JP6826949B2 - Ultrasonography system - Google Patents

Ultrasonography system Download PDF

Info

Publication number
JP6826949B2
JP6826949B2 JP2017101022A JP2017101022A JP6826949B2 JP 6826949 B2 JP6826949 B2 JP 6826949B2 JP 2017101022 A JP2017101022 A JP 2017101022A JP 2017101022 A JP2017101022 A JP 2017101022A JP 6826949 B2 JP6826949 B2 JP 6826949B2
Authority
JP
Japan
Prior art keywords
probe
transmission
angle
oblique
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017101022A
Other languages
Japanese (ja)
Other versions
JP2018194528A5 (en
JP2018194528A (en
Inventor
佑己 大島
佑己 大島
弘文 大内
弘文 大内
江原 和也
和也 江原
雄太 渡辺
雄太 渡辺
荒井 穣
穣 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2017101022A priority Critical patent/JP6826949B2/en
Publication of JP2018194528A publication Critical patent/JP2018194528A/en
Publication of JP2018194528A5 publication Critical patent/JP2018194528A5/ja
Application granted granted Critical
Publication of JP6826949B2 publication Critical patent/JP6826949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、円錐又は円錐台の側面形状の被検体の表面に垂直な厚さ方向に対して傾斜した溶接境界面を有する円筒形状の溶接部を検査対象とし、溶接境界面に沿って生じる内部欠陥を検出する超音波検査システムに関する。 The present invention targets a cylindrical weld having a weld interface that is inclined with respect to the thickness direction perpendicular to the surface of the subject, which has a side shape of a cone or a truncated cone, and the inside formed along the weld interface. It relates to an ultrasonic inspection system for detecting defects.

発電プラントにおける構成機器の保全は正常な運転を維持するために必要であり、非破壊検査技術の果たす役割は重要性が高い。特に原子力プラントでは、原子炉圧力容器(RPV)や再循環系配管などの原子炉一次系機器の健全性確保が重要であり、欠陥が生じやすい溶接部に対し、体積検査として超音波探傷試験(UT)が実施され、欠陥の検出や大きさの評価を行っている。 Maintenance of component equipment in a power plant is necessary to maintain normal operation, and the role played by non-destructive inspection technology is very important. Especially in nuclear power plants, it is important to ensure the soundness of primary reactor equipment such as reactor pressure vessels (RPV) and recirculation piping, and ultrasonic flaw detection tests (ultrasonic flaw detection tests) are used as volume inspections for welds where defects are likely to occur. UT) is carried out to detect defects and evaluate their size.

検査対象の一例として、原子炉圧力容器の下鏡部の溶接部がある。原子炉圧力容器の下鏡部は、図1及び図2で示すように、球冠状のドーム部11と、円錐帯状(言い換えれば、円錐台の側面形状)の下鏡ペタル部12を有し、それらが円筒形状の溶接部13で接合されている。ドーム部11には、複数の制御棒駆動機構ハウジング(CRDハウジング)14が形成され、下鏡ペタル部12には、複数のインターナルポンプケーシング(RIPケーシング)15が形成されている。 One example of the inspection target is the welded part of the lower mirror part of the reactor pressure vessel. As shown in FIGS. 1 and 2, the lower mirror portion of the reactor pressure vessel has a spherical crown-shaped dome portion 11 and a conical band-shaped (in other words, the lateral shape of the truncated cone) lower mirror petal portion 12. They are joined by a cylindrical welded portion 13. A plurality of control rod drive mechanism housings (CRD housings) 14 are formed in the dome portion 11, and a plurality of internal pump casings (RIP casings) 15 are formed in the mirror petal portion 12.

一般的に、供用前検査や供用期間中検査においては、下鏡部の内面側に開口した欠陥(き裂)を検出するため、一探触子法による超音波検査を実施する(例えば特許文献1参照)。具体的には、例えば図3で示すように、RIPケーシング15及びその周辺のR部15aからなる干渉部を回避するように、下鏡ペタル部12の外面側(図3中下側)に送受信用斜角探触子20を配置し、送受信用斜角探触子20から欠陥16(き裂)の開口近傍に向けて超音波を送信する。そして、欠陥16と下鏡ペタル部12の内面からなるコーナーで反射した超音波(コーナーエコー)を送受信用斜角探触子20で受信する。これにより、下鏡部の内面側(図3中上側)に開口した欠陥16を検出する。 Generally, in pre-service inspection and in-service inspection, ultrasonic inspection by a single probe method is performed in order to detect defects (cracks) opened on the inner surface side of the speculum (for example, Patent Documents). 1). Specifically, for example, as shown in FIG. 3, transmission / reception is performed to the outer surface side (lower side in FIG. 3) of the mirror petal portion 12 so as to avoid an interference portion including the RIP casing 15 and the R portion 15a around the RIP casing 15. A casing probe 20 for transmission and reception is arranged, and ultrasonic waves are transmitted from the casing probe 20 for transmission and reception toward the vicinity of the opening of the defect 16 (crack). Then, the ultrasonic wave (corner echo) reflected at the corner formed by the defect 16 and the inner surface of the mirror petal portion 12 is received by the transmission / reception oblique angle probe 20. As a result, the defect 16 opened on the inner surface side (upper side in FIG. 3) of the lower mirror portion is detected.

特開平6−11595号公報Japanese Unexamined Patent Publication No. 6-11595

一方、製造最終段階の検査などで、溶接部13の溶接境界面に沿って生じる面状の内部欠陥(詳細には、溶接部13に内在する割れや溶け込み不良など)を検出するため、下鏡部の深さ方向全体にわたって溶接部13を検査することが必要な場合がある。 On the other hand, in order to detect planar internal defects (specifically, cracks and poor penetration inherent in the welded portion 13) that occur along the weld boundary surface of the welded portion 13 in the final stage of manufacturing inspection, the mirror mirror. It may be necessary to inspect the weld 13 over the entire depth direction of the portion.

ここで、図4で示す鉛直断面において、下鏡ペタル部12の表面に垂直な厚さ方向に対して溶接部13の外周側(図4中右側)の溶接境界面13aが傾斜していることから、溶接境界面13aに対して法線方向に(すなわち、溶接境界面13aに沿って生じた内部欠陥17に対して垂直方向に)超音波が入射するように、送受信用斜角探触子20の送受信屈折角を設定することが可能である。これにより、送受信用斜角探触子20から内部欠陥17へ超音波を送信するとともに、内部欠陥17で反射した超音波を送受信用斜角探触子20で受信することが可能である。また、内部欠陥17で反射した超音波の振幅、すなわち、送受信用斜角探触子20で受信する超音波の振幅を高め、内部欠陥17を高感度に検出することが可能である。 Here, in the vertical cross section shown in FIG. 4, the welding boundary surface 13a on the outer peripheral side (right side in FIG. 4) of the welded portion 13 is inclined with respect to the thickness direction perpendicular to the surface of the mirror petal portion 12. From the transmission / reception oblique angle probe so that ultrasonic waves are incident on the welding boundary surface 13a in the normal direction (that is, in the direction perpendicular to the internal defect 17 generated along the welding boundary surface 13a). It is possible to set 20 transmission / reception refraction angles. As a result, it is possible to transmit ultrasonic waves from the transmission / reception oblique angle probe 20 to the internal defect 17, and to receive the ultrasonic waves reflected by the internal defect 17 by the transmission / reception oblique angle probe 20. Further, it is possible to increase the amplitude of the ultrasonic wave reflected by the internal defect 17, that is, the amplitude of the ultrasonic wave received by the transmission / reception oblique angle probe 20, and detect the internal defect 17 with high sensitivity.

しかしながら、溶接境界面13aの走査点(すなわち、内部欠陥17を検出する点)が下鏡部の内面に近づくほど、溶接境界面13aから送受信用斜角探触子20を遠ざけなければならず(図4中二点鎖線で示す仮想配置を参照)、送受信用斜角探触子20とRIPケーシング15等の干渉部が干渉する。そのため、送受信用斜角探触子20を用いる一探触子法では、例えば図4で示す深さ範囲Uにおける内部欠陥17を検出することが困難となる。 However, the closer the scanning point of the welding boundary surface 13a (that is, the point at which the internal defect 17 is detected) is to the inner surface of the lower mirror portion, the farther the transmission / reception oblique angle probe 20 is from the welding boundary surface 13a (that is, the point where the internal defect 17 is detected). (See the virtual arrangement shown by the alternate long and short dash line in FIG. 4), the interference portion of the transmission / reception oblique angle probe 20 and the RIP casing 15 and the like interfere with each other. Therefore, in the one-probe method using the transmission / reception oblique angle probe 20, it is difficult to detect the internal defect 17 in the depth range U shown in FIG. 4, for example.

本発明の目的は、斜角探触子と被検体の干渉部との干渉を回避しつつ、内部欠陥を高感度に検出することができる超音波検査システムを提供することにある。 An object of the present invention is to provide an ultrasonic inspection system capable of detecting internal defects with high sensitivity while avoiding interference between an oblique angle probe and an interfering portion of a subject.

上記目的を達成するために、本発明は、円錐又は円錐台の側面形状の被検体の表面に垂直な厚さ方向に対して傾斜した溶接境界面を有する円筒形状の溶接部を検査対象とし、前記被検体の表面上に配置された送信用斜角探触子及び受信用斜角探触子を用い、前記溶接境界面に沿って生じる内部欠陥を検出する超音波検査システムであって、前記被検体の深さ方向に移動させる前記溶接境界面の走査点に対応して、前記溶接境界面の走査点及びその走査点上の前記溶接境界面の法線ベクトルを含む仮想平面と前記被検体の表面とが交差する交差線上に前記送信用斜角探触子の送信点及び前記受信用斜角探触子の受信点が位置するように、かつ、前記送信用斜角探触子及び前記受信用斜角探触子と前記被検体の干渉部との干渉を回避するように、前記送信用斜角探触子及び前記受信用斜角探触子を配置する探触子移動装置を備え、前記探触子移動装置は、前記溶接部の周方向に沿って移動可能とし、その周方向の移動位置での前記被検体の表面の一母線方向に対する、前記被検体の表面の法線軸まわりの前記送信用斜角探触子の首振り角を固定しつつ、前記一母線方向に沿って前記送信用斜角探触子を移動させる第1の駆動装置と、前記溶接部の周方向に沿って移動可能とし、その周方向の移動位置での前記被検体の表面の他の母線方向に対する、前記被検体の表面の法線軸まわりの前記受信用斜角探触子の首振り角を固定しつつ、前記他の母線方向に沿って前記受信用斜角探触子を移動させる第2の駆動装置とを有し、前記送信用斜角探触子は、前記仮想平面内の送信経路にて超音波を送信するように、かつ、前記被検体の干渉部との干渉を回避するように、送信屈折角及び前記首振り角が設定され、前記受信用斜角探触子は、前記仮想平面内の受信経路にて超音波を受信するように、かつ、前記被検体の干渉部との干渉を回避するように、受信屈折角及び前記首振り角が設定される。 In order to achieve the above object, the present invention targets a cylindrical welded portion having a weld interface inclined in a thickness direction perpendicular to the surface of a subject having a side shape of a cone or a cone base. An ultrasonic inspection system that detects internal defects that occur along the welding interface by using a transmission oblique angle probe and a receiving oblique angle probe arranged on the surface of the subject. Corresponding to the scanning point of the welding interface to be moved in the depth direction of the subject, the virtual plane including the scanning point of the welding interface and the normal vector of the welding interface on the scanning point and the subject. The transmitting point of the transmitting oblique angle probe and the receiving point of the receiving oblique angle probe are located on the intersection line intersecting with the surface of the above, and the transmitting oblique angle probe and the said. A probe moving device for arranging the transmitting oblique probe and the receiving oblique probe so as to avoid interference between the receiving oblique probe and the interfering portion of the subject is provided. The probe moving device is movable along the circumferential direction of the welded portion, and is around the normal axis of the surface of the subject with respect to the bus direction of the surface of the subject at the moving position in the circumferential direction. In the circumferential direction of the welded portion with the first drive device that moves the transmission oblique angle probe along the one bus direction while fixing the swing angle of the transmitting oblique angle probe. The swing angle of the receiving oblique angle probe around the normal axis of the surface of the subject is fixed with respect to the other bus direction of the surface of the subject at the movement position in the circumferential direction. While having a second drive device for moving the receiving oblique probe along the other bus direction, the transmitting oblique probe is in the transmission path in the virtual plane. The transmission refraction angle and the swing angle are set so as to transmit ultrasonic waves and avoid interference with the interference portion of the subject, and the receiving oblique angle probe is the virtual one. The reception refraction angle and the swing angle are set so as to receive ultrasonic waves through a reception path in a plane and to avoid interference with the interference portion of the subject.

