JP6832588B2 - Optical system equipment - Google Patents

Optical system equipment Download PDF

Info

Publication number
JP6832588B2
JP6832588B2 JP2018084991A JP2018084991A JP6832588B2 JP 6832588 B2 JP6832588 B2 JP 6832588B2 JP 2018084991 A JP2018084991 A JP 2018084991A JP 2018084991 A JP2018084991 A JP 2018084991A JP 6832588 B2 JP6832588 B2 JP 6832588B2
Authority
JP
Japan
Prior art keywords
irradiation
light
biconvex lens
incident
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018084991A
Other languages
Japanese (ja)
Other versions
JP2018189958A (en
Inventor
大川 剛史
剛史 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANTUM USHIKATA CO., LTD.
Original Assignee
KANTUM USHIKATA CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANTUM USHIKATA CO., LTD. filed Critical KANTUM USHIKATA CO., LTD.
Publication of JP2018189958A publication Critical patent/JP2018189958A/en
Application granted granted Critical
Publication of JP6832588B2 publication Critical patent/JP6832588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、光源より照射された照射光を平行化及び均一化する技術に関する。 The present invention relates to a technique for parallelizing and homogenizing the irradiation light emitted from a light source.

従来、多数の紫外線LEDなどの紫外線発光素子を用いた紫外光照射装置は、紫外線硬化型樹脂の硬化などに用いられ、この紫外線硬化型樹脂の硬化には、硬化にムラが生じないようにするため、照射面において均一の照度を持つことが求められている。また、マスクを用いてLED光により露光を行う場合には、露光対象とマスクとの間に隙間が生じ、またLED光の放射角度が120°程度であることから、精度を高めるには照射面に対して照射光が垂直となるように照射光を平行化する必要がある。一般的に、この照射光の平行化には放物面ミラーなどが用いられる。 Conventionally, an ultraviolet light irradiation device using an ultraviolet light emitting element such as a large number of ultraviolet LEDs has been used for curing an ultraviolet curable resin, etc., so that the curing of the ultraviolet curable resin does not cause unevenness in curing. Therefore, it is required to have uniform illuminance on the irradiated surface. Further, when exposure is performed by LED light using a mask, a gap is generated between the exposure target and the mask, and the radiation angle of the LED light is about 120 °. Therefore, in order to improve the accuracy, the irradiation surface It is necessary to parallelize the irradiation light so that the irradiation light is perpendicular to the light. Generally, a parabolic mirror or the like is used for parallelizing the irradiation light.

照射面における照度の均一化には、一般的に、フライアレイレンズなどが用いられ、これに関連する技術として、複数の発光素子を平面上に配列したLEDアレイ光源と、各発光素子から出射された光をそれぞれコリメートする第1照明光学系と、第1照明光学系から出射された光を焦点位置に集光させる第2照明光学系と、平面上に配列した複数のレンズを有し、第2照明光学系から出射された光を各レンズの入射面で入射して照度の均一性を高めるフライアイ・インテグレータとを備え、フライアイ・インテグレータの入射面は、第2照明光学系の焦点位置に配置され、各発光素子の発光面は、フライアイ・インテグレータの入射面と共役関係にあり、各発光素子の像が、フライアイ・インテグレータの入射面に結像されることを特徴とする光照射装置が知られている(例えば、特許文献1参照)。 A fly array lens or the like is generally used to make the illuminance uniform on the irradiation surface, and as a technique related to this, an LED array light source in which a plurality of light emitting elements are arranged on a plane and light emitted from each light emitting element are emitted. It has a first illumination optical system that collimates the light, a second illumination optical system that collects the light emitted from the first illumination optical system at the focal position, and a plurality of lenses arranged on a plane. 2 It is equipped with a fly-eye integrator that injects light emitted from the illumination optical system on the incident surface of each lens to improve the uniformity of illuminance, and the incident surface of the fly-eye integrator is the focal position of the second illumination optical system. The light emitting surface of each light emitting element has a conjugate relationship with the incident surface of the flyeye integrator, and an image of each light emitting element is formed on the incident surface of the flyeye integrator. An irradiation device is known (see, for example, Patent Document 1).

