JP6829103B2 - Styrene-based resin, sheet, molded product and manufacturing method - Google Patents

Styrene-based resin, sheet, molded product and manufacturing method Download PDF

Info

Publication number
JP6829103B2
JP6829103B2 JP2017030498A JP2017030498A JP6829103B2 JP 6829103 B2 JP6829103 B2 JP 6829103B2 JP 2017030498 A JP2017030498 A JP 2017030498A JP 2017030498 A JP2017030498 A JP 2017030498A JP 6829103 B2 JP6829103 B2 JP 6829103B2
Authority
JP
Japan
Prior art keywords
mass
styrene
resin
monomer unit
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017030498A
Other languages
Japanese (ja)
Other versions
JP2018135441A (en
Inventor
慶尚 浅沼
慶尚 浅沼
明弘 金山
明弘 金山
剛弘 山本
剛弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Japan Corp
Original Assignee
PS Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Japan Corp filed Critical PS Japan Corp
Priority to JP2017030498A priority Critical patent/JP6829103B2/en
Publication of JP2018135441A publication Critical patent/JP2018135441A/en
Application granted granted Critical
Publication of JP6829103B2 publication Critical patent/JP6829103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、強度、耐熱性、外観及び透明性に優れたスチレン系樹脂、シート、成形品及び製造方法に関する。 The present invention relates to a styrene resin, a sheet, a molded product, and a manufacturing method having excellent strength, heat resistance, appearance, and transparency.

スチレン−不飽和カルボン酸系樹脂は、耐熱性、及び剛性に優れ、且つ、比較的安価なことから、弁当、惣菜等の食品の容器包装材料、住宅の断熱材用の発泡ボード、拡散剤を入れた液晶テレビの拡散板等に広く用いられているが、特にレンジ等で加熱に供する包装容器の蓋材に使用されている。 Styrene-unsaturated carboxylic acid-based resin has excellent heat resistance and rigidity, and is relatively inexpensive. Therefore, it can be used as a container and packaging material for foods such as lunch boxes and prepared foods, foam boards for heat insulating materials for houses, and diffusers. It is widely used as a diffuser for a liquid crystal television in which it is placed, but it is particularly used as a lid material for a packaging container to be heated in a range or the like.

しかしながら、スチレン−不飽和カルボン酸系樹脂は不飽和カルボン酸同士の脱水縮合により架橋が生じやすく、非発泡及び発泡シートにした際に外観不良が生じやすいという欠点があった。また、スチレン−不飽和カルボン酸系樹脂では重合時に組成分布が生じやすく、透明性が損なわれやすいという欠点があった。 However, the styrene-unsaturated carboxylic acid resin has a drawback that cross-linking is likely to occur due to dehydration condensation between unsaturated carboxylic acids, and poor appearance is likely to occur when the non-foamed or foamed sheet is formed. Further, the styrene-unsaturated carboxylic acid-based resin has a drawback that the composition distribution tends to occur during polymerization and the transparency tends to be impaired.

特開2011−126996号公報Japanese Unexamined Patent Publication No. 2011-126996 特開平3−243605号公報Japanese Unexamined Patent Publication No. 3-243605

しかし、特許文献1のメタクリル酸メチルを共重合させる方法は外観を向上させるものの、改善効果は不十分であった。また、特許文献2では組成分布に関する記述があるものの、透明性の改善に関する記載だけであり、外観に関する記載は見つけられない。
そこで、本発明は、強度、耐熱性、外観及び透明性に優れたスチレン系樹脂、シート、成形品ならびに樹脂の製造法を提供することである。
However, although the method of copolymerizing methyl methacrylate in Patent Document 1 improves the appearance, the improving effect is insufficient. Further, although Patent Document 2 has a description regarding the composition distribution, it is only a description regarding the improvement of transparency, and a description regarding the appearance cannot be found.
Therefore, the present invention provides a styrene-based resin, a sheet, a molded product, and a method for producing a resin, which are excellent in strength, heat resistance, appearance, and transparency.

本発明者らは、前記課題を解決すべく鋭意研究し、実験を重ねた結果、特定組成のスチレン−不飽和カルボン酸系−(メタ)アクリル酸エステル樹脂について、特定の組成分布を持たせることにより、強度、耐熱性、外観及び透明性に優れたスチレン系樹脂、さらにはシート、成形品が得られることを見出した。
すなわち、本発明は以下の通りのものである。
As a result of diligent research and repeated experiments to solve the above problems, the present inventors have given a specific composition distribution to a styrene-unsaturated carboxylic acid-based- (meth) acrylic acid ester resin having a specific composition. As a result, it was found that a styrene-based resin having excellent strength, heat resistance, appearance and transparency, as well as a sheet and a molded product can be obtained.
That is, the present invention is as follows.

[1]スチレン系単量体単位、不飽和カルボン酸系単量体単位、及び(メタ)アクリル酸エステル系単量体単位の合計含有量を100質量%としたとき、前記スチレン系単量体単位の含有量が54質量%以上96質量%以下であり、前記不飽和カルボン酸単量体単位の含有量が4質量%以上16質量%以下であり、前記(メタ)アクリル酸エステル系単量体単位の含有量が0質量%以上30質量%以下である樹脂であり、
前記樹脂の低分子から0%〜15%の分子量分画の前記不飽和カルボン酸系単量体単位の平均濃度を(a)とし、15%〜85%の分子量分画の前記不飽和カルボン酸系単量体単位の平均濃度を(b)とし、85%〜100%の分子量分画の前記不飽和カルボン酸系単量体単位の平均濃度を(c)とした際に、0.9%≦(a)−(c)≦3%、かつ、(c)≦(b)<(a)である
ことを特徴とする、スチレン系樹脂。
[2][1]に記載のスチレン系樹脂を含むことを特徴とする、非発泡シート。
[3][1]に記載のスチレン系樹脂を含むことを特徴とする、発泡シート。
[4]二軸延伸されていることを特徴とする、[2]又は[3]に記載のシート。
[5][2]〜[4]のいずれかに記載のシートを成形してなることを特徴とする、成形品。
[6][1]に記載のスチレン系樹脂を含むことを特徴とする、射出成形品。
[7]連続重合にて製造されることを特徴とする、[1]に記載のスチレン系樹脂の製造方法。
[1] When the total content of the styrene-based monomer unit, the unsaturated carboxylic acid-based monomer unit, and the (meth) acrylic acid ester-based monomer unit is 100% by mass, the styrene-based monomer is used. The content of the unit is 54% by mass or more and 96% by mass or less, the content of the unsaturated carboxylic acid monomer unit is 4% by mass or more and 16% by mass or less, and the (meth) acrylic acid ester-based single amount. A resin having a body unit content of 0% by mass or more and 30% by mass or less.
Let (a) be the average concentration of the unsaturated carboxylic acid-based monomer unit having a molecular weight fraction of 0% to 15% from the low molecular weight of the resin, and the unsaturated carboxylic acid having a molecular weight fraction of 15% to 85%. When the average concentration of the system monomer unit is (b) and the average concentration of the unsaturated carboxylic acid monomer unit of the molecular weight fraction of 85% to 100% is (c), it is 0.9%. A styrene-based resin, characterized in that ≦ (a) − (c) ≦ 3% and (c) ≦ (b) <(a).
[2] A non-foamed sheet containing the styrene resin according to [1].
[3] A foamed sheet containing the styrene resin according to [1].
[4] The sheet according to [2] or [3], which is biaxially stretched.
[5] A molded product, which is obtained by molding the sheet according to any one of [2] to [4].
[6] An injection-molded article containing the styrene-based resin according to [1].
[7] The method for producing a styrene-based resin according to [1], which is produced by continuous polymerization.

本発明により、強度、耐熱性、外観及び透明性に優れたスチレン系樹脂、シート、成形品ならびに樹脂の製造法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a styrene-based resin, a sheet, a molded product, and a method for producing a resin, which are excellent in strength, heat resistance, appearance, and transparency.

以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

[スチレン系樹脂]
本実施形態においては、前記共重合樹脂中のスチレン系単量体単位、不飽和カルボン酸系単量体単位、及びメタクリル酸エステル系単量体単位の合計含有量を100質量%としたときに、スチレン系単量体の含有量としては、54〜96質量%である。好ましくは61〜93質量%、より好ましくは60〜68質量%である。この含有量が54質量%未満では、樹脂の流動性が低下し、一方96質量%を超えると、不飽和カルボン酸系単量体単位を所望量存在させることができないため、本願の目的である耐熱性が得られない。
[Styrene resin]
In the present embodiment, when the total content of the styrene-based monomer unit, the unsaturated carboxylic acid-based monomer unit, and the methacrylic acid ester-based monomer unit in the copolymer resin is 100% by mass. The content of the styrene-based monomer is 54 to 96% by mass. It is preferably 61 to 93% by mass, and more preferably 60 to 68% by mass. If this content is less than 54% by mass, the fluidity of the resin is lowered, while if it exceeds 96% by mass, a desired amount of unsaturated carboxylic acid-based monomer unit cannot be present, which is an object of the present application. Heat resistance cannot be obtained.

スチレン系単量体としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン等が挙げられる。これらは単独で又は混合して使用できるが、工業的に安価で使用できることからスチレンが好ましい。 Examples of the styrene-based monomer include styrene, α-methylstyrene, p-methylstyrene and the like. Although these can be used alone or in combination, styrene is preferable because it can be used industrially at low cost.

本実施形態において、不飽和カルボン酸系単量体単位は、耐熱性の向上に寄与する。不飽和カルボン酸系単量体としては、例えば、メタクリル酸、アクリル酸、無水マレイン酸、マレイン酸、フマル酸、イタコン酸等が挙げられる。耐熱性の向上効果が大きく、常温にて液状でハンドリング性に優れることからメタクリル酸が好ましい。 In the present embodiment, the unsaturated carboxylic acid-based monomer unit contributes to the improvement of heat resistance. Examples of the unsaturated carboxylic acid-based monomer include methacrylic acid, acrylic acid, maleic anhydride, maleic acid, fumaric acid, and itaconic acid. Methacrylic acid is preferable because it has a large effect of improving heat resistance, is liquid at room temperature, and has excellent handleability.

