JP6830116B2 - 磁気テープおよび磁気記録再生装置 - Google Patents

磁気テープおよび磁気記録再生装置 Download PDF

Info

Publication number
JP6830116B2
JP6830116B2 JP2019050201A JP2019050201A JP6830116B2 JP 6830116 B2 JP6830116 B2 JP 6830116B2 JP 2019050201 A JP2019050201 A JP 2019050201A JP 2019050201 A JP2019050201 A JP 2019050201A JP 6830116 B2 JP6830116 B2 JP 6830116B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
layer
magnetic tape
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019050201A
Other languages
English (en)
Other versions
JP2019169229A (ja
Inventor
成人 笠田
成人 笠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to US16/361,589 priority Critical patent/US11361792B2/en
Publication of JP2019169229A publication Critical patent/JP2019169229A/ja
Priority to JP2021009561A priority patent/JP6966660B2/ja
Application granted granted Critical
Publication of JP6830116B2 publication Critical patent/JP6830116B2/ja
Priority to US17/386,616 priority patent/US11581015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、磁気テープおよび磁気記録再生装置に関する。
磁気記録媒体にはテープ状のものとディスク状のものがあり、データストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている。磁気テープへの情報の記録および/または再生は、通常、磁気テープの表面(磁性層表面)と磁気ヘッド(以下、単に「ヘッド」とも記載する。)とを接触させ摺動させることにより行われる。磁気テープとしては、強磁性粉末および結合剤を含む磁性層が非磁性支持体上に設けられた構成のものが広く用いられている(例えば特許文献1参照)。
特開2005−243162号公報
磁気テープに記録された情報を再生する際に、再生信号振幅の部分的な低下(「ミッシングパルス(missing pulse)」と呼ばれる。)が発生する頻度が高いほど、エラーレートが増加し磁気テープの信頼性は低下してしまう。そのため、高い信頼性をもって使用可能な磁気テープを提供するためには、ミッシングパルスの発生頻度を低減することが望まれる。
ところで近年、データストレージ用途に用いられる磁気テープは、温度および湿度が管理されたデータセンターで使用されることがある。一方、データセンターではコスト低減のために省電力化が求められている。省電力化のためには、データセンターにおける温湿度の管理条件を現在より緩和できるか、または管理を不要にできることが望ましい。しかし、温湿度の管理条件を緩和し、または管理を行わないと、磁気テープは様々な環境において使用されることが想定され、低温かつ高湿の環境において使用されることも想定される。しかし本発明者の検討の結果、低温高湿環境下では、ミッシングパルスの発生頻度が高まる傾向があることが判明した。
そこで本発明の目的は、低温高湿環境下でのミッシングパルスの発生頻度が低減された磁気テープを提供することにある。
本発明の一態様は、
非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、
上記磁性層は、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含み、
上記磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析により得られるC1sスペクトルにおけるC−Hピーク面積率から算出されるC−H由来C濃度(以下、「磁性層のC−H由来C濃度」または単に「C−H由来C濃度」とも記載する。)は45原子%以上であり、かつ
上記磁性層の面内方向について測定される屈折率Nxyと上記磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔNは0.25以上0.40以下である磁気テープ、
に関する。
一態様では、上記屈折率Nxyと上記屈折率Nzとの差分(Nxy−Nz)は、0.25以上0.40以下であることができる。
一態様では、C−H由来C濃度は、45原子%以上80原子%以下であることができる。
一態様では、C−H由来C濃度は、45原子%以上70原子%以下であることができる。
一態様では、上記磁気テープは、上記非磁性支持体と上記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有することができる。
一態様では、上記磁気テープは、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することができる。
本発明の更なる態様は、上記磁気テープと、磁気ヘッドと、を含む磁気記録再生装置に関する。
本発明の一態様によれば、低温高湿環境下でのミッシングパルスの発生頻度の低減が可能な磁気テープを提供することができる。また、本発明の一態様によれば、上記磁気テープを含む磁気記録再生装置を提供することができる。
磁気テープ製造工程の具体的態様の一例(工程概略図)を示す。
[磁気テープ]
本発明の一態様は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、上記磁性層は脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含み、上記磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析により得られるC1sスペクトルにおけるC−Hピーク面積率から算出されるC−H由来C濃度は45原子%以上であり、かつ上記磁性層の面内方向について測定される屈折率Nxyと上記磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔNは0.25以上0.40以下である磁気テープに関する。
本発明および本明細書において、「磁性層(の)表面」とは、磁気テープの磁性層側表面と同義である。また、本発明および本明細書において、「強磁性粉末」とは、複数の強磁性粒子の集合を意味するものとする。「集合」とは、集合を構成する粒子が直接接触している態様に限定されず、結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。以上の点は、本発明および本明細書における非磁性粉末等の各種粉末についても同様とする。
以下に、ΔNおよびC−H由来C濃度の測定方法について説明する。
本発明および本明細書において、磁性層の面内方向について測定される屈折率Nxyと磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔNは、以下の方法によって求められる値とする。
磁性層の各方向についての屈折率は、分光エリプソメトリーにより2層モデルを用いて求めるものとする。分光エリプソメトリーにより2層モデルを用いて磁性層の屈折率を求めるためには、磁性層と隣接する部分の屈折率の値が用いられる。以下では、非磁性支持体上に非磁性層と磁性層とがこの順に積層された層構成を有する磁気テープについて、磁性層の屈折率NxyおよびNzを求める場合を例に説明する。ただし、本発明の一態様にかかる磁気テープは、非磁性支持体上に非磁性層を介さずに磁性層が直接積層された層構成の磁気テープであることもできる。かかる構成の磁気テープについては、磁性層と非磁性支持体との2層モデルを用いて、以下の方法と同様に磁性層の各方向についての屈折率を求める。また、以下に記載の入射角度は、垂直入射の場合の入射角度を0°としたときの入射角度である。
(1)測定用試料の準備
非磁性支持体の磁性層を有する表面とは反対側の表面上にバックコート層を有する磁気テープについては、磁気テープから切り出した測定用試料のバックコート層を除去した後に測定を行う。バックコート層の除去は、バックコート層を溶媒を用いて溶解する等の公知の方法により行うことができる。溶媒としては、例えばメチルエチルケトンを用いることができる。ただし、バックコート層を除去できる溶媒であればよい。バックコート層除去後の非磁性支持体表面は、エリプソメーターでの測定において、この表面での反射光が検出されないように公知の方法により粗面化する。粗面化は、例えばバックコート層除去後の非磁性支持体表面をサンドペーパーを用いて研磨する方法等によって行うことができる。バックコート層を持たない磁気テープから切り出した測定用試料については、磁性層を有する表面とは反対側の非磁性支持体表面について、粗面化を行う。
また、下記の非磁性層の屈折率測定のためには、更に磁性層を除去して非磁性層表面を露出させる。下記の非磁性支持体の屈折率測定のためには、更に非磁性層も除去して非磁性支持体の磁性層側の表面を露出させる。各層の除去は、バックコート層の除去について記載したように、公知の方法により行うことができる。なお以下に記載の長手方向とは、測定用試料が切り出される前に磁気テープに含まれていたときに、磁気テープの長手方向であった方向をいうものとする。この点は、以下に記載のその他の方向についても、同様である。
(2)磁性層の屈折率測定
エリプソメーターを用いて、入射角度を65°、70°および75°とし、長手方向から磁性層表面にビーム径300μmの入射光を照射することにより、Δ(s偏光とp偏光の位相差)およびΨ(s偏光とp偏光の振幅比)を測定する。測定は入射光の波長を400〜700nmの範囲で1.5nm刻みで変化させて行い、各波長について測定値を求める。
各波長における磁性層のΔおよびΨの測定値、下記方法により求められる各方向における非磁性層の屈折率、ならびに磁性層の厚みを用いて、以下のように2層モデルによって各波長における磁性層の屈折率を求める。
2層モデルの基板である第0層を非磁性層とし、第1層を磁性層とする。空気/磁性層と磁性層/非磁性層の界面の反射のみを考慮し非磁性層の裏面反射の影響はないものと見做して2層モデルを作成する。得られた測定値に最も整合する第1層の屈折率を最小二乗法によってフィッティングにより求める。フィッティングの結果から得られた波長600nmにおける値として、長手方向における磁性層の屈折率Nx、および長手方向から入射光を入射させて測定した磁性層の厚み方向における屈折率Nzを求める。
入射光を入射させる方向を磁気テープの幅方向とする点以外は上記と同様として、フィッティングの結果から得られた波長600nmにおける値として、幅方向における磁性層の屈折率Ny、および幅方向から入射光を入射させて測定した磁性層の厚み方向における屈折率Nzを求める。
フィッティングは、以下の手法により行う。
一般的に「複素屈折率n=η+iκ」である。ここで、ηは屈折率の実数部であり、κは消光係数であり、iは虚数である。複素誘電率ε=ε1+iε2 (ε1とε2はクラマース・クローニッヒの関係を満たしている)とε1=η−κ、ε2=2ηκの関係にあり、NxおよびNz算出の際は、Nxの複素誘電率をε=ε1+iε2、Nzの複素誘電率をεz1=εz11+iεz12とする。
ε2を1つのガウシアンとし、ピーク位置が5.8〜5.1eV、σが4〜3.5 eVの任意の点を出発点とし、測定波長域(400〜700nm)の外に誘電率にオフセットとなるパラメータを置き、測定値を最小二乗フィッティングすることによりNxを求める。同様に、εz12はピーク位置が3.2〜2.9eV、σが1.5〜1.2eVの任意の点を出発点とし、オフセットパラメータを置き、測定値を最小二乗フィッティングすることによりNzを求める。NyおよびNzも同様に求める。磁性層の面内方向について測定される屈折率Nxyは、「Nxy=(Nx+Ny)/2」として求める。磁性層の厚み方向について測定される屈折率Nzは、「Nz=(Nz+Nz)/2」として求める。求められたNxyとNzから、これらの差分の絶対値ΔNを求める。
(3)非磁性層の屈折率測定
以下の点を除き、上記方法と同様に非磁性層の波長600nmにおける屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)を求める。
入射光の波長は、250〜700nmの範囲で1.5nm刻みで変化させる。