本発明によれば、斜角探触子と被検体の干渉部との干渉を回避しつつ、内部欠陥を高感度に検出することができる。 According to the present invention, internal defects can be detected with high sensitivity while avoiding interference between the oblique angle probe and the interference portion of the subject.

被検体の一例である原子炉圧力容器の下鏡部の下面図である。It is a bottom view of the lower mirror part of the reactor pressure vessel which is an example of a subject. 図1中断面II−IIによる下鏡部の鉛直断面図である。FIG. 1 is a vertical sectional view of the lower mirror portion according to the middle sectional section II-II. 原子炉圧力容器の下鏡部の内面側に開口した欠陥を検出する一探触子法を説明するための下鏡部の鉛直断面図である。It is a vertical cross-sectional view of the lower mirror part for demonstrating one probe method which detects a defect opened on the inner surface side of the lower mirror part of a reactor pressure vessel. 原子炉圧力容器の下鏡部の溶接部に生じた内部欠陥を検出する一探触子法を説明するための下鏡部の鉛直断面図である。It is a vertical sectional view of the lower mirror part for demonstrating one probe method for detecting an internal defect generated in the welded part of the lower mirror part of a reactor pressure vessel. 本発明の一実施形態における送信用斜角探触子及び受信用斜角探触子の配置を表す下鏡部の下面図である。It is a bottom view of the lower mirror part which shows the arrangement of the oblique angle probe for transmission and the oblique angle probe for reception in one embodiment of the present invention. 図5中断面VI−VIによる下鏡部の鉛直断面に、送信用斜角探触子、受信用斜角探触子、並びに超音波の送信経路及び受信経路を投影して表す図である。FIG. 5 is a diagram showing a transmission oblique angle probe, a receiving oblique angle probe, and an ultrasonic transmission path and a reception path projected onto a vertical cross section of the lower mirror portion according to the middle cross section VI-VI. 本発明の一実施形態における超音波検査システムの構成を表すブロック図である。It is a block diagram which shows the structure of the ultrasonic inspection system in one Embodiment of this invention. 比較例における探触子移動装置の構造を表す下鏡部の下面図である。It is a bottom view of the lower mirror part which shows the structure of the probe moving device in the comparative example. 図8中断面IX−IXによる下鏡部の鉛直断面図である。FIG. 8 is a vertical sectional view of the lower mirror portion according to the middle sectional section IX-IX. 本発明の一実施形態における探触子移動装置の構造を表す下鏡部の下面図であり、溶接境界面の走査点が比較的深い場合を示す。It is a bottom view of the lower mirror part which shows the structure of the probe moving device in one Embodiment of this invention, and shows the case where the scanning point of a welding boundary surface is relatively deep. 図10中断面XI−XIによる下鏡部の鉛直断面図である。FIG. 10 is a vertical sectional view of the lower mirror portion according to the middle sectional section XI-XI. 本発明の一実施形態における探触子移動装置の構造を表す下鏡部の下面図であり、溶接境界面の走査点が比較的浅い場合を示す。It is a bottom view of the lower mirror part which shows the structure of the probe moving device in one Embodiment of this invention, and shows the case where the scanning point of a welding boundary surface is relatively shallow. 図12中断面XIII−XIIIによる下鏡部の鉛直断面図である。FIG. 12 is a vertical cross-sectional view of the lower mirror portion according to the middle cross section XIII-XIII. 送信用斜角探触子の送信点の位置に対応する下鏡ペタル部の外面の母線方向における鉛直断面図であって、送信用斜角探触子の首振り角と見かけの送信屈折角の関係を説明するための図である。It is a vertical cross-sectional view in the generatrix direction of the outer surface of the mirror petal portion corresponding to the position of the transmission point of the transmission oblique angle probe, and is the swing angle and the apparent transmission refraction angle of the transmission oblique angle probe. It is a figure for demonstrating the relationship. 送信用斜角探触子の首振り角と水平面に対する送信方向ベクトルのずれ角との関係の具体例を示す図である。It is a figure which shows the specific example of the relationship between the swing angle of a transmission oblique angle probe, and the deviation angle of a transmission direction vector with respect to a horizontal plane. 水平面における送信用斜角探触子の送信点、受信用斜角探触子の受信点、RIPケーシングの中心軸、及び下鏡部の中心軸の位置関係を表す図である。It is a figure which shows the positional relationship of the transmission point of the transmission oblique angle probe, the receiving point of the receiving oblique angle probe, the central axis of the RIP casing, and the central axis of the lower mirror portion on the horizontal plane. 溶接境界面の走査点の深さに応じて変化する、RIPケーシングの中心軸と送信用斜角探触子の送信点の間の距離の具体例を示す図である。It is a figure which shows the specific example of the distance between the central axis of a RIP casing, and the transmission point of a transmission oblique angle probe, which changes according to the depth of the scanning point of a welding boundary surface.

本発明の検査対象として、上述した原子炉圧力容器の下鏡部の溶接部13を例にとり、溶接部13の外周側の溶接境界面13aに沿って生じる面状の内部欠陥17を検出する超音波検査方法について説明する。なお、図1〜図4を用いて説明した部分と同一の部分は同一の符号を付し、適宜、説明を省略する。 As an inspection target of the present invention, taking the welded portion 13 of the lower mirror portion of the reactor pressure vessel as an example, a super-surface-like internal defect 17 generated along the weld boundary surface 13a on the outer peripheral side of the welded portion 13 is detected. The ultrasonic inspection method will be described. The same parts as those described with reference to FIGS. 1 to 4 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.

送受信用斜角探触子20を用いる一探触子法では、例えば図4で示す深さ範囲Uにおける内部欠陥17を検出することが困難である。そのため、本発明は、送信用斜角探触子と受信用斜角探触子を用いる二探触子法を実施する。 In the one-probe method using the transmission / reception oblique angle probe 20, it is difficult to detect the internal defect 17 in the depth range U shown in FIG. 4, for example. Therefore, the present invention implements a two-probe method using a transmission oblique angle probe and a receiving oblique angle probe.

図5は、本発明の一実施形態における送信用斜角探触子と受信用斜角探触子の配置を表す下鏡部の下面図であり、図6中矢印V方向から見た図に相当する。図6は、図5中断面VI−VIによる下鏡部の鉛直断面に、送信用斜角探触子、受信用斜角探触子、並びに超音波の送信経路及び受信経路を水平方向に投影して表す図である。 FIG. 5 is a bottom view of the lower mirror portion showing the arrangement of the transmission oblique angle probe and the receiving oblique angle probe according to the embodiment of the present invention, and is a view seen from the arrow V direction in FIG. Equivalent to. FIG. 6 shows the transmission oblique angle probe, the receiving oblique angle probe, and the ultrasonic transmission path and reception path projected horizontally on the vertical cross section of the lower mirror portion according to the middle cross section VI-VI of FIG. It is a figure which shows.

送信用斜角探触子21及び受信用斜角探触子22は、下鏡ペタル部12の外面(表面)12a上に、RIPケーシング15及びその周辺のR部15aからなる干渉部を回避するように、干渉部を挟んでハの字状に配置する。詳しく説明すると、溶接境界面13aの走査点Dを下鏡部の深さ方向に移動させており、この溶接境界面13aの走査点Dに対応して、溶接境界面13aの走査点D及びその走査点D上の溶接境界面13aの法線ベクトルを含む仮想平面C(本実施形態では、水平面。後述の図14参照)と下鏡ペタル部12の外面12aとが交差する交差線E(本実施形態では、円)上に送信用斜角探触子21の送信点P及び受信用斜角探触子22の受信点Pが位置するように、かつ、送信用斜角探触子21及び受信用斜角探触子22と下鏡ペタル部12の干渉部との干渉を回避するように、送信用斜角探触子21及び受信用斜角探触子22を配置する。 The transmission oblique angle probe 21 and the receiving oblique angle probe 22 avoid an interference portion composed of the RIP casing 15 and its peripheral R portion 15a on the outer surface (surface) 12a of the mirror petal portion 12. As shown above, they are arranged in a V shape with the interference part in between. To be described in detail, the scanning point D of the welding boundary surface 13a is moved in the depth direction of the lower mirror portion, and the scanning point D of the welding boundary surface 13a and the scanning point D thereof correspond to the scanning point D of the welding boundary surface 13a. An intersection line E (this) where the virtual plane C (horizontal plane in this embodiment; see FIG. 14 described later) including the normal vector of the welding boundary surface 13a on the scanning point D and the outer surface 12a of the mirror petal portion 12 intersect. in embodiments, circular) as receiving point P 2 of the transmission point P 1 and the receiving angle probe 22 for transmitting the angle probe 21 is positioned over, and transmitting the angle probe The transmission oblique angle probe 21 and the receiving oblique angle probe 22 are arranged so as to avoid interference between the 21 and the receiving oblique angle probe 22 and the interfering portion of the mirror petal portion 12.