前記共重合樹脂中のスチレン系単量体単位、不飽和カルボン酸系単量体単位、及びメタクリル酸エステル系単量体単位の合計含有量を100質量%としたときに、不飽和カルボン酸系単量体単位の含有量は4〜16質量%である。好ましくは6〜14質量%、より好ましくは8〜12質量%の範囲である。この含有量が4質量%未満では耐熱性向上の効果の発現が不十分であり、一方16質量%を超えると、前記共重合樹脂中のゲル化物が増加し、外観不良となる。また、前記共重合樹脂の流動性と機械的物性の低下とを招来するため好ましくない。 When the total content of the styrene-based monomer unit, the unsaturated carboxylic acid-based monomer unit, and the methacrylic acid ester-based monomer unit in the copolymer resin is 100% by mass, the unsaturated carboxylic acid-based The content of the monomer unit is 4 to 16% by mass. It is preferably in the range of 6 to 14% by mass, more preferably 8 to 12% by mass. If this content is less than 4% by mass, the effect of improving heat resistance is insufficiently exhibited, while if it exceeds 16% by mass, gelled substances in the copolymerized resin increase, resulting in poor appearance. Further, it is not preferable because it causes a decrease in fluidity and mechanical properties of the copolymerized resin.

本実施形態において、樹脂の分子量分布に対する不飽和カルボン酸濃度を考えた際に、樹脂の低分子から0%〜15%の分子量分画の不飽和カルボン酸単量体の平均濃度を(a)とし、15%〜85%の分子量分画の不飽和カルボン酸単量体の平均濃度を(b)とし、85%〜100%の分子量分画の不飽和カルボン酸単量体の平均濃度を(c)とすると、
不飽和カルボン酸単量体の組成分布が、0.9%≦(a)−(c)≦3%、かつ、(c)≦(b)<(a)であり、好ましくは1.4%≦(a)−(c)≦2.2%、かつ、(c)≦(b)<(a)であり、さらに好ましくは1.6%≦(a)−(c)≦2.0%、かつ、(c)≦(b)<(a)である。組成分布がこの範囲であれば外観に優れ、透明性に優れた樹脂となる。組成分布の(a)−(c)が0.9%未満になると外観に劣り、3%より多くなると透明性が悪化する。
組成分布については、GPC−FTIRより求めることができる。
In the present embodiment, when considering the unsaturated carboxylic acid concentration with respect to the molecular weight distribution of the resin, the average concentration of the unsaturated carboxylic acid monomer having a molecular weight fraction of 0% to 15% from the low molecular weight of the resin is (a). Let (b) be the average concentration of unsaturated carboxylic acid monomers having a molecular weight fraction of 15% to 85%, and let the average concentration of unsaturated carboxylic acid monomers having a molecular weight fraction of 85% to 100% be (b). c) Then
The composition distribution of the unsaturated carboxylic acid monomer is 0.9% ≤ (a)-(c) ≤ 3% and (c) ≤ (b) <(a), preferably 1.4%. ≤ (a)-(c) ≤ 2.2%, and (c) ≤ (b) <(a), more preferably 1.6% ≤ (a)-(c) ≤ 2.0%. And (c) ≤ (b) <(a). If the composition distribution is within this range, the resin has an excellent appearance and excellent transparency. When (a)-(c) of the composition distribution is less than 0.9%, the appearance is inferior, and when it is more than 3%, the transparency is deteriorated.
The composition distribution can be obtained from GPC-FTIR.

本実施形態の共重合樹脂の製造においては、(メタ)アクリル酸エステル系単量体は、(メタ)アクリル酸系単量体との分子間相互作用で不飽和カルボン酸系単量体の脱水反応を抑制や機械的強度を向上に加え、耐熱油性の向上に寄与する。(メタ)アクリル酸エステル系単量体の添加は、耐候性、表面硬度等の樹脂特性の向上にも寄与する。(メタ)アクリル酸エステル系単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル等が挙げられる。これらは単独で又は混合して使用できるが、耐熱性低下に対する影響が小さいことから(メタ)アクリル酸メチルが好ましい。 In the production of the copolymerized resin of the present embodiment, the (meth) acrylic acid ester-based monomer dehydrates the unsaturated carboxylic acid-based monomer by molecular interaction with the (meth) acrylic acid-based monomer. In addition to suppressing the reaction and improving the mechanical strength, it contributes to the improvement of heat-resistant oil resistance. The addition of the (meth) acrylic acid ester-based monomer also contributes to the improvement of resin properties such as weather resistance and surface hardness. Examples of the (meth) acrylic acid ester-based monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like. Can be mentioned. Although these can be used alone or in combination, methyl (meth) acrylate is preferable because it has a small effect on the decrease in heat resistance.

前記共重合樹脂中のスチレン系単量体単位、不飽和カルボン酸系単量体単位、及び(メタ)アクリル酸エステル系単量体単位の合計含有量を100質量%としたとき、(メタ)アクリル酸エステル系単量体の含有量は0質量%以上30質量%以下である。好ましくは、3質量%以上25質量%以下、さらにより好ましくは5質量%以上20質量%以下の範囲である。30質量%を超えると該共重合樹脂の流動性が低下し、且つ、吸水性が増加する傾向があり好ましくない。 When the total content of the styrene-based monomer unit, the unsaturated carboxylic acid-based monomer unit, and the (meth) acrylic acid ester-based monomer unit in the copolymer resin is 100% by mass, (meth) The content of the acrylic acid ester-based monomer is 0% by mass or more and 30% by mass or less. It is preferably in the range of 3% by mass or more and 25% by mass or less, and even more preferably 5% by mass or more and 20% by mass or less. If it exceeds 30% by mass, the fluidity of the copolymerized resin tends to decrease and the water absorption tends to increase, which is not preferable.

スチレン系樹脂は、スチレン系単量体単位、不飽和カルボン酸系単量体単位、及び(メタ)アクリル酸エステル系単量体単位以外の単量体単位を、所望の効果を損なわない範囲で更に含有することができるが、典型的には、スチレン系単量体単位、不飽和カルボン酸系単量体単位及び(メタ)アクリル酸エステル系単量体単位からなる。スチレン系樹脂中のスチレン系単量体単位、(メタ)アクリル酸系単量体単位、及び(メタ)アクリル酸エステル系単量体単位の含有量は、それぞれ、前記共重合樹脂を核磁気共鳴(13C−NMR)測定装置で測定したときのスペクトルの積分比から求めることができる。 The styrene-based resin contains monomer units other than the styrene-based monomer unit, the unsaturated carboxylic acid-based monomer unit, and the (meth) acrylic acid ester-based monomer unit as long as the desired effect is not impaired. Furthermore it can be contained, typically, a styrene-based monomer unit, consisting of an unsaturated carboxylic acid monomer units and (meth) acrylate Le ester monomer units. The contents of the styrene-based monomer unit, the (meth) acrylic acid-based monomer unit, and the (meth) acrylic acid ester-based monomer unit in the styrene-based resin are the nuclear magnetic resonances of the copolymerized resin, respectively. ( 13 C-NMR) It can be obtained from the integration ratio of the spectrum when measured by the measuring device.

本実施形態において、スチレン系樹脂の2mm形品に成型したときの曇り度は、5%以下であることが好ましく、より好ましくは2%である。この範囲であれば、射出成形品用途、非発泡シート成形品用途等で、実用上十分な透明性を持たせることができる。
曇り度はISO14728に準拠し、測定することができる。また、曇り度の下限は特にない。
In the present embodiment, the degree of fogging when molded into a 2 mm molded product of a styrene resin is preferably 5% or less, more preferably 2%. Within this range, it is possible to provide practically sufficient transparency for injection molded products, non-foamed sheet molded products, and the like.
The degree of cloudiness conforms to ISO14728 and can be measured. In addition, there is no particular lower limit on the degree of cloudiness.

本実施形態においては、前記共重合樹脂中のスチレン系単量体単位、不飽和カルボン酸系単量体単位、及び(メタ)アクリル酸エステル系単量体単位の合計量に対し、該スチレン系単量体、(メタ)アクリル酸系単量体、及び(メタ)アクリル酸エステル系単量体の残存量の合計は、好ましくは1000質量ppm以下、より好ましくは700質量ppm以下、更に好ましくは500質量ppm以下である。スチレン系単量体、(メタ)アクリル酸系単量体、及び(メタ)アクリル酸エステル系単量体の合計が1000質量ppm以下であれば、シート押出時のダイス出口周りの臭気や、前記共重合樹脂の色調が改善される。
ここで、スチレン系単量体、(メタ)アクリル酸系単量体、及び(メタ)アクリル酸エステル系単量体の残存量は、それぞれ、ガスクロマトグラフィーにより測定することができる。
In the present embodiment, the styrene-based monomer unit, the unsaturated carboxylic acid-based monomer unit, and the (meth) acrylic acid ester-based monomer unit in the copolymer resin are added to the total amount of the styrene-based monomer unit. The total residual amount of the monomer, the (meth) acrylic acid-based monomer, and the (meth) acrylic acid ester-based monomer is preferably 1000 mass ppm or less, more preferably 700 mass ppm or less, still more preferably. It is 500 mass ppm or less. If the total amount of the styrene-based monomer, the (meth) acrylic acid-based monomer, and the (meth) acrylic acid ester-based monomer is 1000 mass ppm or less, the odor around the die outlet during sheet extrusion and the above-mentioned The color tone of the copolymer resin is improved.
Here, the residual amounts of the styrene-based monomer, the (meth) acrylic acid-based monomer, and the (meth) acrylic acid ester-based monomer can be measured by gas chromatography, respectively.