非磁性層と非磁性支持体の2層モデルを用いて、2層モデルの基板である第0層を非磁性支持体とし、第1層を非磁性層とする。空気/非磁性層と非磁性層/非磁性支持体の界面の反射のみを考慮し非磁性支持体の裏面反射の影響はないものと見做して2層モデルを作成する。
フィッティングにおいて、複素誘電率の虚部(ε2)に、7か所のピーク(0.6eV、2.3eV、2.9eV、3.6eV、4.6eV、5.0eV、6.0eV)を仮定し、測定波長域(250〜700nm)の外に誘電率にオフセットとなるパラメータを置く。
(4)非磁性支持体の屈折率測定
2層モデルにより非磁性層の屈折率を求めるために用いられる非磁性支持体の波長600nmにおける屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)は、以下の点を除き、磁性層の屈折率測定のための上記方法と同様に求める。
2層モデルを用いず、表面反射のみの1層モデルを用いる。
フィッティングは、コーシーモデル(n=A+B/λ、nは屈折率、AおよびBはそれぞれフィッティングにより定まる定数、λは波長)により行う。
次に、磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析により得られるC1sスペクトルにおけるC−Hピーク面積率から算出されるC−H由来C濃度について説明する。
「X線光電子分光分析」は、一般にESCA(Electron Spectroscopy for Chemical Analysis)またはXPS(X−ray Photoelectron Spectroscopy)とも呼ばれる分析法である。以下において、X線光電子分光分析を、ESCAとも記載する。ESCAは、測定対象試料表面にX線を照射すると光電子が放出されることを利用する分析法であり、測定対象試料の表層部の分析法として広く用いられている。ESCAによれば、測定対象の試料表面における分析により取得されるX線光電子分光スペクトルを用いて定性分析および定量分析を行うことができる。試料表面から分析位置までの深さ(以下、「検出深さ」とも記載する。)と光電子取り出し角(take−off angle)との間には、一般に次の式:検出深さ≒電子の平均自由行程×3×sinθ、が成立する。式中、検出深さは、X線光電子分光スペクトルを構成する光電子の95%が発生する深さであり、θは光電子取り出し角である。上記の式から、光電子取り出し角が小さいほど試料表面からの深さが浅い部分が分析でき、光電子取り出し角が大きいほど深い部分が分析できることがわかる。そして光電子取り出し角10度でのESCAによって行われる分析では、通常、試料表面から深さ数nm程度のごく表層部が分析位置になる。したがって、磁気テープの磁性層の表面において、光電子取り出し角10度でESCAによって行われる分析によれば、磁性層の表面から深さ数nm程度のごく表層部の組成分析を行うことができる。
上記C−H由来C濃度とは、ESCAによって行われる定性分析により検出される全元素の合計(原子基準)100原子%に対して、C−H結合を構成している炭素原子Cが占める割合である。分析を行う領域は、磁気テープの磁性層表面の任意の位置の300μm×700μmの面積の領域とする。ESCAによって行われるワイドスキャン測定(パスエネルギー:160eV、スキャン範囲:0〜1200eV、エネルギー分解能:1eV/step)により定性分析を実施する。次いで、定性分析により検出された全元素のスペクトルをナロースキャン測定(パスエネルギー:80eV、エネルギー分解能:0.1eV、スキャン範囲:測定するスペクトルの全体が入るように元素毎に設定。)により求める。こうして得られた各スペクトルにおけるピーク面積から、各元素の原子濃度(atomic concentration、単位:原子%)を算出する。ここでC1sスペクトルのピーク面積から炭素原子の原子濃度(C濃度)も算出される。
更に、C1sスペクトルを取得する(パスエネルギー:10eV、スキャン範囲:276〜296eV、エネルギー分解能:0.1eV/step)。取得したC1sスペクトルを、ガウス−ローレンツ複合関数(ガウス成分70%、ローレンツ成分30%)を用いる非線形最小二乗法によってフィッティング処理し、C1sスペクトルにおけるC−H結合のピークをピーク分離し、分離されたC−HピークのC1sスペクトルに占める割合(ピーク面積率)を算出する。算出されたC−Hピーク面積率を、上記のC濃度に掛けることにより、C−H由来C濃度を算出する。
以上の処理を磁気テープの磁性層表面の異なる位置において3回行って得られた値の算術平均を、C−H由来C濃度とする。また、以上の処理の具体的態様を、後述の実施例に示す。
本発明者は、上記磁気テープにおいて、低温高湿環境下でのミッシングパルスの発生頻度の低減が可能な理由について、以下のように推察している。
磁気テープに記録された情報を再生する際、磁性層表面とヘッドとの摺動において磁性層表面が削れると、発生した削れ屑がヘッドに付着してヘッド付着物となる場合がある。本発明者は、低温高湿環境下でのミッシングパルスの発生原因は、低温高湿環境下では磁性層表面とヘッドとの摺動時の摩擦係数が高まる傾向があるため磁性層表面とヘッドとが摺動する際の接触状態が不安定になりやすいことにあり、接触状態が不安定になる原因としてはヘッド付着物の発生が挙げられると推察している。
以上の点に関して、本発明者は、上記方法により求められるΔNは、磁性層の表層領域における強磁性粉末の存在状態の指標となり得る値と考えている。このΔNは、磁性層における強磁性粉末の配向状態に加えて、結合剤の存在状態、強磁性粉末の密度分布等の各種要因の影響を受ける値と推察される。そして、各種要因を制御することによってΔNを0.25以上0.40以下とした磁性層は、磁性層表面の強度が高くヘッドとの摺動によって削れ難いと考えられる。このことが、低温高湿環境下でのヘッドとの摺動時に磁性層表面が削れてヘッド付着物が発生することを抑制することに寄与し、結果的に低温高湿環境下でのミッシングパルスの発生頻度を低減することにつながると本発明者は推察している。
更に、C−H由来C濃度に関して、本発明者は以下のように推察している。
上記磁気テープは、少なくとも磁性層に、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む。脂肪酸および脂肪酸アミドは、それぞれ磁気テープにおいて潤滑剤として機能することのできる成分である。これら成分の一種以上を少なくとも磁性層に含む磁気テープの磁性層の表面において、光電子取り出し角10度でESCAによって行われる分析により得られるC−H由来C濃度は、磁性層のごく表層部における上記成分(脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上)の存在量の指標になると考えられる。詳しくは、次の通りである。
ESCAによって行われる分析により得られるX線光電子分光スペクトル(横軸:結合エネルギー、縦軸:強度)の中で、C1sスペクトルは、炭素原子Cの1s軌道のエネルギーピークに関する情報を含んでいる。かかるC1sスペクトルにおいて、結合エネルギー284.6eV付近に位置するピークが、C−Hピークである。このC−Hピークは、有機化合物のC−H結合の結合エネルギーに由来するピークである。脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む磁性層のごく表層部では、C−Hピークの主要構成成分が脂肪酸および脂肪酸アミドからなる群から選ばれる成分であると推察される。そのため、上記のC−H由来C濃度は、先に記載したように上記成分の存在量の指標とすることができると考えられる。
そして、上記のC−H由来C濃度が45原子%以上である状態、即ち磁性層のごく表層部に脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上が多量に存在する状態であることが、低温高湿環境下での磁性層表面とヘッドとの円滑な摺動を促進する(摺動性を向上させる)ことに寄与すると本発明者は考えている。摺動性を向上させることができれば、磁性層表面とヘッドとの摺動時に磁性層表面がダメージを受けて削れることによってヘッド付着物が発生することを抑制することができると考えられる。このことも、低温高湿環境下でのミッシングパルスの発生頻度を低減することに寄与すると本発明者は推察している。
ただし、以上は推察であって、本発明を何ら限定するものではない。
以下に、上記磁気テープについて更に詳細に説明する。以下において、低温高湿環境下でのミッシングパルスの発生頻度を、単に「ミッシングパルスの発生頻度」とも記載する。
<磁性層>
(磁性層のΔN)
上記磁気テープの磁性層のΔNは、0.25以上0.40以下である。先に記載したように、ΔNが0.25以上0.40以下である磁性層は、磁性層表面の強度が高く、低温高湿環境下でのヘッドとの摺動によって削れ難いと推察される。そのため、ΔNが上記範囲である磁性層は、低温高湿環境下で磁性層に記録された情報を再生する際、磁性層表面とヘッドとの摺動において磁性層表面の削れが生じ難いと考えられる。このことが、低温高湿環境下でのミッシングパルスの発生頻度を低減することに寄与すると推察される。ミッシングパルスの発生頻度をより一層低減する観点からは、ΔNは0.25以上0.35以下であることが好ましい。ΔNを調整するための手段の具体的態様は、後述する。
ΔNは、NxyとNzとの差分の絶対値である。Nxyは磁性層の面内方向について測定される屈折率であり、Nzは磁性層の厚み方向について測定される屈折率である。一態様では、Nxy>Nzであることができ、他の一態様ではNxy<Nzであることができる。磁気テープの電磁変換特性の観点からは、Nxy>Nzであることが好ましく、したがってNxyとNzとの差分(Nxy−Nz)が0.25以上0.40以下であることが好ましく、0.25以上0.35以下であることがより好ましい。
以上説明したΔNを調整するための各種手段については後述する。
(C−H由来C濃度)
上記磁気テープのC−H由来C濃度は、低温高湿環境下でのミッシングパルスの発生頻度を低減する観点から45原子%以上である。ミッシングパルスの発生頻度をより一層低減する観点から、C−H由来C濃度は、48原子%以上であることが好ましく、50原子%以上であることが更に好ましい。また、本発明者の検討によれば、表面平滑性の高い磁性層の形成容易性の観点から、C−H由来C濃度は、例えば95原子%以下、90原子%以下、85原子%以下、80原子%以下、75原子%以下、70原子%以下または65原子%以下であることが好ましい。
以上説明したC−H由来C濃度を調整するための好ましい手段としては、詳細を後述するように非磁性層形成工程において冷却工程を実施することを挙げることができる。ただし上記磁気テープは、かかる冷却工程を経て製造されたものに限定されるものではない。
(強磁性粉末)
磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において通常用いられる強磁性粉末を使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは、磁気記録媒体の記録密度向上の観点から好ましい。この点から、強磁性粉末としては、平均粒子サイズが50nm以下の強磁性粉末を用いることが好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、10nm以上であることがより好ましい。
強磁性粉末の好ましい具体例としては、強磁性六方晶フェライト粉末を挙げることができる。強磁性六方晶フェライト粉末は、強磁性六方晶バリウムフェライト粉末、強磁性六方晶ストロンチウムフェライト粉末等であることができる。強磁性六方晶フェライト粉末の平均粒子サイズは、記録密度向上と磁化の安定性の観点から、10nm以上50nm以下であることが好ましく、20nm以上50nm以下であることがより好ましい。強磁性六方晶フェライト粉末の詳細については、例えば、特開2011−225417号公報の段落0012〜0030、特開2011−216149号公報の段落0134〜0136、および特開2012−204726号公報の段落0013〜0030を参照できる。
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の平均粒子サイズは、記録密度向上と磁化の安定性の観点から、10nm以上50nm以下であることが好ましく、20nm以上50nm以下であることがより好ましい。強磁性金属粉末の詳細については、例えば特開2011−216149号公報の段落0137〜0141および特開2005−251351号公報の段落0009〜0023を参照できる。
強磁性粉末の好ましい具体例としては、ε−酸化鉄粉末を挙げることもできる。ε−酸化鉄粉末の製造方法としては、ゲータイト(goethite)から作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε−酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280−S284、J. Mater. Chem. C, 2013, 1, pp.5200−5206等を参照できる。ただし、上記磁性層において強磁性粉末として使用可能なε−酸化鉄粉末の製造方法は限定されない。
