JP6832754B2 - Underground irrigation system - Google Patents

Underground irrigation system Download PDF

Info

Publication number
JP6832754B2
JP6832754B2 JP2017046883A JP2017046883A JP6832754B2 JP 6832754 B2 JP6832754 B2 JP 6832754B2 JP 2017046883 A JP2017046883 A JP 2017046883A JP 2017046883 A JP2017046883 A JP 2017046883A JP 6832754 B2 JP6832754 B2 JP 6832754B2
Authority
JP
Japan
Prior art keywords
water supply
pipe
perforated
water
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017046883A
Other languages
Japanese (ja)
Other versions
JP2018148835A (en
Inventor
原田 潤
潤 原田
山口 秀美
秀美 山口
Original Assignee
株式会社クボタケミックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタケミックス filed Critical 株式会社クボタケミックス
Priority to JP2017046883A priority Critical patent/JP6832754B2/en
Publication of JP2018148835A publication Critical patent/JP2018148835A/en
Application granted granted Critical
Publication of JP6832754B2 publication Critical patent/JP6832754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sink And Installation For Waste Water (AREA)

Description

この発明は地下灌漑システムに関し、特にたとえば、大区画化された圃場に対して地下から水を供給する、地下灌漑システムに関する。 The present invention relates to an underground irrigation system, in particular, to, for example, an underground irrigation system that supplies water from underground to a large plot field.

従来の地下灌漑システムの一例が特許文献1に開示されている。特許文献1の地下灌漑システムは、圃場の地中に埋設した有孔管(地下埋設管)の下流側に水位設定器(水位設定用溢流堰)を設置し、この水位設定器を用いて排水水位を調節することで、圃場の水位(地下水位および地表水位を含む)を設定するものである。 An example of a conventional underground irrigation system is disclosed in Patent Document 1. In the underground irrigation system of Patent Document 1, a water level setting device (overflow weir for setting the water level) is installed on the downstream side of a perforated pipe (underground buried pipe) buried in the ground of the field, and this water level setting device is used. By adjusting the irrigation water level, the water level of the field (including the groundwater level and the surface water level) is set.

特開平1−95712号公報Japanese Unexamined Patent Publication No. 1-95712

近年、圃場を大区画化する等の圃場整備事業が進められている。しかし、特許文献1の技術では、圃場(耕地)ごとに水位を一括で管理しているため、圃場が大区画化された場合、圃場の水位を適切に管理できない恐れが生じる。たとえば、大区画化された圃場では、圃場の領域によって地下浸透量の違いが生じる可能性が高くなり、圃場内に意図しない水位差が生じてしまう恐れがある。また、動水勾配によって生じる給排水時の上流側と下流側との水位の差は、配管距離が長くなればなるほど大きくなるため、大区画化された圃場では、配管の上流側と下流側とで水位差が大きくなってしまう。 In recent years, field maintenance projects such as large-scale field development have been promoted. However, in the technique of Patent Document 1, since the water level is collectively managed for each field (cultural land), there is a risk that the water level of the field cannot be properly managed when the field is divided into large sections. For example, in a large-sized field, there is a high possibility that a difference in the amount of underground infiltration will occur depending on the area of the field, and there is a risk that an unintended water level difference will occur in the field. In addition, the difference in water level between the upstream side and the downstream side during water supply and drainage caused by the hydraulic gradient increases as the pipe distance increases, so in a large compartmentalized field, the upstream side and the downstream side of the pipe The water level difference becomes large.

それゆえに、この発明の主たる目的は、新規な、地下灌漑システムを提供することである。 Therefore, the main object of the present invention is to provide a novel, underground irrigation system.

この発明の他の目的は、大区画化された圃場であっても、圃場の水位を適切に管理できる、地下灌漑システムを提供することである。 Another object of the present invention is to provide an underground irrigation system capable of appropriately controlling the water level of a field even in a large-sized field.

第1の発明は、矩形状に区画化された圃場に対して地下から水を供給する地下灌漑システムであって、圃場の一辺側と一辺側に対向する他辺側とのそれぞれに設けられ、当該一辺方向に沿って延びる第1給水路および第2給水路と、圃場の中央部に設けられ、一辺方向に沿って延びる排水路と、圃場の排水路を挟んだ両側部分のそれぞれに設けられる第1地下灌漑システムおよび第2地下灌漑システムとを備え、第1地下灌漑システムおよび第2地下灌漑システムのそれぞれは、一辺方向に沿って延び、当該一辺方向と直交する方向に所定間隔で並ぶように圃場の地下に埋設される複数の有孔管、複数の有孔管の上流側端部同士を連結し、第1給水路または第2給水路から供給される水を各有孔管に導く給水側連結管、複数の有孔管の下流側端部同士を連結し、各有孔管から排出される水を排水路に導く排水側連結管、および複数の有孔管の下流側端部のそれぞれに設けられる排水制御装置を備え、給水側連結管の下流側端部のそれぞれは、排水路に連結される、地下灌漑システムである。 The first invention is an underground irrigation system that supplies water from underground to a field partitioned into a rectangular shape, and is provided on one side of the field and the other side facing one side, respectively. A first water supply channel and a second water supply channel extending along the one side direction, a drainage channel extending along the one side direction provided in the central part of the field, and a drainage channel extending along the one side direction are provided on both sides of the drainage channel of the field. It is provided with a first underground irrigation system and a second underground irrigation system, and each of the first underground irrigation system and the second underground irrigation system extends along one side direction and is arranged at predetermined intervals in a direction orthogonal to the one side direction. a plurality of perforated tubes that are set embedded in the field of underground, connecting the upstream ends of the plurality of perforated pipes, the water supplied from the first water supply passage or the second water supply path to each perforated pipe A water supply side connecting pipe to guide, a draining side connecting pipe that connects the downstream ends of a plurality of perforated pipes and guides water discharged from each perforated pipe to a drainage channel, and a downstream end of a plurality of perforated pipes. Each of the downstream ends of the water supply side connecting pipe is an underground irrigation system connected to the drainage channel, provided with a drainage control device provided in each of the sections.

第1の発明では、地下灌漑システムは、矩形状に区画化された圃場の一辺側と一辺側に対向する他辺側とのそれぞれに設けられる第1給水路および第2給水路と、圃場の中央部に設けられ排水路とを備える。また、圃場の排水路を挟んだ両側部分のそれぞれに、第1地下灌漑システムおよび第2地下灌漑システムが設けられる。第1地下灌漑システムおよび第2地下灌漑システムのそれぞれは、圃場の地下に所定間隔で埋設される複数の有孔管を備え、有孔管を用いて圃場の給排水を行うことによって、圃場の水位を所望の水位に保つ。第1給水路、第2給水路、排水路および複数の有孔管は、互いに平行に延びるように設けられる。各有孔管の上流側端部同士は、給水路から供給される水を各有孔管に導く給水側連結管によって連結される。また、給水側連結管の下流側端部のそれぞれは、排水路に連結される。一方、各有孔管の下流側端部同士は、各有孔管から排出される水を排水路に導く排水側連結管によって連結される。そして、各有孔管の下流側端部には、有孔管からの排水を制御する排水制御装置が設けられる。各有孔管に設けられる排水制御装置を用いることにより、有孔管ごとに排水を制御して水位を設定することが可能となる。 In the first invention, the underground irrigation system is provided with a first water supply channel and a second water supply channel provided on one side of the field and the other side facing the other side, which are partitioned in a rectangular shape, and the field. It is provided in the center and has a drainage channel. In addition, a first underground irrigation system and a second underground irrigation system are provided on both sides of the drainage channel of the field. Each of the first underground irrigation system and the second underground irrigation system is provided with a plurality of perforated pipes buried underground in the field at predetermined intervals, and the water level of the field is supplied and drained by using the perforated pipes. Keep at the desired water level. The first water supply channel, the second water supply channel, the drainage channel, and the plurality of perforated pipes are provided so as to extend in parallel with each other. The upstream end portions of the perforated pipes are connected to each other by a water supply side connecting pipe that guides the water supplied from the water supply channel to each perforated pipe. Further, each of the downstream end portions of the water supply side connecting pipe is connected to the drainage channel. On the other hand, the downstream ends of the perforated pipes are connected to each other by a drainage side connecting pipe that guides the water discharged from each perforated pipe to the drainage channel. A drainage control device for controlling drainage from the perforated pipe is provided at the downstream end of each perforated pipe. By using the drainage control device provided in each perforated pipe, it is possible to control the drainage for each perforated pipe and set the water level.

第1の発明によれば、各有孔管に対して排水制御装置が設けられるので、有孔管ごとに個別に水位設定できる。したがって、大区画化された圃場であっても、圃場の水位を適切に管理できる。 According to the first invention, since the drainage control device is provided for each perforated pipe, the water level can be set individually for each perforated pipe. Therefore, the water level of the field can be appropriately managed even in a large-sized field.

第2の発明は、第1の発明に従属し、複数の有孔管の上流側端部のそれぞれに設けられる送水制御装置を備える。 The second invention is subordinate to the first invention and includes a water supply control device provided at each of the upstream end portions of the plurality of perforated pipes.

第2の発明では、各有孔管の上流側端部には、有孔管への給水を制御する送水制御装置が設けられる。そして、各有孔管に設けられる送水制御装置および排水制御装置を用いることにより、有孔管ごとに給水および排水を制御して水位が設定される。 In the second invention, a water supply control device for controlling water supply to the perforated pipe is provided at the upstream end of each perforated pipe. Then, by using the water supply control device and the drainage control device provided in each perforated pipe, the water supply and drainage are controlled for each perforated pipe and the water level is set.

第2の発明によれば、各有孔管に対して送水制御装置および排水制御装置が設けられるので、有孔管ごとの水位設定をより適切に実行できる。 According to the second invention, since the water supply control device and the drainage control device are provided for each perforated pipe, the water level can be set more appropriately for each perforated pipe.

第3の発明は、第1または第2の発明に従属し、給水側連結管の上流側端部のそれぞれに設けられる、自動制御または遠隔操作が可能な電動の給水制御装置を備える。 The third invention is subordinate to the first or second invention, and includes an electric water supply control device capable of automatic control or remote control provided at each of the upstream end portions of the water supply side connecting pipe.

第3の発明では、給水側連結管の上流側端部には、給水制御装置が設けられる。この給水制御装置は、予め記憶されたプログラムに基づく自動制御または遠隔操作が可能な電動のものである。これにより、圃場の全体的な水位管理を自動化または遠隔操作化できるので、圃場での作業負担が低減される。 In the third invention, a water supply control device is provided at the upstream end of the water supply side connecting pipe. This water supply control device is an electric device capable of automatic control or remote control based on a pre-stored program. As a result, the overall water level management of the field can be automated or remotely controlled, so that the work load in the field is reduced.

第4の発明は、圃場に対して地下から水を供給する地下灌漑システムであって、圃場の地下に所定間隔で埋設される複数の有孔管、複数の有孔管の上流側端部同士を連結し、給水路から供給される水を各有孔管に導く給水側連結管、複数の有孔管の下流側端部同士を連結し、各有孔管から排出される水を排水路に導く排水側連結管、および複数の有孔管の下流側端部のそれぞれに設けられる排水制御装置を備え、給水側連結管の下流側端部は、当該給水側連結管を開閉可能な弁部材を介して排水路に連結される、地下灌漑システムである。 The fourth invention is an underground irrigation system that supplies water to a field from underground, and a plurality of perforated pipes buried at predetermined intervals in the basement of the field, and upstream end portions of the plurality of perforated pipes. The water supply side connecting pipe that connects the water supplied from the water supply channel to each perforated pipe, and the downstream ends of the plurality of perforated pipes are connected to each other, and the water discharged from each perforated pipe is drained. A drainage control device is provided at each of the drainage side connecting pipes leading to the water supply side and the downstream end portions of the plurality of perforated pipes, and the downstream end portion of the water supply side connecting pipe is a valve capable of opening and closing the water supply side connecting pipe. It is an underground irrigation system that is connected to a drainage channel via a member.