本実施形態において、前記スチレン系樹脂のビカット軟化温度は、電子レンジでの使用環境の観点から、好ましくは110℃以上であり、より好ましくは118℃以上、さらに好ましくは122℃以上である。また、ビカット軟化温度の上限は特にない。
ビカット軟化温度は、ISO306に準拠して測定することができる。
In the present embodiment, the bicut softening temperature of the styrene resin is preferably 110 ° C. or higher, more preferably 118 ° C. or higher, still more preferably 122 ° C. or higher, from the viewpoint of the usage environment in a microwave oven. In addition, there is no particular upper limit to the Vicat softening temperature.
The Vicat softening temperature can be measured according to ISO306.

本実施形態において、前記スチレン系樹脂の数平均分子量(Mn)は4万〜20万であることが好ましく、重量平均分子量(Mw)は8万〜30万であることが好ましく、Z平均分子量(Mz)は10万〜100万であることが好ましい。また、Z平均分子量(Mz)の重量平均分子量(Mw)に対する比(Mz/Mw)は1.6〜3.5であることが好ましい。Mwは、好ましくは10万〜25万より好ましくは12万〜20万である。Mwが8万〜30万であると、衝撃強度と流動性とのバランスにより優れ、またゲル化物の混入も少ない傾向にある。Mz/Mwの比は、好ましくは1.7〜3.0、より好ましくは1.7〜2.5である。Mz/Mwの比が1.6〜3.5であると、衝撃強度と流動性とのバランスに優れる樹脂が得られ、また、ゲル化物の混入も少ない傾向となる。
Mz及びMwは、ゲルパーミエイション・クロマトグラフィーによりポリスチレン標準換算で測定することができる。
In the present embodiment, the number average molecular weight (Mn) of the styrene resin is preferably 40,000 to 200,000, the weight average molecular weight (Mw) is preferably 80,000 to 300,000, and the Z average molecular weight (Z average molecular weight). Mz) is preferably 100,000 to 1,000,000. The ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is preferably 1.6 to 3.5. Mw is preferably 100,000 to 250,000, more preferably 120,000 to 200,000. When Mw is 80,000 to 300,000, the balance between impact strength and fluidity is excellent, and gelled matter tends to be less mixed. The ratio of Mz / Mw is preferably 1.7 to 3.0, more preferably 1.7 to 2.5. When the ratio of Mz / Mw is 1.6 to 3.5, a resin having an excellent balance between impact strength and fluidity can be obtained, and gelled products tend to be less mixed.
Mz and Mw can be measured in polystyrene standard conversion by gel permeation chromatography.

上述の本実施形態のスチレン系樹脂は、1種単独の樹脂としてもよく、2種以上の組み合わせた混合樹脂としてもよい。
混合樹脂の場合、スチレン系樹脂の諸物性は、混合樹脂について定められてよい。混合樹脂は、2種以上の樹脂を混練することにより得ることができる。
The styrene-based resin of the present embodiment described above may be a single type of resin or a mixed resin of two or more types.
In the case of a mixed resin, the physical characteristics of the styrene-based resin may be determined for the mixed resin. The mixed resin can be obtained by kneading two or more kinds of resins.

前記樹脂の重合方法については、ラジカル重合法として、塊状重合法又は溶液重合法の連続重合や懸濁重合や乳化重合が挙げられる。懸濁重合や乳化重合では懸濁剤や乳化剤により外観が損なわれることから、特に連続重合が望ましい。重合方法は、主に、重合原料(単量体成分)を重合させる重合工程と、重合生成物から未反応モノマー、重合溶媒等の揮発分を除去する脱揮工程とからなる。 Examples of the method for polymerizing the resin include continuous polymerization, suspension polymerization and emulsion polymerization of a massive polymerization method or a solution polymerization method as a radical polymerization method. In suspension polymerization and emulsion polymerization, continuous polymerization is particularly desirable because the appearance is impaired by suspension agents and emulsifiers. The polymerization method mainly comprises a polymerization step of polymerizing a polymerization raw material (monomer component) and a devolatilization step of removing volatile components such as unreacted monomer and polymerization solvent from the polymerization product.

本スチレン系樹脂では不飽和カルボン酸系単量体の組成分布を制御することによって、外観及び透明性に優れた樹脂を得ることが可能である。組成分布の調整に関しては重合時に実施したり、また脱揮後のポリマーをブレンドし所定の組成分布に調整する方法が挙げられる。 In this styrene-based resin, it is possible to obtain a resin having excellent appearance and transparency by controlling the composition distribution of unsaturated carboxylic acid-based monomers. Examples of the adjustment of the composition distribution include a method performed at the time of polymerization and a method of blending the devolatile polymer to adjust the composition distribution to a predetermined value.

前記樹脂を得るための重合工程で用いる装置としては、完全混合型反応器や塔型反応器、バッチ式反応器があげられ、それらを直列もしくは並列して使用することができる。また、連続重合時に組成分布を制御する方法の例としては、連続重合において並列に設置された複数の反応器に異なる組成の反応液を流し、それらを合流させる方法が挙げられる。並列に設置された反応器に流す反応液量としては反応液量の全体に対し、10%〜90%であることが好ましい。また、他の方法としては直列に設置された反応器の間に反応液を追添する方法が挙げられる。追添する反応液量としては追添前の反応液に対し10%〜50%であることがこのましく、混練性の観点から15%〜30%がより好ましい。最終的な重合率としては工業上の観点から50%以上、好ましくは60%以上となることが望ましい。重合率の上限は特にない。 Examples of the apparatus used in the polymerization step for obtaining the resin include a completely mixed reactor, a column reactor, and a batch reactor, and these can be used in series or in parallel. Further, as an example of the method of controlling the composition distribution during continuous polymerization, there is a method of flowing reaction solutions having different compositions into a plurality of reactors installed in parallel in continuous polymerization and merging them. The amount of the reaction solution to be passed through the reactors installed in parallel is preferably 10% to 90% with respect to the total amount of the reaction solution. Another method is to add the reaction solution between the reactors installed in series. The amount of the reaction solution to be added is preferably 10% to 50% with respect to the reaction solution before addition, and more preferably 15% to 30% from the viewpoint of kneading property. From an industrial point of view, the final polymerization rate is preferably 50% or more, preferably 60% or more. There is no particular upper limit on the polymerization rate.

脱揮工程についても特に制限はなく、最終的に最終重合反応率が、好ましくは40質量%以上、より好ましくは50質量%以上になるまで重合を進め、かかる未反応モノマー等の揮発分を除去するために、既知の方法にて脱揮処理する。例えば、フラッシュドラム、二軸脱揮器、薄膜蒸発器、押出機等の通常の脱揮装置を用いることができるが、滞留部の少ない脱揮装置が好ましい。なお、脱揮処理の温度は、通常、190℃〜280℃程度であり、(メタ)アクリル酸と(メタ)アクリル酸メチルとの隣接による六員環酸無水物の形成を抑制する観点から、190℃〜260℃がより好ましい。また脱揮処理の圧力は、通常0.13kPa〜4.0kPa程度であり、好ましくは0.13kPa〜3.0kPaであり、より好ましくは0.13kPa〜2.0kPaである。脱揮方法としては、例えば、加熱下で減圧して揮発分を除去する方法、又は揮発分除去の目的に設計された押出機等を通して除去する方法が望ましい。 The volatilization step is also not particularly limited, and the polymerization is finally proceeded until the final polymerization reaction rate is preferably 40% by mass or more, more preferably 50% by mass or more, and the volatile components such as unreacted monomers are removed. In order to do so, the volatilization process is carried out by a known method. For example, a normal volatilizer such as a flash drum, a twin-screw volatilizer, a thin film evaporator, or an extruder can be used, but a volatilizer having a small retention portion is preferable. The temperature of the devolatilization treatment is usually about 190 ° C. to 280 ° C., and from the viewpoint of suppressing the formation of a six-membered cyclic anhydride due to the adjacency of (meth) acrylic acid and methyl (meth) acrylate. More preferably, 190 ° C to 260 ° C. The pressure of the devolatilization treatment is usually about 0.13 kPa to 4.0 kPa, preferably 0.13 kPa to 3.0 kPa, and more preferably 0.13 kPa to 2.0 kPa. As the volatilization method, for example, a method of removing volatile matter by reducing the pressure under heating, or a method of removing volatile matter through an extruder designed for the purpose of removing volatile matter is desirable.

前記樹脂を得るために重合原料を重合させる際には、重合原料組成物中に、典型的には重合開始剤及び連鎖移動剤を含有させる。重合開始剤としては、有機過酸化物、例えば、2,2−ビス(t−ブチルペルオキシ)ブタン、1,1−ビス(t−ブチルペルオキシ)シクロヘキサン、n−ブチル−4,4ービス(t−ブチルペルオキシ)バレレート等のペルオキシケタール類、ジ−t−ブチルペルオキシド、t−ブチルクミルペルオキシド、ジクミルペルオキシド等のジアルキルペルオキシド類、アセチルペルオキシド、イソブチリルペルオキシド等のジアシルペルオキシド類、ジイソプロピルペルオキシジカーボネート等のペルオキシジカーボネート類、t−ブチルペルオキシアセテート等のペルオキシエステル類、アセチルアセトンペルオキシド等のケトンペルオキシド類、t−ブチルヒドロペルオキシド等のヒドロペルオキシド類等が挙げられる。分解速度と重合速度との観点から、とりわけ1,1−ビス(t−ブチルペルオキシ)シクロヘキサンが好ましい。 When the polymerization raw material is polymerized to obtain the resin, a polymerization initiator and a chain transfer agent are typically contained in the polymerization raw material composition. Examples of the polymerization initiator include organic peroxides such as 2,2-bis (t-butylperoxy) butane, 1,1-bis (t-butylperoxy) cyclohexane, and n-butyl-4,4-bis (t-). Butylperoxy) Peroxyketals such as valerate, di-t-butyl peroxide, t-butylcumyl peroxide, dialkyl peroxides such as dicumyl peroxide, diacyl peroxides such as acetyl peroxide and isobutylyl peroxide, diisopropyl peroxydicarbonate. Peroxydicarbonates such as, peroxyesters such as t-butylperoxyacetate, ketone peroxides such as acetylacetone peroxide, hydroperoxides such as t-butylhydroperoxide and the like. From the viewpoint of decomposition rate and polymerization rate, 1,1-bis (t-butylperoxy) cyclohexane is particularly preferable.