また、仮想平面C内の送信経路Sにて超音波を送信するように、かつ、送信用斜角探触子21と下鏡ペタル部12の干渉部との干渉を回避するように、送信用斜角探触子21の送信屈折角θ等を設定している(詳細は後述)。また、仮想平面C内の受信経路Sにて超音波を受信するように、かつ、受信用斜角探触子22と下鏡ペタル部12の干渉部との干渉を回避するように、受信用斜角探触子22の受信屈折角θ等を設定している(詳細は後述)。 Also, to transmit ultrasound at the transmission path S 1 in the virtual plane C, and, to avoid interference with the interference portion of the transmission angle probe 21 and the lower mirror petal section 12, feed The transmission refraction angle θ 1 and the like of the credit oblique angle probe 21 are set (details will be described later). Further, to avoid interference at the receiving path S 2 in the virtual plane C to receive ultrasound, and an interference portion of the receiving angle probe 22 and the lower mirror petal section 12, reception The reception refraction angle θ 2 and the like of the oblique angle probe 22 are set (details will be described later).

これにより、溶接境界面13aに沿って生じた内部欠陥17に対して垂直な仮想平面C内を超音波が伝播することになり、内部欠陥17で反射した超音波の振幅、すなわち、受信用斜角探触子22で受信する超音波の振幅を高めることができる。したがって、内部欠陥17を高感度に検出することができる。また、斜角探触子21,22と下鏡ペタル部12の干渉部との干渉を回避することができる。 As a result, the ultrasonic waves propagate in the virtual plane C perpendicular to the internal defect 17 generated along the welding boundary surface 13a, and the amplitude of the ultrasonic wave reflected by the internal defect 17, that is, the reception oblique. The amplitude of the ultrasonic waves received by the angle probe 22 can be increased. Therefore, the internal defect 17 can be detected with high sensitivity. Further, it is possible to avoid the interference between the oblique angle probes 21 and 22 and the interference portion of the lower mirror petal portion 12.

ここで、仮想平面C内の送信経路Sと受信経路Sの間の角度を開き角γとする(図5参照)。また、送信用斜角探触子21の送信点Pにおける下鏡ペタル部12の外面12aの法線軸まわりで、下鏡ペタル部12の外面12aの母線方向と送信用斜角探触子21の向きの間の角度を首振り角σとする(後述の図14参照)。同様に、受信用斜角探触子22の受信点Pにおける下鏡ペタル部12の外面12aの法線軸まわりで、下鏡ペタル部12の外面12aの母線方向と受信用斜角探触子22の向きの間の角度を首振り角σとする。 Here, an angle of opening angle γ between the transmit path S 1 and the receiving path S 2 in the virtual plane C (see Fig. 5). Further, the transmission around the normal axis of the outer surface 12a of the lower mirror petals 12 in the transmission point P 1 of the angle probe 21, probe 21 probe transmission bevel and the generatrix direction of the outer surface 12a of the lower mirror petals 12 Let the angle between the directions be the swing angle σ 1 (see FIG. 14 described later). Similarly, about the normal axis of the outer surface 12a of the lower mirror petals 12 at the reception point P 2 of the reception angle probe 22, ultrasonic probe receiving oblique with generatrix direction of the outer surface 12a of the lower mirror petals 12 Let the angle between the directions of 22 be the swing angle σ 2 .

また、送信用斜角探触子21の送信点Pに対応する下鏡ペタル部12の外面12aの母線方向を仮想平面Cに投影し、この投影した母線方向と送信経路Sの間の角度を見かけの首振り角ρとする(後述の図10及び図16参照)。同様に、受信用斜角探触子22の受信点Pに対応する下鏡ペタル部12の外面12aの母線方向を仮想平面Cに投影し、この投影した母線方向と受信経路Sの間の角度を見かけの首振り角ρとする(後述の図10参照)。下鏡ペタル部12の外面12aの傾斜角β等の条件が同じであれば、送信用斜角探触子21の首振り角σと見かけの首振り角ρは一対一の関係にあり、受信用斜角探触子22の首振り角σと見かけの首振り角ρは一対一の関係にある。 Further, by projecting the generatrix direction of the outer surface 12a of the lower mirror petal portion 12 corresponding to the transmission point P 1 of the transmission angle probe 21 to the virtual plane C, between the transmit path S 1 and the projected generatrix direction The apparent swing angle is ρ 1 (see FIGS. 10 and 16 described later). Similarly, by projecting the generatrix direction of the outer surface 12a of the lower mirror petal portion 12 corresponding to the received point P 2 of the reception angle probe 22 to the virtual plane C, between this projected generatrix direction of the receive path S 2 Let the apparent swing angle ρ 2 be (see FIG. 10 described later). If the conditions such as the tilt angle β of the outer surface 12a of the lower mirror petal portion 12 are the same, the swing angle σ 1 of the transmission tilt angle probe 21 and the apparent swing angle ρ 1 have a one-to-one relationship. , The swing angle σ 2 of the receiving oblique probe 22 and the apparent swing angle ρ 2 have a one-to-one relationship.

上述した超音波検査方法を実施するための超音波検査システムについて説明する。図7は、本発明の一実施形態における超音波検査システムの構成を表すブロック図である。 An ultrasonic inspection system for carrying out the above-mentioned ultrasonic inspection method will be described. FIG. 7 is a block diagram showing a configuration of an ultrasonic inspection system according to an embodiment of the present invention.

本実施形態の超音波検査システムは、上述した送信用斜角探触子21及び受信用斜角探触子22と、下鏡ペタル部12の外面12aに沿って送信用斜角探触子21及び受信用斜角探触子22を移動させる探触子移動装置23と、送信用斜角探触子21及び受信用斜角探触子22による超音波の送受信を制御する送受信装置24と、探触子移動装置23及び送受信装置24を制御する制御装置25と、各種の演算処理を実行する計算装置26と、各種のデータを記録する記憶装置27と、各種の情報を画面表示する表示装置28と、各種の条件を入力するとともに、各種の操作を実行するための入力装置29とを備えている。なお、計算装置26はコンピュータや電子部品を搭載した基板等で構成され、記憶装置27はハードディスクやランダムアクセスメモリ(RAM)等で構成されている。また、表示装置28はディスプレイ等で構成され、入力装置29はマウスやキーボード、タッチパネルやボタン等で構成されている。 The ultrasonic inspection system of the present embodiment includes the transmission oblique angle probe 21 and the receiving oblique angle probe 22 described above, and the transmitting oblique angle probe 21 along the outer surface 12a of the mirror petal portion 12. A probe moving device 23 for moving the receiving oblique probe 22 and a transmitting / receiving device 24 for controlling the transmission / reception of ultrasonic waves by the transmitting oblique probe 21 and the receiving oblique probe 22. A control device 25 that controls a probe moving device 23 and a transmitting / receiving device 24, a computing device 26 that executes various arithmetic processes, a storage device 27 that records various data, and a display device that displays various information on a screen. The 28 and an input device 29 for inputting various conditions and executing various operations are provided. The calculation device 26 is composed of a board or the like on which a computer or an electronic component is mounted, and the storage device 27 is composed of a hard disk, a random access memory (RAM), or the like. The display device 28 is composed of a display or the like, and the input device 29 is composed of a mouse, a keyboard, a touch panel, buttons, or the like.

制御装置25は、走査点Dの周方向位置及び深さに係わる指令を、探触子移動装置23に出力する。探触子移動装置23は、制御装置25からの指令に応じて、溶接境界面13aの走査点D及びその走査点D上の溶接境界面13aの法線ベクトルを含む仮想平面Cと下鏡ペタル部12の外面12aとが交差する交差線E上に送信用斜角探触子21の送信点P及び受信用斜角探触子22の受信点Pが位置するように、かつ、送信用斜角探触子21及び受信用斜角探触子22と下鏡ペタル部12の干渉部との干渉を回避するように、送信用斜角探触子21及び受信用斜角探触子22を配置するようになっている。 The control device 25 outputs a command related to the circumferential position and depth of the scanning point D to the probe moving device 23. In response to a command from the control device 25, the probe moving device 23 includes a virtual plane C including a scanning point D of the welding boundary surface 13a and a normal vector of the welding boundary surface 13a on the scanning point D, and a mirror petal. parts as 12 and the outer surface 12a of the position is received point P 2 of the transmission point P 1 and the receiving angle probe 22 for transmitting the angle probe 21 on the line of intersection E intersecting and feeding The transmission oblique probe 21 and the receiving oblique probe 21 and the receiving oblique probe 21 so as to avoid interference between the credit oblique probe 21 and the receiving oblique probe 22 and the interfering portion of the mirror petal portion 12. 22 is arranged.

送受信装置24は、送信用斜角探触子21で受信した超音波の波形データ等からなる探傷結果を取得する。記憶装置27は、送受信装置24で取得した探傷結果を、溶接境界面13aの走査点Dの周方向位置及び深さと関連付けて記憶する。表示装置28は、送受信装置24で取得した探傷結果又は記憶装置27で記憶した探傷結果を、溶接境界面13aの走査点Dの周方向位置及び深さと関連付けて表示するようになっている。 The transmission / reception device 24 acquires a flaw detection result including waveform data of ultrasonic waves received by the transmission oblique angle probe 21. The storage device 27 stores the flaw detection result acquired by the transmission / reception device 24 in association with the circumferential position and depth of the scanning point D of the welding boundary surface 13a. The display device 28 displays the flaw detection result acquired by the transmission / reception device 24 or the flaw detection result stored by the storage device 27 in association with the circumferential position and depth of the scanning point D of the welding boundary surface 13a.

本実施形態の探触子移動装置23の構造及び作用効果を、比較例と比較しながら説明する。 The structure and action / effect of the probe moving device 23 of the present embodiment will be described in comparison with a comparative example.

図8は、比較例における探触子移動装置の構造を表す下鏡部の下面図である。図9は、図8中断面IX−IXによる下鏡部の鉛直断面図である。 FIG. 8 is a bottom view of the lower mirror portion showing the structure of the probe moving device in the comparative example. FIG. 9 is a vertical cross-sectional view of the lower mirror portion according to the cross section IX-IX in FIG.

比較例の探触子移動装置50は、溶接境界面13aの走査点Dを下鏡部の深さ方向に移動させる場合に、上述した開き角γ(図5参照)を一定に保つという観点から、送信経路S1に沿って送信用斜角探触子21を移動させ、受信経路Sに沿って受信用斜角探触子22を移動させるように構成されている。 The probe moving device 50 of the comparative example is from the viewpoint of keeping the above-mentioned opening angle γ (see FIG. 5) constant when the scanning point D of the welding boundary surface 13a is moved in the depth direction of the lower mirror portion. moves the transmission angle probe 21 along the transmit path S 1, and is configured to move the receiving angle probe 22 along a receive path S 2.