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H−9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS−400を用いて行うことができる。後述の実施例に示す平均粒子サイズ等の粉末のサイズに関する値は、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H−9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS−400を用いて測定された値である。
粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011−048878号公報の段落0015に記載の方法を採用することができる。
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
一態様では、磁性層に含まれる強磁性粉末を構成する強磁性粒子の形状は板状であることができる。以下において、板状の強磁性粒子から構成される強磁性粉末を、板状強磁性粉末と記載する。板状強磁性粉末の平均板状比は、好ましくは2.5〜5.0の範囲であることができる。平均板状比とは、上記の定義(2)の場合における(最大長径/厚みまたは高さ)の算術平均である。平均板状比が大きいほど、配向処理によって、板状強磁性粉末を構成する強磁性粒子の配向状態の均一性が高まり易い傾向があり、ΔNの値は大きくなる傾向がある。
また、強磁性粉末の粒子サイズの指標としては、活性化体積を用いることもできる。「活性化体積」とは、磁化反転の単位である。本発明および本明細書に記載の活性化体積は、振動試料型磁束計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで雰囲気温度23℃±1℃の環境下で測定し、以下のHcと活性化体積Vとの関係式から求められる値である。後述の実施例に示されている活性化体積は、東英工業社製振動試料型磁束計を用いて測定を行って求められた値である。
Hc=2Ku/Ms{1−[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数、Ms:飽和磁化、k:ボルツマン定数、T:絶対温度、V:活性化体積、A:スピン歳差周波数、t:磁界反転時間]
記録密度向上の観点からは、強磁性粉末の活性化体積は、2500nm以下であることが好ましく、2300nm以下であることがより好ましく、2000nm以下であることが更に好ましい。一方、磁化の安定性の観点からは、強磁性粉末の活性化体積は、例えば800nm以上であることが好ましく、1000nm以上であることがより好ましく、1200nm以上であることが更に好ましい。
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。磁性層の強磁性粉末以外の成分は、少なくとも、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上ならびに結合剤であり、任意に一種以上の更なる添加剤が含まれ得る。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤、硬化剤)
上記磁気テープは塗布型磁気テープであって、磁性層に結合剤を含む。結合剤とは、一種以上の樹脂である。樹脂はホモポリマーであってもコポリマー(共重合体)であってもよい。磁性層に含まれる結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選択したものを単独で用いることができ、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂および塩化ビニル樹脂である。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010−24113号公報の段落0029〜0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定された値をポリスチレン換算して求められる値である。測定条件としては、下記条件を挙げることができる。後述の実施例に示す重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC−8120(東ソー社製)
カラム:TSK gel Multipore HXL−M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
一態様では、結合剤として、酸性基を含む結合剤を用いることができる。本発明および本明細書における酸性基とは、水中または水を含む溶媒(水性溶媒)中でHを放出してアニオンに解離可能な基およびその塩の形態を包含する意味で用いるものとする。酸性基の具体例としては、例えば、スルホン酸基、硫酸基、カルボキシ基、リン酸基、それらの塩の形態等を挙げることができる。例えば、スルホン酸基(−SOH)の塩の形態とは、−SOMで表され、Mが水中または水性溶媒中でカチオンになり得る原子(例えばアルカリ金属原子等)を表す基を意味する。この点は、上記の各種の基の塩の形態についても同様である。酸性基を含む結合剤の一例としては、例えば、スルホン酸基およびその塩からなる群から選ばれる少なくとも一種の酸性基を含む樹脂(例えばポリウレタン樹脂、塩化ビニル樹脂等)を挙げることができる。ただし、磁性層に含まれる樹脂は、これらの樹脂に限定されるものではない。また、酸性基を含む結合剤において、酸性基量は、例えば20〜500eq/tonの範囲であることができる。なおeqは当量( equivalent)であり、SI単位に換算不可の単位である。樹脂に含まれる酸性基等の各種官能基の含有量は、官能基の種類に応じて公知の方法で求めることができる。酸性基量が多い結合剤を使用するほど、ΔNの値は大きくなる傾向がある。結合剤は、磁性層形成用組成物中に、強磁性粉末100.0質量部に対して、例えば1.0〜30.0質量部の量で使用することができ、好ましくは1.0〜20.0質量部の量で使用することができる。強磁性粉末に対する結合剤の使用量を多くするほど、ΔNの値は大きくなる傾向がある。
また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011−216149号公報の段落0124〜0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0〜80.0質量部、磁性層の強度向上の観点からは好ましくは50.0〜80.0質量部の量で使用することができる。
(脂肪酸、脂肪酸アミド)
上記磁気テープは、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を、少なくとも磁性層に含む。磁性層には、脂肪酸および脂肪酸アミドの一方のみが含まれていてもよく、両方が含まれていてもよい。これら成分が磁性層のごく表層部に、C−H由来C濃度が45原子%以上となる量で存在することが、低温高湿環境下でのミッシングパルス発生頻度を低減することに寄与すると本発明者は考えている。また、非磁性支持体と磁性層との間に詳細を後述する非磁性層を有する磁気テープでは、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上は、非磁性層に含まれていてもよい。非磁性層は脂肪酸、脂肪酸アミド等の潤滑剤を保持し磁性層に供給する役割を果たすことができる。非磁性層に含まれる脂肪酸、脂肪酸アミド等の潤滑剤は、磁性層に移行し磁性層に存在し得る。
脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等を挙げることができ、ステアリン酸、ミリスチン酸、パルミチン酸が好ましく、ステアリン酸がより好ましい。脂肪酸は、金属塩等の塩の形態で磁性層に含まれていてもよい。
脂肪酸アミドとしては、例示した上記各種脂肪酸のアミド、具体的には、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。
脂肪酸と脂肪酸の誘導体(アミドおよび後述のエステル等)については、脂肪酸誘導体の脂肪酸由来部位は、併用される脂肪酸と同様または類似の構造を有することが好ましい。例えば、一例として、脂肪酸としてステアリン酸を用いる場合にステアリン酸アミドおよび/またはステアリン酸エステルを併用することは好ましい。
脂肪酸含有量は、磁性層形成用組成物における含有量として、強磁性粉末100.0質量部あたり、例えば0.1〜10.0質量部であり、好ましくは1.0〜7.0質量部である。磁性層形成用組成物に二種以上の異なる脂肪酸を添加する場合、含有量とは、それら二種以上の異なる脂肪酸の合計含有量をいうものとする。この点は、他の成分についても同様である。また、本発明および本明細書において、特記しない限り、ある成分は、一種のみ用いてもよく二種以上用いてもよい。
磁性層形成用組成物中の脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0.1〜3.0質量部であり、好ましくは0.1〜1.0質量部である。
一方、非磁性層形成用組成物中の脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば1.0〜10.0質量部であり、好ましくは1.0〜7.0質量部である。また、非磁性層形成用組成物中の脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0.1〜3.0質量部であり、好ましくは0.1〜1.0質量部である。
(添加剤)
磁性層には、上記の各種成分が含まれ、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。また、非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。なお後述の実施例に示すコロイダルシリカ(シリカコロイド粒子)の平均粒子サイズは、特開2011−048878号公報の段落0015に平均粒径の測定方法として記載されている方法により求められた値である。添加剤は、所望の性質に応じて市販品を適宜選択して、または公知の方法で製造して、任意の量で使用することができる。研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013−131285号公報の段落0012〜0022に記載の分散剤を、研磨剤の分散性を向上するための分散剤として挙げることができる。例えば、潤滑剤については、特開2016−126817号公報の段落0030〜0033、0035および0036を参照できる。非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016−126817号公報の段落0030、0031、0034、0035および0036を参照できる。分散剤については、特開2012−133837号公報の段落0061および0071を参照できる。分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012−133837号公報の段落0061を参照できる。
また、磁性層および詳細を後述する非磁性層の一方または両方には、脂肪酸エステルが含まれていてもよく、含まれなくてもよい。
脂肪酸エステル、脂肪酸および脂肪酸アミドは、いずれも潤滑剤として機能し得る成分である。潤滑剤は、一般に流体潤滑剤と境界潤滑剤とに大別される。そして脂肪酸エステルは流体潤滑剤として機能し得る成分と言われているのに対し、脂肪酸および脂肪酸アミドは、境界潤滑剤として機能し得る成分と言われている。境界潤滑剤は、粉末(例えば強磁性粉末)の表面に吸着し強固な潤滑膜を形成することで接触摩擦を下げることのできる潤滑剤と考えられる。一方、流体潤滑剤は、それ自身が磁性層表面に液膜を形成し、この液膜の流動により摩擦を下げることのできる潤滑剤と考えられる。このように脂肪酸エステルは脂肪酸および脂肪酸アミドとは潤滑剤としての作用が異なると考えられる。そして本発明者は、磁性層のごく表層部における脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上の存在量の指標と考えられるC−H由来C濃度を45原子%以上とすることが、低温高湿環境下でのミッシングパルス発生頻度を低減することに寄与すると推察している。
脂肪酸エステルとしては、脂肪酸に関して例示した上記の各種脂肪酸のエステル等を挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル(ブチルステアレート)、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。
脂肪酸エステル含有量は、磁性層形成用組成物における含有量として、強磁性粉末100.0質量部あたり、例えば0〜10.0質量部であり、好ましくは1.0〜7.0質量部である。
また、非磁性層形成用組成物中の脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0〜10.0質量部であり、好ましくは1.0〜7.0質量部である。
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
<非磁性層>
