JP6826761B2 - Manufacturing method of semiconductor devices - Google Patents

Manufacturing method of semiconductor devices Download PDF

Info

Publication number
JP6826761B2
JP6826761B2 JP2018162883A JP2018162883A JP6826761B2 JP 6826761 B2 JP6826761 B2 JP 6826761B2 JP 2018162883 A JP2018162883 A JP 2018162883A JP 2018162883 A JP2018162883 A JP 2018162883A JP 6826761 B2 JP6826761 B2 JP 6826761B2
Authority
JP
Japan
Prior art keywords
metal
metal portion
recess
layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018162883A
Other languages
Japanese (ja)
Other versions
JP2020035948A (en
Inventor
強太 杉谷
強太 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2018162883A priority Critical patent/JP6826761B2/en
Priority to US16/555,648 priority patent/US10892392B2/en
Publication of JP2020035948A publication Critical patent/JP2020035948A/en
Application granted granted Critical
Publication of JP6826761B2 publication Critical patent/JP6826761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Description

本発明は、半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device.

半導体装置の製造方法には、2つの部材を接合する工程を備えた製造方法がある。この接合という工程は、例えば、表面に凹部が設けられた部材と、別の部材と、を接合する工程を意味する。このような接合の工程を備えた装置の製造方法について、工程を簡素化し、製造コストを低減できる技術の開発が求められている。 As a manufacturing method of a semiconductor device, there is a manufacturing method including a step of joining two members. This step of joining means, for example, a step of joining a member provided with a recess on the surface and another member. Regarding the manufacturing method of an apparatus provided with such a joining process, it is required to develop a technique capable of simplifying the process and reducing the manufacturing cost.

特開2016−174018号公報JP-A-2016-174018

本発明は、製造の工程を簡素化し、製造コストを低減できる半導体装置の製造方法を提供するものである。 The present invention provides a method for manufacturing a semiconductor device that can simplify the manufacturing process and reduce the manufacturing cost.

本発明の一実施形態に係る半導体装置の製造方法は、第1金属及び第2金属を含む金属層を基板の上に形成する準備工程と、前記金属層の少なくとも一部における前記第2金属を除去することで、前記第1金属からなり、複数の孔が設けられた多孔質状の第1金属部を前記基板の上に形成する形成工程と、凹部が設けられた第1面と、半導体積層体と、を有する構造体を準備する別の準備工程と、前記構造体に対して、前記第1金属部の一部を、前記第1面の前記凹部と接合し、前記第1金属部の別の一部を、前記第1面の前記凹部が設けられている面以外の面と接合する接合工程と、を備える。前記接合工程において、前記凹部の少なくとも一部を前記第1金属部で埋め込むとともに、前記第1金属部の前記別の一部における複数の前記孔の平均径が、前記第1金属部の前記一部における複数の前記孔の平均径よりも小さくなるように、前記第1面に前記第1金属部を接合する。 The method for manufacturing a semiconductor device according to an embodiment of the present invention includes a preparatory step of forming a metal layer containing a first metal and a second metal on a substrate, and the second metal in at least a part of the metal layer. By removing the first metal, a forming step of forming a porous first metal portion made of the first metal and having a plurality of holes on the substrate, a first surface provided with recesses, and a semiconductor Another preparatory step for preparing a structure having a laminated body , and a part of the first metal portion of the structure are joined to the recess of the first surface to form the first metal portion. It is provided with a joining step of joining another part of the first surface to a surface other than the surface on which the recess is provided. In the joining step, at least a part of the recess is embedded in the first metal part, and the average diameter of a plurality of the holes in the other part of the first metal part is the one of the first metal part. The first metal portion is joined to the first surface so as to be smaller than the average diameter of the plurality of holes in the portion.

本発明の一実施形態に係る半導体装置の製造方法によれば、半導体装置の製造工程を簡素化し、製造コストを低減することができる。 According to the method for manufacturing a semiconductor device according to an embodiment of the present invention, the manufacturing process of the semiconductor device can be simplified and the manufacturing cost can be reduced.

本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法の適用例を示す工程断面図である。It is a process sectional view which shows the application example of the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法の適用例を示す工程断面図である。It is a process sectional view which shows the application example of the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体発光装置を示す平面図である。It is a top view which shows the semiconductor light emitting device which concerns on one Embodiment of this invention. 図3のIV−IV断面図である。FIG. 3 is a sectional view taken along line IV-IV of FIG.