特開2016−200787号公報Japanese Unexamined Patent Publication No. 2016-200787

照射光を平行化し、且つ照射光による照射面における照度を均一化する場合、照度を均一とする装置と照射光を平行化する装置との両方が必要となり、これによって装置が大型化してしまうという問題があった。 When parallelizing the irradiation light and making the illuminance on the irradiation surface by the irradiation light uniform, both a device for making the illuminance uniform and a device for making the irradiation light parallel are required, which increases the size of the device. There was a problem.

本発明は上述した問題点を解決するためになされたものであり、より省スペースで照射光を平行化し、且つ照射光による照射面における照度を均一化する光学系装置、両凸レンズを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides an optical system device and a biconvex lens that make the irradiation light parallel in a more space-saving manner and make the illuminance on the irradiation surface by the irradiation light uniform. With the goal.

上述した課題を解決するため、本発明の一態様は、光源より照射された照射光を平行化し且つ該照射光による照射面における照度を均一化する光学系装置であって、前記照射光の照射方向に設けられた両凸レンズであって、前記照射方向における入射側に位置する第1面と、前記照射方向における出射側に位置する第2面とを有し、前記第2面が入射された照射光を平行化する曲率半径に形成され、前記第1面が第2面により出射される照射光による照射面における照度を均一化する曲率半径に形成される両凸レンズと、前記光源と前記両凸レンズとの間に配置され、前記照射光の一部を通過させるアパーチャとを備える。 In order to solve the above-mentioned problems, one aspect of the present invention is an optical system device that parallelizes the irradiation light emitted from the light source and makes the illumination on the irradiation surface by the irradiation light uniform, and irradiates the irradiation light. A biconvex lens provided in a direction, having a first surface located on the incident side in the irradiation direction and a second surface located on the exit side in the irradiation direction, and the second surface is incident. A biconvex lens formed with a radius of curvature that parallelizes the irradiation light, and the first surface has a radius of curvature that equalizes the illuminance on the irradiation surface due to the irradiation light emitted by the second surface, and the light source and both of the above. It is provided with an aperture that is arranged between the convex lens and allows a part of the irradiation light to pass through.

また、本発明の一態様は、入射された照射光を平行化し且つ該照射光による照射面における照度を均一化する両凸レンズであって、前記照射方向における入射側に位置する第1面と、前記照射方向における出射側に位置する第2面とを有し、前記第2面が入射された照射光を平行化する曲率半径に形成され、前記第1面が第2面により出射される照射光による照射面における照度を均一化する曲率半径に形成されることを特徴とする。 Further, one aspect of the present invention is a biconvex lens that parallelizes the incident irradiation light and equalizes the illuminance on the irradiation surface by the irradiation light, and has a first surface located on the incident side in the irradiation direction. Irradiation that has a second surface located on the emission side in the irradiation direction, the second surface is formed with a radius of curvature that parallelizes the incident irradiation light, and the first surface is emitted by the second surface. It is characterized in that it is formed with a radius of curvature that equalizes the illuminance on the surface irradiated by light.

本発明によれば、より省スペースで照射光を平行化し、且つ照射光による照射面における照度を均一化することができる。 According to the present invention, it is possible to parallelize the irradiation light in a more space-saving manner and to make the illuminance on the irradiation surface by the irradiation light uniform.

実施の形態に係る光学系装置の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the optical system apparatus which concerns on embodiment. 光学系装置の構成を示す概略側面図である。It is a schematic side view which shows the structure of an optical system apparatus. 光線追跡のシミュレーション結果を示す図である。It is a figure which shows the simulation result of ray tracing. 照射面のX軸座標に対するインコヒーレント放射照度を示すグラフである。It is a graph which shows the incoherent irradiance with respect to the X-axis coordinate of the irradiation surface. 第1面における入射側の曲率半径とレンズ直径との関係を示すグラフである。It is a graph which shows the relationship between the radius of curvature of the incident side on the 1st plane, and the lens diameter. 第1面におけるレンズ直径に対応する入射側の曲率半径を示す図である。It is a figure which shows the radius of curvature of the incident side corresponding to the lens diameter in the 1st surface.

以下、本発明の実施の形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本実施の形態に係る光学系装置について説明する。図1は、本実施の形態に係る光学系装置を示す概略斜視図である。また、図2は、光学系装置の構成を示す概略側面図である。なお、図2においては、アパーチャ及び光吸収部については光軸を通り、且つ光軸に平行する平面により切断した断面が示される。 First, the optical system apparatus according to the present embodiment will be described. FIG. 1 is a schematic perspective view showing an optical system device according to the present embodiment. Further, FIG. 2 is a schematic side view showing the configuration of the optical system device. Note that FIG. 2 shows a cross section of the aperture and the light absorbing portion cut by a plane passing through the optical axis and parallel to the optical axis.