次に非磁性層について説明する。
上記磁気テープは、非磁性支持体表面上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末と結合剤を含む非磁性層を有していてもよい。非磁性層に含まれる非磁性粉末は、無機粉末でも有機粉末でもよい。また、カーボンブラック等も使用できる。無機粉末としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2010−24113号公報の段落0036〜0039を参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。
非磁性層の結合剤、添加剤等のその他詳細は、非磁性層に関する公知技術が適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
本発明および本明細書における非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<非磁性支持体>
次に、非磁性支持体(以下、単に「支持体」とも記載する。)について説明する。
非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
<バックコート層>
上記磁気テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することもできる。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層に含まれる結合剤、任意に含まれ得る各種添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006−331625号公報の段落0018〜0020および米国特許第7,029,774号明細書の第4欄65行目〜第5欄38行目の記載を、バックコート層について参照できる。
<各種厚み>
上記磁気テープにおける非磁性支持体および各層の厚みについて、以下に説明する。
非磁性支持体の厚みは、例えば3.0〜80.0μmであり、好ましくは3.0〜50.0μmであり、より好ましくは3.0〜10.0μmである。
磁性層の厚みは、用いる磁気ヘッドの飽和磁化、ヘッドギャップ長、記録信号の帯域等に応じて最適化することができる。磁性層の厚みは、一般には10nm〜100nmであり、高密度記録化の観点から、好ましくは20〜90nmであり、より好ましくは30〜70nmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
非磁性層の厚みは、例えば0.1〜1.5μmであり、0.1〜1.0μmであることが好ましい。
バックコート層の厚みは、0.9μm以下であることが好ましく、0.1〜0.7μmであることが更に好ましい。
各層および非磁性支持体の厚みは、磁気テープの厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型透過電子顕微鏡(STEM;Scanning Transmission Electron Microscope)により断面観察を行い求めるものとする。厚みの測定方法の具体例については、後述の実施例における厚みの測定方法に関する記載を参照できる。
<製造工程>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含む。個々の工程はそれぞれ二段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。溶媒としては、塗布型磁気記録媒体の製造に通常用いられる各種溶媒の一種または二種以上を用いることができる。溶媒については、例えば特開2011−216149号公報の段落0153を参照できる。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程および分散後の粘度調整のための混合工程で分割して投入してもよい。上記磁気テープを製造するためには、従来の公知の製造技術を各種工程において用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については特開平1−106338号公報および特開平1−79274号公報を参照できる。分散機は公知のものを使用することができる。また、強磁性粉末と研磨剤とを別分散することもできる。別分散とは、より詳しくは、研磨剤および溶媒を含む研磨剤液(但し、強磁性粉末を実質的に含まない)を、強磁性粉末、溶媒および結合剤を含む磁性液と混合する工程を経て磁性層形成用組成物を調製する方法である。上記の「強磁性粉末を実質的に含まない」とは、研磨剤液の構成成分として強磁性粉末を添加しないことを意味するものであって、意図せず混入した不純物として微量の強磁性粉末が存在することは許容されるものとする。ΔNに関しては、上記磁性液の分散時間を長くするほど、ΔNの値が大きくなる傾向がある。これは、磁性液の分散時間を長くするほど、磁性層形成用組成物の塗布層における強磁性粉末の分散性が高まり、配向処理によって強磁性粉末を構成する強磁性粒子の配向状態の均一性が高まり易い傾向があるためと考えられる。また、非磁性層形成用組成物の各種成分を混合し分散する際の分散時間を長くするほど、ΔNの値は大きくなる傾向がある。磁性液の分散時間および非磁性層形成用組成物の分散時間は、0.25以上0.40以下のΔNが実現できるように設定すればよい。
各層形成用組成物を調製する任意の段階において、公知の方法によってろ過を行ってもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01〜3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
(塗布工程)
非磁性層および磁性層は、非磁性層形成用組成物および磁性層形成用組成物を、逐次または同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の非磁性層および磁性層を有する(または非磁性層および/または磁性層が追って設けられる)表面とは反対側の表面に塗布することにより形成することができる。また、各層を形成するための塗布工程は、2段階以上の工程に分けて行うこともできる。例えば一態様では、磁性層形成用組成物を2段階以上の工程に分けて塗布することができる。この場合、2つの段階の塗布工程の間に乾燥処理を施してもよく、施さなくてもよい。また、2つの段階の塗布工程の間に配向処理を施してもよく、施さなくてもよい。各層形成のための塗布の詳細については、特開2010−231843号公報の段落0066も参照できる。また、各層形成用組成物を塗布した後の乾燥工程については、公知技術を適用できる。磁性層形成用組成物に関しては、磁性層形成用組成物を塗布して形成された塗布層(以下、「磁性層形成用組成物の塗布層」または単に「塗布層」とも記載する。)の乾燥温度を低くするほど、ΔNの値は大きくなる傾向がある。乾燥温度は、例えば乾燥工程を行う雰囲気温度であることができ、0.25以上0.40以下のΔNが実現できるように設定すればよい。
(その他の工程)
磁気テープ製造のためのその他の各種工程については、公知技術を適用できる。各種工程については、例えば特開2010−231843号公報の段落0067〜0070を参照できる。
例えば、磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに配向処理を施すことが好ましい。0.25以上0.40以下のΔNを実現する容易性の観点からは、配向処理は、磁性層形成用組成物の塗布層の表面に対して垂直に磁場が印加されるように磁石を配置して行うこと(即ち垂直配向処理)が好ましい。配向処理時の磁場の強度は、0.25以上0.40以下のΔNが実現できるように設定すればよい。また、磁性層形成用組成物の塗布工程を2段階以上の塗布工程により行う場合には、少なくとも最後の塗布工程の後に配向処理を行うことが好ましく、垂直配向処理を行うことがより好ましい。例えば2段階の塗布工程によって磁性層を形成する場合、1段階目の塗布工程の後には配向処理を行うことなく乾燥工程を行い、その後に2段階目の塗布工程で形成された塗布層に対して配向処理を施すことができる。
また、磁性層形成用組成物の塗布層を乾燥させた後の任意の段階でカレンダ処理を行うことが好ましい。カレンダ処理の条件については、例えば特開2010−231843号公報の段落0026を参照できる。カレンダ温度(カレンダロールの表面温度)を高くするほど、ΔNの値は大きくなる傾向がある。カレンダ温度は、0.25以上0.40以下のΔNが実現できるように設定すればよい。
(好ましい製造方法の一態様)
先に記載した通り、上記磁気テープは、一態様では、非磁性支持体と磁性層との間に非磁性層を有する。かかる磁気テープは、好ましくは、逐次重層塗布により製造することができる。逐次重層塗布を行う製造工程は、好ましくは次のように実施することができる。非磁性層を、非磁性層形成用組成物を非磁性支持体上に塗布することにより塗布層を形成する塗布工程、形成した塗布層を加熱処理により乾燥させる加熱乾燥工程を経て形成する。そして形成された非磁性層上に磁性層形成用組成物を塗布することにより塗布層を形成する塗布工程、形成した塗布層を加熱処理により乾燥させる加熱乾燥工程を経て、磁性層を形成する。
かかる逐次重層塗布を行う製造方法の非磁性層形成工程において、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む非磁性層形成用組成物を用いて塗布工程を行い、かつ塗布工程と加熱乾燥工程との間に、塗布層を冷却する冷却工程を行うことは、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を少なくとも磁性層に含む磁気記録媒体において、C−H由来C濃度を45原子%以上に調整するために好ましい。これは、理由は明らかではないものの、加熱乾燥工程前に非磁性層形成用組成物の塗布層を冷却することにより、加熱乾燥工程における溶媒揮発時に上記成分(脂肪酸および/または脂肪酸アミド)が非磁性層表面に移行しやすくなるためではないかと推察される。ただし推察に過ぎず、本発明を何ら限定するものではない。
また、磁性層形成工程では、強磁性粉末、結合剤、脂肪酸および脂肪酸アミドからなる群から選ばれる成分、ならびに溶媒を含む磁性層形成用組成物を非磁性層上に塗布することにより塗布層を形成する塗布工程を行い、形成された塗布層を加熱処理により乾燥させる加熱乾燥工程を行うことができる。なお上記磁気テープは、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を磁性層に含む。上記磁気テープが非磁性支持体と磁性層との間に非磁性層を有する場合、かかる磁気テープを製造するために、磁性層形成用組成物が、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含むことが好ましい。ただし、磁性層形成用組成物に脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含むことは必須ではない。非磁性層形成用組成物に含まれていたこれら成分が非磁性層表面に移行した後に、この非磁性層上に磁性層形成用組成物を塗布して磁性層を形成することにより、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む磁性層を形成することができると考えられるためである。
以下、上記磁気テープの製造方法の具体的態様を、図1に基づき説明する。ただし本発明は、下記具体的態様に限定されるものではない。
図1は、非磁性支持体の一方の面に非磁性層と磁性層とをこの順に有し、他方の面にバックコート層を有する磁気テープを製造する工程の具体的態様を示す工程概略図である。図1に示す態様では、非磁性支持体(長尺フィルム)を、送り出し部から送り出し巻き取り部で巻き取る操作を連続的に行い、かつ図1に示されている各部または各ゾーンにおいて塗布、乾燥、配向等の各種処理を行うことにより、走行する非磁性支持体上の一方の面に非磁性層および磁性層を逐次重層塗布により形成し、他方の面にバックコート層を形成することができる。図1に示す態様は、冷却ゾーンを含む点以外は、塗布型磁気テープの製造のために通常行われる製造工程と同様にすることができる。
送り出し部から送り出された非磁性支持体上には、第一の塗布部において、非磁性層形成用組成物の塗布が行われる(非磁性層形成用組成物の塗布工程)。
上記塗布工程後、冷却ゾーンにおいて、塗布工程で形成された非磁性層形成用組成物の塗布層が冷却される(冷却工程)。例えば、上記塗布層を形成した非磁性支持体を冷却雰囲気中に通過させることにより、冷却工程を行うことができる。冷却雰囲気の雰囲気温度は、好ましくは−10℃〜0℃の範囲とすることができ、より好ましくは−5℃〜0℃の範囲とすることができる。冷却工程を行う時間(例えば、塗布層の任意の部分が冷却ゾーンに搬入されてから搬出されるまでの時間(以下において、「滞在時間」ともいう。))は特に限定されるものではない。長くするほどC−H由来C濃度が高まる傾向があるため、45原子%以上のC−H由来C濃度が実現できるように必要に応じて予備実験を行う等して調整することが好ましい。冷却工程では、冷却した気体を塗布層表面に吹き付けてもよい。