第4の発明によれば、給水側連結管の下流側端部が排水路に接続されるので、給水側連結管に溜まった泥等を排水路に直接排出することが可能となり、給水側連結管の洗浄作業(泥吐き作業)が容易となる。したがって、給水側連結管を適切に維持管理することができるので、地下灌漑システムの寿命が延びる。また、給水側連結管が適切に維持管理されることで、各有孔管への用水供給が適切に維持されるので、有孔管ごとの水位設定機能も適切に維持される。 According to the fourth invention, since the downstream end of the water supply side connecting pipe is connected to the drainage channel, mud and the like accumulated in the water supply side connecting pipe can be directly discharged to the drainage channel, and the water supply side connecting can be made. The pipe cleaning work (mud spitting work) becomes easy. Therefore, the life of the underground irrigation system can be extended because the water supply side connecting pipe can be properly maintained and managed. Further, by appropriately maintaining and managing the water supply side connecting pipe, the water supply to each perforated pipe is appropriately maintained, so that the water level setting function for each perforated pipe is also appropriately maintained.

第5の発明は、第4の発明に従属し、複数の有孔管の上流側端部のそれぞれは、給水側連結管の管壁上部に形成される分岐部に連結される。 The fifth invention is subordinate to the fourth invention, and each of the upstream end portions of the plurality of perforated pipes is connected to a branch portion formed on the upper portion of the pipe wall of the water supply side connecting pipe.

第5の発明によれば、給水側連結管から各有孔管への泥等の流入が低減されるので、各有孔管における泥溜りが低減される。したがって、各有孔管の洗浄頻度を少なくすることができる。 According to the fifth invention, the inflow of mud or the like from the water supply side connecting pipe to each perforated pipe is reduced, so that the mud pool in each perforated pipe is reduced. Therefore, the frequency of cleaning each perforated pipe can be reduced.

第6の発明は、第1ないし第5のいずれかの発明に従属し、複数の有孔管の上流側端部のそれぞれには、洗浄機を有孔管の内部に挿入可能な洗浄用立上り管が設けられる。 The sixth invention is dependent on any one of the first to fifth inventions, and a washing machine can be inserted into the inside of the perforated pipe at each of the upstream end portions of the plurality of perforated pipes. A tube is provided.

第6の発明によれば、各有孔管の洗浄作業を容易に行うことができ、各有孔管を適切に維持管理することができるので、地下灌漑システムの寿命が延びる。 According to the sixth invention, the cleaning work of each perforated pipe can be easily performed, and each perforated pipe can be appropriately maintained and managed, so that the life of the underground irrigation system is extended.

第7の発明は、第6の発明に従属し、洗浄用立上り管は、送水制御装置を構成する立上り管である。 The seventh invention is subordinate to the sixth invention, and the rising pipe for cleaning is a rising pipe constituting the water supply control device.

第7の発明では、送水制御装置を構成する立上り管が洗浄用立上り管と兼用される。 In the seventh invention, the rising pipe constituting the water supply control device is also used as the rising pipe for cleaning.

第8の発明は、第1ないし第7のいずれかの発明に従属し、複数の有孔管は、圃場の短辺方向に沿って延び、当該圃場の長辺方向に所定間隔で並ぶように配置される。 The eighth invention is dependent on any one of the first to seventh inventions, and the plurality of perforated pipes extend along the short side direction of the field and are arranged at predetermined intervals in the long side direction of the field. Be placed.

第8の発明によれば、各有孔管を圃場の短辺方向に延びるように配置するので、圃場が大区画化された場合でも、動水勾配によって生じる水位差を低減できる。また、有孔管に泥等が堆積し難くなり、有孔管の洗浄作業も容易となる。 According to the eighth invention, since each perforated pipe is arranged so as to extend in the short side direction of the field, the water level difference caused by the hydraulic gradient can be reduced even when the field is divided into large sections. In addition, mud and the like are less likely to accumulate on the perforated pipe, and the cleaning work of the perforated pipe becomes easy.

第9の発明は、第1ないし第8のいずれかの発明に従属し、排水制御装置は、水位設定機構を有する桝を含む。 The ninth invention is subordinate to any one of the first to eighth inventions, and the drainage control device includes a basin having a water level setting mechanism.

第9の発明によれば、各有孔管の下流側端部に設けられる排水制御装置として、伸縮式およびシャッタ式などの水位設定機構を有する桝が用いられるので、各有孔管における水位管理を容易に行うことができる。 According to the ninth invention, as the drainage control device provided at the downstream end of each perforated pipe, a basin having a water level setting mechanism such as a telescopic type and a shutter type is used, so that the water level is managed in each perforated pipe. Can be easily performed.

第10の発明は、圃場に対して地下から水を供給する地下灌漑システムであって、圃場の地下に所定間隔で埋設される複数の有孔管、複数の有孔管の上流側端部同士を連結し、給水路から供給される水を各有孔管に導く給水側連結管、および複数の有孔管の下流側端部同士を連結し、各有孔管から排出される水を排水路に導く排水側連結管を備え、給水側連結管の下流側端部は、当該給水側連結管を開閉可能な弁部材を介して排水路に連結される、地下灌漑システムである。 A tenth invention is an underground irrigation system that supplies water to a field from underground, and a plurality of perforated pipes buried at predetermined intervals in the basement of the field, and upstream end portions of the plurality of perforated pipes. Connect the water supply side connecting pipe that guides the water supplied from the water supply channel to each perforated pipe, and connect the downstream ends of the plurality of perforated pipes to drain the water discharged from each perforated pipe. The downstream end of the water supply side connecting pipe is an underground irrigation system having a drainage side connecting pipe leading to the road and connecting the water supply side connecting pipe to the drainage channel via a valve member that can be opened and closed.

第10の発明では、地下灌漑システムは、圃場の地下に所定間隔で埋設される複数の有孔管を備え、有孔管を用いて圃場の給排水を行うことによって、圃場の水位を所望の水位に保つ。各有孔管の上流側端部同士は、給水路から供給される水を各有孔管に導く給水側連結管によって連結される。一方、各有孔管の下流側端部同士は、各有孔管から排出される水を排水路に導く排水側連結管によって連結される。そして、給水側連結管の下流側端部は、給水側連結管の管路を開閉可能な弁部材を介して排水路に連結される。 In the tenth invention, the underground irrigation system includes a plurality of perforated pipes buried underground in the field at predetermined intervals, and the water level of the field is set to a desired water level by supplying and draining the field using the perforated pipes. Keep in. The upstream end portions of the perforated pipes are connected to each other by a water supply side connecting pipe that guides the water supplied from the water supply channel to each perforated pipe. On the other hand, the downstream ends of the perforated pipes are connected to each other by a drainage side connecting pipe that guides the water discharged from each perforated pipe to the drainage channel. Then, the downstream end of the water supply side connecting pipe is connected to the drainage channel via a valve member capable of opening and closing the pipeline of the water supply side connecting pipe.

第10の発明によれば、給水側連結管の下流側端部が排水路に接続されるので、給水側連結管に溜まった泥等を排水路に直接排出することが可能となり、給水側連結管の洗浄作業(泥吐き作業)が容易となる。したがって、給水側連結管を適切に維持管理することができるので、地下灌漑システムの寿命が延びると共に、大区画化された圃場であってもその水位を適切に管理できる。また、給水側連結管が適切に維持管理されることで、各有孔管への用水供給が適切に維持されるので、たとえば有孔管ごとの水位設定を行う場合には、その水位設定機能も適切に維持される。 According to the tenth invention, since the downstream end of the water supply side connecting pipe is connected to the drainage channel, mud and the like accumulated in the water supply side connecting pipe can be directly discharged to the drainage channel, and the water supply side connecting can be made. The pipe cleaning work (mud spitting work) becomes easy. Therefore, since the water supply side connecting pipe can be appropriately maintained and managed, the life of the underground irrigation system can be extended, and the water level can be appropriately managed even in a large-sized field. In addition, since the water supply to each perforated pipe is properly maintained by properly maintaining and managing the water supply side connecting pipe, for example, when setting the water level for each perforated pipe, the water level setting function Is also maintained properly.

この発明によれば、各有孔管に対して排水制御装置が設けられるので、有孔管ごとに個別に水位設定できる。したがって、大区画化された圃場であっても、圃場の水位を適切に管理できる。 According to the present invention, since the drainage control device is provided for each perforated pipe, the water level can be set individually for each perforated pipe. Therefore, the water level of the field can be appropriately managed even in a large-sized field.

この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う後述の実施例の詳細な説明から一層明らかとなろう。 The above-mentioned object, other object, feature and advantage of the present invention will become more apparent from the detailed description of the examples described below with reference to the drawings.

この発明の一実施例である地下灌漑システムの配管構造を概略的に示す図解図である。It is a schematic diagram which shows schematic the piping structure of the underground irrigation system which is one Example of this invention. 図1の地下灌漑システムを示す平面図である。It is a top view which shows the underground irrigation system of FIG. 図1の地下灌漑システムの有孔管の管軸方向における断面を示す断面図である。It is sectional drawing which shows the cross section in the pipe axis direction of the perforated pipe of the underground irrigation system of FIG. 図1の地下灌漑システムが備える送水制御装置を示す断面図である。It is sectional drawing which shows the water supply control device provided in the underground irrigation system of FIG. 図1の地下灌漑システムが備える排水制御装置を示す断面図である。It is sectional drawing which shows the drainage control device provided in the underground irrigation system of FIG. 図1の地下灌漑システムによる水位管理を説明するための図解図である。It is a schematic diagram for demonstrating the water level management by the underground irrigation system of FIG. 送水制御装置または排水制御装置の変形例の要部を示す図解図である。It is a schematic diagram which shows the main part of the modification of the water supply control device or the drainage control device. この発明の他の実施例である地下灌漑システムを示す平面図である。It is a top view which shows the underground irrigation system which is another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す平面図である。It is a top view which shows the underground irrigation system which is still another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す平面図である。It is a top view which shows the underground irrigation system which is still another Example of this invention. 図10の地下灌漑システムの有孔管の管軸方向における断面を示す断面図である。It is sectional drawing which shows the cross section in the pipe axis direction of the perforated pipe of the underground irrigation system of FIG. 図10の地下灌漑システムが備える送水制御装置を示す平面図である。FIG. 3 is a plan view showing a water supply control device included in the underground irrigation system of FIG. 図12のXIII-XIII線における送水制御装置の断面を示す断面図である。It is sectional drawing which shows the cross section of the water supply control device in line XIII-XIII of FIG. 図12のXIV-XIV線における送水制御装置の断面を示す断面図である。It is sectional drawing which shows the cross section of the water supply control apparatus in line XIV-XIV of FIG. 図10の地下灌漑システムによる水位管理を説明するための図解図である。It is a schematic diagram for demonstrating the water level management by the underground irrigation system of FIG. 地下灌漑システムが備える排水制御装置の変形例を示す図解図である。It is a schematic diagram which shows the modification of the drainage control device provided in the underground irrigation system. 地下灌漑システムが備える排水制御装置の他の変形例を示す図解図である。It is a schematic diagram which shows other modification of the drainage control device provided in the underground irrigation system. 地下灌漑システムが備える排水制御装置のさらに他の変形例を示す図解図である。It is a schematic diagram which shows the further modification of the drainage control device provided in the underground irrigation system.

図1を参照して、この発明の一実施例である地下灌漑システム10(以下、単に「システム10」と言う。)は、水田、畑地、或いは田畑輪換地などの圃場100に対して地下から水を供給するための給排水設備であって、大区画化された圃場100に好適に用いられる。詳細は後述するように、システム10は、地下に埋設された複数の有孔管12から圃場100に対して水を供給する、または、有孔管12を用いて圃場100に生じた余剰水を排出することにより、圃場100の水位(地下水位および地表水位を含む)を所望の水位に保つ。 With reference to FIG. 1, the underground irrigation system 10 (hereinafter, simply referred to as “system 10”), which is an embodiment of the present invention, is used from underground with respect to a field 100 such as a paddy field, a field, or a field conversion site. It is a water supply / drainage facility for supplying water, and is suitably used for a large-scale field 100. As will be described in detail later, the system 10 supplies water to the field 100 from a plurality of perforated pipes 12 buried underground, or uses the perforated pipes 12 to supply excess water generated in the field 100. By discharging, the water level of the field 100 (including the groundwater level and the surface water level) is kept at a desired water level.