以下、図面を参照し、本発明の実施形態について説明する。なお、各図面中、同じ要素には同じ符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same elements are designated by the same reference numerals.

図1A〜図1Hは、本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。
まず、図1Aに示したように、基板1の上に、金属層10を形成する(第2準備工程)。金属層10は、第1金属及び第2金属を含む合金により構成されている。金属層10に含まれる合金の少なくとも一部は、固溶体や共晶では無く、第1金属からなる部分と、第2金属からなる部分と、を有する。
1A to 1H are process cross-sectional views showing a method of manufacturing a semiconductor device according to an embodiment of the present invention.
First, as shown in FIG. 1A, the metal layer 10 is formed on the substrate 1 (second preparation step). The metal layer 10 is made of an alloy containing a first metal and a second metal. At least a part of the alloy contained in the metal layer 10 is not a solid solution or eutectic, but has a portion made of a first metal and a portion made of a second metal.

金属層10は、例えば、第1金属及び第2金属を含む合金を蒸着源として用いた真空蒸着により形成される。この金属層10は、第1金属からなる蒸着源と、第2金属からなる蒸着源と、を同時に気化又は昇華させて形成しても良い。あるいは、金属層10の形成方法は、めっきやスパッタリングなどを用いても良い。 The metal layer 10 is formed by, for example, vacuum vapor deposition using an alloy containing a first metal and a second metal as a vapor deposition source. The metal layer 10 may be formed by simultaneously vaporizing or sublimating a vapor deposition source made of a first metal and a vapor deposition source made of a second metal. Alternatively, plating, sputtering, or the like may be used as the method for forming the metal layer 10.

次に、金属層10の少なくとも一部に含まれる第2金属を除去する。これにより、金属層10の中で第2金属が存在していた部分には、孔が形成される。この結果、図1Bに示したように、金属層10に、複数の孔10aを有する多孔質状の第1金属部11が形成される(形成工程)。金属層10の一部の第2金属のみを除去した場合は、図1Bに示したように、第1金属からなる第1金属部11と、第1金属及び第2金属からなる第2金属部12と、が形成される。第2金属部12は、基板1と第1金属部11との間に位置する。 Next, the second metal contained in at least a part of the metal layer 10 is removed. As a result, holes are formed in the portion of the metal layer 10 where the second metal was present. As a result, as shown in FIG. 1B, a porous first metal portion 11 having a plurality of holes 10a is formed in the metal layer 10 (formation step). When only a part of the second metal of the metal layer 10 is removed, as shown in FIG. 1B, the first metal portion 11 made of the first metal and the second metal portion made of the first metal and the second metal 12 and are formed. The second metal portion 12 is located between the substrate 1 and the first metal portion 11.

より具体的には、複数の孔10aは、第1金属部11中において互いに繋がっており、第1金属部11中には3次元的に広がる空洞が形成されている。金属層10をある断面で見たとき、その空洞の一部が複数の孔10aとして互いに点在して現れる。 More specifically, the plurality of holes 10a are connected to each other in the first metal portion 11, and a cavity that expands three-dimensionally is formed in the first metal portion 11. When the metal layer 10 is viewed in a certain cross section, a part of the cavity appears as a plurality of holes 10a scattered with each other.

金属層10中の第2金属は、例えばウェットエッチングにより除去される。ウェットエッチングに用いられる薬液としては、基板1及び第1金属に対して第2金属を選択的に除去できるものである。例えば、基板1は、Si又はCuWなどを含む。第1金属は、金、銀、ニッケル、及びクロムからなる群より選択された少なくとも1つである。第2金属は、錫であることが好ましい。これらの材料が用いられる場合、ウェットエッチングの薬液には硝酸を用いることができる。 The second metal in the metal layer 10 is removed by, for example, wet etching. As the chemical solution used for wet etching, the second metal can be selectively removed from the substrate 1 and the first metal. For example, the substrate 1 contains Si, CuW, and the like. The first metal is at least one selected from the group consisting of gold, silver, nickel, and chromium. The second metal is preferably tin. When these materials are used, nitric acid can be used as the chemical solution for wet etching.