冷却ゾーンの後、第一の加熱処理ゾーンでは、冷却工程後の塗布層を加熱することにより、塗布層を乾燥させる(加熱乾燥工程)。加熱乾燥処理は、冷却工程後の塗布層を有する非磁性支持体を加熱雰囲気中に通過させることにより行うことができる。ここでの加熱雰囲気の雰囲気温度は、例えば40〜140℃程度である。ただし、溶媒を揮発させて塗布層を乾燥させることができる温度とすればよく、上記範囲の雰囲気温度に限定されるものではない。また任意に、加熱した気体を塗布層表面に吹き付けてもよい。以上の点は、後述する第二の加熱処理ゾーンにおける加熱乾燥工程および第三の加熱処理ゾーンにおける加熱乾燥工程についても、同様である。
次に、第二の塗布部において、第一の加熱処理ゾーンにて加熱乾燥工程を行い形成された非磁性層上に、磁性層形成用組成物が塗布される(磁性層形成用組成物の塗布工程)。
その後、配向処理を行う態様では、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層中の強磁性粉末の配向処理が行われる。配向処理については、先の記載も参照できる。
配向処理後の塗布層は、第二の加熱処理ゾーンにおいて加熱乾燥工程に付される。
次いで、第三の塗布部において、非磁性支持体の非磁性層および磁性層が形成された面とは反対側の面に、バックコート層形成用組成物が塗布されて塗布層が形成される(バックコート層形成用組成物の塗布工程)。その後、第三の加熱処理ゾーンにおいて、上記塗布層を加熱処理し乾燥させる。
以上の工程により、非磁性支持体の一方の面に非磁性層および磁性層をこの順に有し、他方の面にバックコート層を有する磁気テープを得ることができる。
以上により、本発明の一態様にかかる磁気テープを得ることができる。ただし上記の製造方法は例示であって、ΔNおよびC−H由来C濃度を調整可能な任意の手段によって、それらの値をそれぞれ上記範囲に制御することができ、そのような態様も本発明に包含される。磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。低温高湿環境下で磁気記録再生装置において磁気テープに記録された情報を再生する際、本発明の一態様にかかる磁気テープであれば、ミッシングパルスの発生頻度を低減することができる。
上記のように製造された磁気テープには、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気テープの走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、サーボパターンの形成について説明する。
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape−Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
また、一態様では、特開2004−318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1〜10μm、10μm以上等に設定可能である。
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012−53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
[磁気記録再生装置]
本発明の一態様は、上記磁気テープと、磁気ヘッドと、を含む磁気記録再生装置に関する。
本発明および本明細書において、「磁気記録再生装置」とは、磁気テープへの情報の記録および磁気テープに記録された情報の再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置に含まれる磁気ヘッドは、磁気テープへの情報の記録を行うことができる記録ヘッドであることができ、磁気テープに記録された情報の再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一態様では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一態様では、上記磁気記録再生装置に含まれる磁気ヘッドは、記録素子と再生素子の両方を1つの磁気ヘッドに備えた構成を有することもできる。再生ヘッドとしては、磁気テープに記録された情報を感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、公知の各種MRヘッドを用いることができる。また、情報の記録および/または情報の再生を行う磁気ヘッドには、サーボパターン読み取り素子が含まれていてもよい。または、情報の記録および/または情報の再生を行う磁気ヘッドとは別のヘッドとして、サーボパターン読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。
上記磁気記録再生装置において、磁気テープへの情報の記録および磁気テープに記録された情報の再生は、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気記録再生装置は、本発明の一態様にかかる磁気テープを含むものであればよく、その他については公知技術を適用することができる。
上記磁気記録再生装置は、本発明の一態様にかかる磁気テープを含む。したがって、低温高湿環境下で磁気テープに記録された情報を再生する際、ミッシングパルスの発生頻度を低減することができる。また、低温高湿環境下で磁気テープへの情報の記録のために磁性層表面とヘッドとが摺動する際にも、磁性層表面の削れに起因するヘッド付着物によって、磁性層表面とヘッドとの接触状態が不安定になることを抑制することも可能である。
以下に、本発明を実施例に基づき説明する。ただし本発明は実施例に示す態様に限定されるものではない。以下に記載の「部」および「%」は、質量基準である。
[実施例1]
<研磨剤液の調製>
アルファ化率約65%、BET(Brunauer−Emmett−Teller)比表面積20m/gのアルミナ粉末(住友化学社製HIT−80)100.0部に対し、2,3−ジヒドロキシナフタレン(東京化成社製)を3.0部、SONa基含有ポリエステルポリウレタン樹脂(東洋紡社製UR−4800(SONa基:0.08meq/g))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)を31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合溶媒570.0部を混合し、ジルコニアビーズの存在下で、ペイントシェーカーにより5時間分散させた。分散後、メッシュにより分散液とビーズとを分け、アルミナ分散物を得た。
<磁性層形成用組成物の調製>
(磁性液)
板状強磁性六方晶バリウムフェライト粉末 100.0部
(活性化体積:1600nm、平均板状比:3.5)
SONa基含有ポリウレタン樹脂 表5参照
(重量平均分子量:70,000、SONa基量:表5参照)
シクロヘキサノン 150.0部
メチルエチルケトン 150.0部
(研磨剤液)
上記で調製したアルミナ分散物 6.0部
(シリカゾル(突起形成剤液))
コロイダルシリカ(平均粒子サイズ:100nm) 2.0部
メチルエチルケトン 1.4部
(その他成分)
ステアリン酸 2.0部
ブチルステアレート 2.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)) 2.5部
(仕上げ添加溶媒)
シクロヘキサノン 200.0部
メチルエチルケトン 200.0部
(調製方法)
上記磁性液の各種成分を、バッチ式縦型サンドミルにおいて分散メディアとしてビーズを用いてビーズ分散することにより、磁性液を調製した。ビーズとしてはジルコニアビーズ(ビーズ径:表5参照)を用いて、表5に記載の時間(磁性液ビーズ分散時間)、ビーズ分散を行った。
こうして得られた磁性液、上記の研磨剤液、シリカゾル、その他成分および仕上げ添加溶媒を混合し5分間ビーズ分散した後、バッチ型超音波装置(20kHz、300W)で0.5分間処理(超音波分散)を行った。その後、0.5μmの孔径を有するフィルタを用いてろ過を行い磁性層形成用組成物を調製した。
<非磁性層形成用組成物の調製>
下記の非磁性層形成用組成物の各種成分のうち、ステアリン酸、シクロヘキサノンおよびメチルエチルケトンを除いた成分を、バッチ式縦型サンドミルを用いてビーズ分散(分散メディア:ジルコニアビーズ(ビーズ径:0.1mm)、分散時間:表5参照)して分散液を得た。その後、得られた分散液に残りの成分を添加し、ディゾルバー撹拌機により撹拌した。次いで、得られた分散液をフィルタ(孔径0.5μm)を用いてろ過し、非磁性層形成用組成物を調製した。
非磁性無機粉末 α−酸化鉄:100.0部
(平均粒子サイズ10nm、BET比表面積75m/g)
カーボンブラック:25.0部
(平均粒子サイズ20nm)
SONa基含有ポリウレタン樹脂:18.0部
(重量平均分子量70000、SONa基含有量0.2meq/g)
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
<バックコート層形成用組成物の調製>
下記のバックコート層形成用組成物の各種成分のうち、ステアリン酸、ブチルステアレート、ポリイソシアネートおよびシクロヘキサノンを除いた成分をオープンニーダにより混練および希釈して混合液を得た。その後、得られた混合液に対して横型ビーズミルにより、ビーズ径1.0mmのジルコニアビーズを用い、ビーズ充填率80体積%およびローター先端周速10m/秒で、1パスあたりの滞留時間を2分とし、12パスの分散処理を行った。その後、得られた分散液に残りの成分を添加し、ディゾルバー撹拌機により撹拌した。次いで、得られた分散液をフィルタ(孔径:1.0μm)を用いてろ過し、バックコート層形成用組成物を調製した。
非磁性無機粉末:α−酸化鉄 80.0部
平均粒子サイズ(平均長軸長):0.15μm
平均針状比:7
BET比表面積:52m/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
塩化ビニル共重合体 13.0部
スルホン酸塩基含有ポリウレタン樹脂 6.0部
フェニルホスホン酸 3.0部
メチルエチルケトン 155.0部
ステアリン酸 3.0部
ブチルステアレート 3.0部
ポリイソシアネート 5.0部
シクロヘキサノン 355.0部
<磁気テープの作製>
図1に示す具体的態様により磁気テープを作製した。詳しくは、次の通りとした。
厚み5.0μmのポリエチレンナフタレート製支持体を送り出し部から送りだし、一方の表面に、第一の塗布部において乾燥後の厚みが0.7μmになるように非磁性層形成用組成物を塗布して塗布層を形成した。形成した塗布層が湿潤状態にあるうちに雰囲気温度0℃に調整した冷却ゾーンに表5に示す滞在時間で通過させて冷却工程を行い、その後に雰囲気温度100℃の第一の加熱処理ゾーンを通過させ加熱乾燥工程を行い非磁性層を形成した。
その後、第二の塗布部において乾燥後の厚みが50nmになるように上記で調製した磁性層形成用組成物を非磁性層上に塗布し塗布層を形成した。この塗布層が湿潤状態(未乾燥状態)にあるうちに配向ゾーンにおいて表5に示す強度の磁場を、磁性層形成用組成物の塗布層表面に対し垂直方向に印加し垂直配向処理を行った後、第二の加熱処理ゾーン(雰囲気温度:表5中の磁性層乾燥温度)にて乾燥させた。
その後、第三の塗布部において、上記ポリエチレンナフタレート製支持体の非磁性層および磁性層を形成した表面とは反対の表面に乾燥後の厚みが0.5μmになるように上記で調製したバックコート層形成用組成物を非磁性支持体表面に塗布して塗布層を形成し、形成した塗布層を第三の加熱処理ゾーン(雰囲気温度100℃)にて乾燥させた。
その後、金属ロールのみから構成されるカレンダロールを用いて、速度80m/分、線圧294kN/m(300kg/cm)、および表5に示すカレンダ温度(カレンダロールの表面温度)でカレンダ処理(表面平滑化処理)を行った。
その後、雰囲気温度70℃の環境で36時間加熱処理を行った。加熱処理後1/2インチ(0.0127メートル)幅にスリットした後、市販のサーボライターによって磁性層にサーボパターンを形成した。
以上により、実施例1の磁気テープを得た。
[実施例4、比較例1〜6]
表5に示す各種項目を表5に示すように変更した点以外、実施例1と同様に磁気テープを作製した。
表5中、「磁性層の形成と配向」欄に「配向処理なし」と記載されている比較例は、磁性層形成用組成物の塗布層について配向処理を行わずに磁気テープを作製した。
表5中、冷却ゾーン滞在時間の欄に「未実施」と記載されている比較例では、非磁性層形成工程に冷却ゾーンを含まない製造工程により磁気テープを作製した。
[実施例2]
非磁性層形成後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層を、磁場の印加なしに表5に示す雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第一の磁性層(配向処理なし)を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。この第二の塗布層が湿潤状態にあるうちに、表5に示す雰囲気温度(磁性層乾燥温度)の雰囲気中で対向磁石を用いて表5に示す強度の磁場を第二の塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、第二の磁性層を形成した。