具体的に説明すると、探触子移動装置50は、溶接部13の周方向に沿って延在する円環状の軌道レール51と、軌道レール51上を走行可能な移動体52と、移動体52から送信経路S1に沿って延在する固定アーム53Aと、固定アーム53Aに沿って移動可能とし、送信用斜角探触子21を支持する探触子支持装置54Aと、移動体52から受信経路Sに沿って延在する固定アーム53Bと、固定アーム53Bに沿って移動可能とし、受信用斜角探触子22を支持する探触子支持装置54Bとを有している。そして、走査点Dの周方向位置に係わる指令に応じて、軌道レール51の延在方向における移動体52の位置を制御する。また、走査点Dの深さに係わる指令に応じて、固定アーム53Aの延在方向における探触子支持装置54Aの位置(ひいては、送信用斜角探触子21の位置)を制御するとともに、固定アーム53Bの延在方向における探触子支持装置54Bの位置(ひいては、受信用斜角探触子22の位置)を制御するようになっている。 Specifically, the probe moving device 50 includes an annular track rail 51 extending along the circumferential direction of the welded portion 13, a moving body 52 capable of traveling on the track rail 51, and a moving body 52. a fixed arm 53A extending along the transmission path S 1 from and movable along the fixed arm 53A, a probe support device 54A for supporting the transmission angle probe 21, received from the mobile 52 a fixed arm 53B extending along the path S 2, and movable along the fixed arm 53B, and a probe support device 54B for supporting a receiving angle probe 22. Then, the position of the moving body 52 in the extending direction of the track rail 51 is controlled in response to a command relating to the circumferential position of the scanning point D. Further, in response to a command relating to the depth of the scanning point D, the position of the probe support device 54A (and thus the position of the transmission oblique angle probe 21) in the extending direction of the fixed arm 53A is controlled, and the position is controlled. The position of the probe support device 54B (and thus the position of the receiving oblique angle probe 22) in the extending direction of the fixed arm 53B is controlled.

図9で示すように、走査点Dを鉛直方向に投影した下鏡ペタル部12の外面12a上の起点をFとすれば、固定アーム53Aは、下鏡ペタル部12の外面12aの起点Fにおける接平面Gに対して平行となるように延在する。そして、固定アーム53Aの延在方向における下鏡ペタル部12の外面12aの輪郭が曲線となるから、固定アーム53Aの延在方向における送信用斜角探触子21の位置に応じて、固定アーム53Aと下鏡ペタル部12の外面12aの間隔が変化する。そのため、探触子支持装置54Aは、送信用斜角探触子21を下鏡ペタル部12の外面12aに押付ける押付け機構55が必要となる。また、固定アーム53Aの延在方向における送信用斜角探触子21の位置に応じて、下鏡ペタル部12の外面12aの法線方向が変化する(例えば図9中の法線方向H,H参照)。すなわち、固定アーム53Aの延在方向に垂直な方向Iと下鏡ペタル部12の外面12aの法線方向との間の角度が変化する(例えば図9中の角度J,J参照)。そのため、送信用斜角探触子21と下鏡ペタル部12の外面12aとの接触性の観点から、送信用斜角探触子21の姿勢を下鏡ペタル部12の外面12aに追従させるジンバル機構56が必要となる。 As shown in FIG. 9, if the starting point on the outer surface 12a of the mirror petal portion 12 that projects the scanning point D in the vertical direction is F, the fixed arm 53A is at the starting point F of the outer surface 12a of the mirror petal portion 12. It extends so as to be parallel to the tangent plane G. Then, since the contour of the outer surface 12a of the mirror petal portion 12 in the extending direction of the fixed arm 53A is curved, the fixed arm is adjusted according to the position of the transmission oblique angle probe 21 in the extending direction of the fixed arm 53A. The distance between the 53A and the outer surface 12a of the mirror petal portion 12 changes. Therefore, the probe support device 54A requires a pressing mechanism 55 that presses the transmission oblique angle probe 21 against the outer surface 12a of the mirror petal portion 12. Further, according to the position of the transmitting angle probe 21 in the extending direction of the fixed arm 53A, the normal direction H a of the normal direction is changed (for example, in FIG. 9 of the outer surface 12a of the lower mirror petals 12 , Hb ). That is, (see angle J a, J b of example in FIG. 9) which angle is changed between the normal direction of the outer surface 12a of the direction I perpendicular to the extending direction of the fixed arm 53A lower mirror petal section 12. Therefore, from the viewpoint of the contact between the transmission oblique angle probe 21 and the outer surface 12a of the lower mirror petal portion 12, the gimbal that causes the posture of the transmission oblique angle probe 21 to follow the outer surface 12a of the lower mirror petal portion 12. A mechanism 56 is required.

同様の理由から、探触子支持装置54Bは、受信用斜角探触子22を下鏡ペタル部12の外面12aに押付ける押付け機構55や、受信用斜角探触子22の姿勢を下鏡ペタル部12の外面12aに追従させるジンバル機構56が必要となる。したがって、比較例の探触子移動装置50は、複雑化及び大型化する。 For the same reason, the probe support device 54B lowers the posture of the pressing mechanism 55 that presses the receiving oblique probe 22 against the outer surface 12a of the mirror petal portion 12 and the receiving oblique probe 22. A gimbal mechanism 56 that follows the outer surface 12a of the mirror petal portion 12 is required. Therefore, the probe moving device 50 of the comparative example becomes complicated and large.

さらに、ジンバル機構56の存在により、送信用斜角探触子21の姿勢及び受信用斜角探触子22の姿勢が変化するため、送信用斜角探触子21の送信方向及び受信用斜角探触子22の受信方向が変化して、検出感度が低下する可能性がある。そこで、送信用斜角探触子21及び受信用斜角探触子22として、複数の超音波振動子を有するアレイ探触子を採用し、固定アーム53Aの延在方向における送信用斜角探触子21の位置に応じて送信用斜角探触子21の送信屈折角(図9中θ1a,θ1bで示す。但し、θ1a≠θ1b)を可変制御するとともに、固定アーム53Bの延在方向における受信用斜角探触子22の位置に応じて受信用斜角探触子22の受信屈折角を可変制御することが考えられる(公知のフェーズドアレイ法)。しかし、この場合、システム全体(特に、探触子及び送受信装置)が高コスト化及び大型化する。また、アレイ探触子を採用しても、押付け機構55やジンバル機構56の存在により、探触子の位置や姿勢に複雑な影響を与えるため、設計上の留意事項が多い。 Further, due to the presence of the gimbal mechanism 56, the posture of the transmitting oblique angle probe 21 and the attitude of the receiving oblique angle probe 22 change, so that the transmitting direction and the receiving oblique angle probe 21 of the transmitting oblique angle probe 21 change. The receiving direction of the angle probe 22 may change, and the detection sensitivity may decrease. Therefore, as the transmission oblique angle probe 21 and the receiving oblique angle probe 22, an array probe having a plurality of ultrasonic transducers is adopted, and the transmission oblique angle probe in the extending direction of the fixed arm 53A is adopted. The transmission refraction angle of the transmission oblique angle probe 21 (indicated by θ 1a and θ 1b in FIG. 9, where θ 1a ≠ θ 1b ) is variably controlled according to the position of the tentacle 21, and the fixed arm 53B It is conceivable to variably control the receiving refraction angle of the receiving oblique angle probe 22 according to the position of the receiving oblique angle probe 22 in the extending direction (known phased array method). However, in this case, the entire system (particularly, the probe and the transmitter / receiver) becomes expensive and large. Further, even if the array probe is adopted, the presence of the pressing mechanism 55 and the gimbal mechanism 56 has a complicated influence on the position and orientation of the probe, so there are many design considerations.

図10は、本実施形態における探触子移動装置23の構造を表す下鏡部の下面図であり、図11は、図10中断面XI−XIによる下鏡部の鉛直断面図である。これら図10及び図11は、溶接境界面13aの走査点Dが比較的深い場合を示す。図12は、本実施形態における探触子移動装置23の構造を表す下鏡部の下面図であり、図13は、図12中断面XIII−XIIIによる下鏡部の鉛直断面図である。これら図12及び図13は、溶接境界面13aの走査点Dが比較的浅い場合を示す。なお、図11及び図13においては、断面XI−XI又は断面XIII−XIIIに送信経路Sを投影した場合の見かけの送信屈折角θ’を示す。 FIG. 10 is a bottom view of the lower mirror portion showing the structure of the probe moving device 23 in the present embodiment, and FIG. 11 is a vertical sectional view of the lower mirror portion according to the middle cross section XI-XI of FIG. 10 and 11 show a case where the scanning point D of the welding boundary surface 13a is relatively deep. FIG. 12 is a bottom view of the lower mirror portion showing the structure of the probe moving device 23 in the present embodiment, and FIG. 13 is a vertical sectional view of the lower mirror portion according to the middle cross section XIII-XIII of FIG. 12 and 13 show a case where the scanning point D of the welding boundary surface 13a is relatively shallow. Note that in FIG. 11 and FIG. 13 shows transmission refraction angle theta 1 'of the apparent when projected transmission path S 1 in cross-section XI-XI or cross-section XIII-XIII.

本実施形態の探触子移動装置23は、溶接境界面13aの走査点Dを下鏡部の深さ方向に移動させる場合に、送信用斜角探触子21の首振り角σ及び受信用斜角探触子22の首振り角σを一定に保つという観点から、溶接部13の周方向に沿って延在する円環状の軌道レール30と、この軌道レール30に沿って移動する駆動装置31A,31Bを有している。駆動装置31Aは、その周方向の移動位置での下鏡ペタル部12の外面12aの母線方向Kに対する送信用斜角探触子21の首振り角σ(ひいては、見かけの首振り角ρ)を固定しつつ、母線方向Kに沿って送信用斜角探触子21を移動させるように構成されている。駆動装置31Bは、その周方向の移動位置での下鏡ペタル部12の外面12aの母線方向Kに対する受信用斜角探触子22の首振り角σ(ひいては、見かけの首振り角ρ)を固定しつつ、母線方向Kに沿って受信用斜角探触子22を移動させるように構成されている。 The probe moving device 23 of the present embodiment has a swing angle σ 1 of the oblique angle probe 21 for transmission and reception when the scanning point D of the welding boundary surface 13a is moved in the depth direction of the lower mirror portion. From the viewpoint of keeping the swing angle σ 2 of the oblique angle probe 22 constant, the annular track rail 30 extending along the circumferential direction of the welded portion 13 and the track rail 30 move along the track rail 30. It has drive devices 31A and 31B. Drive 31A, the circumferential direction swing angle sigma 1 of transmitting the angle probe 21 for generating line direction K 1 of the outer surface 12a of the lower mirror petal portions 12 at the moving position of (and thus, the swing angle of the apparent ρ while fixing the 1), and is configured to move the transmission angle probe 21 along a generatrix direction K 1. Drive 31B, the circumferential direction swing angle sigma 2 of receiving the angle probe 22 for generating line direction K 2 of the outer surface 12a of the lower mirror petal portions 12 at the moving position of (and thus, the swing angle of the apparent ρ while fixing the 2), and is configured to move the receiving angle probe 22 along a generatrix direction K 2.