続いて、図1Cに示したように、第1金属部11の上に、後述する構造体20との接合に用いられる第1接合層13を形成する。第1接合層13は、単層であっても良いし、積層構造をしたものでも良い。一例として、第1接合層13は、白金層、チタン層、ニッケル層、及び錫層を、この順に積層することで形成される。なお、第1金属部11を構成する第1金属が接合に適した材料である場合は、第1接合層13を形成する工程を省略することも可能である。 Subsequently, as shown in FIG. 1C, a first bonding layer 13 used for bonding with the structure 20 described later is formed on the first metal portion 11. The first bonding layer 13 may be a single layer or may have a laminated structure. As an example, the first bonding layer 13 is formed by laminating a platinum layer, a titanium layer, a nickel layer, and a tin layer in this order. When the first metal constituting the first metal portion 11 is a material suitable for bonding, the step of forming the first bonding layer 13 can be omitted.

一方、第1金属部11とは別に、図1Dに示した構造体20を準備する(第1準備工程)。構造体20は、基板2の上に設けられており、半導体積層体21、積層体22、及び第2接合層23を有する。また、構造体20は、凹部20rが設けられた第1面20Sを有する。 On the other hand, the structure 20 shown in FIG. 1D is prepared separately from the first metal portion 11 (first preparation step). The structure 20 is provided on the substrate 2 and has a semiconductor laminate 21, a laminate 22, and a second bonding layer 23. Further, the structure 20 has a first surface 20S provided with a recess 20r.

半導体積層体21は、基板2の上に設けられている。基板2は、例えばサファイア基板である。半導体積層体21は、シリコン、窒化ガリウム、ガリウムヒ素、又は窒化シリコンなどの半導体材料からなる層を複数有する。基板1にサファイア基板を用いる場合、半導体積層体21には、InAlGa1−X−YN(0≦X、0≦Y、X+Y<1)などの窒化物半導体からなる半導体材料を用いることが好ましい。半導体積層体21に含まれる各半導体層には、不純物が添加されていても良い。 The semiconductor laminate 21 is provided on the substrate 2. The substrate 2 is, for example, a sapphire substrate. The semiconductor laminate 21 has a plurality of layers made of a semiconductor material such as silicon, gallium nitride, gallium arsenide, or silicon nitride. When a sapphire substrate is used as the substrate 1, the semiconductor laminate 21 is provided with a semiconductor material made of a nitride semiconductor such as In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y <1). It is preferable to use it. Impurities may be added to each semiconductor layer contained in the semiconductor laminate 21.

積層体22は、平面視において、半導体積層体21の表面のうち凹部20rが設けられていない領域と重なる表面に設けられている。積層体22は、例えば、1つ以上の絶縁層及び1つ以上の金属層を含む。 The laminate 22 is provided on the surface of the semiconductor laminate 21 that overlaps the region where the recess 20r is not provided in a plan view. The laminate 22 includes, for example, one or more insulating layers and one or more metal layers.

第2接合層23は、第1面20Sに沿って設けられている。すなわち、第2接合層23は、積層体22の上面、凹部20rの側面及び底面に設けられている。第2接合層23は、第1金属部11との接合に用いられる。第2接合層23は、単層であっても良いし、積層構造をしたものでも良い。第2接合層23の積層構造の一例としては、チタン層、ニッケル層、及び錫層を、この順に積層したものである。なお、積層体22の表面に接合に適した金属層が設けられる場合は、構造体20が第2接合層23を有していなくても良い。 The second bonding layer 23 is provided along the first surface 20S. That is, the second bonding layer 23 is provided on the upper surface of the laminated body 22, the side surface and the bottom surface of the recess 20r. The second bonding layer 23 is used for bonding with the first metal portion 11. The second bonding layer 23 may be a single layer or may have a laminated structure. As an example of the laminated structure of the second bonding layer 23, a titanium layer, a nickel layer, and a tin layer are laminated in this order. When a metal layer suitable for bonding is provided on the surface of the laminated body 22, the structure 20 does not have to have the second bonding layer 23.