前記樹脂の重合時には必要に応じて連鎖移動剤を使用することもできる。連鎖移動剤としては、例えば、αメチルスチレンリニアダイマー、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−オクチルメルカプタン等が挙げられる。 A chain transfer agent can also be used when the resin is polymerized, if necessary. Examples of the chain transfer agent include α-methylstyrene linear dimer, n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan and the like.

例えば、スチレン系樹脂の原料であるスチレン、(メタ)アクリル酸、及び(メタ)アクリル酸メチルの重合時には、スチレンの2量体や3量体が生成する。このスチレンの2量体や3量体の生成量は、重合開始の方法で異なる。すなわち、重合開始剤として有機過酸化物若しくはアゾ系重合開始剤を使用した場合と、熱開始のみとした場合では、それらの生成量は異なる。スチレンの2量体や3量体の生成量は、有機過酸化物を使用する場合が最も低く、熱開始のみの場合が最も高い。スチレンの2量体や3量体は、押出機での押出時のダイス出口への目やにの付着、射出成形時の金型への目やにの付着等で不具合を生じさせる場合がある。従って、重合開始方法としては重合開始剤として有機過酸化物の使用が好ましい。スチレン系樹脂100質量%中のスチレンの2量体と3量体の合計量は低いほど好ましいが、より好ましくは0.7質量%以下、更により好ましくは0.6質量%以下である。スチレンの2量体と3量体としては、1,3−ジフェニルプロパン、2,4−ジフェニル−1ブテン、1,2−ジフェニルシクロブタン、1−フェニルテトラリン、2,4,6−トリフェニル−1−ヘキセン、1−フェニル−4−(1’−フェニルエチル)テトラリン等が挙げられる。
スチレンの2量体及び3量体の残存量は、ガスクロマトグラフィーにより測定できる。
For example, when styrene, (meth) acrylic acid, and methyl (meth) acrylate, which are raw materials for styrene-based resins, are polymerized, styrene dimers and trimers are produced. The amount of styrene dimer or trimer produced differs depending on the method of initiation of polymerization. That is, the amounts produced differ between the case where an organic peroxide or an azo-based polymerization initiator is used as the polymerization initiator and the case where only heat initiation is used. The amount of styrene dimer or trimer produced is lowest when organic peroxide is used and highest when only heat initiation is used. Styrene dimers and trimers may cause problems due to adhesion to the eyes and eyes at the die outlet during extrusion by an extruder, adhesion to the eyes and eyes during injection molding, and the like. Therefore, as a polymerization initiation method, it is preferable to use an organic peroxide as a polymerization initiator. The lower the total amount of the dimer and trimer of styrene in 100% by mass of the styrene resin is, the more preferable, but more preferably 0.7% by mass or less, and even more preferably 0.6% by mass or less. The dimer and trimeric of styrene include 1,3-diphenylpropane, 2,4-diphenyl-1 butene, 1,2-diphenylcyclobutane, 1-phenyltetralin, and 2,4,6-triphenyl-1. -Hexene, 1-phenyl-4- (1'-phenylethyl) tetralin and the like can be mentioned.
The residual amounts of styrene dimers and trimers can be measured by gas chromatography.

重合では必要に応じて、重合溶媒を用いた溶液重合を採用できる。用いられる重合溶媒としては、芳香族炭化水素類、例えば、エチルベンゼン、ジアルキルケトン類、例えば、メチルエチルケトン等が挙げられ、それぞれ、単独で用いてもよいし2種以上を組み合わせて用いてもよい。重合生成物の溶解性を低下させない範囲で、他の重合溶媒、例えば、脂肪族炭化水素類等を、芳香族炭化水素類に更に混合することができる。これらの重合溶媒は、全単量体100質量部に対して、30質量部を超えない範囲で使用するのが好ましい。全単量体100質量部に対して重合溶媒が30質量部以下であれば、重合速度の低下、及び得られる樹脂の機械的強度の低下が抑制されるため好ましい。重合前に、全単量体100質量部に対して5〜30質量部の割合で添加しておくことが、品質が均一化し易く、重合温度制御の点でも好ましい。 In the polymerization, solution polymerization using a polymerization solvent can be adopted, if necessary. Examples of the polymerization solvent used include aromatic hydrocarbons such as ethylbenzene and dialkyl ketones such as methyl ethyl ketone, which may be used alone or in combination of two or more. Other polymerization solvents, such as aliphatic hydrocarbons, can be further mixed with aromatic hydrocarbons as long as the solubility of the polymerization product is not reduced. It is preferable to use these polymerization solvents in a range not exceeding 30 parts by mass with respect to 100 parts by mass of all the monomers. When the amount of the polymerization solvent is 30 parts by mass or less with respect to 100 parts by mass of all the monomers, a decrease in the polymerization rate and a decrease in the mechanical strength of the obtained resin are suppressed, which is preferable. Before polymerization, it is preferable to add 5 to 30 parts by mass with respect to 100 parts by mass of all the monomers because the quality can be easily made uniform and the polymerization temperature can be controlled.

本スチレン系樹脂ではゲル化抑制剤を添加することで、ゲル物の生成を抑制し、シートにした際の外観を向上させることが可能である。ゲル化抑制剤としては脂肪族モノアルコールやポリオキシエチレンモノエーテルがあげられ、添加の方法としては特に制限はなく、樹脂の重合前もしくは重合中に添加したり、製造された樹脂ペレットに押出し機で練り込む方法が挙げられる。添加量としては樹脂に対して0.05質量部〜0.3質量部添加することが望ましい。 In this styrene resin, by adding a gelation inhibitor, it is possible to suppress the formation of a gel product and improve the appearance when it is made into a sheet. Examples of the gelation inhibitor include aliphatic monoalcohols and polyoxyethylene monoethers, and the method of addition is not particularly limited. The gelation inhibitor is added before or during the polymerization of the resin, or is added to the produced resin pellets by an extruder. There is a method of kneading with. It is desirable to add 0.05 parts by mass to 0.3 parts by mass with respect to the resin.

本実施形態のスチレン系樹脂には、スチレン系樹脂において使用が一般的な各種添加剤を、適宜添加してもよい。例えば、安定剤、酸化防止剤、紫外線吸収剤、滑剤、離型剤、可塑剤、ブロッキング防止剤、帯電防止剤、防曇剤、鉱油等が挙げられる。また、スチレン−ブタジエンブロック共重合体やMBS樹脂等の補強材についても物性を損なわない範囲で添加してもよい。配合の方法については特に規定はないが、例えば、共重合体の重合時に添加して重合する方法や樹脂組成物を得る際、ブレンダーで予め添加剤を混合し、押出機やバンバリーミキサー等にて溶融混錬する方法等が挙げられる。 Various additives generally used in the styrene resin may be appropriately added to the styrene resin of the present embodiment. Examples thereof include stabilizers, antioxidants, UV absorbers, lubricants, mold release agents, plasticizers, blocking inhibitors, antistatic agents, antifogging agents, mineral oils and the like. Further, reinforcing materials such as styrene-butadiene block copolymer and MBS resin may be added as long as the physical properties are not impaired. The method of blending is not particularly specified, but for example, when a method of adding and polymerizing a copolymer at the time of polymerization or a resin composition is obtained, the additives are mixed in advance with a blender and then used in an extruder, a Banbury mixer or the like. Examples thereof include a method of melt-kneading.

[シート]
本発明の他の実施形態は、上述したスチレン系樹脂、スチレン系樹脂組成物を用いて製造したシートである。シートの製造方法としては、通常知られている方法を用いることができる。非発泡及び発泡のいずれでもよい。
非発泡シートではTダイを取り付けた単軸又は二軸押出成形機で押出し、その後一軸延伸機又は二軸延伸機でシートを引き取る装置を用いる方法等を用いることができる。発泡シートの製造方法としては、Tダイ又はサーキュラーダイを備え付けた押出発泡成形機を用いる方法等を用いることができる。
[Sheet]
Another embodiment of the present invention is a sheet produced by using the above-mentioned styrene resin and styrene resin composition. As a method for producing the sheet, a commonly known method can be used. It may be non-foamed or foamed.
For the non-foamed sheet, a method using a device that extrudes the sheet with a single-screw or twin-screw extruder equipped with a T-die and then takes out the sheet with a uniaxial stretching machine or a biaxial stretching machine can be used. As a method for producing the foam sheet, a method using an extrusion foam molding machine equipped with a T die or a circular die can be used.

非発泡シートにおいては、例えば、厚みが0.1mm〜1.0mm程度であることが剛性及び熱成形サイクルの観点から好ましい。また、シートは通常の低倍率のロール延伸のみで形成してもよく、ロールで1.3倍から7倍程度延伸した後、テンターで1.3倍から7倍程度延伸してもよい。また、ポリスチレン樹脂等のスチレン系樹脂と多層化して用いてもよい。更にスチレン系樹脂以外の樹脂と多層化して用いてもよい。スチレン系樹脂以外の樹脂としては、PET樹脂、ナイロン樹脂等が挙げられる。 In the non-foamed sheet, for example, the thickness is preferably about 0.1 mm to 1.0 mm from the viewpoint of rigidity and thermoforming cycle. Further, the sheet may be formed only by ordinary low-magnification roll stretching, or may be stretched by a roll about 1.3 to 7 times and then by a tenter about 1.3 to 7 times. Further, it may be used in multiple layers with a styrene resin such as polystyrene resin. Further, it may be used in multiple layers with a resin other than the styrene resin. Examples of the resin other than the styrene resin include PET resin, nylon resin and the like.

