stand up from the bottom slab, the left and right side walls extending from both the left and right sides of the gable wall and rising from the bottom slab, and the extension ends of the left and right side walls. It is equipped with left and right engaging walls that extend in the direction of approaching each other and stand up from the bottom slab.
The engaging recess is formed by a recess formed by an opening between the upper part and the left and right engaging walls surrounded by the bottom plate, the gable wall, the left and right side walls, and the left and right engaging walls.
The connecting member includes a pair of engaging portions that engage with each engaging recess of each engaging receiving portion embedded in each end of each floor slab adjacent to each other, and a connecting portion that connects the pair of engaging portions. With
The engaging portion includes an engaging wall surface that engages with the left and right engaging walls of the engaging receiving portion.
The end faces of the adjacent floor slabs are arranged so as to be adjacent to each other through a gap serving as a joint, and the connecting portion of the connecting member is arranged on the end side of each adjacent floor slab. Insert from above into the opening between the left and right engaging walls to engage a pair of engaging portions of the connecting member with each engaging recess, and engage the engaging portion and the engaging recess engaged with the engaging recess. The adjacent floor slabs and floor slabs are connected by fixing with fixing means and forming a joint portion between the end faces of the adjacent floor slabs and a joint portion filled with mortar above the receiving member and the connecting member. In the floor slab connection structure
Assuming that the joint part where the connecting member is located is linked to the behavior of the RC structure of each floor slab, the joint part where the connecting member is located is regarded as an RC structure that holds the assumption of flatness, and the joint is filled. with mortar struts regarded to which is, in the cross section of the fixing portion in the vicinity boundary position between the fixing portion and the engagement receiving portion, the axial force generated Ri by the engagement of the engagement receiving portion and the engagement portion a tensile stress level based on the tension Ru Oh, bending moment and are assumed to act, a method of designing a deck connecting joint, characterized in that to calculate the stress of the cross-section of the fixing unit.
隣り合うコンクリートプレキャスト製の各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の設計方法であって、
受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、
係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、
係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、
繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、
係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、
隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方にモルタルを充填した目地部分を形成したことにより、隣り合う床版と床版とが連結された床版接続構造において、
繋ぎ部材が位置される目地部分が各床版のRC構造の挙動に連動するとして当該繋ぎ部材が位置される目地部分を平面保持の仮定が成立するRC構造と見做すこととして、目地に充填されたモルタルを圧縮材と見做すとともに、
目地を横切るように位置される繋ぎ部材の連結部の断面を床版の上面から下面に向けた方向に沿って分割された複数段の鉄筋と見做して当該RC構造と見做した目地部分に位置される繋ぎ部材の連結部の断面の応力を計算し、
かつ、係合受部に、係合部との係合により生じる軸力である引張力に基づく引張応力度と、曲げモーメントとが作用すると想定し、かつ、係合部の側壁の断面を床版の上面から下面に向けた方向に沿って分割された複数段の鉄筋と見做して、当該係合部の側壁の断面の応力を計算し、
さらに、係合受部と定着部との境界位置近傍における定着部の断面に、係合受部と係合部との係合により生じる軸力である引張力に基づく引張応力度と、曲げモーメントとが作用すると想定して、当該定着部の断面の応力を計算したことを特徴とする床版接続用継手の設計方法。
For floor slab connection, which includes a receiving member installed on the end side of each adjacent concrete precast floor slab and a connecting member connecting the receiving members installed on the end side of each adjacent floor slab. It is a method of designing a floor slab connection joint in a floor slab connection structure that connects adjacent floor slabs and floor slabs using a joint.
The receiving member includes an engaging receiving portion provided with an engaging recess for engaging the engaging portion provided on the connecting member, and a fixing portion fixed to the concrete of the floor slab.
The engaging receiving part is from the bottom slab, the gable wall provided so as to stand up from the bottom slab, the left and right side walls extending from both the left and right sides of the gable wall and rising from the bottom slab, and the extension ends of the left and right side walls. It is equipped with left and right engaging walls that extend in the direction of approaching each other and stand up from the bottom slab.
The engaging recess is formed by a recess formed by an opening between the upper part and the left and right engaging walls surrounded by the bottom plate, the gable wall, the left and right side walls, and the left and right engaging walls.
The connecting member includes a pair of engaging portions that engage with each engaging recess of each engaging receiving portion embedded in each end of each floor slab adjacent to each other, and a connecting portion that connects the pair of engaging portions. With
The engaging portion includes an engaging wall surface that engages with the left and right engaging walls of the engaging receiving portion.
The end faces of the adjacent floor slabs are arranged so as to be adjacent to each other through a gap serving as a joint, and the connecting portion of the connecting member is arranged on the end side of each adjacent floor slab. Insert from above into the opening between the left and right engaging walls to engage a pair of engaging portions of the connecting member with each engaging recess, and engage the engaging portion and the engaging recess engaged with the engaging recess. The adjacent floor slabs and floor slabs are connected by fixing with fixing means and forming a joint portion between the end faces of the adjacent floor slabs and a joint portion filled with mortar above the receiving member and the connecting member. In the floor slab connection structure
Assuming that the joint part where the connecting member is located is linked to the behavior of the RC structure of each floor slab, the joint part where the connecting member is located is regarded as an RC structure where the assumption of flat holding is established, and the joint is filled. While considering the mortar as a compression material,
The cross section of the connecting part of the connecting member located so as to cross the joint is regarded as a multi-stage reinforcing bar divided along the direction from the upper surface to the lower surface of the floor slab, and the joint is regarded as the RC structure. Calculate the stress of the cross section of the connecting part of the connecting member located in the part,
And the engagement receiving portion, and the tensile stress level based on the axial force der Ru tensile forces occurring Ri by the engagement between the engaging portion, assuming the bending moment acts, and the side wall of the engagement portion The stress of the cross section of the side wall of the engaging part is calculated by regarding the cross section as a multi-stage reinforcing bar divided along the direction from the upper surface to the lower surface of the floor slab.
Furthermore, the cross section of the fixing portion in the vicinity boundary position between the fixing portion and the engagement receiving portion, and the tensile stress level based on the axial force der Ru tensile forces occurring Ri by the engagement of the engagement receiving portion and the engagement portion , bending moment and are assumed to act, a method of designing a deck connecting joint, characterized in that to calculate the stress of the cross-section of the fixing unit.
JP2017057047A 2017-03-23 2017-03-23 How to design joints for floor slab connection Active JP6833581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017057047A JP6833581B2 (en) 2017-03-23 2017-03-23 How to design joints for floor slab connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017057047A JP6833581B2 (en) 2017-03-23 2017-03-23 How to design joints for floor slab connection