次に、図1Eに示したように、第1金属部11を構造体20の第1面20Sに接合する。接合は、基板1の金属層10が設けられた面と基板2の構造体20が設けられた面とを互いに対向する方向に向けて押圧しながら、加熱して行われる。これにより、図1Fに示したように、第1金属部11の一部が、第1面20Sの凹部20rと接合され、第1金属部11の別の一部が、第1面20Sの凹部20rが設けられている面以外の面と接合される。 Next, as shown in FIG. 1E, the first metal portion 11 is joined to the first surface 20S of the structure 20. The joining is performed by heating while pressing the surface of the substrate 1 on which the metal layer 10 is provided and the surface of the substrate 2 on which the structure 20 is provided in directions facing each other. As a result, as shown in FIG. 1F, a part of the first metal portion 11 is joined to the recess 20r of the first surface 20S, and another part of the first metal portion 11 is a recess of the first surface 20S. It is joined to a surface other than the surface on which 20r is provided.

構造体20の第1面20Sに接触する第1金属部11は、多孔質状である。このため、第1金属部11は、第2金属部12や、第1接合層13、第2接合層23などの他の金属層よりも柔らかく、第1面20Sに接触すると、第1面20Sの形状に応じて容易に変形する。従って、第1面20Sの凹部20r以外の部分では、第1金属部11の別の一部が第1面20Sと接触した際に、孔10aが潰れて第1金属部11の形状が変化する。一方、第1面20Sの凹部20rでは、孔があまり潰されずに、第1金属部11の一部が凹部20rの内側に入り込んでいく。 The first metal portion 11 in contact with the first surface 20S of the structure 20 is porous. Therefore, the first metal portion 11 is softer than other metal layers such as the second metal portion 12, the first bonding layer 13, and the second bonding layer 23, and when it comes into contact with the first surface 20S, the first surface 20S It easily deforms according to the shape of. Therefore, in the portion of the first surface 20S other than the recess 20r, when another part of the first metal portion 11 comes into contact with the first surface 20S, the hole 10a is crushed and the shape of the first metal portion 11 changes. .. On the other hand, in the recess 20r of the first surface 20S, a part of the first metal portion 11 enters the inside of the recess 20r without being crushed so much.

この結果、第1金属部11の別の一部における孔10aの平均径は、第1金属部11の一部における孔10aの平均径よりも小さくなる。 As a result, the average diameter of the holes 10a in another part of the first metal portion 11 is smaller than the average diameter of the holes 10a in a part of the first metal portion 11.

なお、孔10aの平均径は、例えば以下の方法により測定される。まず、構造体20と接合後の金属層10を、構造体20と金属層10とを重ね合わせた方向に沿って、断面に凹部20rが含まれるように切断する。次に、その断面上で、第1金属部11の凹部20r内に設けられた部分と、第1金属部11の凹部20r以外に設けられた部分と、について、所定面積内における孔10aの径の平均値を算出する。孔が円形では無い場合は、断面において、金属層10と構造体20とを結ぶ方向(金属層10の厚み方向)における孔の最大寸法を、その孔の径とする。算出された平均値を、それぞれの部分における孔10aの平均径とする。 The average diameter of the holes 10a is measured by, for example, the following method. First, the structure 20 and the metal layer 10 after joining are cut along the direction in which the structure 20 and the metal layer 10 are overlapped so that the cross section includes the recess 20r. Next, on the cross section, the diameter of the hole 10a within a predetermined area is provided for the portion provided in the recess 20r of the first metal portion 11 and the portion provided in the recess 20r of the first metal portion 11 other than the recess 20r. Calculate the average value of. When the hole is not circular, the maximum dimension of the hole in the direction connecting the metal layer 10 and the structure 20 (thickness direction of the metal layer 10) in the cross section is defined as the diameter of the hole. The calculated average value is used as the average diameter of the holes 10a in each portion.

また、第1金属部11における別の一部が潰れることで、例えば、第1金属部11の別の一部における孔10aの密度が、第1金属部11の別の一部における孔10aの密度よりも小さくなる。 Further, when another part of the first metal part 11 is crushed, for example, the density of the holes 10a in another part of the first metal part 11 becomes the density of the holes 10a in another part of the first metal part 11. It is less than the density.

