JP6829517B2 - Infrared light element - Google Patents

Infrared light element Download PDF

Info

Publication number
JP6829517B2
JP6829517B2 JP2018529884A JP2018529884A JP6829517B2 JP 6829517 B2 JP6829517 B2 JP 6829517B2 JP 2018529884 A JP2018529884 A JP 2018529884A JP 2018529884 A JP2018529884 A JP 2018529884A JP 6829517 B2 JP6829517 B2 JP 6829517B2
Authority
JP
Japan
Prior art keywords
semiconductor
infrared
light
mode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018529884A
Other languages
Japanese (ja)
Other versions
JPWO2018021259A1 (en
Inventor
善博 石谷
善博 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Publication of JPWO2018021259A1 publication Critical patent/JPWO2018021259A1/en
Application granted granted Critical
Publication of JP6829517B2 publication Critical patent/JP6829517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、赤外光素子に関する。より具体的には、たんぱく質等有機分子の分光測定、無線LAN、医療等に利用される波長10μm以上の赤外線及びTHz振動数領域の電磁波を輻射する又は検出する赤外光素子に関する。 The present invention relates to an infrared light element. More specifically, the present invention relates to an infrared optical element that radiates or detects infrared rays having a wavelength of 10 μm or more and electromagnetic waves in the THz frequency region used for spectroscopic measurement of organic molecules such as proteins, wireless LAN, medical treatment, and the like.

既存のTHz領域のレーザには、量子カスケードレーザ(QCL)、共鳴トンネルダイオード(RTD)によるレーザがある。QCLでは一般に発振周波数の減少に伴って動作温度の低温化が必要であり、例えば1.8THzでは最高温度163Kでの動作が報告されている(例えば下記非特許文献1参照)。 Existing THz region lasers include quantum cascade lasers (QCL) and resonance tunnel diode (RTD) lasers. In QCL, it is generally necessary to lower the operating temperature as the oscillation frequency decreases. For example, it has been reported that the QCL operates at a maximum temperature of 163 K at 1.8 THz (see, for example, Non-Patent Document 1 below).

また、温度増加対策については、量子準位に共鳴させた差周波発生により室温で発振がなされた報告がある(下記非特許文献2参照)。 As for measures against temperature increase, there is a report that oscillation was performed at room temperature due to the generation of a difference frequency resonating with the quantum level (see Non-Patent Document 2 below).

また、下記非特許文献3には、RTDにおいて、基本波による室温でのレーザ発振の周波数では1.46THzの報告がある。 Further, Non-Patent Document 3 below reports that the frequency of laser oscillation at room temperature by the fundamental wave is 1.46 THz in RTD.

S.Kumar et al.,Nat.Phys.7,166(2011)S. Kumar et al. , Nat. Phys. 7,166 (2011) Q.Lu,Nat.Sci.Rep.6,23595(2016)Q. Lu, Nat. Sci. Rep. 6, 23595 (2016) K.Morita et al.,Appl.Phys.Express 4,102102(2011)K. Morita et al. , Apple. Phys. Express 4,102102 (2011)

しかしながら、下記非特許文献2に記載の技術では、その量子効率が低いといった課題がある。その出力は、2.06μmで0.6μW程度に過ぎない。 However, the technique described in Non-Patent Document 2 below has a problem that its quantum efficiency is low. The output is 2.06 μm and is only about 0.6 μW.

また、上記非特許文献3の技術では、これ以上の周波数では高調波をとる必要があり、出力が急激に低下するといった課題がある。非線形光学結晶を用いたものでは、多くが1ps程度以下の超短パルスによる差周波生成によるものであり、超短パルスレーザ光を生成する光学系が必要なため、装置が大きくなる。連続光の発生は二つのダイオードレーザ(LD)と二重共振器構造を用いたものがあるが、その出力パワーは小さい。 Further, in the technique of Non-Patent Document 3, it is necessary to take harmonics at frequencies higher than this, and there is a problem that the output drops sharply. Most of the non-linear optical crystals are generated by generating a difference frequency by an ultrashort pulse of about 1 ps or less, and an optical system for generating an ultrashort pulse laser beam is required, so that the apparatus becomes large. The continuous light is generated by using two diode lasers (LD) and a double resonator structure, but its output power is small.

また、高電子移動度トランジスタ(HEMT)では、200GHz程度で出力が消滅しているのが現状であり、1THz以上の動作は確認されていない。 Further, in the high electron mobility transistor (HEMT), the output is currently extinguished at about 200 GHz, and operation above 1 THz has not been confirmed.

一方、フォノンを利用した電磁波の輻射やレーザでは、外部電場の入力に伴うピエゾ効果を利用したフォノン生成によるものがあり、2種フォノンモードを用いて真空準位と合わせた3準位系によるレーザ発振が確認されている。この構造による発振周波数は170KHz程度であり(I.MahboobらPhys.Rev.Lett.,110,127202(2013))、THzにおよぶものではない。この動作原理で用いられているフォノンモードは音響フォノンであり、光との結合の強い光学フォノンではなく、このために高効率な発振を得ることは困難であると思われる。 On the other hand, some phonon-based electromagnetic wave radiation and lasers are based on phonon generation using the piezo effect associated with the input of an external electric field, and are lasers based on a three-level system combined with a vacuum level using two types of phonon modes. Oscillation has been confirmed. The oscillation frequency due to this structure is about 170 KHz (I. Mahboob et al. Phys. Rev. Lett., 110, 127202 (2013)), and does not reach THz. The phonon mode used in this operating principle is an acoustic phonon, not an optical phonon having a strong coupling with light, and therefore it seems difficult to obtain highly efficient oscillation.