具体的に説明すると、駆動装置31Aは、軌道レール30上を走行可能な移動体32Aと、移動体32Aの周方向位置での下鏡ペタル部12の外面12aの母線方向Kにスライド可能なように移動体32Aに設けられたアーム33Aとを有している。アーム33Aは、軌道レール30とは反対側の端部に設けられた首振り角調整機構34Aを有し、この首振り角調整機構34Aを介し送信用斜角探触子21を支持している。駆動装置31Bは、軌道レール30上を走行可能な移動体32Bと、移動体32Bの周方向位置での下鏡ペタル部12の外面12aの母線方向Kにスライド可能なように移動体32Bに設けられたアーム33Bとを有している。アーム33Bは、軌道レール30とは反対側の端部に設けられた首振り角調整機構34Bを有し、この首振り角調整機構34Bを介し受信用斜角探触子22を支持している。首振り角調整機構34A,34Bは、例えば被検体の構造寸法に応じて送信用斜角探触子21の首振り角σ及び受信用斜角探触子22の首振り角σをそれぞれ設定変更するためのものであり、手動調整の回転ステージ等で構成されている。 Specifically, the driving device 31A includes a drivable mobile 32A the track rail 30 above, slidable in the generatrix direction K 1 of the outer surface 12a of the lower mirror petal portions 12 in the circumferential direction position of the moving body 32A As described above, it has an arm 33A provided on the moving body 32A. The arm 33A has a swing angle adjusting mechanism 34A provided at an end opposite to the track rail 30, and supports a transmission oblique angle probe 21 via the swing angle adjusting mechanism 34A. .. Drive 31B includes a moving body 32B which can travel track rail 30 above, the mobile 32B in the generatrix direction K 2 of the outer surface 12a of the lower mirror petals 12 so as to slidably in the circumferential direction position of the moving body 32B It has an arm 33B provided. The arm 33B has a swing angle adjusting mechanism 34B provided at an end opposite to the track rail 30, and supports a receiving oblique angle probe 22 via the swing angle adjusting mechanism 34B. .. Swing angle adjusting mechanism 34A, 34B is, for example, the transmitting angle probe 21 in accordance with the structural dimensions of the subject swing angle sigma 1 and swing angle sigma 2 of receiving the angle probe 22, respectively It is for changing the settings, and consists of a manually adjusted rotating stage and the like.

そして、制御装置25からの走査点Dの周方向位置に係わる指令に応じて、軌道レール30の延在方向における移動体32Aの位置及び移動体32Bの位置を制御する。また、制御装置25からの走査点Dの深さに係わる指令に応じて、移動体32Aの位置と、移動体32Aに対するアーム33Aのスライド位置(ひいては、アーム33Aの延在方向における送信用斜角探触子21の位置)を制御するとともに、移動体32Bの位置と、移動体32Bに対するアーム33Bのスライド位置(ひいては、アーム33Bの延在方向における受信用斜角探触子22の位置)を制御するようになっている。 Then, in response to a command from the control device 25 regarding the circumferential position of the scanning point D, the position of the moving body 32A and the position of the moving body 32B in the extending direction of the track rail 30 are controlled. Further, in response to a command from the control device 25 regarding the depth of the scanning point D, the position of the moving body 32A and the sliding position of the arm 33A with respect to the moving body 32A (and by extension, the transmission oblique angle in the extending direction of the arm 33A). The position of the probe 21) is controlled, and the position of the moving body 32B and the sliding position of the arm 33B with respect to the moving body 32B (by extension, the position of the receiving oblique probe 22 in the extending direction of the arm 33B). It is designed to be controlled.

このように構成された本実施形態の探触子移動装置23では、アーム33Aの延在方向における下鏡ペタル部12の外面12aの輪郭が直線となるから、アーム33Aの延在方向における送信用斜角探触子21の位置にかかわらず、アーム33Aと下鏡ペタル部12の外面12aの間隔が同じである。そのため、比較例とは異なり、送信用斜角探触子21を下鏡ペタル部12の外面12aに押付ける押付け機構55が不要である。また、アーム33Aの延在方向における送信用斜角探触子21の位置にかかわらず、下鏡ペタル部12の外面12aの法線方向Hとアーム33Aの延在方向に垂直な方向Iが同じである。そのため、比較例とは異なり、ジンバル機構56を設けなくとも、送信用斜角探触子21と下鏡ペタル部12の外面12aとの接触性を確保することができる。 In the probe moving device 23 of the present embodiment configured as described above, since the contour of the outer surface 12a of the mirror petal portion 12 in the extending direction of the arm 33A is straight, it is used for transmission in the extending direction of the arm 33A. Regardless of the position of the oblique probe 21, the distance between the arm 33A and the outer surface 12a of the mirror petal portion 12 is the same. Therefore, unlike the comparative example, the pressing mechanism 55 that presses the transmission oblique angle probe 21 against the outer surface 12a of the mirror petal portion 12 is unnecessary. Further, regardless of the position of the transmission oblique angle probe 21 in the extending direction of the arm 33A, the normal direction H of the outer surface 12a of the mirror petal portion 12 and the direction I perpendicular to the extending direction of the arm 33A are the same. Is. Therefore, unlike the comparative example, the contact between the transmission oblique angle probe 21 and the outer surface 12a of the mirror petal portion 12 can be ensured without providing the gimbal mechanism 56.

同様の理由から、受信用斜角探触子22を下鏡ペタル部12の外面12aに押付ける押付け機構55や、受信用斜角探触子22の姿勢を下鏡ペタル部12の外面12aに追従させるジンバル機構56が不要である。したがって、探触子移動装置23の簡素化及び小型化を図ることができる。また、ジンバル機構56が存在しないので、アレイ探触子を採用しなくとも、検出感度を高めることができる。 For the same reason, the pressing mechanism 55 that presses the receiving oblique angle probe 22 against the outer surface 12a of the lower mirror petal portion 12 and the posture of the receiving oblique angle probe 22 are moved to the outer surface 12a of the lower mirror petal portion 12. The gimbal mechanism 56 to follow is unnecessary. Therefore, the probe moving device 23 can be simplified and downsized. Further, since the gimbal mechanism 56 does not exist, the detection sensitivity can be increased without adopting the array probe.

また、本実施形態の探触子移動装置23では、アーム33A,33Bが下鏡ペタル部12の外面12aの母線方向K,Kにスライド可能な構造であるから、アーム33A,33BとRIPケーシング15等の干渉部との干渉を回避しつつ、干渉部より溶接部13側に斜角探触子21,22を配置することができる。これにより、検査可能範囲を広げることができる。さらに、本実施形態の探触子移動装置23では、首振り角調整機構34A,34Bを有していることから、例えば図4で示す範囲U以外の浅い範囲に対して、一探触子法を実施することも可能である。そのため、装置を交換することなく、一探触子法を実施することができ、検査時間の短縮を図ることができる。 Further, the probe movement device 23 of the present embodiment, the arms 33A, since 33B are slidable structure generatrix direction K 1, K 2 of the outer surface 12a of the lower mirror petal section 12, the arms 33A, 33B and RIP The oblique angle probes 21 and 22 can be arranged on the welded portion 13 side of the interfering portion while avoiding interference with the interfering portion such as the casing 15. As a result, the inspectable range can be expanded. Further, since the probe moving device 23 of the present embodiment has the swing angle adjusting mechanisms 34A and 34B, for example, the one probe method is applied to a shallow range other than the range U shown in FIG. It is also possible to carry out. Therefore, the one-probe method can be carried out without exchanging the device, and the inspection time can be shortened.

次に、本実施形態の探傷条件について説明する。本実施形態では、上述した仮想平面C(水平面)内の送信経路Sにて超音波を送信するように、かつ、送信用斜角探触子21と下鏡ペタル部12の干渉部との干渉を回避するように、送信用斜角探触子21の送信屈折角θ及び首振り角σが設定(固定)されている。また、仮想平面C内の受信経路Sにて超音波を受信するように、かつ、受信用斜角探触子22と下鏡ペタル部12の干渉部との干渉を回避するように、受信用斜角探触子22の受信屈折角θ及び首振り角σが設定(固定)されている。 Next, the flaw detection conditions of the present embodiment will be described. In the present embodiment, in the transmission path S 1 in the virtual plane C (horizontal plane) as described above so as to transmit ultrasonic waves, and the interference of the transmission angle probe 21 and the lower mirror petal section 12 The transmission refraction angle θ 1 and the swing angle σ 1 of the transmission oblique angle probe 21 are set (fixed) so as to avoid interference. Further, to avoid interference at the receiving path S 2 in the virtual plane C to receive ultrasound, and an interference portion of the receiving angle probe 22 and the lower mirror petal section 12, reception The reception refraction angle θ 2 and the swing angle σ 2 of the oblique angle probe 22 are set (fixed).

まず、仮想平面C内の送信経路Sにて超音波を送信するように、送信用斜角探触子21の送信屈折角θ及び首振り角σを設定している点を説明する。図14は、送信用斜角探触子21の送信点Pの位置に対応する下鏡ペタル部12の外面12aの母線方向Kにおける鉛直断面図であって、送信用斜角探触子21の首振り角σと見かけの送信屈折角θ’の関係を説明するための図である。 First, the point that sets the transmission at paths S 1 to transmit ultrasound transmission refraction angle theta 1 and swing angle sigma 1 of transmitting the angle probe 21 in the virtual plane C .. Figure 14 is a vertical sectional view in the generatrix direction K 1 of the outer surface 12a of the lower mirror petal portion 12 corresponding to the position of the transmission point P 1 of the transmission angle probe 21, a transmission angle probe It is a figure for demonstrating the relationship between the swing angle σ 1 of 21 and the apparent transmission refraction angle θ 1 '.

図14で示すように、仮に、送信用斜角探触子21の首振り角σを0度に設定した場合、見かけの送信屈折角θ’と実際の送信屈折角θは同じになる。このとき、送信用斜角探触子21の送信屈折角θ(本実施形態では、60度〜80度の範囲内で、例えば70度)が下鏡ペタル部12の外面12aの傾斜角β(例えば57度)より大きければ、仮想平面Cに対して送信方向ベクトルuが図14中下側に逸れてしまう。そして、送信用斜角探触子21の首振り角σを0度より大きくしていけば、見かけの送信屈折角θ’が小さくなり、仮想平面Cに対する送信方向ベクトルuのずれ角εを0度とすることができる。 As shown in Figure 14, Assuming that the swing angle sigma 1 of transmitting the angle probe 21 is set to 0 degrees, the actual transmission refraction angle theta 1 and the transmission angle of refraction apparent theta 1 'is the same Become. At this time, the transmission refraction angle θ 1 of the transmission oblique angle probe 21 (in the present embodiment, within the range of 60 to 80 degrees, for example, 70 degrees) is the inclination angle β of the outer surface 12a of the mirror petal portion 12. If it is larger than (for example, 57 degrees), the transmission direction vector u 0 deviates to the lower side in FIG. 14 with respect to the virtual plane C. Then, if the swing angle σ 1 of the transmission oblique angle probe 21 is made larger than 0 degrees, the apparent transmission refraction angle θ 1 ′ becomes smaller, and the deviation angle ε of the transmission direction vector u with respect to the virtual plane C becomes smaller. 1 can be 0 degrees.