発泡シートは、厚み0.5mm〜5.0mmであることが好ましく、見かけ密度50g/L〜300g/Lであることが好ましく、また坪量80g/m〜300g/mであることが好ましい。本発明の発泡押出シートは、例えばフィルムを更にラミネートすること等によって多層化してもよい。使用するフィルムの種類は、一般のポリスチレンやポリプロピレンやポリプロピレン/ポリスチレンの張り合せフィルム等である。発泡シートを形成する場合、押出発泡時の発泡剤及び発泡核剤としては通常用いられる物質を使用できる。発泡剤としてはブタン、ペンタン、フロン、二酸化炭素、水等を使用することができ、ブタンが好適である。また発泡核剤としてはタルク等を使用できる。また、発泡押出し後に、シートを加熱しながらロールで1.3倍から7倍程度延伸した後、テンターで1.3倍から7倍程度延伸してもよい。 Foam sheet is preferably is preferably thick 0.5 mm to 5.0 mm, preferably a apparent density 50 g / to 300 g / L, also a basis weight of 80g / m 2 ~300g / m 2 .. The foam extruded sheet of the present invention may be multi-layered, for example, by further laminating a film. The type of film used is general polystyrene, polypropylene, polypropylene / polystyrene laminated film, or the like. When forming a foamed sheet, commonly used substances can be used as the foaming agent and the foaming nucleating agent during extrusion foaming. Butane, pentane, chlorofluorocarbon, carbon dioxide, water and the like can be used as the foaming agent, and butane is preferable. Further, talc or the like can be used as the effervescent nucleating agent. Further, after foam extrusion, the sheet may be stretched about 1.3 to 7 times with a roll while heating, and then stretched about 1.3 to 7 times with a tenter.

別の実施形態は、上述したシートを使用した成形品である。シートは、例えば、真空成形により成形して弁当の蓋材や惣菜等を入れる容器を製造することができる。 Another embodiment is a molded product using the above-mentioned sheet. The sheet can be molded by vacuum forming, for example, to produce a container for a lunch box lid material, a side dish, or the like.

本発明のスチレン系樹脂は、射出成形、圧縮成形等、目的に応じた他の成形方法で用いることができる。 The styrene-based resin of the present invention can be used in other molding methods according to the purpose, such as injection molding and compression molding.

以下、本発明を実施例及び比較例に具体的に説明するが、本発明はこれらの実施例に限定されると解されるべきでない。なお、実施例及び比較例における樹脂、樹脂組成物、ならびにシート等の分析、評価方法は、下記の通りである。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention should not be understood to be limited to these Examples. The methods for analyzing and evaluating resins, resin compositions, sheets, etc. in Examples and Comparative Examples are as follows.

(1)ビカット軟化温度の測定
ISO306に準拠して測定した。荷重は49N、昇温速度は50℃/hとした。
(1) Measurement of Vicat softening temperature The measurement was performed in accordance with ISO306. The load was 49 N and the heating rate was 50 ° C./h.

(2)重量平均分子量、数平均分子量、及びZ平均分子量の測定
試料調製:テトラヒドロフランに樹脂約0.05質量%を溶解
測定条件
機器 :TOSOH HLC−8220GPC(ゲルパーミエイション・クロマトグラフィー)
カラム :super HZM−H
温度 :40℃
キャリア:THF 0.35mL/min
検出器 :RI 、UV:254nm
検量線 :TOSOH製の標準PS使用
(2) Measurement of weight average molecular weight, number average molecular weight, and Z average molecular weight Sample preparation: Approximately 0.05% by mass of resin dissolved in tetrahydrofuran Measuring conditions Equipment: TOSOH HLC-8220 GPC (gel permeation chromatography)
Column: super HZM-H
Temperature: 40 ° C
Carrier: THF 0.35 mL / min
Detector: RI, UV: 254 nm
Calibration curve: Uses standard PS made by TOSOH

(3)スチレン単位、(メタ)アクリル酸単位、及び(メタ)アクリル酸単位の樹脂組成の含有量の測定
核磁気共鳴(13C−NMR)装置で測定したスペクトルの積分比から樹脂組成を定量した。
試料調製:樹脂75mgをd6−DMSO 0.75mLに60℃で4〜6時間加熱溶解した。
測定機器:日本電子 JNM ECA−500
測定条件:測定温度 60℃、観測核 13C、積算回数 2万回、繰返し時間 45秒
(3) Measurement of resin composition content of styrene unit, (meth) acrylic acid unit, and (meth) acrylic acid unit Quantify the resin composition from the integral ratio of the spectrum measured by a nuclear magnetic resonance ( 13 C-NMR) device. did.
Sample preparation: 75 mg of resin was dissolved in 0.75 mL of d6-DMSO by heating at 60 ° C. for 4 to 6 hours.
Measuring equipment: JEOL JNM ECA-500
Measurement conditions: Measurement temperature 60 ° C, observation nucleus 13C , number of integrations 20,000 times, repetition time 45 seconds

(4)GPC−FTIRによる組成分布の測定
試料調製:テトラヒドロフランに樹脂約0.02質量%で溶解
測定条件
機器 :TOSOH HLC−8220GPC(ゲルパーミエイション・クロマトグラフィー)
カラム :super HZM−H
温度 :40℃
キャリア:THF 1.00mL/min
注入量 :100μL
検出器 :RI
FT―IR:Nicolet IS10(サーモサイエンティフィックス社製)
FT−IRインターフェイス:LC Transform 600r(Lab Connenction製)
測定波数:4000〜650cm−1
分解能 :4cm−1
検量線 :TOSOH製の標準PS使用
メタクリル酸単量体の定量:FT−IRより得られた1697cm−1のピーク強度A1と1600cm−1のピーク強度A2との強度比A1/A2から求めた。
GPC‐FTIRからは特定分子量成分のメタクリル酸単量体(MAA)濃度と微分分子量分布における微分分子量強度の関係を得ることができ、それを元に特定の分子量域における平均MAA濃度を算出した。
(4) Measurement of composition distribution by GPC-FTIR Sample preparation: Dissolved in tetrahydrofuran at about 0.02% by mass of resin Measurement conditions Equipment: TOSOH HLC-8220 GPC (gel permeation chromatography)
Column: super HZM-H
Temperature: 40 ° C
Carrier: THF 1.00 mL / min
Injection volume: 100 μL
Detector: RI
FT-IR: Nicolet IS10 (manufactured by Thermo Scientific)
FT-IR interface: LC Transform 600r (manufactured by Lab Connection)
Wavenumber measured: 4000-650 cm -1
Resolution: 4 cm -1
Calibration: TOSOH made of standard PS using methacrylic acid monomers Quantification was determined from the intensity ratio A1 / A2 of the peak intensity A2 of a peak intensity A1 and 1600 cm -1 of 1697Cm -1 obtained from FT-IR.
From GPC-FTIR, the relationship between the methacrylic acid monomer (MAA) concentration of the specific molecular weight component and the differential molecular weight intensity in the differential molecular weight distribution could be obtained, and the average MAA concentration in the specific molecular weight range was calculated based on this.

(5)真空加熱試験
樹脂ペレットを加熱炉内で、255℃、1.3kPa、1hの条件で処理した。
(2)の分子量の測定法にて分析を行い、ポリスチレン換算100万以上分子量成分量(%)を求めた。
試験前の100万以上分子量成分量をA1、試験後の100万以上分子量成分量をA2として、上昇率を下記の式から算出した。
真空加熱試験後の100万以上成分量の上昇率=A2/A1
(5) Vacuum heating test The resin pellets were treated in a heating furnace under the conditions of 255 ° C., 1.3 kPa and 1 h.
The analysis was carried out by the method for measuring the molecular weight of (2), and the polystyrene-equivalent molecular weight component amount (%) of 1 million or more was determined.
The rate of increase was calculated from the following formula, where A1 was the molecular weight component of 1 million or more before the test and A2 was the molecular weight of 1 million or more after the test.
Increase rate of 1 million or more components after vacuum heating test = A2 / A1

(6)透明性
ISO14728に準拠し、鏡面の金属板に樹脂を挟んで、200℃にて圧縮成型した2mm厚みのプレートを用いて曇り度(HAZE)を測定した。
(6) Transparency In accordance with ISO14728, the degree of haze (HAZE) was measured using a 2 mm thick plate compression molded at 200 ° C. with a resin sandwiched between mirror-surfaced metal plates.

(7)延伸シートのMIT耐折強度(回)の測定
上記25mmφ単軸シート押出機にて、スチレン系樹脂100重量部に対しPSジャパン製475Dを1部添加して押出し、厚み1.5〜1.6mmのシートを作製した。作製したシートから10cm×10cmの大きさのシートを切出した。切出したシートを東洋精機製二軸延伸装置(EX6−S1)にて下記条件で同時二軸延伸を行い、厚み0.24〜0.26mmの延伸シートを作製した。
延伸温度:Vicat軟化温度+20℃、
延伸速度:170%
延伸倍率:2.5倍
JIS P8115に準拠し、作製したシートのMIT耐折強度を測定した。
(7) Measurement of MIT Folding Strength (Times) of Stretched Sheet With the above 25 mmφ single-screw sheet extruder, 1 part of PS Japan 475D was added to 100 parts by weight of styrene resin and extruded to a thickness of 1.5 to 1. A 1.6 mm sheet was prepared. A sheet having a size of 10 cm × 10 cm was cut out from the prepared sheet. The cut out sheet was simultaneously biaxially stretched with a biaxial stretching device (EX6-S1) manufactured by Toyo Seiki under the following conditions to prepare a stretched sheet having a thickness of 0.24 to 0.26 mm.
Stretching temperature: Vicat softening temperature + 20 ° C,
Stretching speed: 170%
Magnification: 2.5 times The MIT folding resistance of the prepared sheet was measured according to JIS P8115.