これらの状況から、数THz〜20THz程度の領域における室温動作のコンパクトレーザ動作には新たな動作原理が求められている。 From these situations, a new operating principle is required for the compact laser operation of room temperature operation in the range of several THz to 20 THz.

検知器では、分子や結晶に固有の光吸収周波数を選択的に検出できる素子が、化学分析や物質識別のために必要である。これまでの遠赤外およびTHz波領域の光検出器は、焦電効果やショットキーダイオードなどによるものであり、その検出スペクトル範囲は大きかった。 In the detector, an element capable of selectively detecting the light absorption frequency peculiar to a molecule or a crystal is required for chemical analysis and substance identification. The photodetectors in the far-infrared and THz wave regions so far have been based on the pyroelectric effect and Schottky diodes, and their detection spectrum range has been large.

そこで、本発明は、上記課題に鑑み、光との相互作用が強いLOフォノンを利用できる構造により室温で動作するコンパクトなTHz光源を得ること、さらにフォノン系で光学利得が発生する構造を有する素子によりレーザ光を得ることを目的とする。また、THz検知器では、測定対象となる分子や結晶固有の光吸収波長に合わせた狭帯域の光検出をできる動作原理と素子構造を得ることを目的とする。 Therefore, in view of the above problems, the present invention obtains a compact THz light source that operates at room temperature by a structure capable of utilizing LO phonons having a strong interaction with light, and further has a structure in which an optical gain is generated in a phonon system. The purpose is to obtain a laser beam. Another object of the THz detector is to obtain an operating principle and an element structure capable of detecting light in a narrow band according to a light absorption wavelength peculiar to a molecule or a crystal to be measured.

上記課題を解決する本発明の第一の観点に係る赤外光素子は、半導体又は絶縁体の単一層の基板に、ストライプ状、格子状又は円環状の導電体が形成され、その間隔が縦光学(LO)フォノンエネルギーに共鳴する赤外光の1/2波長以下であ前記基板は、2種以上のLOフォノンモードを有し、前記LOフォノンモードエネルギーが伝導帯若しくは価電子帯内、または伝導帯若しくは価電子帯間の遷移エネルギー領域に含まれ、電磁誘起透明化により光吸収スペクトルを制御し当該モードに共鳴する赤外光を発光する又は検出することができるものである。 In the infrared optical element according to the first aspect of the present invention that solves the above problems, striped, lattice-shaped, or annular conductors are formed on a single-layer substrate of a semiconductor or an insulator, and the intervals are vertical. optical (LO) Ri der 1/2 wavelength or less of the infrared light that resonates with the phonon energy, the substrate has two or more kinds of LO phonon mode, the LO phonon mode energy conduction band or the valence band in , Or it is included in the transition energy region between the conduction band or the valence band, and can emit or detect infrared light that resonates with the mode by controlling the light absorption spectrum by electromagnetically induced transparency .

また、本発明の第二の一観点に係る赤外光素子は、半導体又は絶縁体の単一層の基板に、ストライプ状、格子状又は円環状の導電体が形成され、その間隔がLOフォノン−プラズモンの結合(LOPC)モードエネルギーに共鳴する赤外光の1/2波長以下であ前記基板は、2種以上のLOPCモードを有し、前記LOPCモードエネルギーが伝導帯若しくは価電子帯内、または伝導帯若しくは価電子帯間の遷移エネルギー領域に含まれ、電磁誘起透明化により光吸収スペクトルを制御し当該モードに共鳴する赤外光を発光する又は検出するものである。 Further, in the infrared optical element according to the second aspect of the present invention, a striped, lattice-shaped or annular conductor is formed on a single-layer substrate of a semiconductor or an insulator, and the interval between them is LOphonon-. Ri der half wavelength or less of the infrared light that resonates in the binding (LOPC) mode energy of plasmon, the substrate has two or more LOPC mode, the LOPC mode energy conduction band or the valence band in , Or a transition energy region between the conduction band or the valence band, which controls the light absorption spectrum by electromagnetically induced transparency to emit or detect infrared light that resonates with the mode.

また、上記第一及び第二の観点における赤外光素子においては、限定されるわけではないが、基板がn型又はp型の半導体であることが好ましい。 Further, in the above-described first and second aspects infrared element in, but not limited, it is preferred substrate is n-type or p-type semiconductor.

また、上記第一及び第二の観点における赤外光素子においては、限定されるわけではないが、基板がp型半導体である場合、p型不純物以外にこれより深い準位を形成するアクセプタ性の準位を有する半導体であり、基板がn型半導体である場合は、n型不純物以外にこれより深い準位を形成するドナー性の不純物を有する半導体であり、禁制帯幅より小さいエネルギーをもつレーザを導入することによって、光吸収スペクトルを変調して動作するものであることが好ましい。 Further, the infrared optical element from the first and second viewpoints is not limited, but when the substrate is a p-type semiconductor, it has acceptability to form a deeper level in addition to the p-type impurity. When the substrate is an n-type semiconductor, it is a semiconductor having a donor-like impurity that forms a deeper level in addition to the n-type impurity, and has an energy smaller than the forbidden band width. It is preferable that the light absorption spectrum is modulated and operated by introducing a laser.