この実施例では、圃場100は、農道および畦畔によって、たとえば200m×100mの矩形状に区画化された大区画圃場である。圃場100の長辺方向両端の農道または畦畔部分には、開水路またはパイプラインなどの給水路(用水路)102が圃場100の短辺方向に延びるように設けられる。また、圃場100の長辺方向中央部には、排水路104として、圃場100の短辺方向に延びる排水パイプラインが埋設される。ただし、排水路104は、開水路であってもよい。そして、圃場100の排水路104を挟んだ両側部分のそれぞれに、システム10が配設される。 In this embodiment, the field 100 is a large-division field divided into a rectangular shape of, for example, 200 m × 100 m by a farm road and a ridge. Water supply channels (irrigation canals) 102 such as open channels or pipelines are provided on the farm roads or ridges at both ends in the long side direction of the field 100 so as to extend in the short side direction of the field 100. Further, a drainage pipeline extending in the short side direction of the field 100 is buried as a drainage channel 104 in the central portion in the long side direction of the field 100. However, the drainage channel 104 may be an open channel. Then, the system 10 is arranged on each of the side portions of the field 100 across the drainage channel 104.

ただし、給水路102および排水路104の配置は、圃場100の状況に応じて適宜変更され得るものである。たとえば、圃場100の中央部に給水路102を配置し、圃場100の両端部に排水路104を配置する場合もあるし、圃場の100一方端部に給水路102を配置し、圃場100の他端部に排水路104を配置する場合もある。また、後述するシステム10の各構成部分の配置も、給水路102および排水路104の配置などに応じて、適宜変更され得る。 However, the arrangement of the water supply channel 102 and the drainage channel 104 can be appropriately changed according to the situation of the field 100. For example, a water supply channel 102 may be arranged at the center of the field 100 and drainage channels 104 may be arranged at both ends of the field 100, or a water supply channel 102 may be arranged at one end of the field 100, and the other of the field 100. A drainage channel 104 may be arranged at the end. Further, the arrangement of each component of the system 10 described later may be appropriately changed depending on the arrangement of the water supply channel 102 and the drainage channel 104 and the like.

図2および図3に示すように、システム10は、複数の有孔管12、給水側連結管14および排水側連結管16などの配管を備える。これらの配管12,14,16は、ポリエチレンまたは硬質塩化ビニル等の合成樹脂によって形成され、水平方向に延びるように、または管内の水を排出し得る程度の緩い勾配を付けて、地下に埋設される。 As shown in FIGS. 2 and 3, the system 10 includes a plurality of perforated pipes 12, a water supply side connecting pipe 14, a drainage side connecting pipe 16, and the like. These pipes 12, 14, 16 are formed of a synthetic resin such as polyethylene or hard vinyl chloride, and are buried underground so as to extend horizontally or with a gentle slope capable of draining water in the pipe. To.

有孔管12は、その管壁に複数の孔(図示せず)を有する管であり、この実施例では、波付管などを用いて配管される。有孔管12は、給水路102および排水路104と同じ方向、つまり圃場100の短辺方向に沿って延び、圃場100の長辺方向に所定間隔で並ぶように配置される。 The perforated pipe 12 is a pipe having a plurality of holes (not shown) in the pipe wall thereof, and in this embodiment, the pipe is piped using a corrugated pipe or the like. The perforated pipes 12 extend in the same direction as the water supply channel 102 and the drainage channel 104, that is, along the short side direction of the field 100, and are arranged so as to be arranged at predetermined intervals in the long side direction of the field 100.

有孔管12の内径は、たとえば50〜100mmであり、有孔管12の長さは、圃場100の短辺方向の略全長に亘る長さである。また、有孔管12の埋設深さは、たとえば40〜70cmであり、隣り合う有孔管12同士の間隔は、たとえば5〜15mである。ただし、有孔管12の形状、大きさおよび配置態様などは、適宜変更可能である。なお、図1および図2などでは、図面の簡略化のため、4本の有孔管12を示しており、圃場100の広さに対する有孔管12の大きさ(他の構成部分も同様)も正確ではない。また、圃場100外に配管される有孔管12の両端部には、孔は形成されない。 The inner diameter of the perforated pipe 12 is, for example, 50 to 100 mm, and the length of the perforated pipe 12 is a length extending over substantially the entire length in the short side direction of the field 100. The burial depth of the perforated pipe 12 is, for example, 40 to 70 cm, and the distance between adjacent perforated pipes 12 is, for example, 5 to 15 m. However, the shape, size, arrangement mode, etc. of the perforated pipe 12 can be changed as appropriate. In addition, in FIG. 1 and FIG. 2, for simplification of the drawing, four perforated pipes 12 are shown, and the size of the perforated pipe 12 with respect to the size of the field 100 (the same applies to other constituent parts). Is not accurate either. Further, no holes are formed at both ends of the perforated pipe 12 piped outside the field 100.

給水側連結管14および排水側連結管16は、圃場100の短辺方向両端の農道または畦畔部分に埋設される。給水側連結管14および排水側連結管16の内径は、有孔管12の内径よりも少し大きく設定され、たとえば100mmである。 The water supply side connecting pipe 14 and the draining side connecting pipe 16 are buried in the farm road or the ridge portion at both ends in the short side direction of the field 100. The inner diameters of the water supply side connecting pipe 14 and the draining side connecting pipe 16 are set slightly larger than the inner diameter of the perforated pipe 12, and are set to, for example, 100 mm.

給水側連結管14は、有孔管12の上流側端部同士を連結する配管であって、給水路102から供給される水を各有孔管12に導く。この実施例では、各有孔管12の上流側端部は、給水側連結管14の管壁上部から立ち上がる分岐部(立上り管44の下端部)に連結される。すなわち、各有孔管12と給水側連結管14との連結部は、給水側連結管14の下半部よりも上方に設けられる。これにより、給水側連結管14から各有孔管12への泥または土砂などの流入が低減され、用水に含まれる泥等は主として給水側連結管14に堆積されるようになる。 The water supply side connecting pipe 14 is a pipe that connects the upstream end portions of the perforated pipe 12 to each other, and guides the water supplied from the water supply channel 102 to each perforated pipe 12. In this embodiment, the upstream end of each perforated pipe 12 is connected to a branch (lower end of the rising pipe 44) that rises from the upper part of the pipe wall of the water supply side connecting pipe 14. That is, the connecting portion between each perforated pipe 12 and the water supply side connecting pipe 14 is provided above the lower half portion of the water supply side connecting pipe 14. As a result, the inflow of mud or earth and sand from the water supply side connecting pipe 14 to each perforated pipe 12 is reduced, and the mud or the like contained in the irrigation water is mainly deposited on the water supply side connecting pipe 14.

また、給水側連結管14の下流側端部は、給水側連結管14の管路を開閉可能な弁部材20を介して排水路104に連結される。弁部材20としては、後述する送水制御装置40や排水制御装置42と同様のもの、或いは汎用のゲートバルブ等を用いるとよい。このように給水側連結管14の下流側端部を排水路104に接続しておくことにより、給水側連結管14に溜まった泥等を排水路104に直接排出することが可能となり、給水側連結管14の洗浄作業(泥吐き作業)が容易となる。さらに、給水側連結管14と排水路104との合流部には、点検用立上り管22が設けられる。 Further, the downstream end of the water supply side connecting pipe 14 is connected to the drainage channel 104 via a valve member 20 capable of opening and closing the pipeline of the water supply side connecting pipe 14. As the valve member 20, the same one as the water supply control device 40 and the drainage control device 42, which will be described later, or a general-purpose gate valve or the like may be used. By connecting the downstream end of the water supply side connecting pipe 14 to the drainage channel 104 in this way, the mud and the like accumulated in the water supply side connecting pipe 14 can be directly discharged to the drainage channel 104, and the water supply side can be discharged. The cleaning work (mud spitting work) of the connecting pipe 14 becomes easy. Further, an inspection rising pipe 22 is provided at the confluence of the water supply side connecting pipe 14 and the drainage channel 104.

一方、排水側連結管16は、有孔管12の下流側端部同士を連結する配管であって、各有孔管12から排出される水を排水路104に導く。排水側連結管16の上流側端部、各有孔管12と排水側連結管16との合流部、および排水側連結管16と排水路104との合流部のそれぞれには、点検用立上り管22が設けられる。 On the other hand, the drainage side connecting pipe 16 is a pipe that connects the downstream end portions of the perforated pipes 12 to each other, and guides the water discharged from each perforated pipe 12 to the drainage channel 104. An inspection rising pipe is provided at the upstream end of the drainage side connecting pipe 16, the confluence of each perforated pipe 12 and the drainage side connecting pipe 16, and the confluence of the drainage side connecting pipe 16 and the drainage channel 104. 22 is provided.

点検用立上り管22のそれぞれは、配管内部にゴミの詰りがないかを確認したり、そのゴミを除去したりする等のために用いられる。また、点検用立上り管22は、高圧洗浄機を配管内に挿入するための差込口として用いることもできる。 Each of the inspection rising pipes 22 is used for checking whether the inside of the pipe is clogged with dust, removing the dust, and the like. Further, the inspection rising pipe 22 can also be used as an insertion port for inserting the high pressure washer into the pipe.

また、給水側連結管14の上流側端部には、システム10全体に対する給水を制御する給水制御装置24が設けられる。給水制御装置24は、給水桝26および給水バルブ28等を備える。給水桝26の底部には、給水路102から分岐した取水管30が接続され、給水桝26内には、この取水管30の下流側端部に接続された給水バルブ28が収容される。 Further, a water supply control device 24 for controlling water supply to the entire system 10 is provided at the upstream end of the water supply side connecting pipe 14. The water supply control device 24 includes a water supply basin 26, a water supply valve 28, and the like. An intake pipe 30 branched from the water supply channel 102 is connected to the bottom of the water supply basin 26, and a water supply valve 28 connected to the downstream end of the water intake pipe 30 is housed in the water supply basin 26.

給水バルブ28としては、汎用の給水バルブを適宜用いることができる。簡単に説明すると、給水バルブ28は、上下動可能に設けられる弁体を備えており、弁軸の上端部に設けられたハンドルが操作されて弁軸に回転力が加えられると、送りねじ機構によって弁体が上下動する。この弁体の上下動によって、取水管30の下流側端部の開口が開閉され、また、その開き具合(開度)を調節することにより給水路102からの取水量が調節される。 As the water supply valve 28, a general-purpose water supply valve can be appropriately used. Briefly, the water supply valve 28 is provided with a valve body that can be moved up and down, and when a handle provided at the upper end of the valve shaft is operated to apply a rotational force to the valve shaft, a feed screw mechanism is provided. The valve body moves up and down. The vertical movement of the valve body opens and closes the opening at the downstream end of the water intake pipe 30, and the amount of water taken from the water supply channel 102 is adjusted by adjusting the opening degree (opening).

また、給水桝26の底部には、地下用給水口32が設けられ、この地下用給水口32に給水側連結管14の上流側端部が接続される。給水バルブ28を開くことによって給水路102から給水桝26内に流入した水は、地下用給水口32から給水側連結管14に供給される。また、給水桝26の側壁には、地上から用水を供給するための地上用給水口34が設けられる。この地上用給水口34には、上下動可能および着脱可能に堰板が取り付けられる。 Further, an underground water supply port 32 is provided at the bottom of the water supply basin 26, and an upstream end portion of the water supply side connecting pipe 14 is connected to the underground water supply port 32. The water flowing into the water supply basin 26 from the water supply channel 102 by opening the water supply valve 28 is supplied to the water supply side connecting pipe 14 from the underground water supply port 32. Further, on the side wall of the water supply basin 26, a ground water supply port 34 for supplying water from the ground is provided. A weir plate is attached to the above-ground water supply port 34 so as to be vertically movable and detachable.

そして、各有孔管12の両端部には、有孔管12ごとの水位設定を可能とするための送水制御装置40および排水制御装置42が設けられる。すなわち、各有孔管12の上流側端部(給水側)には、有孔管12への給水を個別に制御する送水制御装置40が設けられ、各有孔管12の下流側端部(排水側)には、有孔管12からの排水を個別に制御する排水制御装置42が設けられる。この実施例では、送水制御装置40および排水制御装置42として共に、栓部材46を備える制御装置が用いられる。 Then, at both ends of each perforated pipe 12, a water supply control device 40 and a drainage control device 42 for enabling the water level setting for each perforated pipe 12 are provided. That is, at the upstream end (water supply side) of each perforated pipe 12, a water supply control device 40 for individually controlling the water supply to the perforated pipe 12 is provided, and the downstream end of each perforated pipe 12 (water supply side). On the drainage side), a drainage control device 42 for individually controlling drainage from the perforated pipe 12 is provided. In this embodiment, a control device including a plug member 46 is used as both the water supply control device 40 and the drainage control device 42.