送信用斜角探触子21の向きを表すベクトルaは、送信用斜角探触子21の首振り角σ及び下鏡ペタル部12の外面12aの傾斜角βを変数として、下記の式(1)で表される。式(1)中のTはベクトルの転置記号である。 The vector a representing the direction of the transmission oblique angle probe 21 is expressed by the following equation with the swing angle σ 1 of the transmitting oblique angle probe 21 and the inclination angle β of the outer surface 12a of the mirror petal portion 12 as variables. It is represented by (1). T in equation (1) is the transpose symbol of the vector.

Figure 0006826949
Figure 0006826949

送信方向ベクトルuは、送信用斜角探触子21の送信屈折角θを変数として、下鏡ペタル部12の外面12aの法線ベクトルnとベクトルaから、下記の式(2)で表される。 The transmission direction vector u is represented by the following equation (2) from the normal vector n and the vector a of the outer surface 12a of the mirror petal portion 12 with the transmission refraction angle θ 1 of the transmission oblique angle probe 21 as a variable. Will be done.

Figure 0006826949
Figure 0006826949

送信方向ベクトルuの鉛直成分uがゼロとなれば、仮想平面Cに対する送信方向ベクトルuのずれ角εが0度となるから、下記の式(3)で示す理想的な首振り角σの演算式を導き出すことができる。すなわち、ずれ角ε=0度としたときの理想的な首振り角σは、下鏡ペタル部12の外面12aの傾斜角βと送信用斜角探触子21の送信屈折角θから算出して設定することができる。 If vertical component u z direction of transmission vector u is zero, since the transmission direction vector deviation angle epsilon 1 of u with respect to the virtual plane C becomes 0 degrees, the ideal swing angle indicated by the following formula (3) sigma The arithmetic expression of 1 can be derived. That is, the ideal swing angle σ 1 when the deviation angle ε 1 = 0 degree is the inclination angle β of the outer surface 12a of the mirror petal portion 12 and the transmission refraction angle θ 1 of the transmission oblique angle probe 21. It can be calculated and set from.

Figure 0006826949
Figure 0006826949

図15は、送信用斜角探触子21の首振り角σと仮想平面C(水平面)に対する送信方向ベクトルuのずれ角εとの関係の具体例を示す図である。この具体例は、傾斜角β=57度、送信屈折角θ=70度の場合であり、ずれ角ε=0度としたときの理想的な首振り角σ=55.9度となる。この首振り角σは、溶接境界面13の走査点Dの深さに依存せず、固定することができる。 FIG. 15 is a diagram showing a specific example of the relationship between the swing angle σ 1 of the transmission oblique angle probe 21 and the deviation angle ε 1 of the transmission direction vector u with respect to the virtual plane C (horizontal plane). A specific example of this is the case where the inclination angle β = 57 degrees and the transmission refraction angle θ 1 = 70 degrees, and the ideal swing angle σ 1 = 55.9 degrees when the deviation angle ε 1 = 0 degrees. Become. The swing angle σ 1 can be fixed without depending on the depth of the scanning point D of the welding boundary surface 13 a .

上記と同様の方法により、仮想平面C内の受信経路Sにて超音波を受信するように、受信用斜角探触子22の送信屈折角θ及び首振り角σを設定することができる。なお、本実施形態では、受信用斜角探触子22の受信屈折角θは、60度〜80度の範囲内であって、送信用斜角探触子21の送信屈折角θと同じ値に設定されている。また、受信用斜角探触子22の首振り角σは、仮想平面Cに対する受信方向ベクトルのずれ角ε=0度としたときの理想的な首振り角であって、送信用斜角探触子21の首振り角σと同じ値に設定されている。 By the same method as above, the transmission refraction angle θ 2 and the swing angle σ 2 of the receiving oblique angle probe 22 are set so that the ultrasonic waves are received in the reception path S 2 in the virtual plane C. Can be done. In the present embodiment, the receiving refraction angle θ 2 of the receiving oblique angle probe 22 is within the range of 60 degrees to 80 degrees, and is the same as the transmitting refraction angle θ 1 of the transmitting oblique angle probe 21. It is set to the same value. Further, the swing angle σ 2 of the reception tilt angle probe 22 is an ideal swing angle when the deviation angle ε 2 = 0 degree of the reception direction vector with respect to the virtual plane C, and is a transmission tilt angle. It is set to the same value as the swing angle σ 1 of the angle probe 21.

次に、送信用斜角探触子21と下鏡ペタル部12の干渉部との干渉を回避するように、送信用斜角探触子21の送信屈折角θ及び首振り角σを設定している点を捕捉説明する。図16は、仮想平面C(水平面)における送信用斜角探触子21の送信点P、受信用斜角探触子22の受信点P、RIPケーシング15の中心軸O、及び下鏡部の中心軸Oの位置関係を表す図である。 Next, the transmission refraction angle θ 1 and the swing angle σ 1 of the transmission oblique angle probe 21 are set so as to avoid interference between the transmission oblique angle probe 21 and the interference portion of the mirror petal portion 12. The set points will be captured and explained. 16, the center axis O r of the received point P 2, RIP casing 15 of the transmission point P 1, the receiving angle probe 22 for transmitting the angle probe 21 in the virtual plane C (horizontal plane), and the lower It is a figure which shows the positional relationship of the central axis O of a mirror part.

RIPケーシング15及びその周辺のR部15aからなる干渉部に対する送信用斜角探触子21の干渉の有無を判定するため、図16で示すように、RIPケーシング15の中心軸Oを中心として干渉半径Rを有する円形状の干渉領域40を想定する。干渉半径Rは、RIPケーシング15の半径と、R部15aの最大幅と、送信点P1を中心として送信用斜角探触子21に外接する仮想円の半径との総和である。 For determining the presence or absence of interference of the transmission angle probe 21 for RIP casing 15 and interfering portion consisting of R portions 15a of the periphery thereof as shown in Figure 16, about the central axis O r the RIP casing 15 assume a circular interference region 40 having an interference radius R I. The interference radius R is the sum of the radius of the RIP casing 15, the maximum width of the R portion 15a, and the radius of the virtual circle circumscribing the transmission oblique angle probe 21 with the transmission point P 1 as the center.

図16で示す溶接境界面13aの周方向範囲V(詳細には、下鏡部の中心軸Oを通って円形状の干渉領域40に外接する二つの直線で挟まれる範囲)では、溶接境界面13aの走査点Dの深さによって、一探触子法の適用が困難となり、二探触子法を適用する。そして、溶接境界面13aの周方向範囲Vにおいて、送信用斜角探触子21と下鏡ペタル部12の干渉部との干渉を回避するためには、送信用斜角探触子21の送信点P1とRIPケーシング15の中心軸Oの間の距離が干渉半径Rを上回る必要がある。溶接境界面13aの周方向範囲Vの中央に走査点Dが位置する場合より、溶接境界面13aの周方向範囲Vの端部に走査点Dが位置する場合のほうが、送信斜角探触子21の送信点P1とRIPケーシング15の中心軸Oの間の距離が短くなる。そのため、後者の場合に、送信用斜角探触子21の送信点P1とRIPケーシング15の中心軸Oの間の距離が干渉半径Rを上回るどうかを確認する必要がある。 In the circumferential range V of the welding boundary surface 13a shown in FIG. 16 (specifically, the range sandwiched by two straight lines circumscribing the circular interference region 40 through the central axis O of the lower mirror portion), the welding boundary surface The depth of the scanning point D in 13a makes it difficult to apply the one-probe method, and the two-probe method is applied. Then, in order to avoid interference between the transmission oblique angle probe 21 and the interference portion of the lower mirror petal portion 12 in the circumferential range V of the welding boundary surface 13a, the transmission oblique angle probe 21 is transmitted. the distance between the center axis O r of the point P 1 and RIP casing 15 needs to exceed the interference radius R I. Than if the central scanning point D of the circumferential range V of the welding boundary surface 13a is located, it is better when the scanning point D on the end portion of the circumferential extent V of the welding boundary surface 13a is located, transmitting beveled feeler the distance between the center axis O r transmission points P 1 and RIP casing 15 of the child 21 is shortened. Therefore, in the latter case, it is necessary to distance between the center axis O r transmission points P 1 and RIP casing 15 of the transmission angle probe 21 to confirm whether the above interference radius R I.

送信用斜角探触子21と下鏡ペタル部12の干渉部との干渉を回避するためには、送信用斜角探触子21の首振り角σを大きくして、図16で示す見かけの首振り角ρを大きくすればよい。見かけの首振り角ρは、下記の式(4)で表されるものであり、送信用斜角探触子21の送信屈折角θが比較的大きければ(本実施形態では、上述したように60度から80度の範囲内であり)、見かけの首振り角ρも大きくなる。 In order to avoid interference between the transmission oblique angle probe 21 and the interfering portion of the mirror petal portion 12, the swing angle σ 1 of the transmission oblique angle probe 21 is increased and shown in FIG. The apparent swing angle ρ 1 may be increased. The apparent swing angle ρ 1 is expressed by the following equation (4), and if the transmission refraction angle θ 1 of the transmission oblique angle probe 21 is relatively large (in the present embodiment, it is described above). (In the range of 60 to 80 degrees), the apparent swing angle ρ 1 also increases.

Figure 0006826949
Figure 0006826949

そして、この見かけの首振り角ρに基づき、余弦定理や正弦定理による幾何学的な解析を実施すれば、溶接境界面13aの走査点Dの深さに対応する送信用斜角探触子21の送信点P1の位置を演算することができ、さらに、送信用斜角探触子21の送信点P1とRIPケーシング15の中心軸Oの間の距離を演算することができる。 Then, based on this apparent swing angle ρ 1 , if geometric analysis is performed by the cosine theorem or the sine theorem, the transmission oblique angle probe corresponding to the depth of the scanning point D of the welding boundary surface 13a is performed. can be calculated the position of the transmission point P 1 of 21, further capable of calculating the distance between the center axis O r transmission points P 1 and RIP casing 15 of the transmission angle probe 21.

図17は、溶接境界面13aの周方向範囲Vの端部に走査点Dが位置する場合で、走査点Dの深さに応じて変化する、送信用斜角探触子21の送信点P1とRIPケーシング15の中心軸Oの間の距離の具体例を示す図である。この具体例は、傾斜角β=57度、送信屈折角θ=70度、首振り角σ=55.9度、下鏡部の中心軸Oと溶接境界面13aの間の距離R=2500mm、下鏡部の中心軸OとRIPケーシング15の中心軸Oの間の距離R=3000mm、干渉半径R=250mmの場合である。溶接境界面13aの走査点Dの深さが135mm程度であるときに、送信用斜角探触子21の送信点P1とRIPケーシング15の中心軸Oの間の距離が最小値となるものの、干渉半径Rを上回っている。したがって、送信用斜角探触子21と下鏡ペタル部12の干渉部との干渉を回避するように、送信用斜角探触子21の送信屈折角θ及び首振り角σを設定している点を確認することができる。 FIG. 17 shows a transmission point P of the transmission oblique angle probe 21 that changes according to the depth of the scanning point D when the scanning point D is located at the end of the circumferential range V of the welding boundary surface 13a. is a diagram showing a specific example of the distance between the center axis O r 1 and RIP casing 15. Specific examples of this include an inclination angle β = 57 degrees, a transmission refraction angle θ 1 = 70 degrees, a swing angle σ 1 = 55.9 degrees, and a distance R d between the central axis O of the mirror portion and the welding interface 13a. = 2500 mm, which is the case of the distance R r = 3000 mm, the interference radius R I = 250 mm between the center axis O r of the center axis O and RIP casing 15 of the lower mirror portion. When the depth of the scanning point D of the welding boundary surface 13a is about 135mm, the distance between the center axis O r transmission points P 1 and RIP casing 15 of the transmission angle probe 21 is the minimum value although, it exceeds the interference radius R I. Therefore, the transmission refraction angle θ 1 and the swing angle σ 1 of the transmission oblique angle probe 21 are set so as to avoid interference between the transmission oblique angle probe 21 and the interference portion of the mirror petal portion 12. You can see what you are doing.