第1金属部11の一部及び別の一部の各部分における孔10aの密度は、例えば以下の方法により測定される。上述した孔10aの平均径の測定方法と同様に、第1金属部11と構造体20の断面を、凹部20rを含む位置で観察する。次に、その断面上で、第1金属部11の凹部20r内に設けられた部分と、第1金属部11の凹部20r以外に設けられた部分と、について、所定面積内における孔10aの面積の合計の割合を算出する。この割合を孔10aの密度とする。 The density of the holes 10a in each part of the first metal part 11 and another part is measured by, for example, the following method. Similar to the method for measuring the average diameter of the holes 10a described above, the cross section of the first metal portion 11 and the structure 20 is observed at a position including the recess 20r. Next, on the cross section, the area of the hole 10a within a predetermined area with respect to the portion provided in the recess 20r of the first metal portion 11 and the portion provided in the recess 20r of the first metal portion 11 other than the recess 20r. Calculate the total percentage of. This ratio is defined as the density of the holes 10a.

なお、接合において加えられる熱により、金属層10の第2金属部12が溶融することで、第1金属部11の孔10aの少なくとも一部に溶融した第2金属部12が流れ込む場合がある。この場合、図1Gに示したように、第1金属からなる第1金属部11中に、第1金属と第2金属からなる第2金属部12が複数設けられた構造となる。この場合、例えば、第1金属部11の別の一部における第2金属部12の平均径は、第1金属部11の一部における第2金属部12の平均径よりも小さい。第1金属部11中の第2金属部12の平均径は、上述した孔の平均径の算出方法と同様の方法により求めることができる。また、第1金属部11の別の一部における第2金属部12の密度は、第1金属部11の別の一部における第2金属部12の密度よりも小さい。 The heat applied in the bonding melts the second metal portion 12 of the metal layer 10, so that the melted second metal portion 12 may flow into at least a part of the holes 10a of the first metal portion 11. In this case, as shown in FIG. 1G, the structure is such that a plurality of second metal portions 12 made of the first metal and the second metal are provided in the first metal portion 11 made of the first metal. In this case, for example, the average diameter of the second metal portion 12 in another part of the first metal portion 11 is smaller than the average diameter of the second metal portion 12 in a part of the first metal portion 11. The average diameter of the second metal portion 12 in the first metal portion 11 can be obtained by the same method as the above-described method for calculating the average diameter of the holes. Further, the density of the second metal portion 12 in another part of the first metal portion 11 is smaller than the density of the second metal portion 12 in another part of the first metal portion 11.

接合時には、図1F及び図1Gに示したように、凹部20rの一部に第1金属部11が埋め込まれ、凹部20rにおいて、第1面20Sと、第1金属部11または第1接合層13とによって囲まれた空間SPが形成されても良い。接合工程が行われる空間の圧力は、例えば、大気圧未満に設定される。従って、空間SPが形成される場合、空間SPにおける圧力も大気圧未満となる。また、接合後に、図1Hに示したように、構造体20側の基板2を除去しても良い。 At the time of joining, as shown in FIGS. 1F and 1G, the first metal portion 11 is embedded in a part of the recess 20r, and in the recess 20r, the first surface 20S and the first metal portion 11 or the first bonding layer 13 are joined. A space SP surrounded by and may be formed. The pressure in the space where the joining process is performed is set, for example, below atmospheric pressure. Therefore, when the space SP is formed, the pressure in the space SP is also less than the atmospheric pressure. Further, after joining, the substrate 2 on the structure 20 side may be removed as shown in FIG. 1H.

ここで、比較例を参照しながら実施形態の効果を説明する。
比較例に係る製造方法として、以下のものが挙げられる。まず、第1金属部11を形成せずに、金属層10上に第1接合層13を形成する。また、第2接合層23が設けられていない構造体20の第1面20Sに、凹部を埋め込むための厚い金属膜を形成する。次に、この金属膜の表面を研磨により平坦化する。続いて、平坦化された金属膜の表面に第2接合層23を形成する。その後、第1接合層13と第2接合層23を接合させることで、金属層10と構造体20を接合させる。
Here, the effect of the embodiment will be described with reference to a comparative example.
Examples of the manufacturing method according to the comparative example include the following. First, the first bonding layer 13 is formed on the metal layer 10 without forming the first metal portion 11. Further, a thick metal film for embedding a recess is formed on the first surface 20S of the structure 20 in which the second bonding layer 23 is not provided. Next, the surface of this metal film is flattened by polishing. Subsequently, the second bonding layer 23 is formed on the surface of the flattened metal film. After that, the metal layer 10 and the structure 20 are joined by joining the first joining layer 13 and the second joining layer 23.