具体的には、図4に示すように、送水制御装置40は、給水側連結管14から有孔管12への分流部に設けられる立上り管44と、立上り管44に摺動可能に設けられる栓部材46とを含む。栓部材46は、棒状の柄部48を備える。柄部48の下端部には、ゴム等の弾性部材によって形成される略円柱状の止水部50が設けられる。一方、柄部48の上端部には、把持部52と、把持部52の下方に配置されるストッパ54とが設けられる。また、立上り管44の上端部には、栓部材46の柄部48が挿通される短円筒状のガイド部58を有するキャップ56が装着される。このガイド部58の上端面とストッパ54の下端面とが当接する位置は、栓部材46の最下位置と対応付けられている。すなわち、ガイド部58とストッパ54とが当接するまで栓部材46を押し下げる(つまり栓部材46を最下位置とする)ことにより、給水側連結管14内の通水を保持しつつ、給水側連結管14から有孔管12への給水が止水部50によって堰き止められる。一方、栓部材46が最下位置から引き上げられると、給水側連結管14から有孔管12への給水が可能となる。なお、栓部材46は、立上り管44の内側面と止水部50との間の摩擦力により、任意の高さ位置に固定可能である。また、図示は省略するが、柄部48の外周面には、ストッパ54の下に、送水制御装置40内の通水路の開度を表示する目盛り部が設けられることが好ましい。この目盛り部を目安とすることによって、作業者は、通水路の開度、すなわち有孔管12への給水量を調整し易くなる。 Specifically, as shown in FIG. 4, the water supply control device 40 is slidably provided on the rising pipe 44 provided at the diversion portion from the water supply side connecting pipe 14 to the perforated pipe 12 and the rising pipe 44. Includes plug member 46. The plug member 46 includes a rod-shaped handle 48. At the lower end of the handle 48, a substantially columnar water blocking portion 50 formed of an elastic member such as rubber is provided. On the other hand, a grip portion 52 and a stopper 54 arranged below the grip portion 52 are provided at the upper end portion of the handle portion 48. Further, a cap 56 having a short cylindrical guide portion 58 through which the handle portion 48 of the plug member 46 is inserted is attached to the upper end portion of the rising pipe 44. The position where the upper end surface of the guide portion 58 and the lower end surface of the stopper 54 come into contact with each other is associated with the lowermost position of the plug member 46. That is, by pushing down the plug member 46 until the guide portion 58 and the stopper 54 come into contact with each other (that is, the plug member 46 is in the lowest position), the water supply side connection is maintained while maintaining the water flow in the water supply side connection pipe 14. The water supply from the pipe 14 to the perforated pipe 12 is blocked by the water stop portion 50. On the other hand, when the plug member 46 is pulled up from the lowest position, water can be supplied from the water supply side connecting pipe 14 to the perforated pipe 12. The plug member 46 can be fixed at an arbitrary height position by the frictional force between the inner surface of the rising pipe 44 and the water stop portion 50. Although not shown, it is preferable that a scale portion for displaying the opening degree of the water passage in the water supply control device 40 is provided under the stopper 54 on the outer peripheral surface of the handle portion 48. By using this scale portion as a guide, the operator can easily adjust the opening degree of the water passage, that is, the amount of water supplied to the perforated pipe 12.

一方、排水制御装置42は、図5に示すように、上述の送水制御装置40と同様の構成を有しており、有孔管12の下流側端部に設けられる立上り管44と、立上り管44に摺動可能に設けられる栓部材46とを含む。なお、送水制御装置40と同じ部分については同じ参照番号を付し、重複する説明は省略する。排水制御装置42では、栓部材46を最下位置とすることにより、有孔管12から排水側連結管16への排水が停止され、栓部材46が最下位置から引き上げられると、有孔管12内の水が排水側連結管16に排出される。 On the other hand, as shown in FIG. 5, the drainage control device 42 has the same configuration as the water supply control device 40 described above, and has a rising pipe 44 and a rising pipe provided at the downstream end of the perforated pipe 12. A plug member 46 slidably provided on the 44 is included. The same reference numbers as those of the water supply control device 40 will be assigned, and duplicate description will be omitted. In the drainage control device 42, by setting the plug member 46 at the lowest position, drainage from the perforated pipe 12 to the drain side connecting pipe 16 is stopped, and when the plug member 46 is pulled up from the lowest position, the perforated pipe The water in 12 is discharged to the drain side connecting pipe 16.

図2および図3に戻って、各有孔管12の両端部には、送水制御装置40の下流側近傍位置および排水制御装置42の上流側近傍位置において、水位確認用立上り管60が設けられる。水位確認用立上り管60の内部空間は、有孔管12を介して圃場100内の空隙と連通している状態であるため、水位確認用立上り管60内の水位は、その有孔管12が配設された各領域の圃場100の水位と略同一となる。したがって、作業者は、水位確認用立上り管60内の水位を目視することにより、各領域における圃場100の水位を確認することができる。また、図示は省略するが、水位確認用立上り管60の内周面には、圃場100の地表面に対する高さ位置を表示する目盛り部を設けることが好ましい。これにより、作業者は、圃場100の水位をより正確に確認可能となる。 Returning to FIGS. 2 and 3, water level confirmation rising pipes 60 are provided at both ends of each perforated pipe 12 at a position near the downstream side of the water supply control device 40 and a position near the upstream side of the drainage control device 42. .. Since the internal space of the rising pipe 60 for confirming the water level is in a state of communicating with the void in the field 100 via the perforated pipe 12, the water level in the rising pipe 60 for confirming the water level is determined by the perforated pipe 12. It is substantially the same as the water level of the field 100 in each of the arranged areas. Therefore, the operator can confirm the water level of the field 100 in each region by visually observing the water level in the water level confirmation rising pipe 60. Although not shown, it is preferable to provide a scale portion on the inner peripheral surface of the water level confirmation rising pipe 60 to indicate the height position of the field 100 with respect to the ground surface. As a result, the operator can more accurately confirm the water level of the field 100.

続いて、図3および図6を参照して、上述のようなシステム10を用いて圃場100の水位を所望の水位に保つ方法について説明する。 Subsequently, a method of keeping the water level of the field 100 at a desired water level by using the system 10 as described above will be described with reference to FIGS. 3 and 6.

システム10を用いて灌漑を行うときには、図3に示すように、各排水制御装置42の栓部材46は、最下位置に押し下げて全閉状態とする。一方、各送水制御装置40の栓部材46は、最下位置から引き上げて開状態とし、給水側連結管14から有孔管12への給水が可能な状態としておく。そしてこの状態で、給水制御装置24の給水バルブ28を開く。すると、給水路102を流れる水は、取水管30、給水桝26および給水側連結管14を介して、各有孔管12に流入し、各有孔管12の孔から圃場100の地中に供給される。これにより、圃場100の水位は上昇してくるので、その水位上昇を水位確認用立上り管60から確認しながら、図6に示すように、送水制御装置40および排水制御装置42の栓部材46を手動で上げ下げして(つまり、有孔管12に対する給排水を手動で調節して)、圃場100の水位が目標水位となるように調整する。なお、圃場100の水位が所望の水位に調整された後は、各排水制御装置42を全閉状態にすると共に、給水バルブ28を閉じておくとよい。 When irrigation is performed using the system 10, as shown in FIG. 3, the plug member 46 of each drainage control device 42 is pushed down to the lowest position to be in a fully closed state. On the other hand, the plug member 46 of each water supply control device 40 is pulled up from the lowest position to open the plug member 46 so that water can be supplied from the water supply side connecting pipe 14 to the perforated pipe 12. Then, in this state, the water supply valve 28 of the water supply control device 24 is opened. Then, the water flowing through the water supply channel 102 flows into each perforated pipe 12 through the intake pipe 30, the water supply basin 26, and the water supply side connecting pipe 14, and enters the ground of the field 100 from the hole of each perforated pipe 12. Will be supplied. As a result, the water level of the field 100 rises. Therefore, as shown in FIG. 6, the plug member 46 of the water supply control device 40 and the drainage control device 42 is checked while checking the water level rise from the water level confirmation rising pipe 60. It is manually raised and lowered (that is, the water supply and drainage to the perforated pipe 12 is manually adjusted) so that the water level of the field 100 becomes the target water level. After the water level of the field 100 is adjusted to a desired water level, it is preferable that each drainage control device 42 is fully closed and the water supply valve 28 is closed.

このように、送水制御装置40および排水制御装置42の栓部材46の位置を調節することで、圃場100の水位を任意(たとえば、圃場100の地表面を基準として−50cm〜+20cmまで)に設定できる。そして、この実施例では、有孔管12ごとに、給水および排水を制御して水位を設定することができるので、きめ細やかな圃場100の水位管理が可能となる。 By adjusting the positions of the plug member 46 of the water supply control device 40 and the drainage control device 42 in this way, the water level of the field 100 can be set arbitrarily (for example, from -50 cm to +20 cm with respect to the ground surface of the field 100). it can. Then, in this embodiment, since the water supply and drainage can be controlled and the water level can be set for each of the perforated pipes 12, the water level of the field 100 can be finely controlled.

たとえば、動水勾配の影響或いは地下浸透量の違いなどによって、給水側連結管14の上流側の圃場100領域の水位が高くなる場合には、給水側連結管14の上流側に連結される有孔管12の排水制御装置42を開状態にして、その周辺領域の圃場100の水位を下げるとよい。これによって、圃場100全体の水位を略均一にすることができる。また、有孔管12ごとに設定水位を変えることで、同じ圃場100内でありながら、最適地下水位の異なる野菜などの多品種栽培が可能となり、作物の生育状況の違い等を考慮した領域ごとの水位調整も可能となる。さらに、送水制御装置40の栓部材46によって有孔管12への給水を堰き止めることにより、任意の有孔管12のみ、圃場100への給水を停止することもできる。 For example, when the water level in the field 100 area on the upstream side of the water supply side connecting pipe 14 becomes high due to the influence of the hydraulic gradient or the difference in the underground infiltration amount, the water level is connected to the upstream side of the water supply side connecting pipe 14. It is preferable to open the drainage control device 42 of the hole pipe 12 to lower the water level of the field 100 in the surrounding area. As a result, the water level of the entire field 100 can be made substantially uniform. In addition, by changing the set water level for each perforated pipe 12, it is possible to cultivate a wide variety of vegetables with different optimum groundwater levels even within the same field 100, and for each area considering the difference in crop growth conditions, etc. It is also possible to adjust the water level. Further, by blocking the water supply to the perforated pipe 12 by the plug member 46 of the water supply control device 40, it is possible to stop the water supply to the field 100 only by the arbitrary perforated pipe 12.

続いて、システム10のメンテナンス方法について説明する。図示は省略するが、給水側連結管14のメンテナンス(泥吐き)を行うときには、給水側連結管14の下流側端部に設けた弁部材20を開状態とし、地下用給水口32から給水側連結管14内に高圧洗浄機を挿入して、給水側連結管14に溜まった泥等を排水路104に直接排出する。これによって、給水側連結管14を適切に維持管理することができるので、システム10の寿命が延びる。また、給水側連結管14が適切に維持管理されることで、各有孔管12への用水供給が適切に維持されるので、有孔管12ごとの水位設定機能も適切に維持される。 Subsequently, the maintenance method of the system 10 will be described. Although not shown, when performing maintenance (mud discharge) of the water supply side connecting pipe 14, the valve member 20 provided at the downstream end of the water supply side connecting pipe 14 is opened, and the water supply side is connected to the underground water supply port 32. A high-pressure washer is inserted into the connecting pipe 14, and mud and the like accumulated in the water supply side connecting pipe 14 are directly discharged to the drainage channel 104. As a result, the water supply side connecting pipe 14 can be appropriately maintained and managed, so that the life of the system 10 is extended. Further, by appropriately maintaining and managing the water supply side connecting pipe 14, the water supply to each of the perforated pipes 12 is appropriately maintained, so that the water level setting function for each of the perforated pipes 12 is also appropriately maintained.