また、上記第一及び第二の観点における赤外光素子においては、限定されるわけではないが、価電子帯−伝導帯のバンド間励起を行うレーザを導入して、光吸収スペクトルを変調できるものであることが好ましい。 Further, in the infrared optical element from the first and second viewpoints, the light absorption spectrum can be modulated by introducing a laser that excites between bands of the valence band and the conduction band, although not limited to the above. It is preferable that it is a thing.

また、上記第一及び第二の観点における赤外光素子において、限定されるわけではないが、1ps以下の時間幅をもつパルス光を入力することにより量子もつれ現象を伴った単一赤外光子を輻射するものであることが好ましい。 Further, in the infrared photon elements from the first and second viewpoints, a single infrared photon accompanied by a quantum entanglement phenomenon by inputting pulsed light having a time width of 1 ps or less is not limited. It is preferable that the light is radiated.

また、上記第一及び第二の観点における赤外光素子において、限定されるわけではないが、金属の代わりに導電率が高い半導体その他の材料を用いて、導電率が低い半導体との界面に生じる分極電荷により生じる電場を遮蔽できる構造をもつものであることが好ましい。 Further, in the infrared optical device from the first and second viewpoints, although not limited to, a semiconductor having high conductivity or other material is used instead of the metal at the interface with the semiconductor having low conductivity. It is preferable that the structure has a structure capable of shielding the electric field generated by the generated polarization charge.

また、上記第一及び第二の観点における赤外光素子において、限定されるわけではないが、半導体との接合がオーミック接続となる金属とショットキー接続となる金属が対となって形成されていることが好ましい。 Further, in the infrared optical device from the first and second viewpoints, although not limited to the above, a metal having an ohmic connection and a metal having a Schottky connection are formed as a pair. It is preferable to have.

以上、本発明によって、光との相互作用が強いLOフォノンを利用できる構造により室温で動作するコンパクトなTHz光源を得ること、さらにフォノン系で光学利得が発生する構造を有する素子によりレーザ光を得ることができる。また、THz検知器では、測定対象となる分子や結晶固有の光吸収波長に合わせた狭帯域の光検出をできる動作原理と素子構造を得ることができる。 As described above, according to the present invention, a compact THz light source that operates at room temperature is obtained by a structure that can utilize LO phonons having a strong interaction with light, and a laser beam is obtained by an element having a structure in which an optical gain is generated in a phonon system. be able to. Further, in the THz detector, it is possible to obtain an operating principle and an element structure capable of detecting light in a narrow band according to the light absorption wavelength peculiar to the molecule or crystal to be measured.

輻射を生成する金属/半導体複合構造の例を示す図である。ハッチング部分は金属、その他は半導体を示す。It is a figure which shows the example of the metal / semiconductor composite structure which generates radiation. The hatched part indicates metal, and the others indicate semiconductor. LOフォノンとプラズモンの結合(LOPC)モードの高(+)低(−)エネルギー分枝を示す図である。It is a figure which shows the high (+) low (−) energy branch of the binding (LOPC) mode of LO phonon and plasmon. 量子干渉効果におけるフォノン過程、電子遷移、光学遷移の関係を示す図である。It is a figure which shows the relationship of a phonon process, an electronic transition, and an optical transition in a quantum interference effect. Znドープp型Ga0.5In0.5P量子干渉による光吸収スペクトルの制御例を示す図である。LOおよびLOのフォノンエネルギー位置で光吸収スペクトルがほぼ0になるドーピング条件が存在する。それぞれ、Zn密度は2.5×1019cm-3および3.5×1019cm-3である。It is a figure which shows the control example of the light absorption spectrum by Zn-doped p-type Ga 0.5 In 0.5 P quantum interference. There are doping conditions where the light absorption spectrum is almost zero at the phonon energy positions of LO 1 and LO 2 . The Zn densities are 2.5 × 10 19 cm -3 and 3.5 × 10 19 cm -3 , respectively. 共振器を取り付けたレーザ素子の例を示す図である。It is a figure which shows the example of the laser element which attached the resonator. 赤外・THzの検知素子の例を示す図である。It is a figure which shows the example of the infrared / THz detection element.

以下、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の具体的な例示にのみ限定されるわけではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different embodiments, and is not limited to the specific examples of the embodiments and examples shown below.

(実施形態1)
図1は、本実施形態に係る赤外光素子の構造を示す図である。
(Embodiment 1)
FIG. 1 is a diagram showing a structure of an infrared light element according to the present embodiment.