(8)非発泡シートの外観判定
創研社製の25mmφ単軸シート押出機で厚さ0.3mmのシートを作製し、シートから8cm×20cmの大きさのシートを5枚切り出し、切出した5枚のシート表面において(長径+短径)/2の平均径が0.5mm以上の異物であるゲル物の個数を数え、以下の評価基準で外観を判定した:
◎(優れる):ゲル物の個数が3点以下
○(良好):ゲル物の個数が4〜9点
×(不良):ゲル物の個数が10点以上
(8) Appearance judgment of non-foamed sheet A sheet with a thickness of 0.3 mm was prepared by a 25 mmφ single-screw sheet extruder manufactured by Soken Co., Ltd., and 5 sheets having a size of 8 cm × 20 cm were cut out from the sheets and cut out 5 The number of gels having an average diameter of (major diameter + minor diameter) / 2 of 0.5 mm or more on the surface of one sheet was counted, and the appearance was judged by the following evaluation criteria:
◎ (Excellent): Number of gels is 3 points or less ○ (Good): Number of gels is 4 to 9 points × (Poor): Number of gels is 10 points or more

(9)発泡シートの外観判定
発泡押出シートは、圧縮成形で作製した厚み約0.2mmのシートにオートクレーブ中で液化炭酸ガスを10mPaで30分間含浸させ、その後125℃に加熱、約10倍の発泡体シートを作製した。シートから10cm×10cmの大きさのシートを5枚切り出し、シート10枚の表面において(長径+短径)/2の平均径が1mm以上の異物であるゲル物の個数を数え、以下の評価基準で外観を判定した:
◎(優れる):ゲル物の個数が2点以下
○(良好):ゲル物の個数が3〜4点
×(不良):ゲル物の個数が5点以上
(9) Appearance Judgment of Foamed Sheet The foamed extruded sheet is made by impregnating a sheet with a thickness of about 0.2 mm produced by compression molding with liquefied carbon dioxide gas at 10 mPa for 30 minutes in an autoclave, and then heating to 125 ° C. for about 10 times. A foam sheet was prepared. Five sheets with a size of 10 cm x 10 cm are cut out from the sheets, and the number of gels having an average diameter of (major diameter + minor diameter) / 2 of 1 mm or more on the surface of the 10 sheets is counted, and the following evaluation criteria are used. Judging the appearance with:
◎ (Excellent): Number of gels is 2 points or less ○ (Good): Number of gels is 3-4 points × (Poor): Number of gels is 5 points or more

(9)単量体の残存量の測定
樹脂ペレット中における、スチレン系単量体、(メタ)アクリル酸系単量体、及び(メタ)アクリル酸エステル系単量体の残存量を、それぞれ、ガスクロマトグラフィーにより、下記の条件や手順で、測定した。
・試料調製:樹脂組成物1.0gをアセトン10mLに溶解後、更に標準物質(p−ジエチルベンゼン)入りのヘキサン6mLを加えポリマー成分を再沈させ、上澄み液を採取し、測定液とした。
・測定条件
機器:Agilent社製 6850 シリーズ GCシステム
検出器:FID
カラム:DB−WAX(PEG)60m、膜厚0.5μm、0.32mmφ
カラム温度:40℃で3分保持⇒10℃/分で100℃まで昇温⇒100℃で5分保持⇒10℃/分で200℃まで昇温⇒200℃で20分保持
注入量:1μl(スプリットレス)
注入口温度:230℃
検出器温度:300℃
キャリアガス:ヘリウム
(9) Measurement of Residual Amount of Monomer The residual amount of styrene-based monomer, (meth) acrylic acid-based monomer, and (meth) acrylic acid ester-based monomer in the resin pellets is determined, respectively. It was measured by gas chromatography under the following conditions and procedures.
-Sample preparation: After 1.0 g of the resin composition was dissolved in 10 mL of acetone, 6 mL of hexane containing a standard substance (p-diethylbenzene) was further added to reprecipitate the polymer component, and the supernatant was collected and used as a measurement solution.
-Measurement conditions Equipment: Agilent 6850 series GC system Detector: FID
Column: DB-WAX (PEG) 60 m, film thickness 0.5 μm, 0.32 mmφ
Column temperature: Hold at 40 ° C for 3 minutes ⇒ Heat up to 100 ° C at 10 ° C / min ⇒ Hold at 100 ° C for 5 minutes ⇒ Heat up to 200 ° C at 10 ° C / min ⇒ Hold at 200 ° C for 20 minutes Injection volume: 1 μl ( Splitless)
Injection port temperature: 230 ° C
Detector temperature: 300 ° C
Carrier gas: helium

(10)スチレンの2量体及び3量体の残存量の測定
樹脂ペレット中における、スチレンの2量体及び3量体の残存量(質量%)を、下記の条件や手順で、測定した。
・試料調製:樹脂組成物2.0gをメチルエチルケトン20mLに溶解後、更に標準物質(トリフェニルメタン)入りのメタノール5mLを加えポリマー成分を再沈させ、上澄み液を採取し、測定液とした。
・測定条件
機器:Agilent社製 6850 シリーズ GCシステム
検出器:FID
カラム:HP−1(100%ジメチルポリシロキサン)30m、膜厚0.25μm、0.32mmφ
注入量:1μl(スプリットレス)
カラム温度:40℃で2分保持→20℃/分で320℃まで昇温→320℃で15分保持
注入口温度:250℃
検出器温度:280℃
キャリアガス:ヘリウム
(10) Measurement of styrene dimer and residual amount of trimer The residual amount (mass%) of styrene dimer and trimer in the resin pellet was measured under the following conditions and procedures.
-Sample preparation: After 2.0 g of the resin composition was dissolved in 20 mL of methyl ethyl ketone, 5 mL of methanol containing a standard substance (triphenylmethane) was further added to reprecipitate the polymer component, and the supernatant was collected and used as a measurement solution.
-Measurement conditions Equipment: Agilent 6850 series GC system detector: FID
Column: HP-1 (100% dimethylpolysiloxane) 30 m, film thickness 0.25 μm, 0.32 mmφ
Injection volume: 1 μl (splitless)
Column temperature: Hold at 40 ° C for 2 minutes → Raise to 320 ° C at 20 ° C / min → Hold at 320 ° C for 15 minutes Injection temperature: 250 ° C
Detector temperature: 280 ° C
Carrier gas: helium

[実施例1]
スチレン80.5質量部、メタクリル酸5.5質量部、エチルベンゼン14.0質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部からなる重合原料組成液Aを、0.8リットル/時の速度で、容量が3.6リットルの完全混合型反応器1に供給し、スチレン73.5質量部、メタクリル酸7.5質量部、エチルベンゼン19.0質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部からなる重合原料組成液Bを、0.8リットル/時の速度で、反応器1に並列で設置した容量が3.6リットルの完全混合型反応器Bに供給し、それらを合流させたのちに、重合溶媒等の揮発分を除去する単軸押出機を連結した脱揮装置に連続的に順次供給した。完全混合反応器1の重合温度は123℃、完全混合反応器2の重合温度は129℃とした。
単軸押出機の温度を200〜250℃に設定し、10torrの減圧下で未反応モノマーを脱揮した。脱揮された未反応ガスは−5℃の冷媒を通した凝縮器で凝縮し、未反応液として回収し、ポリマー分は樹脂ペレットとして回収した。
実施例1の結果を表1に記す。
[Example 1]
The polymerization raw material composition solution A composed of 80.5 parts by mass of styrene, 5.5 parts by mass of methacrylic acid, 14.0 parts by mass of ethylbenzene, and 0.026 parts by mass of 1,1-bis (t-butylperoxy) cyclohexane was added to 0. Feeding a fully mixed reactor 1 with a volume of 3.6 liters at a rate of 0.8 liters / hour, 73.5 parts by mass of styrene, 7.5 parts by mass of methacrylic acid, 19.0 parts by mass of ethylbenzene, and 1 , 1-Bis (t-butylperoxy) cyclohexane 0.026 parts by mass of a polymerization raw material composition solution B was installed in parallel with the reactor 1 at a rate of 0.8 liters / hour and had a capacity of 3.6 liters. It was supplied to a completely mixed reactor B, merged, and then continuously and sequentially supplied to a devolatilizer connected to a uniaxial extruder for removing volatile substances such as a polymerization solvent. The polymerization temperature of the complete mixing reactor 1 was 123 ° C., and the polymerization temperature of the complete mixing reactor 2 was 129 ° C.
The temperature of the uniaxial extruder was set to 200 to 250 ° C., and the unreacted monomer was devolatile under a reduced pressure of 10 torr. The devolatile unreacted gas was condensed in a condenser passed through a refrigerant at −5 ° C. and recovered as an unreacted liquid, and the polymer component was recovered as resin pellets.
The results of Example 1 are shown in Table 1.