この方法によれば、凹部20rが金属膜によって埋め込まれるため、金属層10と構造体20との接合が容易となる。また、凹部20rが埋め込まれるため、製造される半導体装置の放熱性も向上する。一方で、この方法を用いる場合、工程数が多いため、製造コストが増加する。例えば、凹部20rが深い場合、凹部20rを埋め込むために比較的厚い金属膜を形成しなければならない。このため、金属膜を形成する工程や、その金属膜を平坦化する工程に長い時間を要し、製造コストがさらに増加する。 According to this method, since the recess 20r is embedded by the metal film, the metal layer 10 and the structure 20 can be easily joined. Further, since the recess 20r is embedded, the heat dissipation of the manufactured semiconductor device is also improved. On the other hand, when this method is used, the number of steps is large, so that the manufacturing cost increases. For example, when the recess 20r is deep, a relatively thick metal film must be formed to embed the recess 20r. Therefore, a long time is required for the step of forming the metal film and the step of flattening the metal film, and the manufacturing cost is further increased.

実施形態に係る半導体装置の製造方法では、図1Dに示したように、多孔質状の第1金属部11を、構造体20の第1面20Sと接合させる。具体的には、第1金属部11の一部を、第1面20Sの凹部20rと接合し、第1金属部11の別の一部を、第1面20Sの凹部20rが設けられている面以外の面と接合する。
このとき、第1金属部11は多孔質状であるため、接合時に第1面20Sの形状に応じて容易に変形する。そのため、接合において、凹部20rの少なくとも一部が第1金属部11で埋め込まれるとともに、第1金属部11の別の一部における複数の孔10aの平均径が、第1金属部11の一部における複数の孔10aの平均径よりも小さくなる。
In the method for manufacturing a semiconductor device according to the embodiment, as shown in FIG. 1D, the porous first metal portion 11 is joined to the first surface 20S of the structure 20. Specifically, a part of the first metal portion 11 is joined to the recess 20r of the first surface 20S, and another part of the first metal portion 11 is provided with the recess 20r of the first surface 20S. Join with a surface other than the surface.
At this time, since the first metal portion 11 is porous, it is easily deformed according to the shape of the first surface 20S at the time of joining. Therefore, in the joining, at least a part of the recess 20r is embedded in the first metal portion 11, and the average diameter of the plurality of holes 10a in another part of the first metal portion 11 is a part of the first metal portion 11. It is smaller than the average diameter of the plurality of holes 10a in.

すなわち、実施形態に係る半導体装置の製造方法によれば、凹部20rを埋め込む金属膜を形成せずとも、凹部20rの少なくとも一部を第1金属部11で埋め込むことが可能となる。このため、金属膜を形成しない場合でも、接合性や放熱性の低下を抑制できる。また、これにより厚い金属膜を形成する工程や、その金属膜を平坦化する工程が不要となるため、半導体装置の製造コストを低減できる。
さらに、第1金属部11が第1面20Sとの接触時に容易に変形するため、接合時に基板1及び基板2に加える荷重を低減することができる。このため、接合時に基板1や基板2、構造体20などが損傷することを抑制でき、半導体装置の歩留まりを向上させることができる。
That is, according to the method for manufacturing a semiconductor device according to the embodiment, at least a part of the recess 20r can be embedded in the first metal portion 11 without forming a metal film for embedding the recess 20r. Therefore, even when the metal film is not formed, deterioration of bondability and heat dissipation can be suppressed. Further, this eliminates the step of forming a thick metal film and the step of flattening the metal film, so that the manufacturing cost of the semiconductor device can be reduced.
Further, since the first metal portion 11 is easily deformed at the time of contact with the first surface 20S, the load applied to the substrate 1 and the substrate 2 at the time of joining can be reduced. Therefore, it is possible to prevent the substrate 1, the substrate 2, the structure 20, and the like from being damaged at the time of joining, and it is possible to improve the yield of the semiconductor device.

以上の通り、実施形態に係る半導体装置の製造方法によれば、接合性及び放熱性の低下を抑制しつつ、製造コストの低減及び歩留まりの向上が実現できる。 As described above, according to the method for manufacturing a semiconductor device according to the embodiment, it is possible to reduce the manufacturing cost and improve the yield while suppressing the deterioration of the bondability and the heat dissipation.