本図で示すように、本実施形態に係る赤外光素子(以下「本素子」という。)は、半導体又は絶縁体の基板に、ストライプ状、格子状又は円環状の導電体が形成され、その間隔が縦光学(LO)フォノンエネルギーに共鳴する赤外光の1/2波長以下であって、当該モードに共鳴する赤外光を発光するまたは検出することができるものである。ここで赤外光の波長としては特に限定されるわけではないが、波長10μm以上であってTHzの周波数の波長を含むものであることが好ましく、より具体的には波長10μm以上1mm以下の波長であることが好ましく、より好ましくは500μm以下の波長である。このため、導電体の間隔としては5μm以下とすることで波長10μm程度の範囲を抑えることができる。具体的には導電体の間隔として余裕を持たせて4μm以上600μm以下程度の範囲とすることで本素子の効果を発揮することができる範囲となる。 As shown in this figure, in the infrared light element (hereinafter referred to as “the element”) according to the present embodiment, a striped, lattice-shaped or annular conductor is formed on a substrate of a semiconductor or an insulator. The interval is ½ wavelength or less of infrared light that resonates with longitudinal optical (LO) phonon energy, and infrared light that resonates with the mode can be emitted or detected. Here, the wavelength of infrared light is not particularly limited, but is preferably a wavelength of 10 μm or more and includes a wavelength of THz, and more specifically, a wavelength of 10 μm or more and 1 mm or less. The wavelength is preferably 500 μm or less. Therefore, the wavelength range of about 10 μm can be suppressed by setting the distance between the conductors to 5 μm or less. Specifically, the effect of this device can be exhibited by setting the distance between the conductors to a range of about 4 μm or more and 600 μm or less with a margin.

本素子では、この構造にレーザ光を導入するとラマン散乱によりLOフォノンが生成する。本素子では導電体と半導体との界面に分極電荷を生じさせ、この分極電荷振動によりLOフォノンに共鳴する輻射を発生させることができる。 In this device, when laser light is introduced into this structure, LO phonons are generated by Raman scattering. In this device, a polarization charge is generated at the interface between the conductor and the semiconductor, and the radiation that resonates with the LO phonon can be generated by the polarization charge vibration.

本素子において、導電体としては、電気を通すことができるものである限りにおいて限定されるわけではないが、例えば金、銅、チタン等の金属、電子密度1019cm-3以上の高密度n型半導体を例示することができるがこれに限定されない。なお、本素子が発光を行う発光素子である場合、導電体全体がアース等に接続され、導通している必要は必ずしも必要ではない。また導電体の厚さとしては特に限定されず、1μm以上あることが好ましい。In this device, the conductor is not limited as long as it can conduct electricity, but for example, a metal such as gold, copper, or titanium, and a high density n having an electron density of 10 19 cm- 3 or more. Type semiconductors can be exemplified, but are not limited thereto. When this element is a light emitting element that emits light, it is not always necessary that the entire conductor is connected to the ground or the like and is conducting. The thickness of the conductor is not particularly limited, and is preferably 1 μm or more.

また、本素子において、基板は、上記の通り半導体又は絶縁体である。半導体としては、特に限定されるわけではないが、例えばSi、GaN、GaAs、InP等の半導体が挙げられる。絶縁体ではサファイア、SiO等が挙げられるが、これらの絶縁体および半導体では結晶格子の振動を誘起するレーザ光の光子エネルギーがバンドギャップ程度であることが望ましい。また、本素子を熱で励起しようとする場合は、基板自体を200℃位の温度とすることで可能であって、例えばヒーター等の過熱手段によって過熱することが可能である。この材質の場合は、例えばAlGaN系結晶ではそれ以上の温度でも可能であるため好ましい。Further, in this element, the substrate is a semiconductor or an insulator as described above. The semiconductor is not particularly limited, and examples thereof include semiconductors such as Si, GaN, GaAs, and InP. Examples of the insulator include sapphire and SiO 2 , and in these insulators and semiconductors, it is desirable that the photon energy of the laser beam that induces the vibration of the crystal lattice is about the band gap. Further, when the device is to be excited by heat, it is possible to heat the substrate itself at a temperature of about 200 ° C., and it is possible to superheat by a superheating means such as a heater. In the case of this material, for example, an AlGaN-based crystal is preferable because it can be used at a higher temperature.

また上記の記載および後述の記載からも明らかなように、半導体は不純物がドーピングされていることが好ましい。p型の半導体とすると量子干渉効果を発揮しやすくなるとともに、n型とすることで波長をずらすことが可能となる。 Further, as is clear from the above description and the description described later, it is preferable that the semiconductor is doped with impurities. A p-type semiconductor makes it easier to exert a quantum interference effect, and an n-type semiconductor makes it possible to shift the wavelength.

また、本素子を検出器として用いる場合は、二つの異なる材料を用い、これらの材料と半導体の接合が、一方はオーミック接合、他方がショットキー接合である必要がある。ただし半導体の禁制帯幅より大きな光子エネルギーをもつ励起光が必要である。検出器で電圧を加えている理由は、暗電流低減を目的としたバイアス電圧印加のためである。すなわち、検出器として用いる場合は二つの異なる材料を上記所望の間隔で配置し、それぞれに、これらの間に電圧を印加する電源装置を接続する構成となる。一方、光を励起する場合は必ずしも二つの異なる材料ではなくてもよくまた電源装置を接続しなくてもよい。 When this device is used as a detector, two different materials must be used, and the bonding between these materials and the semiconductor must be ohmic bonding on one side and Schottky bonding on the other side. However, excitation light with photon energy larger than the forbidden bandgap of semiconductors is required. The reason why the voltage is applied by the detector is that the bias voltage is applied for the purpose of reducing the dark current. That is, when used as a detector, two different materials are arranged at the desired intervals, and a power supply device for applying a voltage is connected to each of them. On the other hand, when exciting light, it does not necessarily have to be two different materials, and it is not necessary to connect a power supply device.