また、各有孔管12のメンテナンスを行うときには、送水制御装置40から栓部材46およびキャップ56を取り外すと共に、排水制御装置42の栓部材46を開状態にする。そして、立上り管44の上部開口から有孔管12内に高圧洗浄機を挿入して、有孔管12内に溜まった泥等を排水側連結管16に排出する。すなわち、送水制御装置40を構成する立上り管44が、洗浄機を有孔管12の内部に挿入可能な洗浄用立上り管として用いられる。これによって、各有孔管12を適切に維持管理することができるので、システム10の寿命が延び、有孔管12ごとの水位設定機能も適切に維持される。ただし、送水制御装置40の立上り管44の代わりに、有孔管12の上流側端部に設けられる水位確認用立上り管60を洗浄用立上り管として用いることもできる。 Further, when performing maintenance of each perforated pipe 12, the plug member 46 and the cap 56 are removed from the water supply control device 40, and the plug member 46 of the drainage control device 42 is opened. Then, a high pressure washer is inserted into the perforated pipe 12 from the upper opening of the rising pipe 44, and the mud and the like accumulated in the perforated pipe 12 are discharged to the drain side connecting pipe 16. That is, the rising pipe 44 constituting the water supply control device 40 is used as a washing rising pipe into which the washing machine can be inserted into the perforated pipe 12. As a result, each perforated pipe 12 can be appropriately maintained and managed, so that the life of the system 10 is extended and the water level setting function for each perforated pipe 12 is also appropriately maintained. However, instead of the rising pipe 44 of the water supply control device 40, the rising pipe 60 for checking the water level provided at the upstream end of the perforated pipe 12 can be used as the rising pipe for cleaning.

さらに、排水側連結管16のメンテナンスを行うときには、排水側連結管16の上流側端部に設けられる点検用立上り管22から排水側連結管16内に高圧洗浄機を挿入して、排水側連結管16に溜まった泥等を排水路104に排出する。これによって、排水側連結管16を適切に維持管理することができるので、システム10の寿命が延びる。また、排水側連結管16が適切に維持管理されることで、各有孔管12からの排水が適切に維持されるので、有孔管12ごとの水位設定機能も適切に維持される。 Further, when performing maintenance of the drainage side connecting pipe 16, a high-pressure washing machine is inserted into the drainage side connecting pipe 16 from the inspection rising pipe 22 provided at the upstream end of the draining side connecting pipe 16 to connect the drainage side. The mud and the like accumulated in the pipe 16 are discharged to the drainage channel 104. As a result, the drainage side connecting pipe 16 can be appropriately maintained and managed, so that the life of the system 10 is extended. Further, since the drainage side connecting pipe 16 is appropriately maintained and managed, the drainage from each perforated pipe 12 is appropriately maintained, so that the water level setting function for each perforated pipe 12 is also appropriately maintained.

以上のように、この実施例によれば、有孔管12ごとに個別に水位設定できるので、きめ細やかな圃場100の水位管理が可能となる。したがって、大区画化された圃場100であっても、圃場100の水位を適切に管理できる。 As described above, according to this embodiment, since the water level can be set individually for each of the perforated pipes 12, it is possible to finely manage the water level of the field 100. Therefore, the water level of the field 100 can be appropriately managed even in the field 100 which is divided into large sections.

また、この実施例によれば、有孔管12を圃場100の短辺方向に延びるように配置するので、圃場100が大区画化された場合でも、動水勾配によって生じる水位差を低減できる。また、有孔管12の長さが長くなればなるほど、有孔管12が泥等によって閉塞してしまう可能性が高くなるが、この実施例のように有孔管12を圃場100の短辺方向に延びるように配置することで、有孔管12に泥等が堆積し難くなり、有孔管12の洗浄作業も容易となる。 Further, according to this embodiment, since the perforated pipe 12 is arranged so as to extend in the short side direction of the field 100, the water level difference caused by the hydrodynamic gradient can be reduced even when the field 100 is divided into large sections. Further, the longer the length of the perforated pipe 12, the higher the possibility that the perforated pipe 12 is blocked by mud or the like. However, as in this embodiment, the perforated pipe 12 is placed on the short side of the field 100. By arranging the pipes so as to extend in the direction, mud and the like are less likely to accumulate on the perforated pipe 12, and the cleaning work of the perforated pipe 12 becomes easy.

さらに、この実施例によれば、給水側連結管14の下流側端部が排水路104に接続されるので、給水側連結管14に溜まった泥等を排水路104に直接排出することが可能となり、給水側連結管14の泥吐き作業が容易となる。したがって、給水側連結管14を適切に維持管理することができるので、システム10の寿命が延びると共に、大区画化された圃場100であってもその水位を適切に管理できる。また、複数の有孔管12の上流側端部のそれぞれは、給水側連結管14の管壁上部に形成される分岐部に連結されるので、給水側連結管14から各有孔管12への泥等の流入が低減され、各有孔管12における泥溜りが低減される。したがって、各有孔管12の洗浄頻度を少なくすることができる。 Further, according to this embodiment, since the downstream end of the water supply side connecting pipe 14 is connected to the drainage channel 104, it is possible to directly discharge the mud and the like accumulated in the water supply side connecting pipe 14 to the drainage channel 104. Therefore, the mud discharge work of the water supply side connecting pipe 14 becomes easy. Therefore, since the water supply side connecting pipe 14 can be appropriately maintained and managed, the life of the system 10 can be extended, and the water level can be appropriately managed even in the field 100 which is divided into large sections. Further, since each of the upstream end portions of the plurality of perforated pipes 12 is connected to the branch portion formed on the upper portion of the pipe wall of the water supply side connecting pipe 14, the water supply side connecting pipe 14 is connected to each perforated pipe 12. The inflow of mud and the like is reduced, and the mud pool in each perforated pipe 12 is reduced. Therefore, the frequency of cleaning each perforated pipe 12 can be reduced.

なお、上述の実施例では、給水側連結管14および排水側連結管16の内径を有孔管12の内径よりも少し大きく設定するようにしたが、給水側連結管14の内径は、有孔管12の内径よりも大幅に大きく(たとえば2−5倍)設定することもできる。これにより、給水側連結管14内での用水の流速が小さくなるので、用水に含まれる泥等が給水側連結管14内において沈降し易くなり、給水側連結管14から各有孔管12への泥等の流入が低減される。一方、排水側連結管16の内径は、有孔管12の内径と略同じ大きさに設定するとよい。これにより、排水側連結管16内での排水の流速が大きくなるので、排水側連結管16内において泥等が沈降し難くなり、排水路104に泥等が排出され易くなる。 In the above embodiment, the inner diameters of the water supply side connecting pipe 14 and the drainage side connecting pipe 16 are set to be slightly larger than the inner diameter of the perforated pipe 12, but the inner diameter of the water supply side connecting pipe 14 is perforated. It can also be set to be significantly larger (for example, 2-5 times) than the inner diameter of the pipe 12. As a result, the flow velocity of the irrigation water in the water supply side connecting pipe 14 becomes small, so that mud and the like contained in the irrigation water tend to settle in the water supply side connecting pipe 14, and the water supply side connecting pipe 14 to each perforated pipe 12 The inflow of mud etc. is reduced. On the other hand, the inner diameter of the drainage side connecting pipe 16 may be set to substantially the same size as the inner diameter of the perforated pipe 12. As a result, the flow velocity of the drainage in the drainage side connecting pipe 16 becomes large, so that the mud or the like is less likely to settle in the drainage side connecting pipe 16 and the mud or the like is easily discharged to the drainage channel 104.

また、上述の実施例では、各制御装置40,42の栓部材46は、立上り管44の内側面と止水部50との間の摩擦力によって任意の高さ位置に固定可能なものとしたが、栓部材46を任意の高さ位置でより確実に固定するために、各制御装置40,42に対して摺動止め部を別途設けるようにしてもよい。摺動止め部の具体的構造は適宜変更可能であるが、一例として、摺動止め部としては、図7に示すような袋ナット70およびゴム輪72等によって構成されるものを用いることができる。この場合、ガイド部58の外側面には袋ナット70と螺合される雄ねじ部が形成され、ガイド部58の端面と袋ナット70との間にゴム輪72が設けられる。そして、栓部材46を任意の高さ位置とした状態で、袋ナット70を締め付けることにより、ゴム輪72が弾性変形して柄部48に圧接され、栓部材46がその高さ位置で固定される。 Further, in the above-described embodiment, the plug member 46 of each of the control devices 40 and 42 can be fixed at an arbitrary height position by the frictional force between the inner surface of the rising pipe 44 and the water stop portion 50. However, in order to more reliably fix the plug member 46 at an arbitrary height position, a sliding stopper may be separately provided for each of the control devices 40 and 42. The specific structure of the non-slip portion can be changed as appropriate, but as an example, a non-slip portion composed of a bag nut 70, a rubber ring 72, or the like as shown in FIG. 7 can be used. .. In this case, a male screw portion screwed with the bag nut 70 is formed on the outer surface of the guide portion 58, and a rubber ring 72 is provided between the end surface of the guide portion 58 and the bag nut 70. Then, by tightening the bag nut 70 with the plug member 46 at an arbitrary height position, the rubber ring 72 is elastically deformed and pressed against the handle 48, and the plug member 46 is fixed at that height position. Ru.

さらに、上述の実施例では、目視で水位を確認するための水位確認用立上り管60を各有孔管12に設けるようにしたが、水位確認用立上り管60の代わりに水位センサを設けるようにしてもよい。この場合、作業者は、水位センサの検出結果を確認することにより、各領域における圃場100の水位を確認することができる。 Further, in the above-described embodiment, the water level confirmation rising pipe 60 for visually confirming the water level is provided in each perforated pipe 12, but a water level sensor is provided instead of the water level confirmation rising pipe 60. You may. In this case, the operator can confirm the water level of the field 100 in each region by confirming the detection result of the water level sensor.

さらにまた、上述の実施例では、各有孔管12に送水制御装置40を設けるようにしたが、送水制御装置40は、必ずしも設けられる必要はない。送水制御装置40を設けない場合には、排水制御装置42を用いて有孔管12からの排水を制御することで、有孔管12ごとの水位設定を実行するとよい。 Furthermore, in the above-described embodiment, the water supply control device 40 is provided in each perforated pipe 12, but the water supply control device 40 does not necessarily have to be provided. When the water supply control device 40 is not provided, the water level may be set for each of the perforated pipes 12 by controlling the drainage from the perforated pipe 12 by using the drainage control device 42.

次に、図8を参照して、この発明の他の実施例であるシステム10について説明する。この実施例では、給水側連結管14の上流側端部に設けられる給水制御装置24として、自動制御または遠隔操作が可能な電動の給水制御装置が用いられ、圃場100全体に対する水管理が自動化される点が、上述の実施例と異なる。その他の部分については同様であるので、上述の実施例と共通する部分については、同じ参照番号を付し、重複する説明は省略または簡略化する。重複する説明を省略等することは、後述する他の実施例においても同様である。また、上述の変形例については、以下の各実施例においても適宜採用し得る。 Next, the system 10 which is another embodiment of the present invention will be described with reference to FIG. In this embodiment, as the water supply control device 24 provided at the upstream end of the water supply side connecting pipe 14, an electric water supply control device capable of automatic control or remote control is used, and water management for the entire field 100 is automated. The point is different from the above-described embodiment. Since the other parts are the same, the same reference numbers are given to the parts common to the above-described embodiment, and duplicate explanations are omitted or simplified. Omitting duplicate explanations is the same in other examples described later. In addition, the above-mentioned modification can be appropriately adopted in each of the following examples.

図8に示す実施例では、給水制御装置24が備える給水バルブ28に対して、電動アクチュエータ64が取り付けられる。また、給水側連結管14の上流側端部の立上り管には、その内部の水位、つまり圃場100の水位を検出する超音波センサ等の水位センサ66が設けられる。 In the embodiment shown in FIG. 8, the electric actuator 64 is attached to the water supply valve 28 included in the water supply control device 24. Further, the rising pipe at the upstream end of the water supply side connecting pipe 14 is provided with a water level sensor 66 such as an ultrasonic sensor that detects the water level inside the pipe, that is, the water level of the field 100.