第1金属部11を形成する形成工程では、図1Bに示したように、第1金属部11の厚みT1が第2金属部12の厚みT2よりも大きくなるよう、第1金属部11を形成することが望ましい。厚みT1が厚みT2よりも大きくすることで、凹部20rを第1金属部11で埋め込み易くできるとともに、金属層10の厚みを小さくし、図1Aに示した工程において、金属層10の形成に要する時間を短縮でき、製造コストを低減できる。 In the forming step of forming the first metal portion 11, as shown in FIG. 1B, the first metal portion 11 is formed so that the thickness T1 of the first metal portion 11 is larger than the thickness T2 of the second metal portion 12. It is desirable to do. By making the thickness T1 larger than the thickness T2, the recess 20r can be easily embedded in the first metal portion 11, and the thickness of the metal layer 10 is reduced, which is required for forming the metal layer 10 in the process shown in FIG. 1A. The time can be shortened and the manufacturing cost can be reduced.

第1金属部11と第1面20Sを接合する工程では、図1Gに示したように、第1金属部11の孔の少なくとも一部に、第1金属及び第2金属が充填されることが望ましい。第1金属部11の孔に第1金属及び第2金属が充填されることで、第1金属部11における熱伝導度が向上し、製造される半導体装置の放熱性を向上させることができる。 In the step of joining the first metal portion 11 and the first surface 20S, as shown in FIG. 1G, at least a part of the holes of the first metal portion 11 may be filled with the first metal and the second metal. desirable. By filling the holes of the first metal portion 11 with the first metal and the second metal, the thermal conductivity in the first metal portion 11 can be improved, and the heat dissipation of the manufactured semiconductor device can be improved.

また、金属層10は、金属層10の厚みT(図1Aに示す)が凹部20rの深さD(図1Dに示す)よりも大きくなるよう、形成されることが望ましい。ここで、金属層10の厚みTとは、金属層10の積層方向における厚みである。また、凹部20rの深さDとは、第1面20Sのうち、積層体22の上方における面と、積層体22が設けられていない半導体積層体21の上方における面と、の積層方向における距離である。厚みTが深さDよりも大きいことで、金属層10に十分な厚みの第1金属部11を形成できる。従って、接合時において凹部20r内に設けられる第1金属部11の体積をより大きくし、第1金属部11と第1面20Sとの接合性及び放熱性を向上させることができる。 Further, it is desirable that the metal layer 10 is formed so that the thickness T (shown in FIG. 1A) of the metal layer 10 is larger than the depth D (shown in FIG. 1D) of the recess 20r. Here, the thickness T of the metal layer 10 is the thickness of the metal layer 10 in the stacking direction. Further, the depth D of the recess 20r is the distance between the surface above the laminated body 22 and the surface above the semiconductor laminated body 21 in which the laminated body 22 is not provided in the first surface 20S in the stacking direction. Is. When the thickness T is larger than the depth D, the first metal portion 11 having a sufficient thickness can be formed on the metal layer 10. Therefore, the volume of the first metal portion 11 provided in the recess 20r at the time of joining can be made larger, and the bondability and heat dissipation between the first metal portion 11 and the first surface 20S can be improved.

第1金属及び第2金属は、上述した通り、第1金属に対して第2金属を選択的に除去できる金属材料を用いる。望ましくは、第1金属は、金、銀、ニッケル、及びクロムからなる群より選択された少なくとも1つであり、第2金属は、錫である。これらの材料を用いることで、第2金属部12が第1金属と第2金属を含む場合に、第2金属部12が第1金属及び第2金属の一方を含む場合に比べて、第2金属部12の融点を大きく低下させることができる。従って、接合時の加熱温度が低い場合でも、第2金属部12を溶融させ、溶融した第2金属部12を用いて第1金属部11と構造体20を接合することができる。そのため、接合時の熱による金属層10や構造体20へのダメージを低減できる。 As the first metal and the second metal, as described above, a metal material capable of selectively removing the second metal with respect to the first metal is used. Desirably, the first metal is at least one selected from the group consisting of gold, silver, nickel, and chromium, and the second metal is tin. By using these materials, when the second metal portion 12 contains the first metal and the second metal, the second metal portion 12 contains a second metal as compared with the case where the second metal portion 12 contains one of the first metal and the second metal. The melting point of the metal part 12 can be greatly lowered. Therefore, even when the heating temperature at the time of joining is low, the second metal portion 12 can be melted, and the first metal portion 11 and the structure 20 can be joined using the melted second metal portion 12. Therefore, damage to the metal layer 10 and the structure 20 due to heat at the time of joining can be reduced.