LOフォノンではフォノン励起状態と真空状態の2準位系を構成する。通常、2準位系では原理的に反転分布ができない。ここで、二つ以上のフォノンモードと電子系の連続準位が存在する系を構築することにより、フォノンモードと連続準位の結合系を形成し、発光スペクトルピーク波長と吸収スペクトルピーク波長をずらすことが可能であり、この電磁誘起透明化を実現して光学利得が得られレーザ発振ができる構造となる。また、LOフォノンとプラズモンの結合(LOPC)モード(図2)の高低両エネルギー分枝を用いると、LOフォノンモードエネルギーから共鳴エネルギーをずらすことが可能である。またこの高低両LOPCモードと真空準位と合わせて3準位系を構成することも可能であり、電磁誘起透明化機構の発現の有無に関わらず、レーザ光を生成できるエネルギー系が構築される。電磁誘起透明化はp型またはn型不純物の添加密度すなわち価電子帯の正孔密度の制御により、光吸収スペクトルを制御することができる。更に、このLOPCモードの周波数変調や電磁誘起透明化による光吸収スペクトル変化は、外部信号である外部レーザの導入により制御できる。 The LO phonon constitutes a two-level system of the phonon excited state and the vacuum state. In principle, population inversion cannot be achieved in a two-level system. Here, by constructing a system in which two or more phonon modes and continuous levels of the electronic system exist, a coupling system of the phonon mode and the continuous levels is formed, and the emission spectrum peak wavelength and the absorption spectrum peak wavelength are shifted. This is possible, and the structure is such that this electromagnetically induced transparency is realized, an optical gain is obtained, and laser oscillation is possible. In addition, it is possible to shift the resonance energy from the LO phonon mode energy by using the high and low energy branches of the LOPC mode (FIG. 2) of LO phonon and plasmon. It is also possible to construct a three-level system by combining this high-low LOPC mode and the vacuum level, and an energy system capable of generating laser light is constructed regardless of the presence or absence of the electromagnetically induced transparency mechanism. .. In electromagnetically induced transparency, the light absorption spectrum can be controlled by controlling the addition density of p-type or n-type impurities, that is, the hole density in the valence band. Further, the change in the light absorption spectrum due to the frequency modulation in the LOPC mode and the electromagnetically induced transparency can be controlled by introducing an external laser which is an external signal.

狭帯域の赤外光およびTHz波検知器では、図1で見られるストライプ状、格子状、同心円状の電極構造を形成し、さらにこの対となっている電極の片方を半導体に対してオーミック接続、もう片方をショットキー接続とし、電子のバンド間遷移を行う光の照射により伝導帯に電子、価電子帯に正孔を生じさせ、LOフォノンまたはLOPCモードに共鳴する赤外光またはTHz光の照射時に電流を大きくすることができ、光検知器として動作させることができる。 The narrow band infrared and THz wave detectors form the striped, grid, and concentric electrode structures seen in FIG. 1, and one of the paired electrodes is ohmic connected to the semiconductor. , The other is a shotkey connection, and by irradiating light that performs interband transition of electrons, electrons are generated in the conduction band and holes are generated in the valence band, and infrared light or THz light that resonates with LOphonon or LOPC mode. The current can be increased during irradiation, and it can be operated as a light detector.

金属薄膜等の導電体を格子状、ストライプ状、または円環状にすることによって、対向する半導体・金属界面に相反する符号をもつ分極電荷を発生し、電気双極子を形成する。金属または高伝導度をもつ物質により、生成された電気双極子の形成する電場を遮蔽し、電気双極子間の相互作用による電場の打ち消しあいを低減する。これにより、電気双極子が有意に存在することができ、電気双極子輻射がなされる。 By forming a conductor such as a metal thin film into a lattice shape, a stripe shape, or an annular shape, a polarization charge having a sign opposite to that of the opposing semiconductor / metal interface is generated to form an electric dipole. A metal or a substance with high conductivity shields the electric field formed by the generated electric dipoles and reduces the cancellation of the electric fields due to the interaction between the electric dipoles. As a result, the electric dipole can be significantly present, and the electric dipole radiation is performed.

この半導体がp型であれば、正孔の価電子帯間遷移が存在する。この価電子帯間遷移のモデルは図3に記載されている。半導体のLOフォノンモードはこの価電子帯間遷移と結合するが、2種のLOフォノンモードが存在すれば、光学遷移はLOフォノンモードと価電子帯の結合により破壊的な干渉効果を生じる。この結果の例が図4に示されている。この結果、光吸収スペクトルを制御することが可能となる。輻射スペクトルと吸収スペクトルの重なりが小さくなれば、輻射は半導体に吸収されることなく外部へ放出される。 If this semiconductor is p-type, there is a valence band transition of holes. A model of this valence band transition is shown in FIG. The LO phonon mode of a semiconductor is coupled with this valence band transition, but if there are two types of LO phonon modes, the optical transition causes a destructive interference effect due to the coupling between the LO phonon mode and the valence band. An example of this result is shown in FIG. As a result, it becomes possible to control the light absorption spectrum. If the overlap between the radiation spectrum and the absorption spectrum becomes small, the radiation is emitted to the outside without being absorbed by the semiconductor.