図1及び図2に示すように、本実施の形態に係る光学系装置1は、紫外線光を照射する紫外線LED光源である照射部10、照射部10による照射光が入射可能に配される両凸レンズ20、照射部10と両凸レンズ20との間において照射部10側に配されるアパーチャ30、照射部10と両凸レンズ20との間において両凸レンズ20側に配される光吸収部40を備える。この光学系装置1によれば、照射部10による照射光によって、両凸レンズ20の光軸方向に直交する照射面が形成される。 As shown in FIGS. 1 and 2, in the optical system device 1 according to the present embodiment, both the irradiation unit 10 which is an ultraviolet LED light source for irradiating ultraviolet light and the irradiation light by the irradiation unit 10 are arranged so as to be incidental. It includes a convex lens 20, an aperture 30 arranged on the irradiation unit 10 side between the irradiation unit 10 and the biconvex lens 20, and a light absorption unit 40 arranged on the biconvex lens 20 side between the irradiation unit 10 and the biconvex lens 20. .. According to the optical system device 1, the irradiation light emitted by the irradiation unit 10 forms an irradiation surface orthogonal to the optical axis direction of the biconvex lens 20.

アパーチャ30は、両凸レンズ20の光軸方向と直交する平面を有する板状の部材であり、光軸方向に貫通する孔部31が形成されている。この孔部31は円状に形成されこの円の中心が両凸レンズ20の光軸に一致するようになっている。このようなアパーチャ30によれば、照射部10による照射光の一部が孔部31から出射されるようになり、結果として両凸レンズ20に対する入射光の光源のサイズが規定される。 The aperture 30 is a plate-shaped member having a plane orthogonal to the optical axis direction of the biconvex lens 20, and a hole portion 31 penetrating in the optical axis direction is formed. The hole portion 31 is formed in a circular shape so that the center of the circle coincides with the optical axis of the biconvex lens 20. According to such an aperture 30, a part of the irradiation light emitted by the irradiation unit 10 is emitted from the hole portion 31, and as a result, the size of the light source of the incident light with respect to the biconvex lens 20 is defined.

光吸収部40は、中空となった角筒状に形成されてその内壁面に光吸収面が形成された部材であり、入射側即ち照射部10及びアパーチャ30側、出射側即ち両凸レンズ20側にそれぞれ開口が形成され、これらの開口が入射側開口部41、出射側開口部42として形成されている。入射側開口部41に対しては、光吸収部40内に孔部31を通過した照射光のみが入射されるようアパーチャ30が配置されている。また、出射側開口部42より出射される照射光は両凸レンズ20に入射されるようになっている。また、光吸収部40の内壁表面、即ち光吸収面は、反射率が著しく低く、望ましくは4%以下となっており、これによって、光吸収部40に入射した照射光のうち、内壁に照射される照射光のほとんどが内壁表面で吸収され、出射側開口部42から出射されないようになっている。なお、光吸収部40は、中空の角筒状に限らず、入射側及び出射側において開口した筒状の部材として、両凸レンズ20により平行化可能な角度で入射する照射光のみが出射側開口部42より出射可能に形成されていれば良い。なお、光吸収部40の光軸方向長さ、即ち、入射側開口部41から出射側開口部42までの距離は両凸レンズ20の焦点距離に基づく長さとなっている。 The light absorption unit 40 is a member formed in a hollow square cylinder shape and a light absorption surface is formed on the inner wall surface thereof, and is an incident side, that is, an irradiation unit 10 and an aperture 30 side, and an emission side, that is, a biconvex lens 20 side. Each of these openings is formed as an incident side opening 41 and an outgoing side opening 42. An aperture 30 is arranged in the light absorbing portion 40 so that only the irradiation light that has passed through the hole 31 is incident on the incident side opening 41. Further, the irradiation light emitted from the exit side opening 42 is incident on the biconvex lens 20. Further, the inner wall surface of the light absorption unit 40, that is, the light absorption surface has a remarkably low reflectance, preferably 4% or less, whereby the inner wall of the irradiation light incident on the light absorption unit 40 is irradiated. Most of the irradiated light is absorbed by the inner wall surface and is not emitted from the exit side opening 42. The light absorbing unit 40 is not limited to a hollow square tubular member, but as a tubular member opened on the incident side and the outgoing side, only the irradiation light incident at an angle that can be parallelized by the biconvex lens 20 is opened on the outgoing side. It suffices if it is formed so that it can be emitted from the portion 42. The length of the light absorbing portion 40 in the optical axis direction, that is, the distance from the incident side opening 41 to the emitting side opening 42 is a length based on the focal length of the biconvex lens 20.