以上のように重層磁性層を形成した点以外、実施例1と同様にして磁気テープを作製した。
[実施例3]
冷却ゾーン滞在時間を表5に示すように変更した点以外、実施例2と同様にして磁気テープを作製した。
[比較例7]
非磁性層形成後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層が湿潤状態にあるうちに、表5に示す雰囲気温度(磁性層乾燥温度)の雰囲気中で対向磁石を用いて表5に示す強度の磁場を第一の塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、第一の磁性層を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。この第二の塗布層を、磁場の印加なしに表5に示す雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第二の磁性層(配向処理なし)を形成した。
以上のように重層磁性層を形成した点以外、比較例2と同様にして磁気テープを作製した。
[比較例8]
非磁性層形成後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層が湿潤状態にあるうちに、表5に示す雰囲気温度(磁性層乾燥温度)の雰囲気中で対向磁石を用いて表5に示す強度の磁場を第一の塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、第一の磁性層を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。この第二の塗布層を、磁場の印加なしに表5に示す雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第二の磁性層(配向処理なし)を形成した。
以上のように重層磁性層を形成した点および非磁性層形成工程に冷却ゾーンを含まない製造工程により磁気テープを作製した点以外、比較例6と同様にして磁気テープを作製した。
[比較例9]
非磁性層形成後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層を磁場の印加なしに表5に示す雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第一の磁性層(配向処理なし)を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。この第二の塗布層が湿潤状態にあるうちに、表5に示す雰囲気温度(磁性層乾燥温度)の雰囲気中で対向磁石を用いて表5に示す強度の磁場を第二の塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、第二の磁性層を形成した。
以上のように重層磁性層を形成した点以外、比較例3と同様にして磁気テープを作製した。
[磁気テープの物性評価]
(1)C−H由来C濃度
以下の方法により、磁気テープの磁性層表面(測定領域:300μm×700μm)においてESCA装置を用いてX線光電子分光分析を行い、分析結果からC−H由来C濃度を算出した。
(分析および算出方法)
下記(i)〜(iii)の測定は、いずれも表1に示す測定条件にて行った。
(i)ワイドスキャン測定
磁気テープの磁性層表面においてESCA装置によりワイドスキャン測定(測定条件:表2参照)を行い、検出された元素の種類を調べた(定性分析)。
(ii)ナロースキャン測定
上記(i)で検出された全元素について、ナロースキャン測定(測定条件:表3参照)を行った。装置付属のデータ処理用ソフトウエア(Vision2.2.6)を用いて、各元素のピーク面積から検出された各元素の原子濃度(単位:原子%)を算出した。ここでC濃度も算出した。
(iii)C1sスペクトルの取得
表4に記載の測定条件にてC1sスペクトルを取得した。取得したC1sスペクトルについて、装置付属のデータ処理用ソフトウエア(Vision2.2.6)を用いて試料帯電に起因するシフト(物理シフト)の補正を行った後、同ソフトウエアを用いてC1sスペクトルのフィッティング処理(ピーク分離)を実施した。ピーク分離にはガウス−ローレンツ複合関数(ガウス成分70%、ローレンツ成分30%)を用い、非線形最小二乗法によりC1sスペクトルのフィッティングを行い、C1sスペクトルに占めるC−Hピークの割合(ピーク面積率)を算出した。算出されたC−Hピーク面積率を、上記(ii)で求めたC濃度に掛けることにより、C−H由来C濃度を算出した。
以上の処理を磁気テープの磁性層表面の異なる位置において3回行い、得られた値の算術平均をC−H由来C濃度とした。
(2)非磁性支持体および各層の厚み
作製した各磁気テープの磁性層、非磁性層、非磁性支持体およびバックコート層の厚みを以下の方法によって測定した。測定の結果、いずれの磁気テープにおいても、磁性層の厚みは50nm、非磁性層の厚みは0.7μm、非磁性支持体の厚みは5.0μm、バックコート層の厚みは0.5μmであった。
ここで測定された磁性層、非磁性層および非磁性支持体の厚みを、以下の屈折率の算出のために用いた。
(i)断面観察用試料の作製
特開2016−177851号公報の段落0193〜0194に記載の方法にしたがい、磁気テープの磁性層側表面からバックコート層側表面までの厚み方向の全領域を含む断面観察用試料を作製した。
(ii)厚み測定
作製した試料をSTEM観察し、STEM像を撮像した。このSTEM像は、加速電圧300kVおよび撮像倍率450000倍で撮像したSTEM −HAADF(High−Angle Annular Dark Field)像であり、1画像に、磁気テープの磁性層側表面からバックコート層側表面までの厚み方向の全領域が含まれるように撮像した。こうして得られたSTEM像において、磁性層表面を表す線分の両端を結ぶ直線を、磁気テープの磁性層側表面を表す基準線として定めた。上記の線分の両端を結ぶ直線とは、例えば、STEM像を、断面観察用試料の磁性層側が画像の上方に位置しバックコート層側が下方に位置するように撮像した場合には、STEM像の画像(形状は長方形または正方形)の左辺と上記線分との交点とSTEM像の右辺と上記線分との交点とを結ぶ直線である。同様に磁性層と非磁性層との界面を表す基準線、非磁性層と非磁性支持体との界面を表す基準線、非磁性支持体とバックコート層との界面を表す基準線、磁気テープのバックコート層側表面を表す基準線を定めた。
磁性層の厚みは、磁気テープの磁性層側表面を表す基準線上の無作為に選んだ1箇所から、磁性層と非磁性層との界面を表す基準線までの最短距離として求めた。同様に、非磁性層、非磁性支持体およびバックコート層の厚みを求めた。
(3)磁性層のΔN
以下では、エリプソメーターとしてウーラム社製M−2000Uを使用した。2層モデルまたは1層モデルの作成およびフィッティングは、解析ソフトとしてウーラム社製WVASE32を使用して行った。
(i)非磁性支持体の屈折率測定
各磁気テープから測定用試料を切り出し、メチルエチルケトンを染み込ませた布を用いて測定用試料のバックコート層をふき取り除去して非磁性支持体表面を露出させた後、露出した表面の反射光がこの後に行われるエリプソメーターでの測定において検出されないように、この表面をサンドペーパーにより粗面化した。
その後、メチルエチルケトンを染み込ませた布を用いて測定用試料の磁性層および非磁性層をふき取り除去した後、シリコンウェハー表面と粗面化した表面とを静電気を利用して貼り付けることにより、測定用試料を、磁性層および非磁性層を除去して露出した非磁性支持体表面(以下、「非磁性支持体の磁性層側表面」と記載する。)を上方に向けてシリコンウェハー上に配置した。
エリプソメーターを用いて、このシリコンウェハー上の測定用試料の非磁性支持体の磁性層側表面に先に記載したように入射光を入射させてΔおよびΨを測定した。得られた測定値および上記(2)で求めた非磁性支持体の厚みを用いて、先に記載した方法によって非磁性支持体の屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)を求めた。
(ii)非磁性層の屈折率測定
各磁気テープから測定用試料を切り出し、メチルエチルケトンを染み込ませた布を用いて測定用試料のバックコート層をふき取り除去して非磁性支持体表面を露出させた後、露出した表面の反射光がこの後に行われる分光エリプソメーターでの測定において検出されないように、この表面をサンドペーパーにより粗面化した。
その後、メチルエチルケトンを染み込ませた布を用いて測定用試料の磁性層表面を軽くふき取り磁性層を除去して非磁性層表面を露出させた後、上記(i)と同様にシリコンウェハー上に測定用試料を配置した。
このシリコンウェハー上の測定用試料の非磁性層表面について、エリプソメーターを用いて測定を行い、分光エリプソメトリーにより、先に記載した方法によって非磁性層の屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)を求めた。
(iii)磁性層の屈折率測定
各磁気テープから測定用試料を切り出し、メチルエチルケトンを染み込ませた布を用いて測定用試料のバックコート層をふき取り除去して非磁性支持体表面を露出させた後、露出した表面の反射光がこの後に行われる分光エリプソメーターでの測定において検出されないように、この表面をサンドペーパーにより粗面化した。
その後、測定用試料を、上記(i)と同様にシリコンウェハー上に測定用試料を配置した。
このシリコンウェハー上の測定用試料の磁性層表面について、エリプソメーターを用いて測定を行い、分光エリプソメトリーにより、先に記載した方法によって磁性層の屈折率(長手方向における屈折率Nx、幅方向における屈折率Ny、長手方向から入射光を入射させて測定される厚み方向における屈折率Nz、および幅方向から入射光を入射させて測定される厚み方向における屈折率Nz)を求めた。求められた値から、Nxy、Nzを求め、更にこれらの差分の絶対値ΔNを求めた。実施例および比較例のいずれの磁気テープについても、求められたNxyは、Nzより大きな値(即ちNxy>Nz)であった。
(4)垂直方向角型比(SQ;Squareness Ratio)
磁気テープの垂直方向角型比とは、磁気テープの垂直方向において測定される角型比である。角型比に関して記載する「垂直方向」とは、磁性層表面と直交する方向をいう。実施例および比較例の各磁気テープについて、振動試料型磁束計(東英工業社製)を用いて、23℃±1℃の測定温度において、磁気テープに外部磁場を最大外部磁場1194kA/m(15kOe)かつスキャン速度4.8kA/m/秒(60Oe/秒)の条件で掃引して垂直方向角型比を求めた。測定値は反磁界補正後の値であり、振動試料型磁束計のサンプルプローブの磁化をバックグラウンドノイズとして差し引いた値として得るものとする。一態様では、磁気テープの垂直方向角型比は0.60以上1.00以下であることが好ましく、0.65以上1.00以下であることがより好ましい。また、一態様では、磁気テープの垂直方向角型比は、例えば0.90以下、0.85以下、または0.80以下であることもでき、これらの値を上回ることもできる。
[低温高湿環境下でのミッシングパルス発生頻度]
以下の測定は、温度13℃かつ相対湿度80%の低温高湿環境下で行った。
実施例および比較例の各磁気テープ(磁気テープ全長500m)を収容した磁気テープカートリッジを、IBM社製LTO−G6(Linear Tape−Open Generation 6)ドライブにセットし、磁気テープを、テンション0.6N、走行速度8m/秒で1500往復走行させた。
上記走行後の磁気テープカートリッジを、リファレンスドライブ(IBM社製LTO−G6ドライブ)にセットし、磁気テープを走行させて記録および再生を行った。走行中の再生信号を外部AD(Analog/Digital)変換装置に取り込み、再生信号振幅が平均(全トラックでの測定値の平均)に対して70%以上低下した信号をミッシングパルスとして、その発生頻度(発生回数)を磁気テープ全長で除して、磁気テープの単位長さ当たり(1m当たり)のミッシングパルス発生頻度(単位:回/m)として求めた。ミッシングパルス発生頻度が5回/m以下であれば、実用上、信頼性の高い磁気テープと判断することができる。
以上の結果を、表5(表5−1〜表5−4)に示す。
表5に示す結果から、磁性層のΔNおよびC−H由来C濃度がそれぞれ先に記載した範囲である実施例1〜4の磁気テープでは、比較例1〜9の磁気テープと比べて、低温高湿環境下でのミッシングパルス発生頻度が低減されていることが確認できる。
なお一般に、角型比は磁性層における強磁性粉末の存在状態の指標として知られている。ただし、表5に示すように、垂直方向角型比が同じ磁気テープであってもΔNは相違している(例えば実施例1と比較例8)。このことは、ΔNは、磁性層における強磁性粉末の存在状態に加えて他の要因の影響も受ける値であることを示していると本発明者は考えている。
本発明の一態様は、データストレージ用磁気テープ等の各種磁気記録媒体の技術分野において有用である。