電動アクチュエータ64は、予め記憶されたプログラムに基づく自動制御または遠隔操作によって動作することで、給水バルブ28を自動的に開閉させるものである。電動アクチュエータ64としては、公知の電動アクチュエータを適宜用いることができる。電動アクチュエータ64の一例について簡単に説明すると、電動アクチュエータ64は、本体ケースを備え、本体ケースの天壁上面には、太陽電池パネルが取り付けられる。また、本体ケースの内部には、制御盤、アンテナ、蓄電池、モータおよびメインギア等が収容される。メインギアの軸部には、略円柱状の回転軸が挿通される。メインギアの軸部の内周面には、軸方向に沿って延びるキー溝が形成され、回転軸の外周面には、キー溝と嵌合される滑りキーが軸方向に沿って延びるように形成される。これによって、回転軸は、メインギアが回転すると共に回転し、かつメインギアの軸部に対して軸方向に摺動可能となる。そして、この回転軸の下端部に対して、給水バルブ28の弁軸の上端部が固定的に連結される。したがって、電動アクチュエータ64の回転軸が回転すると、その回転力は、給水バルブ28の弁軸に伝達される。回転力が加えられた給水バルブ28の弁軸および弁体は、送りねじ機構によって上下動する。 The electric actuator 64 automatically opens and closes the water supply valve 28 by operating by automatic control or remote control based on a program stored in advance. As the electric actuator 64, a known electric actuator can be appropriately used. Briefly explaining an example of the electric actuator 64, the electric actuator 64 includes a main body case, and a solar cell panel is attached to the upper surface of the top wall of the main body case. In addition, a control panel, an antenna, a storage battery, a motor, a main gear, and the like are housed inside the main body case. A substantially cylindrical rotating shaft is inserted through the shaft portion of the main gear. A key groove extending along the axial direction is formed on the inner peripheral surface of the shaft portion of the main gear, and a sliding key fitted with the key groove extends along the axial direction on the outer peripheral surface of the rotating shaft. It is formed. As a result, the rotating shaft rotates as the main gear rotates, and can slide in the axial direction with respect to the shaft portion of the main gear. Then, the upper end of the valve shaft of the water supply valve 28 is fixedly connected to the lower end of the rotating shaft. Therefore, when the rotation shaft of the electric actuator 64 rotates, the rotational force is transmitted to the valve shaft of the water supply valve 28. The valve shaft and valve body of the water supply valve 28 to which the rotational force is applied move up and down by the feed screw mechanism.

このようなシステム10では、たとえば、水位センサ66によって検出された水位が、予め設定しておいた所定の下限水位よりも低くなった場合には、電動アクチュエータ64が自動制御で給水バルブ28を開けて、用水を供給する。一方、水位センサ66によって検出された水位が、予め設定しておいた所定の上限水位よりも高くなった場合には、電動アクチュエータ64が自動制御で給水バルブ28を閉めて、用水の供給を停止する。これによって、圃場100の全体的な水位は所定範囲内に保たれる。ただし、電動アクチュエータ64の制御は、ユーザが所有するスマートフォン、タブレット端末およびPC等のような遠隔操作端末を用いて、ユーザが遠隔操作を行うことでも実行できる。この場合、水位センサ66によって検出された水位情報は、無線LAN(たとえばWi−Fi)およびインターネット等のネットワークを介して、ユーザの所有する遠隔操作端末に送信される。 In such a system 10, for example, when the water level detected by the water level sensor 66 becomes lower than a predetermined lower limit water level set in advance, the electric actuator 64 automatically opens the water supply valve 28. And supply water. On the other hand, when the water level detected by the water level sensor 66 becomes higher than a predetermined upper limit water level set in advance, the electric actuator 64 automatically closes the water supply valve 28 to stop the supply of water. To do. As a result, the overall water level of the field 100 is kept within a predetermined range. However, the control of the electric actuator 64 can also be executed by the user performing remote control using a remote control terminal such as a smartphone, a tablet terminal, or a PC owned by the user. In this case, the water level information detected by the water level sensor 66 is transmitted to the remote control terminal owned by the user via a network such as a wireless LAN (for example, Wi-Fi) and the Internet.

なお、有孔管12ごとの個別の水位設定については、図8に示す実施例においても、上述の図2等に示す実施例と同様に、送水制御装置40および排水制御装置42の栓部材46を手動で上げ下げすることによって行われる。 Regarding the individual water level setting for each perforated pipe 12, also in the embodiment shown in FIG. 8, the plug member 46 of the water supply control device 40 and the drainage control device 42 is similar to the embodiment shown in FIG. Is done by manually raising and lowering.

以上のように、図8に示す実施例によれば、自動制御または遠隔操作が可能な電動の給水制御装置24を備えるので、圃場100の全体的な水位管理を自動化または遠隔操作化できる。したがって、圃場100での作業負担が低減される。 As described above, according to the embodiment shown in FIG. 8, since the electric water supply control device 24 capable of automatic control or remote control is provided, the overall water level management of the field 100 can be automated or remotely controlled. Therefore, the work load in the field 100 is reduced.

続いて、図9を参照して、この発明のさらに他の実施例であるシステム10について説明する。この実施例では、ICT(Information and Communication Technology)を利用して、システム10全体が自動化される点が、上述の実施例と異なる。 Subsequently, a system 10 which is still another embodiment of the present invention will be described with reference to FIG. This embodiment differs from the above-described embodiment in that the entire system 10 is automated by using ICT (Information and Communication Technology).

図9に示す実施例では、給水バルブ28に対して電動アクチュエータ64が取り付けられると共に、送水制御装置40および排水制御装置42のそれぞれに対しても電動アクチュエータ64が取り付けられる。図示は省略するが、各制御装置40,42に対して電動アクチュエータ64を取り付ける際には、電動アクチュエータ64からの回転力によって各制御装置40,42の栓部材46を上下動させるための送りねじ機構が設けられる。たとえば、電動アクチュエータ64の回転軸の下端部には全ねじボルトが接続され、各制御装置40,42の栓部材46の柄部48には、それに螺合するナット構造が設けられる。 In the embodiment shown in FIG. 9, the electric actuator 64 is attached to the water supply valve 28, and the electric actuator 64 is also attached to each of the water supply control device 40 and the drainage control device 42. Although not shown, when the electric actuator 64 is attached to each of the control devices 40 and 42, a feed screw for moving the plug member 46 of each of the control devices 40 and 42 up and down by the rotational force from the electric actuator 64. A mechanism is provided. For example, a full screw bolt is connected to the lower end of the rotating shaft of the electric actuator 64, and the handle 48 of the plug member 46 of each of the control devices 40 and 42 is provided with a nut structure screwed to the handle 48.

また、給水側連結管14の上流側端部の立上り管に水位センサ66が設けられると共に、各有孔管12の下流側端部に設けられる水位確認用立上り管60にも、超音波センサ等の水位センサ76が設けられる。この水位センサ76は、水位確認用立上り管60の内部の水位、つまり各有孔管12の周辺領域の圃場100の水位を検出する。 Further, a water level sensor 66 is provided in the rising pipe at the upstream end of the water supply side connecting pipe 14, and an ultrasonic sensor or the like is also provided in the water level checking rising pipe 60 provided at the downstream end of each perforated pipe 12. Water level sensor 76 is provided. The water level sensor 76 detects the water level inside the rising pipe 60 for confirming the water level, that is, the water level of the field 100 in the peripheral region of each perforated pipe 12.

このようなシステム10では、有孔管12毎に設けられた水位センサ76によって検出された水位に基づいて、各有孔管12に対する給排水が個別に自動制御される。たとえば、或る有孔管12において、水位センサ76による検出水位が予め設定しておいた設定水位よりも低い場合には、その有孔管12に設けられる送水制御装置40が開状態にされると共に、排水制御装置42が閉状態にされる。一方、水位センサ76による検出水位が予め設定しておいた設定水位よりも高い場合には、その有孔管12に設けられる送水制御装置40が閉状態にされると共に、排水制御装置42が開状態にされる。 In such a system 10, the water supply and drainage to each of the perforated pipes 12 is automatically controlled individually based on the water level detected by the water level sensor 76 provided for each of the perforated pipes 12. For example, in a certain perforated pipe 12, when the water level detected by the water level sensor 76 is lower than the preset water level, the water supply control device 40 provided in the perforated pipe 12 is opened. At the same time, the drainage control device 42 is closed. On the other hand, when the water level detected by the water level sensor 76 is higher than the preset water level, the water supply control device 40 provided in the perforated pipe 12 is closed and the drainage control device 42 is opened. Be in a state.

なお、圃場100の全体的な水位管理については、図8に示す実施例と同様に、給水側連結管14に設けられた水位センサ66の検出水位に基づく、給水バルブ28(給水制御装置24)の自動制御によって行われる。ただし、各制御装置24,40,42に設けた電動アクチュエータの制御は、ユーザが遠隔操作を行うことで実行してもよい。 Regarding the overall water level management of the field 100, the water supply valve 28 (water supply control device 24) is based on the detected water level of the water level sensor 66 provided in the water supply side connecting pipe 14 as in the embodiment shown in FIG. It is done by the automatic control of. However, the control of the electric actuator provided in each of the control devices 24, 40, 42 may be executed by the user performing remote control.

図9に示す実施例によれば、システム10全体が自動化される、つまり圃場100に対する水管理が全て自動化されるので、作業負担が大きく低減され、また、無駄のない水管理が可能となる。 According to the embodiment shown in FIG. 9, the entire system 10 is automated, that is, all the water management for the field 100 is automated, so that the work load is greatly reduced and the water management without waste becomes possible.

続いて、図10−図14を参照して、この発明のさらに他の実施例であるシステム10について説明する。この実施例では、送水制御装置40および排水制御装置42の構成が上述の実施例と異なっており、送水制御装置40および排水制御装置42として共に、水位設定機構を有する桝が用いられる。 Subsequently, a system 10 which is still another embodiment of the present invention will be described with reference to FIGS. 10-14. In this embodiment, the configurations of the water supply control device 40 and the drainage control device 42 are different from those in the above-described embodiment, and both the water supply control device 40 and the drainage control device 42 use a basin having a water level setting mechanism.

図10−図14に示すように、この実施例では、送水制御装置40は、水位設定機構を有する分流桝であり、上端開放の有底円筒状に形成される桝本体(立上り管)80を含む。桝本体80の下端部には、略水平方向に延びる主管部82および分岐管部84が形成される。主管部82は、桝本体80の下端部を一直線上に貫く直管状に形成される。この主管部82の両端部には、受口82aが形成され、各受口82aには給水側連結管14が接続される。これにより、主管部82は給水側連結管14の一部を構成する。また、分岐管部84は、曲管状に形成され、端部に形成される受口84aが主管部82に対して90度の角度となるように、主管部82の略中央部から分岐する。分岐管部84の受口84aには、有孔管12の上流側端部が接続される。 As shown in FIGS. 10-14, in this embodiment, the water supply control device 40 is a sluice basin having a water level setting mechanism, and has a basin body (rising pipe) 80 formed in a bottomed cylindrical shape with an open upper end. Including. At the lower end of the box body 80, a main pipe portion 82 and a branch pipe portion 84 extending in a substantially horizontal direction are formed. The main pipe portion 82 is formed in a straight tubular shape that penetrates the lower end portion of the box body 80 in a straight line. Receiving ports 82a are formed at both ends of the main pipe portion 82, and water supply side connecting pipes 14 are connected to each receiving port 82a. As a result, the main pipe portion 82 forms a part of the water supply side connecting pipe 14. Further, the branch pipe portion 84 is formed in a curved tubular shape, and branches from the substantially central portion of the main pipe portion 82 so that the receiving port 84a formed at the end portion has an angle of 90 degrees with respect to the main pipe portion 82. The upstream end of the perforated pipe 12 is connected to the receiving port 84a of the branch pipe portion 84.