両凸レンズ20は、両凸レンズであり、照射光の入射側を向く第1面21と出射側を向く第2面22との曲面を有し、第1面21と第2面22との形状は異なっている。これら第1面21及び第2面22は、本実施形態においては、精度を向上させるためにいずれも非球面に形成されているが、球面に形成されていても良い。第1面21は両凸レンズ20より出射された照射光による照射面における照度を均一化する機能を主に有し、第2面22は両凸レンズ20に入射される照射光を平行化する機能を主に有する。 The biconvex lens 20 is a biconvex lens, has a curved surface of a first surface 21 facing the incident side of the irradiation light and a second surface 22 facing the exit side, and the shapes of the first surface 21 and the second surface 22 are It's different. In the present embodiment, the first surface 21 and the second surface 22 are both formed to be aspherical in order to improve accuracy, but they may be formed to be spherical. The first surface 21 mainly has a function of equalizing the illuminance on the irradiation surface by the irradiation light emitted from the biconvex lens 20, and the second surface 22 has a function of parallelizing the irradiation light incident on the biconvex lens 20. Mainly has.

第2面22の曲率半径rは、光角度をθ、光源の大きさ(孔部31の直径)をX、両凸レンズ20の焦点距離をfとした場合、第1面21を平面と仮定してf=r/2とし、また、X=2となるように孔部31を形成した上で、X×f×tanθの式、即ち、r×tanθの式から、光角度θを規定するように決定される。ここで、光角度θは、照射面に直交する垂線と、両凸レンズ20から出射された照射光とが成す角度であり、θ=0の場合に理想の平行光となるが、実際的には、例えば1°など可能な限り0に近い値に設定される。 The radius of curvature r 2 of the second surface 22, assuming the optical angle theta, the size of the light source (diameter of the hole 31) X, if the focal length of the biconvex lens 20 is f, the first surface 21 and flat and a f = r 2/2 and also on the formation of the hole portion 31 so that X = 2, the formula of X × f × tanθ, i.e., from the equation r 2 × tan .theta, light angle θ Determined to stipulate. Here, the light angle θ is an angle formed by a perpendicular line orthogonal to the irradiation surface and the irradiation light emitted from the biconvex lens 20, and is ideal parallel light when θ = 0, but in practice. , For example, 1 °, which is set to a value as close to 0 as possible.

第1面21の曲率半径rは、上述のように決定された曲率半径rに形成された第2面22からの出射光について、光軸に直交する平面上における照度部分布が均一となるように決定される。つまり、第1面21の曲率半径rは、第2面の曲率半径rに基づくものとなっている。 The radius of curvature r 1 of the first surface 21, for light emitted from the second surface 22 formed to the radius of curvature r 2 which is determined as described above, the illuminance portion distribution in the plane on which perpendicular to the optical axis and uniform Is determined to be. In other words, the radius of curvature r 1 of the first surface 21 is to be based on the curvature radius r 2 of the second surface.

ここで、第1面における曲率半径とレンズ直径との関係について説明する。図5は、第1面における入射側の曲率半径とレンズ直径との関係を示すグラフである。図6は、第1面におけるレンズ直径に対応する入射側の曲率半径を示す図である。 Here, the relationship between the radius of curvature and the lens diameter on the first surface will be described. FIG. 5 is a graph showing the relationship between the radius of curvature on the incident side on the first surface and the lens diameter. FIG. 6 is a diagram showing the radius of curvature on the incident side corresponding to the lens diameter on the first surface.