Claims (8)

  1. 非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、
    前記磁性層は、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含み、
    前記磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析により得られるC1sスペクトルにおけるC−Hピーク面積率から算出されるC−H由来C濃度は45原子%以上であり、かつ
    前記磁性層の面内方向について測定される屈折率Nxyと前記磁性層の厚み方向について測定される屈折率Nzとの差分、Nxy−Nz、は0.25以上0.40以下である磁気テープ。
  2. 前記C−H由来C濃度は、45原子%以上80原子%以下である、請求項1に記載の磁気テープ。
  3. 前記C−H由来C濃度は、45原子%以上70原子%以下である、請求項1または2に記載の磁気テープ。
  4. 前記非磁性支持体と前記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有する、請求項1〜のいずれか1項に記載の磁気テープ。
  5. 前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有する、請求項1〜のいずれか1項に記載の磁気テープ。
  6. 前記磁性層における前記強磁性粉末の含有量は、60〜90質量%の範囲である、請求項1〜5のいずれか1項に記載の磁気テープ。
  7. 前記磁性層は、前記強磁性粉末100.0質量部に対して前記結合剤を1.0〜20.0質量部の量で含む、請求項1〜6のいずれか1項に記載の磁気テープ。
  8. 請求項1〜のいずれか1項に記載の磁気テープと、
    磁気ヘッドと、
    を含む磁気記録再生装置。
JP2019050201A 2018-03-23 2019-03-18 磁気テープおよび磁気記録再生装置 Active JP6830116B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/361,589 US11361792B2 (en) 2018-03-23 2019-03-22 Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP2021009561A JP6966660B2 (ja) 2018-03-23 2021-01-25 磁気テープおよび磁気記録再生装置
US17/386,616 US11581015B2 (en) 2018-03-23 2021-07-28 Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057164 2018-03-23
JP2018057164 2018-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021009561A Division JP6966660B2 (ja) 2018-03-23 2021-01-25 磁気テープおよび磁気記録再生装置