[実施例2]
スチレン68.6質量部、メタクリル酸6.3質量部、メタクリル酸メチル3.9質量部、エチルベンゼン21.2質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部からなる重合原料組成液Aを、0.8リットル/時の速度で、容量が3.6リットルの完全混合型反応器1に供給し、スチレン61.9質量部、メタクリル酸8.1質量部、メタクリル酸メチル3.7質量部、エチルベンゼン26.3質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部からなる重合原料組成液Bを、0.8リットル/時の速度で、反応器1に並列で設置した容量が3.6リットルの完全混合型反応器Bに供給し、完全混合反応器1の重合温度は133℃、完全混合反応器2の重合温度は125℃とした。以降は実施例1と同様の製造条件で製造した。
実施例2の結果を表1に記す。
[Example 2]
From 68.6 parts by mass of styrene, 6.3 parts by mass of methacrylic acid, 3.9 parts by mass of methyl methacrylate, 21.2 parts by mass of ethylbenzene, and 0.026 parts by mass of 1,1-bis (t-butylperoxy) cyclohexane. The polymerization raw material composition solution A is supplied to a completely mixed reactor 1 having a capacity of 3.6 liters at a rate of 0.8 liters / hour, and 61.9 parts by mass of styrene and 8.1 parts by mass of methacrylic acid. A polymerization raw material composition solution B consisting of 3.7 parts by mass of methyl methacrylate, 26.3 parts by mass of ethylbenzene, and 0.026 parts by mass of 1,1-bis (t-butylperoxy) cyclohexane was added at 0.8 liter / hour. At a rate, the solution was supplied to the complete mixing reactor B having a capacity of 3.6 liters installed in parallel with the reactor 1, the polymerization temperature of the complete mixing reactor 1 was 133 ° C., and the polymerization temperature of the complete mixing reactor 2 was 125. The temperature was adjusted to ° C. After that, it was manufactured under the same manufacturing conditions as in Example 1.
The results of Example 2 are shown in Table 1.

[実施例3]
スチレン70.2量部、メタクリル酸5.6質量部、メタクリル酸メチル4.4質量部、エチルベンゼン19.8質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部からなる重合原料組成液Aを、0.8リットル/時の速度で、容量が3.6リットルの完全混合型反応器1へと供給し、重合温度122℃で重合を行った。その後実施例1と同様の条件で脱揮をおこない、樹脂1を得た。
次に、スチレン60.2質量部、メタクリル酸9.0量部、メタクリル酸メチル4.0質量部、エチルベンゼン26.8質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部からなる重合原料組成液を0.8リットル/時の速度で3.6リットルの完全混合反応器2に供給し、重合温度は136℃で反応をおこなった。
その後実施例1と同様の条件で脱揮をおこない、樹脂2を得た。樹脂1と樹脂2を1:1の割合で、創研社製20mm二軸押出し機で220℃、50rpmで押出し、実施例3の樹脂を製造した。
実施例3の結果を表1に記す。
[Example 3]
From 70.2 parts by mass of styrene, 5.6 parts by mass of methacrylic acid, 4.4 parts by mass of methyl methacrylate, 19.8 parts by mass of ethylbenzene, and 0.026 parts by mass of 1,1-bis (t-butylperoxy) cyclohexane. The polymerization raw material composition liquid A was supplied to a completely mixed reactor 1 having a mass of 3.6 liters at a rate of 0.8 liters / hour, and polymerization was carried out at a polymerization temperature of 122 ° C. Then, volatilization was carried out under the same conditions as in Example 1 to obtain a resin 1.
Next, 60.2 parts by mass of styrene, 9.0 parts by mass of methacrylic acid, 4.0 parts by mass of methyl methacrylate, 26.8 parts by mass of ethylbenzene, and 0.026 parts of 1,1-bis (t-butylperoxy) cyclohexane. A polymerization raw material composition solution consisting of parts by mass was supplied to a 3.6 liter complete mixing reactor 2 at a rate of 0.8 liter / hour, and the reaction was carried out at a polymerization temperature of 136 ° C.
Then, volatilization was carried out under the same conditions as in Example 1 to obtain a resin 2. Resin 1 and resin 2 were extruded at a ratio of 1: 1 with a 20 mm twin-screw extruder manufactured by Soken Co., Ltd. at 220 ° C. and 50 rpm to produce the resin of Example 3.
The results of Example 3 are shown in Table 1.

[実施例4]
スチレン67.8量部、メタクリル酸6.4質量部、メタクリル酸メチル4.3質量部、エチルベンゼン21.5質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部からなる重合原料組成液Aを、0.8リットル/時の速度で、容量が3.6リットルの完全混合型反応器1と1.2リットルの塔型反応器3が直列に連結された反応装置へと供給した。反応器1の出口にスチレン74.8質量部、メタクリル酸19.7量部、メタクリル酸メチル5.5質量部からなる重合原料組成液を0.05リットル/時の速度で供給した。完全混合反応器1の重合温度は126℃、塔型反応器3の重合温度は135℃とした。以降は実施例1と同様の製造条件で製造した。
実施例4の結果を表1に記す。
[Example 4]
From 67.8 parts by mass of styrene, 6.4 parts by mass of methacrylic acid, 4.3 parts by mass of methyl methacrylate, 21.5 parts by mass of ethylbenzene, and 0.026 parts by mass of 1,1-bis (t-butylperoxy) cyclohexane. A reaction apparatus in which a completely mixed reactor 1 having a mass of 3.6 liters and a tower reactor 3 having a mass of 1.2 liters are connected in series at a rate of 0.8 liters / hour. Supplied to. A polymerization raw material composition solution consisting of 74.8 parts by mass of styrene, 19.7 parts by mass of methacrylic acid, and 5.5 parts by mass of methyl methacrylate was supplied to the outlet of the reactor 1 at a rate of 0.05 liter / hour. The polymerization temperature of the complete mixture reactor 1 was 126 ° C., and the polymerization temperature of the column reactor 3 was 135 ° C. After that, it was manufactured under the same manufacturing conditions as in Example 1.
The results of Example 4 are shown in Table 1.

[実施例5]
スチレン51.8質量部、メタクリル酸9.1質量部、メタクリル酸メチル15.2質量部、エチルベンゼン23.9質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部からなる重合原料組成液Aを、0.8リットル/時の速度で、容量が3.6リットルの完全混合型反応器1に供給し、スチレン57.1質量部、メタクリル酸5.5質量部、メタクリル酸メチル15.6質量部、エチルベンゼン21.8質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部からなる重合原料組成液Bを、0.8リットル/時の速度で、反応器1に並列で設置した容量が3.6リットルの完全混合型反応器Bに供給し、完全混合反応器1の重合温度は137℃、完全混合反応器2の重合温度は124℃とした。以降は実施例1と同様の製造条件で製造した。
実施例5の結果を表1に記す。
[Example 5]
From 51.8 parts by mass of styrene, 9.1 parts by mass of methacrylic acid, 15.2 parts by mass of methyl methacrylate, 23.9 parts by mass of ethylbenzene, and 0.026 parts by mass of 1,1-bis (t-butylperoxy) cyclohexane. The polymerization raw material composition liquid A was supplied to a completely mixed reactor 1 having a capacity of 3.6 liters at a rate of 0.8 liters / hour, and 57.1 parts by mass of styrene and 5.5 parts by mass of methacrylic acid. A polymerization raw material composition solution B consisting of 15.6 parts by mass of methyl methacrylate, 21.8 parts by mass of ethylbenzene, and 0.026 parts by mass of 1,1-bis (t-butylperoxy) cyclohexane was added at 0.8 liter / hour. At a rate, the solution was supplied to the complete mixing reactor B having a capacity of 3.6 liters installed in parallel with the reactor 1, the polymerization temperature of the complete mixing reactor 1 was 137 ° C., and the polymerization temperature of the complete mixing reactor 2 was 124. The temperature was adjusted to ° C. After that, it was manufactured under the same manufacturing conditions as in Example 1.
The results of Example 5 are shown in Table 1.

[比較例1]
重合原料組成液をスチレン75.3質量部、メタクリル酸5.7質量部、エチルベンゼン19.0質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.028質量部とし、0.8リットル/時の速度で、容量が3.6リットルの完全混合型反応器1に供給し、重合をおこなった。反応器温度を125℃とした。重合後は実施例1と同様の製造条件で製造した。
比較例1の結果を表1に記す。比較例1ではメタクリル酸の組成分布が小さく、外観に劣る結果となった。
[Comparative Example 1]
The polymerization raw material composition solution was 0.83 parts by mass of styrene, 5.7 parts by mass of methacrylic acid, 19.0 parts by mass of ethylbenzene, and 0.028 parts by mass of 1,1-bis (t-butylperoxy) cyclohexane. Polymerization was carried out by supplying to a fully mixed reactor 1 having a capacity of 3.6 liters at a rate of liters / hour. The reactor temperature was 125 ° C. After the polymerization, it was produced under the same production conditions as in Example 1.
The results of Comparative Example 1 are shown in Table 1. In Comparative Example 1, the composition distribution of methacrylic acid was small, resulting in inferior appearance.

[比較例2]
重合原料組成液をスチレン65.5質量部、メタクリル酸6.9質量部、メタクリル酸メチル3.8質量%、エチルベンゼン23.8質量部、及び1,1−ビス(t−ブチルペルオキシ)シクロヘキサン0.026質量部とし、0.8リットル/時の速度で、容量が3.6リットルの完全混合型反応器1に供給し、重合をおこなった。反応器温度を128℃とした。重合後は実施例1と同様の製造条件で製造した。
比較例2の結果を表1に記す。比較例2ではメタクリル酸の組成分布が小さく、外観に劣る結果となった。
[Comparative Example 2]
65.5 parts by mass of styrene, 6.9 parts by mass of methacrylic acid, 3.8 parts by mass of methyl methacrylate, 23.8 parts by mass of ethylbenzene, and 1,1-bis (t-butylperoxy) cyclohexane 0 in the polymerization raw material composition solution. Polymerization was carried out by supplying .026 parts by mass to a fully mixed reactor 1 having a capacity of 3.6 liters at a rate of 0.8 liters / hour. The reactor temperature was 128 ° C. After the polymerization, it was produced under the same production conditions as in Example 1.
The results of Comparative Example 2 are shown in Table 1. In Comparative Example 2, the composition distribution of methacrylic acid was small, resulting in inferior appearance.