図5に示すように、両凸レンズ20より出射された照射光による照射面における照度を均一化する第1面21においては、その入射側の曲率半径r1とレンズ直径dとの間にはr1=5.64×dという式が成り立ち、これを具体的な値とすると図6に示すようになる。なお、実際的には、あるレンズ直径dを有する第1面21において、上式における一次係数5.64が±15%の範囲内に収まるような曲率半径r1とすると良い。 As shown in FIG. 5, in the first surface 21 that equalizes the illuminance on the irradiation surface by the irradiation light emitted from the biconvex lens 20, r1 = between the radius of curvature r1 on the incident side and the lens diameter d. The formula 5.64 × d holds, and if this is a specific value, it will be shown in FIG. In practice, it is preferable that the radius of curvature r1 is such that the linear coefficient 5.64 in the above equation falls within the range of ± 15% on the first surface 21 having a certain lens diameter d.

次に、光学系装置の効果について説明する。図3は、光線追跡のシミュレーション結果を示す図である。また、図4は、照射面のX軸座標に対するインコヒーレント放射照度を示すグラフである。なお、図4におけるX座標値は平面としての照射面における一方の軸の値である。 Next, the effect of the optical system device will be described. FIG. 3 is a diagram showing a simulation result of ray tracing. Further, FIG. 4 is a graph showing the incoherent irradiance with respect to the X-axis coordinates of the irradiation surface. The X coordinate value in FIG. 4 is a value of one axis on the irradiation surface as a plane.

図3に示すように、光学系装置1における照射光についての光線追跡のシミュレーション結果によれば、照射部により照射された照射光において、光吸収部40の内壁へ向かわない照射光のみが両凸レンズ20へ入射して平行化されることがわかる。 As shown in FIG. 3, according to the simulation result of ray tracing for the irradiation light in the optical system device 1, in the irradiation light irradiated by the irradiation unit, only the irradiation light that does not go toward the inner wall of the light absorption unit 40 is a biconvex lens. It can be seen that it is incident on 20 and parallelized.

また、図4に示すように、光学系装置1によれば、両凸レンズ20における第1面21によって、照射面における照度が均一化されることがわかる。 Further, as shown in FIG. 4, according to the optical system device 1, it can be seen that the illuminance on the irradiation surface is made uniform by the first surface 21 of the biconvex lens 20.

本発明は、その要旨または主要な特徴から逸脱することなく、他の様々な形で実施することができる。そのため、前述の実施の形態は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、特許請求の範囲によって示すものであって、明細書本文には、何ら拘束されない。更に、特許請求の範囲の均等範囲に属する全ての変形、様々な改良、代替および改質は、全て本発明の範囲内のものである。 The present invention can be practiced in various other forms without departing from its gist or main features. Therefore, the above embodiments are merely exemplary in all respects and should not be construed in a limited way. The scope of the present invention is shown by the scope of claims, and is not bound by the text of the specification. Moreover, all modifications, modifications, substitutions and modifications that fall within the equivalent scope of the claims are all within the scope of the present invention.

1 光学系装置
10 照射部
20 両凸レンズ
30 アパーチャ
40 光吸収部
1 Optical system device 10 Irradiation unit 20 Biconvex lens 30 Aperture 40 Light absorption unit

Claims (2)

光源より照射された照射光を平行化し且つ該照射光による照射面における照度を均一化する光学系装置であって、
前記照射光の照射方向に設けられた両凸レンズであって、前記照射方向における入射側に位置する第1面と、前記照射方向における出射側に位置する第2面とを有する両凸レンズと、
前記光源と前記両凸レンズとの間に配置され、前記照射光の一部を孔部より通過させるアパーチャとを備え、
前記第1面は、前記両凸レンズの直径に対して4.794〜6.486の範囲内にある一次係数を乗じた曲率半径r に形成され、
前記第2面は、該第2面の曲率半径をr 、前記光源の出射面に直交する垂線と前記両凸レンズから出射された出射光とが成す光角度をθとし、前記孔部の直径X、前記両凸レンズの焦点距離をf=r /2とした場合、X×fがr となるように前記孔部の大きさを形成した上で、r ×tanθの式においてθが1以下となる曲率半径に形成されることを特徴とする光学系装置。
An optical system device that parallelizes the irradiation light emitted from a light source and makes the illuminance on the irradiation surface by the irradiation light uniform.
A biconvex lens arranged in the irradiation direction of the irradiation light, and a biconvex lens for chromatic a first surface located on the incident side in the irradiation direction, and a second surface located on the exit side in the radiation direction,
It is provided with an aperture that is arranged between the light source and the biconvex lens and allows a part of the irradiation light to pass through the hole.
The first surface is formed with a radius of curvature r 1 obtained by multiplying the diameter of the biconvex lens by a linear coefficient in the range of 4.794 to 6.486.
For the second surface, the radius of curvature of the second surface is r 2 , the optical angle formed by the perpendicular line orthogonal to the emission surface of the light source and the emitted light emitted from the biconvex lens is θ, and the diameter of the hole is defined as θ. X, wherein when the focal length of the biconvex lens and the f = r 2/2, in terms of X × f was formed the size of the hole so that the r 2, in the formula of r 2 × tanθ θ is An optical system device characterized in that it is formed with a radius of curvature of 1 or less.
前記アパーチャと前記両凸レンズとの間に配置され、前記アパーチャを通過した照射光が入射する入射側開口と、該入射側開口より入射された照射光を出射する出射側開口とを有し、前記入射側開口から出射側開口まで貫通する筒状に形成されて内壁表面において光を吸収する光吸収体を更に備えることを特徴とする請求項に記載の光学系装置。 It is arranged between the aperture and the biconvex lens, and has an incident side opening on which the irradiation light passing through the aperture is incident and an exit side opening on which the irradiation light incident from the incident side opening is emitted. The optical system device according to claim 1 , further comprising a light absorber that is formed in a tubular shape that penetrates from the entrance side opening to the exit side opening and absorbs light on the inner wall surface.
JP2018084991A 2017-05-01 2018-04-26 Optical system equipment Active JP6832588B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017091002 2017-05-01
JP2017091002 2017-05-01