Publications (2)

Publication Number Publication Date
JP2019169229A JP2019169229A (ja) 2019-10-03
JP6830116B2 true JP6830116B2 (ja) 2021-02-17

Family

ID=68107434

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2019050201A Active JP6830116B2 (ja) 2018-03-23 2019-03-18 磁気テープおよび磁気記録再生装置
JP2021009561A Active JP6966660B2 (ja) 2018-03-23 2021-01-25 磁気テープおよび磁気記録再生装置
JP2021172626A Active JP7236516B2 (ja) 2018-03-23 2021-10-21 磁気テープおよび磁気記録再生装置
JP2023028856A Active JP7466021B2 (ja) 2018-03-23 2023-02-27 磁気テープおよび磁気記録再生装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2021009561A Active JP6966660B2 (ja) 2018-03-23 2021-01-25 磁気テープおよび磁気記録再生装置
JP2021172626A Active JP7236516B2 (ja) 2018-03-23 2021-10-21 磁気テープおよび磁気記録再生装置
JP2023028856A Active JP7466021B2 (ja) 2018-03-23 2023-02-27 磁気テープおよび磁気記録再生装置

Country Status (1)

Country Link
JP (4) JP6830116B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061086A (ja) * 2018-03-23 2021-04-15 富士フイルム株式会社 磁気テープおよび磁気記録再生装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247127B2 (ja) 2020-01-31 2023-03-28 富士フイルム株式会社 磁気テープカートリッジおよび磁気テープ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257434A (ja) * 2000-12-11 2006-09-28 Teijin Ltd 二軸配向ポリエステルフィルム
JP6378166B2 (ja) * 2014-12-26 2018-08-22 富士フイルム株式会社 磁気テープおよびその製造方法
WO2019065199A1 (ja) * 2017-09-29 2019-04-04 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP6830116B2 (ja) * 2018-03-23 2021-02-17 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP6812481B2 (ja) * 2018-03-23 2021-01-13 富士フイルム株式会社 磁気テープおよび磁気記録再生装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061086A (ja) * 2018-03-23 2021-04-15 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2022003608A (ja) * 2018-03-23 2022-01-11 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP7236516B2 (ja) 2018-03-23 2023-03-09 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP7466021B2 (ja) 2018-03-23 2024-04-11 富士フイルム株式会社 磁気テープおよび磁気記録再生装置

Also Published As

Publication number Publication date
JP2023054372A (ja) 2023-04-13
JP2021061086A (ja) 2021-04-15
JP2022003608A (ja) 2022-01-11
JP2019169229A (ja) 2019-10-03
JP7466021B2 (ja) 2024-04-11
JP7236516B2 (ja) 2023-03-09
JP6966660B2 (ja) 2021-11-17

Similar Documents

Publication Publication Date Title
US11581015B2 (en) Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP6830931B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US11551716B2 (en) Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP6868742B2 (ja) 磁気テープおよび磁気記録再生装置
JP6830945B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6830930B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6884220B2 (ja) 磁気テープおよび磁気記録再生装置
JP2018170060A (ja) 磁気テープ装置および磁気再生方法
JP2018170061A (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP7466021B2 (ja) 磁気テープおよび磁気記録再生装置
JP6903801B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7086256B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7284330B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7284324B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7109508B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7086142B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R150 Certificate of patent or registration of utility model

Ref document number: 6830116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250