また、桝本体80には、上下方向に延びるガイド溝(図示せず)が形成される。このガイド溝には、分岐管部84の基端部側の開口と所定間隔で対向するように、平板状の仕切板86が着脱可能および上下動可能に取り付けられる。仕切板86は、任意の高さ位置に固定可能な状態で桝本体80に取り付けられ、また、ゴム製のパッキンを介する等して、水密状態で桝本体80の内面と当接ないし摺接する。この仕切板86が最下位置にあるときには、給水側連結管14から有孔管12への給水が堰き止められ、最下位置から引き上げられると、給水が可能となる。すなわち、仕切板86を上下動させることで、給水側連結管14から有孔管12への給水および停止が切り替えられ、また、その開き具合を調節することによりその給水量が調節される。 Further, a guide groove (not shown) extending in the vertical direction is formed in the box body 80. A flat plate-shaped partition plate 86 is detachably and vertically movablely attached to the guide groove so as to face the opening on the base end side of the branch pipe portion 84 at a predetermined interval. The partition plate 86 is attached to the box main body 80 in a state where it can be fixed at an arbitrary height position, and also comes into contact with or slides on the inner surface of the box main body 80 in a watertight state via a rubber packing or the like. When the partition plate 86 is in the lowest position, the water supply from the water supply side connecting pipe 14 to the perforated pipe 12 is blocked, and when the partition plate 86 is pulled up from the lowest position, water supply becomes possible. That is, by moving the partition plate 86 up and down, water supply and stop from the water supply side connecting pipe 14 to the perforated pipe 12 are switched, and the amount of water supply is adjusted by adjusting the opening degree thereof.

また、仕切板86は、上下方向の長さが異なる複数種類のものが予め用意されており、仕切板86を取り換えることで、仕切板86が最下位置にあるときの仕切板86の上端位置が変更可能とされる。仕切板86が最下位置にある場合でも、桝本体80内の水位が仕切板86の上端位置を超えると、水は越流する。したがって、後述のように、仕切板86を取り換えてその上端位置を変更することで、桝本体80内の水位、延いては周辺領域の圃場100の水位を任意に設定することが可能となる。 Further, a plurality of types of partition plates 86 having different lengths in the vertical direction are prepared in advance, and by replacing the partition plate 86, the upper end position of the partition plate 86 when the partition plate 86 is in the lowest position. Can be changed. Even when the partition plate 86 is in the lowest position, water overflows when the water level in the box body 80 exceeds the upper end position of the partition plate 86. Therefore, as will be described later, by replacing the partition plate 86 and changing the upper end position thereof, it is possible to arbitrarily set the water level in the basin body 80 and, by extension, the water level in the field 100 in the peripheral region.

一方、排水制御装置42は、水位設定機構を有する合流桝であり、送水制御装置40と同じ構造を有する。ただし、排水制御装置42では、分岐管部84が有孔管12の下流側端部と接続される合流部として用いられる。また、主管部82の各受口82aには、排水側連結管16が接続され、主管部82は、排水側連結管16の一部を構成する。 On the other hand, the drainage control device 42 is a merging basin having a water level setting mechanism, and has the same structure as the water supply control device 40. However, in the drainage control device 42, the branch pipe portion 84 is used as a merging portion connected to the downstream end portion of the perforated pipe 12. Further, a drainage side connecting pipe 16 is connected to each receiving port 82a of the main pipe portion 82, and the main pipe portion 82 constitutes a part of the drainage side connecting pipe 16.

このようなシステム10を用いて圃場100に水を供給するときには、図15に示すように、各送水制御装置40の仕切板86を引き上げた状態にする。また、各排水制御装置42の仕切板86は、最下位置にある状態でかつ上端が所望の設定水位(希望水位)に位置する状態にする。そしてこの状態で、給水制御装置24の給水バルブ28を開く。すると、給水路102を流れる水は、取水管30、給水桝26および給水側連結管14を介して、各有孔管12に流入し、各有孔管12の孔から圃場100の地中に供給される。有孔管12からの給水によって圃場100の水位が上昇すると、これに伴い排水制御装置42の桝本体80の分岐管部84側の内部空間の水位も上昇する。そして、その水位が排水制御装置42の仕切板86の上端位置に達すると、余剰の水は仕切板86を越流して、桝本体80の分岐管部84と反対側の内部空間から排水側連結管16に排出され、排水側連結管16を通って排水路104に排出される。これによって、圃場100の水位が所望の設定水位に保たれる。なお、降雨等によって圃場100の水位が上昇したときには、設定水位を超える余剰の水は、有孔管12内に流入し、排水制御装置42の仕切板86を超えて排水路104に排出される。このように、図10に示す実施例では、排水制御装置42の仕切板86の上端位置を調節することで、有孔管12ごとの水位設定を容易に行うことができる。 When water is supplied to the field 100 by using such a system 10, as shown in FIG. 15, the partition plate 86 of each water supply control device 40 is brought up. Further, the partition plate 86 of each drainage control device 42 is set to a state in which it is in the lowest position and the upper end is in a desired set water level (desired water level). Then, in this state, the water supply valve 28 of the water supply control device 24 is opened. Then, the water flowing through the water supply channel 102 flows into each perforated pipe 12 through the intake pipe 30, the water supply basin 26, and the water supply side connecting pipe 14, and enters the ground of the field 100 from the hole of each perforated pipe 12. Will be supplied. When the water level of the field 100 rises due to the water supply from the perforated pipe 12, the water level of the internal space on the branch pipe portion 84 side of the basin main body 80 of the drainage control device 42 also rises accordingly. Then, when the water level reaches the upper end position of the partition plate 86 of the drainage control device 42, the excess water overflows the partition plate 86 and is connected to the drainage side from the internal space on the opposite side of the branch pipe portion 84 of the box main body 80. It is discharged to the pipe 16 and is discharged to the drainage channel 104 through the drainage side connecting pipe 16. As a result, the water level of the field 100 is maintained at a desired set water level. When the water level of the field 100 rises due to rainfall or the like, excess water exceeding the set water level flows into the perforated pipe 12 and is discharged to the drainage channel 104 beyond the partition plate 86 of the drainage control device 42. .. As described above, in the embodiment shown in FIG. 10, the water level can be easily set for each perforated pipe 12 by adjusting the upper end position of the partition plate 86 of the drainage control device 42.

また、図10に示す実施例では、送水制御装置40および排水制御装置42の桝本体80の上端開口から水位を確認でき、配管内の点検および洗浄なども可能である。このため、上述の図2等の実施例が備える、各有孔管12の両端部の水位確認用立上り管60、および各有孔管12と排水側連結管16との合流部の点検用立上り管22については、省略される。すなわち、送水制御装置40を構成する桝本体(立上り管)80が、洗浄用立上り管および水位確認用立上り管などと兼用可能であり、排水制御装置42を構成する桝本体80が、水位確認用立上り管および点検用立上り管などと兼用可能である。 Further, in the embodiment shown in FIG. 10, the water level can be confirmed from the upper end opening of the box main body 80 of the water supply control device 40 and the drainage control device 42, and the inside of the pipe can be inspected and cleaned. Therefore, the rising pipe 60 for checking the water level at both ends of each perforated pipe 12 and the rising for inspection of the confluence of each perforated pipe 12 and the drainage side connecting pipe 16 provided in the above-described embodiment such as FIG. The pipe 22 is omitted. That is, the basin body (rising pipe) 80 constituting the water supply control device 40 can also be used as a rising pipe for cleaning and a rising pipe for checking the water level, and the basin main body 80 constituting the drainage control device 42 is for checking the water level. It can also be used as a rising pipe and a rising pipe for inspection.

以上のように、図10に示す実施例によれば、上述の各実施例と同様に、有孔管12ごとに個別に水位設定できるので、大区画化された圃場100であっても、圃場100の水位を適切に管理できる。特に、図10に示す実施例によれば、各排水制御装置42が水位設定機構を有するので、各有孔管12における水位管理を容易に行うことができる。 As described above, according to the embodiment shown in FIG. 10, since the water level can be set individually for each perforated pipe 12 as in each of the above-described embodiments, even in the field 100 which is divided into large sections, the field The water level of 100 can be managed appropriately. In particular, according to the embodiment shown in FIG. 10, since each drainage control device 42 has a water level setting mechanism, water level management in each perforated pipe 12 can be easily performed.

なお、図10に示す実施例では、送水制御装置40にも水位設定機構を有する桝を用いた。しかし、送水制御装置40については、少なくとも給水側連結管14から有孔管12への給水とその停止とを切り替える機能を有していればよいので、必ずしも水位設定機構を有する必要はない。 In the embodiment shown in FIG. 10, a basin having a water level setting mechanism was also used for the water supply control device 40. However, the water supply control device 40 does not necessarily have to have a water level setting mechanism because it only needs to have a function of switching between water supply from the water supply side connecting pipe 14 to the perforated pipe 12 and its stop.

また、図10に示す実施例では、排水制御装置42が有する水位設定機構として、仕切板86を取り換えることで、仕切板86の上端位置を変更するものを用いたが、水位設定機構の具体的構成については、適宜変更可能である。 Further, in the embodiment shown in FIG. 10, as the water level setting mechanism of the drainage control device 42, a mechanism for changing the upper end position of the partition plate 86 by replacing the partition plate 86 was used. The configuration can be changed as appropriate.

たとえば、図16に示すように、排水制御装置42が有する水位設定機構として、スライド伸縮式のものを採用することもできる。図16に示す実施例では、排水制御装置42は、コンクリート製の排水桝90を備える。この排水桝90には、排水側連結管16に連結される曲管状の固定管92aと、固定管92aの立て管部に対してスライド可能に挿入される直管状のスライド管92bとを有する伸縮式立て管92が設けられる。そして、スライド管92bをスライドさせて、スライド管92bの上端開口の高さ位置を調整することにより、排水高さが設定されて、有孔管12ごとの水位設定が行われる。ただし、スライド伸縮式の水位設定機構としては、管の代わりに、仕切板を用いることもできる。 For example, as shown in FIG. 16, as the water level setting mechanism included in the drainage control device 42, a slide telescopic type can be adopted. In the embodiment shown in FIG. 16, the drainage control device 42 includes a drainage basin 90 made of concrete. The drainage basin 90 has a curved tubular fixed pipe 92a connected to the drainage side connecting pipe 16 and a straight tubular slide pipe 92b slidably inserted into the vertical pipe portion of the fixed pipe 92a. A formula stand tube 92 is provided. Then, by sliding the slide pipe 92b and adjusting the height position of the upper end opening of the slide pipe 92b, the drainage height is set and the water level is set for each perforated pipe 12. However, as the slide telescopic water level setting mechanism, a partition plate can be used instead of the pipe.

また、たとえば、図17に示すように、排水制御装置42が有する水位設定機構として、回転式のものを採用することもできる。図17に示す実施例では、排水制御装置42は、コンクリート製の排水桝90を備え、この排水桝90には、連結部94aを支点として管軸回りに回転可能な曲管状の回転立て管94が設けられる。そして、回転立て管94を回転させて、回転立て管94の上端開口の高さ位置を調整することにより、排水高さが設定されて、有孔管12ごとの水位設定が行われる。 Further, for example, as shown in FIG. 17, a rotary type can be adopted as the water level setting mechanism included in the drainage control device 42. In the embodiment shown in FIG. 17, the drainage control device 42 includes a drainage basin 90 made of concrete, and the drainage basin 90 has a curved tubular rotary vertical pipe 94 that can rotate around the pipe axis with the connecting portion 94a as a fulcrum. Is provided. Then, by rotating the rotary stand pipe 94 and adjusting the height position of the upper end opening of the rotary stand pipe 94, the drainage height is set and the water level is set for each perforated pipe 12.

さらに、たとえば、図18に示すように、排水制御装置42が有する水位設定機構として、シャッタ式のものを採用することもできる。図18に示す実施例では、排水制御装置42は、コンクリート製の排水桝90を備え、この排水桝90には、仕切板96が上下動可能に設けられる。この仕切板96は、たとえば矩形状の板部材同士が軟質の連結部によって連結されることで、屈曲可能となっている。また、排水桝90の側壁には、一対の略円弧状のガイド溝90aが形成されており、仕切板96の両側端部は、このガイド溝90aに対して摺動可能に嵌め込まれる。そして、仕切板96をガイド溝90aに沿って上下動させて、仕切板96の上端の高さ位置を調整することにより、排水高さが設定されて、有孔管12ごとの水位設定が行われる。 Further, for example, as shown in FIG. 18, a shutter type can be adopted as the water level setting mechanism included in the drainage control device 42. In the embodiment shown in FIG. 18, the drainage control device 42 includes a drainage basin 90 made of concrete, and the drainage basin 90 is provided with a partition plate 96 so as to be vertically movable. The partition plate 96 can be bent, for example, by connecting rectangular plate members to each other by a soft connecting portion. Further, a pair of substantially arcuate guide grooves 90a are formed on the side wall of the drainage basin 90, and both end portions of the partition plate 96 are slidably fitted into the guide grooves 90a. Then, the partition plate 96 is moved up and down along the guide groove 90a to adjust the height position of the upper end of the partition plate 96, thereby setting the drainage height and setting the water level for each perforated pipe 12. Be told.