Publications (2)

Publication Number Publication Date
JP2018189958A JP2018189958A (en) 2018-11-29
JP6832588B2 true JP6832588B2 (en) 2021-02-24

Family

ID=64480145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084991A Active JP6832588B2 (en) 2017-05-01 2018-04-26 Optical system equipment

Country Status (1)

Country Link
JP (1) JP6832588B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020217288A1 (en) * 2019-04-22 2020-10-29
EP3731015A1 (en) * 2019-04-24 2020-10-28 ZKW Group GmbH Floor projection device for a motor vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441286B2 (en) * 1996-02-26 2003-08-25 松下電器産業株式会社 Infrared wide-angle single lens, non-contact temperature measuring device and air conditioner
JP2011095326A (en) * 2009-10-27 2011-05-12 Nikon Corp Illuminating apparatus for microscope
JP5581700B2 (en) * 2010-01-13 2014-09-03 株式会社リコー Coupling lens and projection type image display apparatus having the coupling lens
JP5567849B2 (en) * 2010-02-05 2014-08-06 オリンパス株式会社 Illumination optical system having light diffusing element
JP2013246255A (en) * 2012-05-24 2013-12-09 Olympus Corp Collimator lens, illuminating device and microscope
WO2015152161A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Collimator lens
WO2016042642A1 (en) * 2014-09-18 2016-03-24 富士通フロンテック株式会社 Distance measuring light generating device

Also Published As

Publication number Publication date
JP2018189958A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6099212B2 (en) Light irradiation device
TWI620889B (en) Light irradiation device
US20170050166A1 (en) Irradiation systems using curved surfaces
DE202009011500U1 (en) Optical system for an LED light
JP6832588B2 (en) Optical system equipment
US10025108B2 (en) Device for homogenizing laser radiation
WO2011048877A1 (en) Laser exposure device
JP2016001308A5 (en) Exposure apparatus and device manufacturing method
RU2018103206A (en) LED PROJECTOR WITH CUSTOMIZED BEAM FORM, BEAM COLOR AND COLOR UNIFORMITY
ATE457522T1 (en) PROJECTION EXPOSURE APPARATUS
JP5022210B2 (en) Spotlight
JP6537899B2 (en) Vehicle light emitting device
US10274138B2 (en) Lighting device and lighting system
US9746677B2 (en) Device for applying laser radiation to the outside of a rotationally symmetric component
JP2023029453A (en) Light source device for resin curing apparatus and resin curing apparatus
JP5178610B2 (en) Light irradiation device
CN112955805B (en) Optical system device and lenticular lens
JP2020057571A (en) Optical system device and biconvex lens
JP2018504761A5 (en)
JP6845562B2 (en) Lighting system
JP6763180B2 (en) Light source device
JP6215617B2 (en) Optical system device, LED module
US10090074B2 (en) Light source module
TWI780373B (en) Light source device for exposure
JP2014203604A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R150 Certificate of patent or registration of utility model

Ref document number: 6832588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250