また図5のように共振器構造を設けることにより、LOフォノン共鳴のレーザ発振が可能となる。具体的に本図の例では、本素子をDBR(Distributed Bragg Refrector)等の積層膜で挟み込む一方、励起レーザから本素子に光を入射し、THzのレーザ光を取り出す構造となっている。なおこの場合において、共振器から出た光の一部は帰還させて再励起のため励起レーザに再び入射され励起レーザからの光となる。また、本素子では例えば光吸収光変調用レーザも備えており、THzレーザに対し変調を行うこともできる。これにより面発光が可能である。 Further, by providing the resonator structure as shown in FIG. 5, laser oscillation of LO phonon resonance becomes possible. Specifically, in the example of this figure, the device is sandwiched between laminated films such as DBR (Distributed Bag Reflector), while light is incident on the device from an excitation laser to extract THz laser light. In this case, a part of the light emitted from the resonator is fed back and re-entered into the excitation laser for re-excitation, and becomes the light from the excitation laser. Further, the present device also includes, for example, a laser for light absorption light modulation, and can perform modulation on a THz laser. As a result, surface emission is possible.

またここで、アクセプタ性の深い準位を形成する不純物をドープした半導体材料を採用した場合、この準位への光励起により正孔密度を高くすることができる。これは、励起された電子が、価電子帯正孔との輻射性再結合確率が小さい状態にエネルギー緩和するために可能となる。この正孔励起のレーザ強度の制御により正孔密度を変えて、吸収スペクトルを変調できる。伝導帯価電子帯間の遷移による伝導電子は、LOPC状態を生成し、輻射・吸収ピークエネルギー位置を変調できる。深い準位に存在する電子と価電子帯正孔の再結合確率を上げることにより、当該正孔生成を行うレーザ光の入力/非入力の制御により、赤外/THz波の吸収スペクトルの高速変調、そしてレーザ出力の高速変調を行うことができる。 Further, when a semiconductor material doped with an impurity that forms a level having a deep acceptability is adopted, the hole density can be increased by photoexcitation to this level. This is possible because the excited electrons are energy relaxed to a state where the probability of radiative recombination with the valence band holes is small. By controlling the laser intensity of this hole excitation, the hole density can be changed to modulate the absorption spectrum. The conduction electrons due to the transition between the conduction band valence bands can generate a LOPC state and modulate the radiation / absorption peak energy position. High-speed modulation of the absorption spectrum of infrared / THz waves by controlling the input / non-input of the laser beam that generates the holes by increasing the recombination probability of electrons and valence band holes existing in the deep level. , And high speed modulation of the laser output can be performed.

超短パルスレーザでLOフォノンの生成を行う場合は、複数のLOフォノンモードが同時にコヒーレントに生成され、されに連続準位を媒介して、これらのモードはその結合状態を一定時間保つ。この時間内に放出される光子は複数LOモードの量子もつれ状態から放出されることになる。この光子を用いて、セキュリティー機能の高い無線光通信を行うことが可能になる。 When generating LO phonons with an ultrashort pulse laser, multiple LO phonon modes are coherently generated at the same time, and through continuous levels, these modes maintain their coupled state for a period of time. Photons emitted within this time will be emitted from the entangled state of multiple LO modes. Using this photon, it becomes possible to perform wireless optical communication with a high security function.

狭帯域の赤外光およびTHz波検知器では、光によりバンド間励起を起こし、伝導帯に電子、価電子帯に正孔を生成する。上記したようにオーミック接続とショットキー接続を行った金属電極間に入射されたLOフォノンに共鳴する電場は、生成された電子・正孔を大きな振幅で振動させる。整流性をもつ上記電極構造とすることにより、この電荷振動は一定方向へ電流を生成する。これにより検知器として動作する(図6)。本図で示すように、本素子は、半導体又は絶縁体の上にオーミック電極とショットキー電極の導電体を配置し、この間に電源装置により電場を形成しておくことで上記所望の効果を得ることができる。 In narrow-band infrared light and THz wave detectors, light causes interband excitation to generate electrons in the conduction band and holes in the valence band. The electric field that resonates with the LO phonon incident between the metal electrodes that have made the ohmic connection and the shotkey connection as described above vibrates the generated electrons and holes with a large amplitude. By adopting the electrode structure having rectification property, this charge vibration generates a current in a certain direction. As a result, it operates as a detector (Fig. 6). As shown in this figure, in this element, the above-mentioned desired effect is obtained by arranging the conductors of the ohmic electrode and the Schottky electrode on the semiconductor or the insulator and forming an electric field between them by the power supply device. be able to.

また本素子は、応用として、導電体表面にポラリトンを励起し導波路として用いることも可能である。この場合、誘電体又は絶縁体の厚さを0.1μmより大きくする一方2μmより厚いと減速してしまうためこれよりも薄くすることが好ましい。 Further, as an application, this device can be used as a waveguide by exciting polariton on the surface of a conductor. In this case, the thickness of the dielectric or the insulator is made larger than 0.1 μm, while if it is thicker than 2 μm, the speed is reduced, so it is preferable to make it thinner than this.