また、図示は省略するが、各有孔管12には、田面水を給排水するための給排水部を設けることもできる。たとえば、有孔管12の上流側端部に設けられる水位確認用立上り管60を二重管構造として高さ調整可能にし、田面に近い場所に設置する。これにより、水位確認用立上り管60からの給水もしくは排水が可能となる。給水が必要な場合は、給水桝26の地上用給水口34からも田面に給水する。また、排水制御装置42を全閉状態にした上で、水位確認用立上り管60の上端開口位置を田面と同じ高さ位置にして用水を供給すれば、用水は、土中に浸透する前に水位確認用立上り管60から溢れ出て田面に供給される。一方、排水が必要な場合、特に大雨の時などは、地下浸透で排水する能力だけでは不足する場合があるが、田面に滞水した水を水位確認用立上り管60から有孔管12に導いて排出することで、速やかな排水が可能となる。 Further, although not shown, each perforated pipe 12 may be provided with a water supply / drainage section for water supply / drainage of rice field water. For example, the rising pipe 60 for checking the water level provided at the upstream end of the perforated pipe 12 has a double pipe structure so that the height can be adjusted, and the pipe is installed near the rice field surface. As a result, water can be supplied or drained from the rising pipe 60 for checking the water level. When water supply is required, water is also supplied to the rice field from the ground water supply port 34 of the water supply basin 26. Further, if the drainage control device 42 is fully closed and the upper end opening position of the water level confirmation rising pipe 60 is set to the same height as the rice field surface to supply the irrigation water, the irrigation water will not permeate into the soil. It overflows from the rising pipe 60 for checking the water level and is supplied to the rice field. On the other hand, when drainage is required, especially in heavy rain, the ability to drain water by underground infiltration may not be sufficient, but the water that has stagnated on the surface of the field is guided from the rising pipe 60 for checking the water level to the perforated pipe 12. By discharging the water, it is possible to quickly drain the water.

なお、上で挙げた寸法などの具体的数値は、いずれも単なる一例であり、製品の仕様などの必要に応じて適宜変更可能である。 The specific numerical values such as the dimensions mentioned above are merely examples, and can be appropriately changed as necessary such as product specifications.

10 …地下灌漑システム
12 …有孔管
14 …給水側連結管
16 …排水側連結管
20 …弁部材
22 …点検用立上り管
24 …給水制御装置
40 …送水制御装置
42 …排水制御装置
60 …水位確認用立上り管
100 …圃場
102 …給水路
104 …排水路
10 ... Underground irrigation system 12 ... Perforated pipe 14 ... Water supply side connecting pipe 16 ... Drainage side connecting pipe 20 ... Valve member 22 ... Rise pipe for inspection 24 ... Water supply control device 40 ... Water supply control device 42 ... Drainage control device 60 ... Water level Rise pipe for confirmation 100… Field 102… Water supply channel 104… Drainage channel

Claims (10)

矩形状に区画化された圃場に対して地下から水を供給する地下灌漑システムであって、
前記圃場の一辺側と前記一辺側に対向する他辺側とのそれぞれに設けられ、当該一辺方向に沿って延びる第1給水路および第2給水路と、
前記圃場の中央部に設けられ、前記一辺方向に沿って延びる排水路と、
前記圃場の前記排水路を挟んだ両側部分のそれぞれに設けられる第1地下灌漑システムおよび第2地下灌漑システムとを備え、
前記第1地下灌漑システムおよび前記第2地下灌漑システムのそれぞれは、
前記一辺方向に沿って延び、当該一辺方向と直交する方向に所定間隔で並ぶように前記圃場の地下に埋設される複数の有孔管、
前記複数の有孔管の上流側端部同士を連結し、前記第1給水路または前記第2給水路から供給される水を各有孔管に導く給水側連結管、
前記複数の有孔管の下流側端部同士を連結し、各有孔管から排出される水を排水路に導く排水側連結管、および
前記複数の有孔管の下流側端部のそれぞれに設けられる排水制御装置を備え
前記給水側連結管の下流側端部のそれぞれは、前記排水路に連結される、地下灌漑システム。
An underground irrigation system that supplies water from underground to a rectangularly divided field.
A first water supply channel and a second water supply channel that are provided on one side of the field and the other side that faces the one side and extend along the one side direction.
A drainage channel provided in the center of the field and extending along the one side direction,
It is provided with a first underground irrigation system and a second underground irrigation system provided on both sides of the drainage channel of the field.
Each of the first underground irrigation system and the second underground irrigation system
The extending along one side direction, a plurality of perforated tubes that are set embedded in the field of underground so as to be arranged at predetermined intervals in a direction orthogonal to the one side direction,
A water supply side connecting pipe that connects the upstream end portions of the plurality of perforated pipes and guides water supplied from the first water supply channel or the second water supply channel to each perforated pipe.
To each of the drainage side connecting pipe that connects the downstream ends of the plurality of perforated pipes and guides the water discharged from each perforated pipe to the drainage channel, and the downstream ends of the plurality of perforated pipes. Equipped with a drainage control device
An underground irrigation system in which each of the downstream ends of the water supply side connecting pipe is connected to the drainage channel.
前記複数の有孔管の上流側端部のそれぞれに設けられる送水制御装置を備える、請求項1記載の地下灌漑システム。 The underground irrigation system according to claim 1, further comprising a water supply control device provided at each of the upstream end portions of the plurality of perforated pipes. 前記給水側連結管の上流側端部のそれぞれに設けられる、自動制御または遠隔操作が可能な電動の給水制御装置を備える、請求項1または2記載の地下灌漑システム。 The underground irrigation system according to claim 1 or 2, further comprising an electric water supply control device capable of automatic control or remote control provided at each of the upstream end portions of the water supply side connecting pipe. 圃場に対して地下から水を供給する地下灌漑システムであって、
前記圃場の地下に所定間隔で埋設される複数の有孔管、
前記複数の有孔管の上流側端部同士を連結し、給水路から供給される水を各有孔管に導く給水側連結管、
前記複数の有孔管の下流側端部同士を連結し、各有孔管から排出される水を排水路に導く排水側連結管、および
前記複数の有孔管の下流側端部のそれぞれに設けられる排水制御装置を備え、
前記給水側連結管の下流側端部は、当該給水側連結管を開閉可能な弁部材を介して前記排水路に連結される、地下灌漑システム。
An underground irrigation system that supplies water to the field from underground.
A plurality of perforated pipes buried in the basement of the field at predetermined intervals,
A water supply side connecting pipe that connects the upstream ends of the plurality of perforated pipes and guides the water supplied from the water supply channel to each perforated pipe.
A drainage side connecting pipe that connects the downstream ends of the plurality of perforated pipes and guides the water discharged from each perforated pipe to the drainage channel, and
A drainage control device provided at each of the downstream ends of the plurality of perforated pipes is provided.
The downstream end of the water supply connection pipe is connected to the water supply connection pipe to the drainage channel via an openable valve member, underground irrigation systems.
前記複数の有孔管の上流側端部のそれぞれは、前記給水側連結管の管壁上部に形成される分岐部に連結される、請求項4記載の地下灌漑システム。 The underground irrigation system according to claim 4, wherein each of the upstream end portions of the plurality of perforated pipes is connected to a branch portion formed in the upper portion of the pipe wall of the water supply side connecting pipe. 前記複数の有孔管の上流側端部のそれぞれには、洗浄機を前記有孔管の内部に挿入可能な洗浄用立上り管が設けられる、請求項1ないし5のいずれかに記載の地下灌漑システム。 The underground irrigation according to any one of claims 1 to 5, wherein a washing riser pipe into which a washing machine can be inserted into the perforated pipe is provided at each of the upstream end portions of the plurality of perforated pipes. system. 前記洗浄用立上り管は、前記複数の有孔管の上流側端部のそれぞれに設けられる送水制御装置を構成する立上り管である、請求項6記載の地下灌漑システム。 The underground irrigation system according to claim 6, wherein the cleaning rising pipe is a rising pipe constituting a water supply control device provided at each of the upstream end portions of the plurality of perforated pipes. 前記複数の有孔管は、前記圃場の短辺方向に沿って延び、当該圃場の長辺方向に所定間隔で並ぶように配置される、請求項1ないし7のいずれかに記載の地下灌漑システム。 The underground irrigation system according to any one of claims 1 to 7, wherein the plurality of perforated pipes extend along the short side direction of the field and are arranged so as to be arranged at predetermined intervals in the long side direction of the field. .. 前記排水制御装置は、水位設定機構を有する桝を含む、請求項1ないし8のいずれかに記載の地下灌漑システム。 The underground irrigation system according to any one of claims 1 to 8, wherein the drainage control device includes a box having a water level setting mechanism. 圃場に対して地下から水を供給する地下灌漑システムであって、
前記圃場の地下に所定間隔で埋設される複数の有孔管、
前記複数の有孔管の上流側端部同士を連結し、給水路から供給される水を各有孔管に導く給水側連結管、および
前記複数の有孔管の下流側端部同士を連結し、各有孔管から排出される水を排水路に導く排水側連結管を備え、
前記給水側連結管の下流側端部は、当該給水側連結管を開閉可能な弁部材を介して前記排水路に連結される、地下灌漑システム。
An underground irrigation system that supplies water to the field from underground.
A plurality of perforated pipes buried in the basement of the field at predetermined intervals,
The upstream end portions of the plurality of perforated pipes are connected to each other, and the water supply side connecting pipe that guides the water supplied from the water supply channel to each perforated pipe, and the downstream end portions of the plurality of perforated pipes are connected to each other. It is equipped with a drainage side connecting pipe that guides the water discharged from each perforated pipe to the drainage channel.
An underground irrigation system in which a downstream end of the water supply side connecting pipe is connected to the drainage channel via a valve member capable of opening and closing the water supply side connecting pipe.
JP2017046883A 2017-03-13 2017-03-13 Underground irrigation system Active JP6832754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017046883A JP6832754B2 (en) 2017-03-13 2017-03-13 Underground irrigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017046883A JP6832754B2 (en) 2017-03-13 2017-03-13 Underground irrigation system

Publications (2)

Publication Number Publication Date
JP2018148835A JP2018148835A (en) 2018-09-27
JP6832754B2 true JP6832754B2 (en) 2021-02-24

Family

ID=63679392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017046883A Active JP6832754B2 (en) 2017-03-13 2017-03-13 Underground irrigation system

Country Status (1)

Country Link
JP (1) JP6832754B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7277313B2 (en) * 2019-08-21 2023-05-18 デンカ株式会社 Water traps, irrigation devices, irrigation systems and methods of growing crops

Also Published As

Publication number Publication date
JP2018148835A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
CN108385706B (en) Well point dewatering and drainage device for deep foundation pit
JP6832754B2 (en) Underground irrigation system
JP7140330B2 (en) Water supply and drainage control device for managing rainwater storage in farmland
FR2984987A1 (en) LIMITER OF FLOW LIMITER
EP1731682B1 (en) Cascade sewer system for surface water
US9605397B1 (en) Soil matrix water table control apparatus
JP7276729B2 (en) Water supply and drainage control device for managing rainwater storage in farmland
EP3510207B1 (en) An arrangement for a sewerage system comprising a french drain
US10358784B1 (en) Soil matrix water table control apparatus
WO2016085320A1 (en) Rainwater harvesting apparatus
JP6504398B2 (en) Drainage device
JP4134070B2 (en) Underground irrigation drainage underdrain
US7360965B2 (en) Cleanout with drainage capabilities
JP3671373B2 (en) Underground irrigation system
JP4443869B2 (en) Underground irrigation system
JP2010138642A (en) Well and method for constructing the same
JP2005016193A (en) Regulating lock
KR101100364B1 (en) Uplift Pressure Control System
JP2002034362A (en) System for managing supply and drain of water in paddy field
EP3320148B1 (en) Ground water flow device and system, method for controlling ground water flow
JP2021534341A (en) Rods for water collection and transportation and rod assembly parts
KR102078388B1 (en) Apparatus for controlling water level of storm overflow chamber
JP3121755U (en) Adjustable water tank
US20230313472A1 (en) Perforated box culvert
Pilon et al. Advanced Stormwater Skimmer with No Moving Parts

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20191218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150