Publications (2)

Publication Number Publication Date
JP2018159233A JP2018159233A (en) 2018-10-11
JP6833581B2 true JP6833581B2 (en) 2021-02-24

Family

ID=63795504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057047A Active JP6833581B2 (en) 2017-03-23 2017-03-23 How to design joints for floor slab connection

Country Status (1)

Country Link
JP (1) JP6833581B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972537A (en) * 1989-06-05 1990-11-27 Slaw Sr Robert A Orthogonally composite prefabricated structural slabs
JP2684537B2 (en) * 1995-11-08 1997-12-03 大豊建設株式会社 High rigidity joint of segment
JP2005258569A (en) * 2004-03-09 2005-09-22 Tokyo Electric Power Co Inc:The Strength evaluation method for rc made underground hollow structure
JP6097965B2 (en) * 2013-03-13 2017-03-22 株式会社熊谷組 Construction method of concrete precast slab for bridge
JP2014177766A (en) * 2013-03-13 2014-09-25 Kumagai Gumi Co Ltd Method for constructing concrete precast floor slab for bridge
JP5787965B2 (en) * 2013-11-21 2015-09-30 オリエンタル白石株式会社 Fittings for bridge decks

Also Published As

Publication number Publication date
JP2018159233A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
Gilbert et al. Effects of shrinkage on the long-term stresses and deformations of composite concrete slabs
Bousias et al. Strength, stiffness, and cyclic deformation capacity of concrete jacketed members
Salama et al. Effectiveness of Glass Fiber-Reinforced Polymer Stirrups as Shear Reinforcement in Glass Fiber-Reinforced Polymer-Reinforced Concrete Edge Slab-Column Connections.
Bank et al. Pultruded FRP plank as formwork and reinforcement for concrete members
KR101954155B1 (en) Bridge with full-deck and protective wall, and construction method for the same
Soltani Bond and serviceability characterization of concrete reinforced with high strength steel
Kanchanadevi et al. Shear resistance of embedded connection of composite girder with corrugated steel web
Elliott et al. Can precast concrete structures be designed as semi-rigid frames
JP6505291B2 (en) Design method of pile head joint and calculation method of allowable bending moment
JP6833581B2 (en) How to design joints for floor slab connection
WO2004083533A1 (en) Section steel and wall body using the section steel
Khederzadeh et al. Development of cost-effective PL-3 concrete bridge barrier reinforced with sand-coated glass fibre reinforced polymer (GFRP) bars: static load tests
Rezaeian et al. In-plane behaviour of composite floor slab diaphragm interfaces under high shear demand
JP6078767B2 (en) Structure of residual formwork made of concrete
JP5050088B2 (en) Reinforced concrete beam design method and reinforced concrete beam
Lam et al. An experimental study of reinforced concrete beams with closely-spaced headed bars
JP6423202B2 (en) Seismic reinforcement method for concrete structure and seismic reinforcement structure for concrete structure
Hernandez et al. Initial in-service response and lateral load distribution of a prestressed self-consolidating concrete bridge using field load tests
Seo et al. Evaluation of prism and diagonal tension strength of masonry form-block walls reinforced with steel fibers
JP6838984B2 (en) Temporary receiving structure of existing column axial force and seismic isolation construction method
US10138630B1 (en) Concrete shearwall and assemblies thereof, and related methods
Evans et al. Steel—concrete composite flooring deck structures
JP7389696B2 (en) Floor slab connection structure and connection method
Chin Standardization and testing of embedded plates for design, fabrication, and construction economy
Hobbs Effects of slab-column interaction in steel moment resisting frames with steel-concrete composite floor slabs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R150 Certificate of patent or registration of utility model

Ref document number: 6833581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350