以上、本素子は、光との相互作用が強いLOフォノンを利用できる構造により室温で動作するコンパクトなTHz光源を得ること、さらにフォノン系で光学利得が発生する構造を有する素子によりレーザ光を得ることができる。また、THz検知器では、測定対象となる分子や結晶固有の光吸収波長に合わせた狭帯域の光検出をできる動作原理と素子構造を得ることができる。 As described above, this element obtains a compact THz light source that operates at room temperature by a structure that can utilize LO phonons that strongly interact with light, and further obtains laser light by an element that has a structure that generates optical gain in a phonon system. be able to. Further, in the THz detector, it is possible to obtain an operating principle and an element structure capable of detecting light in a narrow band according to the light absorption wavelength peculiar to the molecule or crystal to be measured.

本発明は、赤外光素子として産業上の利用可能性がある。 The present invention has industrial applicability as an infrared optical device.

Claims (8)

半導体又は絶縁体の単一層の基板に、ストライプ状、格子状又は円環状の導電体が形成され、その間隔が縦光学(LO)フォノンエネルギーに共鳴する赤外光の1/2波長以下であ前記基板は、2種以上のLOフォノンモードを有し、前記LOフォノンモードエネルギーが伝導帯若しくは価電子帯内、または伝導帯若しくは価電子帯間の遷移エネルギー領域に含まれ、電磁誘起透明化により光吸収スペクトルを制御し当該モードに共鳴する赤外光を発光する又は検出する赤外光素子。 Striped, lattice-shaped or annular conductors are formed on a single-layer substrate of a semiconductor or insulator, and the intervals are less than 1/2 wavelength of infrared light that resonates with longitudinal optical (LO) phonon energy. Ri, the substrate has two or more LO phonon mode, the LO phonon mode energy conduction band or the valence band within or included in the transition energy region between the conduction band or the valence band, electromagnetically induced transparency An infrared light element that controls the light absorption spectrum by phononization and emits or detects infrared light that resonates with the mode. 半導体又は絶縁体の単一層の基板に、ストライプ状、格子状又は円環状の導電体が形成され、その間隔がLOフォノン−プラズモンの結合(LOPC)モードエネルギーに共鳴する赤外光の1/2波長以下であ前記基板は、2種以上のLOPCモードを有し、前記LOPCモードエネルギーが伝導帯若しくは価電子帯内、または伝導帯若しくは価電子帯間の遷移エネルギー領域に含まれ、電磁誘起透明化により光吸収スペクトルを制御し当該モードに共鳴する赤外光を発光する又は検出する赤外光素子 Striped, latticed or annular conductors are formed on a single layer substrate of a semiconductor or insulator, the spacing of which is 1/2 of infrared light that resonates with LOphonon-plasmon coupling (LOPC) mode energy. Ri der than the wavelength, the substrate has two or more LOPC mode, the LOPC mode energy conduction band or the valence band within or included in the transition energy region between the conduction band or the valence band, the electromagnetic An infrared light element that controls the light absorption spectrum by induced transparency to emit or detect infrared light that resonates with the mode . 前記基板がn型又はp型の半導体である請求項1又は2に記載の赤外光素子。 Infrared optical device according to claim 1 or 2 wherein the substrate is a n-type or p-type semiconductor. 前記基板がp型半導体である場合、p型不純物以外にこれより深い準位を形成するアクセプタ性の準位を有する半導体であり、
前記基板がn型半導体である場合は、n型不純物以外にこれより深い準位を形成するドナー性の不純物を有する半導体であり、
禁制帯幅より小さいエネルギーをもつレーザを導入することによって、光吸収スペクトルを変調して動作する請求項に記載の赤外光素子。
When the substrate is a p-type semiconductor, it is a semiconductor having an acceptor-like level that forms a deeper level in addition to the p-type impurity.
When the substrate is an n-type semiconductor, it is a semiconductor having donor impurities that form deeper levels in addition to the n-type impurities.
The infrared optical device according to claim 3 , wherein the infrared optical device operates by modulating the light absorption spectrum by introducing a laser having an energy smaller than the forbidden band width.
価電子帯−伝導帯のバンド間励起を行うレーザを導入して、光吸収スペクトルを変調できる請求項記載の赤外光素子。 The infrared optical element according to claim 3 , wherein a laser that performs interband excitation between the valence band and the conduction band can be introduced to modulate the light absorption spectrum. 1ps以下の時間幅をもつパルス光を入力することにより量子もつれ現象を伴った単一赤外光子を輻射する請求項記載の赤外光素子。 The infrared light element according to claim 3, wherein a single infrared photon accompanied by a quantum entanglement phenomenon is radiated by inputting pulsed light having a time width of 1 ps or less. 金属の代わりに導電率が高い半導体その他の材料を用いて、導電率が低い半導体との界面に生じる分極電荷により生じる電場を遮蔽できる構造をもつ請求項1又は2記載の赤外光素子 The infrared optical device according to claim 1 or 2, which has a structure capable of shielding an electric field generated by a polarization charge generated at an interface with a semiconductor having a low conductivity by using a semiconductor or another material having a high conductivity instead of a metal. 半導体との接合がオーミック接続となる金属とショットキー接続となる金属が対となって形成されている請求項1又は2に記載の赤外光素子。 The infrared optical device according to claim 1 or 2, wherein a metal whose junction with a semiconductor is an ohmic connection and a metal whose junction is a shotkey connection are formed as a pair.
JP2018529884A 2016-07-23 2017-07-24 Infrared light element Active JP6829517B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016144974 2016-07-23
JP2016144974 2016-07-23
PCT/JP2017/026743 WO2018021259A1 (en) 2016-07-23 2017-07-24 Infrared light element