上記と同様の方法により、受信用斜角探触子22と下鏡ペタル部12の干渉部との干渉を回避するように、受信用斜角探触子22の受信屈折角θ及び首振り角σを設定している点を確認することができる。 By the same method as above, the reception refraction angle θ 2 and the swing of the receiving oblique angle probe 22 are avoided so as to avoid interference between the receiving oblique angle probe 22 and the interference portion of the mirror petal portion 12. It can be confirmed that the angle σ 2 is set.

なお、上記一実施形態においては、ずれ角ε=0度としたときの理想的な首振り角σと、ずれ角ε=0度としたときの理想的な首振り角σを設定する場合を例にとって説明したが、これに限られず、超音波ビームの広がりの範囲内であれば、ずれ角ε又はεの条件を変更してもよい。超音波ビームの半角は、探触子の大きさや屈折角によって異なるものの、一般的に10度未満である。そのため、仮想平面Cに対する送信用斜角探触子21の送信ビーム軸のずれ角εや、仮想平面Cに対する受信用斜角探触子22の受信ビーム軸のずれ角εは、−10度から10度までの範囲内であれば許容してもよい。したがって、例えば上述の図14で示すように傾斜角β=57度、送信屈折角θ=70度である場合、送信用斜角探触子21の首振り角σは、26度から77度までの範囲内であれば許容してもよい。同様に、例えば傾斜角β=57度、受信屈折角θ=70度である場合、受信用斜角探触子2の首振り角σは、26度から77度までの範囲内であれば許容してもよい。 In the above embodiment, the ideal swing angle sigma 1 when the shift angle epsilon 1 = 0 degree, an ideal swing angle sigma 2 when the shift angle epsilon 2 = 0 ° The case of setting has been described as an example, but the present invention is not limited to this, and the conditions of the deviation angle ε 1 or ε 2 may be changed as long as it is within the spread of the ultrasonic beam. The half-width of the ultrasonic beam varies depending on the size of the probe and the angle of refraction, but is generally less than 10 degrees. Therefore, the deviation angle ε 1 of the transmission beam axis of the transmission oblique angle probe 21 with respect to the virtual plane C and the deviation angle ε 2 of the reception beam axis of the reception oblique angle probe 22 with respect to the virtual plane C are -10. It may be allowed as long as it is within the range of 10 degrees. Therefore, for example, when the inclination angle β = 57 degrees and the transmission refraction angle θ 1 = 70 degrees as shown in FIG. 14 above, the swing angle σ 1 of the transmission oblique angle probe 21 is 26 degrees to 77 degrees. It may be allowed as long as it is within the range of the degree. Similarly, for example degree inclined angle beta = 57, when a reception angle of refraction theta 2 = 70 degrees, the swing angle sigma 2 for reception angle probe 2 2, in the range up to 77 degrees from 26 degrees If there is, it may be allowed.

また、上記一実施形態において、探触子移動装置23のアーム33Aは、移動体32Aの周方向位置での下鏡ペタル部12の外面12aの母線方向Kにスライド可能なように移動体32Aに設けられ、アーム33Bは、移動体32Bの周方向位置での下鏡ペタル部12の外面12aの母線方向Kにスライド可能なように移動体32Bに設けられた場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。アーム33Aは、例えばエアシリンダ等であって、移動体32Aの周方向位置での下鏡ペタル部12の外面12aの母線方向Kに伸縮可能なように移動体32Aに設けられてもよい。また、アーム33Bは、例えばエアシリンダ等であって、移動体32Bの周方向位置での下鏡ペタル部12の外面12aの母線方向Kに伸縮可能なように移動体32Bに設けられてもよい。このような変形例では、ドーム部11側に干渉物が存在する場合(具体的には、例えば供用期間中検査等で、CRDハウジング14に挿入された制御棒駆動機構が存在する場合)でも、その干渉物とアーム33A,33Bとの干渉を回避することができる。 Further, in the above embodiment, the probe arm 33A of the mobile device 23, mobile 32A in the circumferential generatrix direction K 1 in slidable manner mobile 32A of the outer surface 12a of the lower mirror petal portion 12 in the direction position provided, the arm 33B is, a case provided on the moving body 32B in the generatrix direction K 2 of the outer surface 12a of the lower mirror petals 12 so as to slidably in the circumferential direction position of the moving body 32B has been described as an example However, the modification is possible without departing from the spirit and technical idea of the present invention. Arm 33A is, for example, an air cylinder or the like, may be provided in a mobile body 32A stretchable as the outer surface 12a generatrix direction K 1 of the lower mirror petal portions 12 in the circumferential direction position of the moving body 32A. The arm 33B is, for example, an air cylinder or the like, be provided in the mobile 32B as stretchable as possible generatrix direction K 2 of the outer surface 12a of the lower mirror petal portions 12 in the circumferential direction position of the moving body 32B Good. In such a modification, even when an interfering object is present on the dome portion 11 side (specifically, when a control rod drive mechanism inserted in the CRD housing 14 is present, for example, during an inspection during service). Interference between the interfering object and the arms 33A and 33B can be avoided.

また、上記一実施形態において、探触子移動装置23の移動体32A,32Bは、溶接部13の周方向に沿って延在する軌道レール30上を走行可能なように構成された場合を例にとって説明したが、これに限られない。すなわち、移動体32A,32Bは、溶接部13の周方向に沿って移動可能なように構成されていればよく、例えば、下鏡部の外面に吸着して走行するための磁気車輪を有していてもよい。このような変形例においても、上記一実施形態と同様の効果を得ることができる。 Further, in the above embodiment, the case where the moving bodies 32A and 32B of the probe moving device 23 are configured to be able to travel on the track rail 30 extending along the circumferential direction of the welded portion 13 is an example. Explained to, but not limited to this. That is, the moving bodies 32A and 32B need only be configured to be movable along the circumferential direction of the welded portion 13, and have, for example, magnetic wheels for adsorbing to the outer surface of the lower mirror portion and traveling. You may be. Even in such a modified example, the same effect as that of the above-described embodiment can be obtained.

また、上記一実施形態において、送信用斜角探触子21の首振り角σを設定変更可能な首振り角調整機構34Aと、受信用斜角探触子22の首振り角σを設定変更可能な首振り角調整機構34Bを有する場合を例にとって説明したが、これに限られない。すなわち、構造寸法が異なる複数の被検体に適用できるという効果が得られないものの、首振り角調整機構34A,34Bを有しなくともよい。 Further, in the above embodiment, the swing angle adjusting mechanism 34A capable of setting and changing the swing angle σ 1 of the transmission oblique angle probe 21 and the swing angle σ 2 of the receiving oblique angle probe 22 are provided. The case of having the swing angle adjusting mechanism 34B whose setting can be changed has been described as an example, but the present invention is not limited to this. That is, although the effect that it can be applied to a plurality of subjects having different structural dimensions cannot be obtained, it is not necessary to have the swing angle adjusting mechanisms 34A and 34B.

なお、以上においては、本発明の検査対象として、原子炉圧力容器の下鏡部の溶接部13を例にとって説明したが、これに限られず、円錐台(又は円錐)の側面形状の被検体の表面に垂直な厚さ方向に対して傾斜した溶接境界面を有する円筒形状の溶接部であればよい。 In the above, the welded portion 13 of the lower mirror portion of the reactor pressure vessel has been described as an example of the inspection target of the present invention, but the present invention is not limited to this, and a subject having a side surface shape of a truncated cone (or a cone) is used. It may be a cylindrical welded portion having a weld boundary surface inclined with respect to the thickness direction perpendicular to the surface.

12 下鏡ペタル部
12a 外面(表面)
13 溶接部
13a 溶接境界面
15 RIPケーシング
15a R部
17 内部欠陥
21 送信用斜角探触子
22 受信用斜角探触子
23 探触子移動装置
30 軌道レール
31A,31B 駆動装置
32A,32B 移動体
33A,33B アーム
34A,34B 首振り角調整機構
12 Mirror petal part 12a Outer surface (surface)
13 Welded part 13a Welded boundary surface 15 RIP casing 15a R part 17 Internal defect 21 Oblique angle probe for transmission 22 Oblique angle probe for reception 23 Detector moving device 30 Track rail 31A, 31B Drive device 32A, 32B movement Body 33A, 33B Arm 34A, 34B Swing angle adjustment mechanism

Claims (7)