[比較例3]
5Lの反応容器に蒸留水2Lを仕込み、さらに懸濁剤としてカルボキシメチルセルロースを10g、ドデシルベンゼンスルホン酸ナトリウムを0.05g仕込んで溶解させ、ここにスチレン650g、メタクリル酸150g、メタクリル酸メチル200g、ミリスチルアルコールを3g、t−ブチルパーオキシベンゾエートを1g、αメチルスチレンダイマーを2g順次仕込んで、機内を窒素置換させたのち、撹拌を行いながら80℃で7時間懸濁重合し、ついで、110℃で3時間重合を行った。脱水を行った後に乾燥し、樹脂を回収した。
比較例3の結果を表1に記す。比較例3ではメタクリル酸の組成分布が大きく、曇り度が大幅に悪化した。
[Comparative Example 3]
2 L of distilled water was charged into a 5 L reaction vessel, and 10 g of carboxymethyl cellulose and 0.05 g of sodium dodecylbenzene sulfonate were charged and dissolved as suspending agents, and 650 g of styrene, 150 g of methacrylic acid, 200 g of methyl methacrylate and myristyl were dissolved therein. 3 g of alcohol, 1 g of t-butylperoxybenzoate, and 2 g of α-methylstyrene dimer were sequentially charged, the inside of the machine was replaced with nitrogen, and then suspension polymerization was carried out at 80 ° C. for 7 hours with stirring, and then at 110 ° C. Polymerization was carried out for 3 hours. After dehydration, it was dried and the resin was recovered.
The results of Comparative Example 3 are shown in Table 1. In Comparative Example 3, the composition distribution of methacrylic acid was large, and the degree of cloudiness was significantly deteriorated.

Figure 0006829103
Figure 0006829103

本発明のスチレン系樹脂組成物は、耐熱性、外観、透明性、強度、及び耐熱油性に優れたシート、更にこれらの二次加工による成形品、例えば、弁当、惣菜等の食品の容器包装材料の製造に好適に使用できる。また、耐熱油性を生かし、射出成形により成形される容器等にも幅広く使用可能である。
The styrene-based resin composition of the present invention is a sheet having excellent heat resistance, appearance, transparency, strength, and heat-resistant oil resistance, and further, a molded product by secondary processing thereof, for example, a container and packaging material for foods such as lunch boxes and prepared foods. Can be suitably used for the production of. In addition, taking advantage of its heat-resistant oil property, it can be widely used for containers and the like formed by injection molding.

Claims (7)

スチレン系単量体単位、不飽和カルボン酸系単量体単位、及び(メタ)アクリル酸エステル系単量体単位の合計含有量を100質量%としたとき、前記スチレン系単量体単位の含有量が54質量%以上96質量%以下であり、前記不飽和カルボン酸単量体単位の含有量が4質量%以上16質量%以下であり、前記(メタ)アクリル酸エステル系単量体単位の含有量が0質量%以上30質量%以下である樹脂であり、
前記スチレン系単量体単位がスチレン単量体単位であり、前記不飽和カルボン酸系単量体単位がメタクリル酸単量体単位であり、前記(メタ)アクリル酸エステル系単量体単位がメタクリル酸メチル単量体単位であり、
前記樹脂の低分子から0%〜15%の分子量分画の前記不飽和カルボン酸系単量体単位の平均濃度を(a)とし、15%〜85%の分子量分画の前記不飽和カルボン酸系単量体単位の平均濃度を(b)とし、85%〜100%の分子量分画の前記不飽和カルボン酸系単量体単位の平均濃度を(c)とした際に、0.9%≦(a)−(c)≦3%、かつ、(c)≦(b)<(a)である
ことを特徴とする、スチレン系樹脂。
When the total content of the styrene-based monomer unit, the unsaturated carboxylic acid-based monomer unit, and the (meth) acrylic acid ester-based monomer unit is 100% by mass, the content of the styrene-based monomer unit The amount is 54% by mass or more and 96% by mass or less, the content of the unsaturated carboxylic acid monomer unit is 4% by mass or more and 16% by mass or less, and the content of the (meth) acrylic acid ester-based monomer unit is A resin having a content of 0% by mass or more and 30% by mass or less.
The styrene-based monomer unit is a styrene monomer unit, the unsaturated carboxylic acid-based monomer unit is a methacrylic acid monomer unit, and the (meth) acrylic acid ester-based monomer unit is methacryl. Methyl acid monomer unit,
Let (a) be the average concentration of the unsaturated carboxylic acid-based monomer unit having a molecular weight fraction of 0% to 15% from the low molecular weight of the resin, and the unsaturated carboxylic acid having a molecular weight fraction of 15% to 85%. When the average concentration of the system monomer unit is (b) and the average concentration of the unsaturated carboxylic acid monomer unit of the molecular weight fraction of 85% to 100% is (c), it is 0.9%. A styrene-based resin, characterized in that ≦ (a) − (c) ≦ 3% and (c) ≦ (b) <(a).
請求項1に記載のスチレン系樹脂を含むことを特徴とする、非発泡シート。 A non-foamed sheet containing the styrene-based resin according to claim 1. 請求項1に記載のスチレン系樹脂を含むことを特徴とする、発泡シート。 A foamed sheet containing the styrene-based resin according to claim 1. 二軸延伸されていることを特徴とする、請求項2又は3に記載のシート。 The sheet according to claim 2 or 3, wherein the sheet is biaxially stretched. 請求項2〜4のいずれか一項に記載のシートを成形してなることを特徴とする、成形品。 A molded product, which is obtained by molding the sheet according to any one of claims 2 to 4. 請求項1に記載のスチレン系樹脂を含むことを特徴とする、射出成形品。 An injection-molded product, which comprises the styrene-based resin according to claim 1. 連続重合にて製造されることを特徴とする、請求項1に記載のスチレン系樹脂の製造方法。 The method for producing a styrene resin according to claim 1, wherein the styrene resin is produced by continuous polymerization.
JP2017030498A 2017-02-21 2017-02-21 Styrene-based resin, sheet, molded product and manufacturing method Active JP6829103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017030498A JP6829103B2 (en) 2017-02-21 2017-02-21 Styrene-based resin, sheet, molded product and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030498A JP6829103B2 (en) 2017-02-21 2017-02-21 Styrene-based resin, sheet, molded product and manufacturing method

Publications (2)

Publication Number Publication Date
JP2018135441A JP2018135441A (en) 2018-08-30
JP6829103B2 true JP6829103B2 (en) 2021-02-10

Family

ID=63366595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030498A Active JP6829103B2 (en) 2017-02-21 2017-02-21 Styrene-based resin, sheet, molded product and manufacturing method

Country Status (1)

Country Link
JP (1) JP6829103B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2934391B2 (en) * 1995-01-31 1999-08-16 株式会社日本触媒 Maleic acid / (meth) acrylic acid copolymer and use thereof
JP3657741B2 (en) * 1996-06-04 2005-06-08 三井化学株式会社 Heat fixing type electrophotographic developer and wax
CA2206973A1 (en) * 1996-06-04 1997-12-04 Hideki Sakai Thermal fixing developer material and wax for electrophotography
JP2002145943A (en) * 2000-11-08 2002-05-22 Idemitsu Petrochem Co Ltd Olefin-aromatic vinyl compound copolymer
JP4306196B2 (en) * 2002-07-16 2009-07-29 旭化成ケミカルズ株式会社 Polymer composition
JP4925593B2 (en) * 2004-03-18 2012-04-25 旭化成ケミカルズ株式会社 Polyethylene polymer composition
JP6321322B2 (en) * 2013-03-04 2018-05-09 Psジャパン株式会社 Heat-resistant styrenic resin composition, extruded sheet and molded product
KR101675509B1 (en) * 2013-11-19 2016-11-11 주식회사 엘지화학 Polyolefin having excellent properties

Also Published As

Publication number Publication date
JP2018135441A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP5897311B2 (en) Heat-resistant styrenic resin composition, extruded sheet and molded product
JP6321322B2 (en) Heat-resistant styrenic resin composition, extruded sheet and molded product
JP6188307B2 (en) Heat-resistant styrenic resin composition, extruded sheet and molded product
JP5237640B2 (en) Aromatic vinyl compound- (meth) acrylic acid copolymer resin-containing composition and method for producing the same
JP5221941B2 (en) Method for producing styrene-methacrylic acid resin composition and resin composition thereof
JP6707400B2 (en) Styrene resin, styrene resin composition, sheet and molded product thereof, and method for producing styrene resin
JP5697374B2 (en) Styrene-methacrylic acid-methyl methacrylate resin composition, extruded sheet and molded article
JP6243807B2 (en) Method for producing heat-resistant styrene resin, heat-resistant styrene resin composition, extruded sheet and molded product
JP6584312B2 (en) Styrenic resin composition and molded product thereof
JP6803211B2 (en) Heat-resistant styrene resin composition, extruded sheet, molded product
JP2006282962A (en) Aromatic vinyl compound-methacrylic acid-based copolymer and method for producing the same
JP4681103B2 (en) Styrenic resin and molded products thereof
JP2017133040A (en) Heat resistant styrene resin composition, extrusion sheet and molded article
JP2023076738A (en) Heat-resistant styrenic resin composition, extruded sheet, molded product
JP6829103B2 (en) Styrene-based resin, sheet, molded product and manufacturing method
JP2005239951A (en) Method for producing aromatic vinyl compound-based polymer
JP6859029B2 (en) Styrene-based resin composition, its sheet and molded product
JP7116660B2 (en) Styrenic resin composition, sheet and molded article
JP7274261B2 (en) Styrene-based resin composition, sheet, and molded article
JP7336840B2 (en) Styrene-based copolymer resin, resin composition, its sheet and molded article
JP7384723B2 (en) Heat-resistant styrene resin compositions, non-foamed extruded sheets, foamed extruded sheets, and molded products thereof
JP2003049033A (en) Styrene-based resin composition, foam sheet thereof and container thereof
JP7470565B2 (en) Styrene-methacrylic acid copolymer resin composition for film, film, and molded article
JP6857578B2 (en) Styrene-based copolymer and its manufacturing method, sheet and its molded product
WO2015041328A1 (en) Extruded foam and container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150