Publications (2)

Publication Number Publication Date
JPWO2018021259A1 JPWO2018021259A1 (en) 2019-05-16
JP6829517B2 true JP6829517B2 (en) 2021-02-10

Family

ID=61017441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529884A Active JP6829517B2 (en) 2016-07-23 2017-07-24 Infrared light element

Country Status (2)

Country Link
JP (1) JP6829517B2 (en)
WO (1) WO2018021259A1 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595131A (en) * 1991-08-02 1993-04-16 Hamamatsu Photonics Kk Semiconductor photodetector
JP2728200B2 (en) * 1995-09-04 1998-03-18 広島大学長 Solid-state terahertz-band electromagnetic wave generator
JP2004226531A (en) * 2003-01-21 2004-08-12 Matsushita Electric Ind Co Ltd Electromagnetic wave intensity modulator
JP2005195707A (en) * 2003-12-26 2005-07-21 Semiconductor Res Found Terahertz electromagnetic wave oscillator
US7915641B2 (en) * 2004-09-13 2011-03-29 Kyushu Institute Of Technology Terahertz electromagnetic wave radiation element and its manufacturing method
JP2007300022A (en) * 2006-05-02 2007-11-15 Material Design Factory:Kk Terahertz wave amplifier, terahertz wave modulator, and communication apparatus, and sensing apparatus using it
JP4831482B2 (en) * 2006-06-22 2011-12-07 独立行政法人物質・材料研究機構 Method for measuring carrier mobility of individuals
JP2008052224A (en) * 2006-08-28 2008-03-06 National Institute Of Information & Communication Technology Method for generating terahertz electromagnetic wave by coherent phonon
JP2011155024A (en) * 2008-04-10 2011-08-11 Mitsuteru Kimura Terahertz wave emitting element and terahertz wave emitting device using the same
US7919764B2 (en) * 2008-05-06 2011-04-05 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for enhanced terahertz radiation from high stacking fault density
JP2011077396A (en) * 2009-09-30 2011-04-14 Panasonic Corp Terahertz-wave radiating element
JP5654760B2 (en) * 2010-03-02 2015-01-14 キヤノン株式会社 Optical element
JP5738022B2 (en) * 2010-03-12 2015-06-17 住友化学株式会社 Semiconductor substrate, semiconductor substrate manufacturing method, and electromagnetic wave generator
JP2012047595A (en) * 2010-08-26 2012-03-08 Hiroshima Univ Terahertz wave detection apparatus
GB201209246D0 (en) * 2012-05-25 2012-07-04 Imp Innovations Ltd Structures and materials
JP6399508B2 (en) * 2014-07-02 2018-10-03 富士通株式会社 Photon generator and photon generation method
JP6457803B2 (en) * 2014-12-08 2019-01-23 公立大学法人大阪府立大学 Photoconductive element, terahertz wave generating device, terahertz wave detecting device, terahertz wave generating method, and terahertz wave detecting method

Also Published As

Publication number Publication date
JPWO2018021259A1 (en) 2019-05-16
WO2018021259A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
US11231318B2 (en) Photoconductive detector device with plasmonic electrodes
Yadav et al. Terahertz light-emitting graphene-channel transistor toward single-mode lasing
Jarrahi Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators
US9236833B2 (en) Electromagnetic wave generation device and detection device
US10014662B2 (en) Quantum cascade laser
JPWO2006030608A1 (en) Terahertz electromagnetic wave radiation element and manufacturing method thereof
CN107800040A (en) Terahertz quantum cascaded laser aid
JPWO2015129668A1 (en) Thermal radiation light source and two-dimensional photonic crystal used for the light source
JP5268090B2 (en) Electromagnetic radiation element
JP6829517B2 (en) Infrared light element
Imafuji et al. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch
Cao Research progress in terahertz quantum cascade lasers
Otsuji et al. Emission of terahertz radiation from InGaP/InGaAs/GaAs grating-bicoupled plasmon-resonant emitter
Ragam et al. Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation
Kitada et al. Two‐color lasing in a coupled multilayer cavity with InAs quantum dots by optical pumping
JP2011155024A (en) Terahertz wave emitting element and terahertz wave emitting device using the same
Berry et al. Plasmonic photoconductive antennas for high-power terahertz generation and high-sensitivity terahertz detection
US20240004263A1 (en) Systems and Methods for Wavelength Conversion through Plasmon-Coupled Surface States
Chou et al. Active layer design and power calculation of nitride-based THz quantum cascade lasers
RU2617179C2 (en) POWER AMPLIFICATION METHOD OF RADIO FREQUENCY MODULATED TERAHERTZ RADIATION OF 30-PERIOD WEAKLY BOUND SEMICONDUCTOR SUPERLATTICE GaAs / AlGaAs
LT7000B (en) Broadband high-frequency radiation generating/amplifying device based on quantum semiconductor superlattice
Bello Realisation of an efficient Terahertz source using Quantum dot devices
Biryukov et al. Experimental study of nonlinear mode mixing in dual-wavelength semiconductor lasers
Kagan et al. Manifestation of the Purcell effect in the conductivity of InAs/AlSb short-period superlattices
Jarrahi High-efficiency terahertz sources based on plasmonic contact electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210115

R150 Certificate of patent or registration of utility model

Ref document number: 6829517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250