円錐又は円錐台の側面形状の被検体の表面に垂直な厚さ方向に対して傾斜した溶接境界面を有する円筒形状の溶接部を検査対象とし、前記被検体の表面上に配置された送信用斜角探触子及び受信用斜角探触子を用い、前記溶接境界面に沿って生じる内部欠陥を検出する超音波検査システムであって、
前記被検体の深さ方向に移動させる前記溶接境界面の走査点に対応して、前記溶接境界面の走査点及びその走査点上の前記溶接境界面の法線ベクトルを含む仮想平面と前記被検体の表面とが交差する交差線上に前記送信用斜角探触子の送信点及び前記受信用斜角探触子の受信点が位置するように、かつ、前記送信用斜角探触子及び前記受信用斜角探触子と前記被検体の干渉部との干渉を回避するように、前記送信用斜角探触子及び前記受信用斜角探触子を配置する探触子移動装置を備え、
前記探触子移動装置は、
前記溶接部の周方向に沿って移動可能とし、その周方向の移動位置での前記被検体の表面の一母線方向に対する、前記被検体の表面の法線軸まわりの前記送信用斜角探触子の首振り角を固定しつつ、前記一母線方向に沿って前記送信用斜角探触子を移動させる第1の駆動装置と、
前記溶接部の周方向に沿って移動可能とし、その周方向の移動位置での前記被検体の表面の他の母線方向に対する、前記被検体の表面の法線軸まわりの前記受信用斜角探触子の首振り角を固定しつつ、前記他の母線方向に沿って前記受信用斜角探触子を移動させる第2の駆動装置とを有し、
前記送信用斜角探触子は、前記仮想平面内の送信経路にて超音波を送信するように、かつ、前記被検体の干渉部との干渉を回避するように、送信屈折角及び前記首振り角が設定され、
前記受信用斜角探触子は、前記仮想平面内の受信経路にて超音波を受信するように、かつ、前記被検体の干渉部との干渉を回避するように、受信屈折角及び前記首振り角が設定されたことを特徴とする超音波検査システム。
A cylindrical weld having a weld interface inclined in the thickness direction perpendicular to the surface of the subject, which has a side shape of a cone or a truncated cone, is to be inspected, and is arranged on the surface of the subject for transmission. An ultrasonic inspection system that uses an oblique probe and a receiving oblique probe to detect internal defects that occur along the weld interface.
A virtual plane including a scanning point of the welding boundary surface and a normal vector of the welding boundary surface on the scanning point corresponding to the scanning point of the welding boundary surface to be moved in the depth direction of the subject and the subject. The transmission point of the transmission oblique angle probe and the receiving point of the receiving oblique angle probe are located on the intersection line where the surface of the sample intersects, and the transmission oblique angle probe and the A probe moving device for arranging the transmitting oblique probe and the receiving oblique probe so as to avoid interference between the receiving oblique probe and the interfering portion of the subject. Prepare,
The probe moving device is
The transmission oblique angle probe around the normal axis of the surface of the subject with respect to the generatrix direction of the surface of the subject at the moving position in the circumferential direction so as to be movable along the circumferential direction of the welded portion. A first drive device that moves the transmission oblique angle probe along the generatrix direction while fixing the swing angle of the
The receiving oblique angle probe around the normal axis of the surface of the subject with respect to the other generatrix direction of the surface of the subject at the movement position in the circumferential direction so as to be movable along the circumferential direction of the welded portion. It has a second drive device that moves the receiving oblique angle probe along the other bus direction while fixing the swing angle of the child.
The transmission oblique angle probe has a transmission refraction angle and the neck so as to transmit ultrasonic waves through a transmission path in the virtual plane and to avoid interference with the interference portion of the subject. The swing angle is set,
The receiving oblique angle probe has a receiving refraction angle and the neck so as to receive ultrasonic waves in the receiving path in the virtual plane and to avoid interference with the interference portion of the subject. An ultrasonic inspection system characterized by a set swing angle.
請求項1に記載の超音波検査システムにおいて、
前記第1の駆動装置は、前記送信用斜角探触子の首振り角を設定変更可能なように構成され、
前記第2の駆動装置は、前記受信用斜角探触子の首振り角を設定変更可能なように構成されたことを特徴とする超音波検査システム。
In the ultrasonic inspection system according to claim 1,
The first drive device is configured so that the swing angle of the transmission oblique angle probe can be changed.
The second driving device is an ultrasonic inspection system characterized in that the swing angle of the receiving oblique angle probe can be set and changed.
請求項1に記載の超音波検査システムにおいて、
前記第1の駆動装置は、前記溶接部の周方向に沿って移動可能な第1の移動体と、前記第1の移動体に前記被検体の前記表面の母線方向にスライド可能なように設けられ、前記送信用斜角探触子を支持する第1のアームとを有し、
前記第2の駆動装置は、前記溶接部の周方向に沿って移動可能な第2の移動体と、前記第2の移動体に前記被検体の前記表面の母線方向にスライド可能なように設けられ、前記受信用斜角探触子を支持する第2のアームとを有することを特徴とする超音波検査システム。
In the ultrasonic inspection system according to claim 1,
The first driving device is provided on the first moving body that can move along the circumferential direction of the welded portion and on the first moving body so as to be slidable in the generatrix direction of the surface of the subject. And has a first arm that supports the transmission oblique probe.
The second driving device is provided on the second moving body so as to be slidable in the bus direction of the surface of the subject on the second moving body and the second moving body that can move along the circumferential direction of the welded portion. An ultrasonic inspection system comprising a second arm that supports the receiving oblique probe.
請求項1に記載の超音波検査システムにおいて、
前記第1の駆動装置は、前記溶接部の周方向に沿って移動可能な第1の移動体と、前記第1の移動体に前記被検体の前記表面の母線方向に伸縮可能なように設けられ、前記送信用斜角探触子を支持する第1のアームとを有し、
前記第2の駆動装置は、前記溶接部の周方向に沿って移動可能な第2の移動体と、前記第2の移動体に前記被検体の前記表面の母線方向に伸縮可能なように設けられ、前記受信用斜角探触子を支持する第2のアームとを有することを特徴とする超音波検査システム。
In the ultrasonic inspection system according to claim 1,
The first driving device is provided with a first moving body that can move along the circumferential direction of the welded portion and the first moving body that can expand and contract in the generatrix direction of the surface of the subject. And has a first arm that supports the transmission oblique probe.
The second driving device is provided with a second moving body that can move along the circumferential direction of the welded portion and the second moving body that can expand and contract in the bus direction of the surface of the subject. An ultrasonic inspection system comprising a second arm that supports the receiving oblique probe.
請求項3に記載の超音波検査システムにおいて、
前記第1及び第2の移動体は、前記溶接部の周方向に沿って延在する軌道レール上を走行可能なように構成されたことを特徴とする超音波検査システム。
In the ultrasonic inspection system according to claim 3,
An ultrasonic inspection system characterized in that the first and second moving bodies are configured to be able to travel on track rails extending along the circumferential direction of the welded portion.
請求項1に記載の超音波検査システムにおいて、
前記仮想平面に対する前記送信用斜角探触子の送信ビーム軸のずれ角が−10度から10度までの範囲内に収まるように、前記送信用斜角探触子の前記送信屈折角及び前記首振り角が設定され、
前記仮想平面に対する前記受信用斜角探触子の受信ビーム軸のずれ角が−10度から10度までの範囲内に収まるように、前記受信用斜角探触子の前記受信屈折角及び前記首振り角が設定されたことを特徴とする超音波検査システム。
In the ultrasonic inspection system according to claim 1,
The transmission refraction angle of the transmission oblique angle probe and the transmission refraction angle of the transmission oblique angle probe so that the deviation angle of the transmission beam axis of the transmission oblique angle probe with respect to the virtual plane falls within a range of -10 degrees to 10 degrees. Swing angle is set,
The receiving refraction angle of the receiving oblique probe and the receiving refraction angle of the receiving oblique probe so that the deviation angle of the receiving beam axis of the receiving oblique probe with respect to the virtual plane falls within a range of -10 degrees to 10 degrees. An ultrasonic inspection system characterized by a set swing angle.
請求項6に記載の超音波検査システムにおいて、
前記送信用斜角探触子の前記送信屈折角と前記受信用斜角探触子の前記受信屈折角は、60度から80度までの範囲内で設定されたことを特徴とする超音波検査システム。
In the ultrasonic inspection system according to claim 6,
Ultrasonography characterized in that the transmission refraction angle of the transmission oblique angle probe and the reception refraction angle of the reception oblique angle probe were set within a range of 60 degrees to 80 degrees. system.
JP2017101022A 2017-05-22 2017-05-22 Ultrasonography system Active JP6826949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017101022A JP6826949B2 (en) 2017-05-22 2017-05-22 Ultrasonography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017101022A JP6826949B2 (en) 2017-05-22 2017-05-22 Ultrasonography system

Publications (3)

Publication Number Publication Date
JP2018194528A JP2018194528A (en) 2018-12-06
JP2018194528A5 JP2018194528A5 (en) 2020-03-05
JP6826949B2 true JP6826949B2 (en) 2021-02-10

Family

ID=64570734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017101022A Active JP6826949B2 (en) 2017-05-22 2017-05-22 Ultrasonography system

Country Status (1)

Country Link
JP (1) JP6826949B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786791A (en) * 1980-11-20 1982-05-29 Hitachi Ltd Automatic super sonic wave defectoscope for under mirror of recirculation pump built-in reactor
JPS5944651A (en) * 1982-09-07 1984-03-13 Power Reactor & Nuclear Fuel Dev Corp Method and device for ultrasonic flaw detection in corner part on inside surface of cylinder
JPS6015556A (en) * 1983-07-08 1985-01-26 Hitachi Ltd Track for container monitoring or inspecting apparatus
JPH0383863U (en) * 1989-12-19 1991-08-26
JPH04104595U (en) * 1991-02-21 1992-09-09 石川島播磨重工業株式会社 Inspection equipment for the lower mirror of the reactor pressure vessel
GB9215346D0 (en) * 1992-07-18 1992-09-02 Rolls Royce & Ass An apparatus for detecting defects
JPH095304A (en) * 1995-06-16 1997-01-10 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection method in welded part between straight pipe and elbow
JPH11183445A (en) * 1997-12-19 1999-07-09 Mitsubishi Heavy Ind Ltd Flaw detector
JP2004258008A (en) * 2003-02-28 2004-09-16 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector and ultrasonic flaw detection method
JP2004264122A (en) * 2003-02-28 2004-09-24 Tokyo Electric Power Co Inc:The Ultrasonic inspection method and ultrasonic inspection tool
KR200406125Y1 (en) * 2005-11-03 2006-01-24 세안기술 주식회사 Nondestructive ultrasonic inspector for inspecting weld zone of pipe
JP4839333B2 (en) * 2008-03-19 2011-12-21 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus
CN203831419U (en) * 2014-05-29 2014-09-17 中广核检测技术有限公司 Mechanical arm and detection robot based on the mechanical arm

Also Published As

Publication number Publication date
JP2018194528A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
EP3108236B1 (en) Ultrasonic phased array transducer for the nondestructive evaluation (nde) inspection of jet pump riser welds and welded attachments
JP5662873B2 (en) Ultrasonic flaw detection method
JP6290718B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
EP2594931A1 (en) Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP4792440B2 (en) Pipe weld inspection system
JPS608746A (en) Method and device for detecting defect of material
JP6552946B2 (en) Ultrasonic inspection method and apparatus
JP4897420B2 (en) Ultrasonic flaw detector
JP6290748B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP6826949B2 (en) Ultrasonography system
CN109239184B (en) Ultrasonic phased array detection method for pipe seat fillet weld
EP3320334B1 (en) Method and system for inspecting a rail wheel with phased array probes
JP6298371B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
US20220011269A1 (en) Digital twin of an automated non-destructive ultrasonic testing system
CN109142527B (en) Defect positioning method for ultrasonic phased array weld joint detection
JP2019158367A (en) Ultrasonic inspection system
KR101686825B1 (en) Control device for 3d scanner
JP5959677B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2011247676A (en) Ultrasonic flaw detection device
JP2015530593A (en) System and method for viewing data generated by rotational scanning
US11740207B2 (en) Ultrasonic probe alignment using ultrasound signals
JP2019184415A (en) Ultrasonic wave flaw detection method and device
JP7336621B1 (en) Sound wave receiving device, sound source azimuth determination device, and sound source azimuth determination method
RU185751U1 (en) NON-DESTRUCTIVE CONTROL OF OBJECTS
Sicard Inspection of complex composite aerospace structures using automated 3D ultrasonic scanning

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6826949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150