第1金属部11を第1面20Sと接合した際、凹部20rにおいて、第1面20Sと第1金属部11とに囲まれた空間SPが形成されることが望ましい。凹部20rの底部まで第1金属部11で埋め込まれると、半導体装置の熱によって第1金属部11が膨張又は収縮した際、第1金属部11と半導体積層体21との接触部分には大きな応力が発生する。第1金属部11と半導体積層体21との接触部分で膜剥がれ等が発生すると、製造される半導体装置ごとに放熱特性や電気特性にばらつきが生じる。空間SPが形成されることで、第1金属部11と半導体積層体21との接触部分における応力を低減し、そのような特性のばらつきを抑制することが可能となる。 When the first metal portion 11 is joined to the first surface 20S, it is desirable that a space SP surrounded by the first surface 20S and the first metal portion 11 is formed in the recess 20r. When the first metal portion 11 is embedded up to the bottom of the recess 20r, when the first metal portion 11 expands or contracts due to the heat of the semiconductor device, a large stress is applied to the contact portion between the first metal portion 11 and the semiconductor laminate 21. Occurs. When film peeling or the like occurs at the contact portion between the first metal portion 11 and the semiconductor laminate 21, heat dissipation characteristics and electrical characteristics vary depending on the semiconductor device to be manufactured. By forming the space SP, it is possible to reduce the stress at the contact portion between the first metal portion 11 and the semiconductor laminate 21 and suppress the variation in such characteristics.

また、空間SPにおける圧力は、大気圧よりも低いことが望ましい。空間SPにおける圧力が大気圧以上の場合、空間SP中の気体が加熱された際の膨張量が大きくなる。これにより、空間SPから外部の空間に向けて半導体装置に大きな応力が発生し、半導体装置が損傷する可能性がある。空間SPの圧力を大気圧未満にすることで、このような問題が生じる可能性を低減できる。 Further, it is desirable that the pressure in the space SP is lower than the atmospheric pressure. When the pressure in the space SP is equal to or higher than the atmospheric pressure, the amount of expansion when the gas in the space SP is heated becomes large. As a result, a large stress is generated in the semiconductor device from the space SP toward the external space, and the semiconductor device may be damaged. By reducing the pressure of the space SP to less than atmospheric pressure, the possibility of such a problem occurring can be reduced.

(適用例)
実施形態に係る半導体装置の製造方法は、一方の部材の表面に凹部が設けられた2つの部材を接合する方法に、広く適用できる。ここでは、その一例として、半導体発光装置の製造方法に、実施形態に係る製造方法を適用した場合を説明する。
(Application example)
The method for manufacturing a semiconductor device according to the embodiment can be widely applied to a method of joining two members having recesses on the surface of one member. Here, as an example, a case where the manufacturing method according to the embodiment is applied to the manufacturing method of the semiconductor light emitting device will be described.

図2A及び図2Bは、本発明の一実施形態に係る半導体装置の製造方法の適用例を示す工程断面図である。
実施形態に係る製造方法を用いて半導体発光装置を製造する場合の、構造体20の構造を図2Aに示す。
2A and 2B are process cross-sectional views showing an application example of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 2A shows the structure of the structure 20 when the semiconductor light emitting device is manufactured by using the manufacturing method according to the embodiment.

半導体積層体21は、n形半導体層21a、p形半導体層21b、及び発光層21cを含む。n形半導体層21aは、半導体積層体21の基板2側に設けられている。発光層21cは、n形半導体層21aとp形半導体層21bとの間に設けられている。p形半導体層21b及び発光層21cは、平面視において、n形半導体層21aの表面のうち凹部20rが設けられていない領域と重なる表面に設けられている。 The semiconductor laminate 21 includes an n-type semiconductor layer 21a, a p-type semiconductor layer 21b, and a light emitting layer 21c. The n-type semiconductor layer 21a is provided on the substrate 2 side of the semiconductor laminate 21. The light emitting layer 21c is provided between the n-type semiconductor layer 21a and the p-type semiconductor layer 21b. The p-type semiconductor layer 21b and the light emitting layer 21c are provided on the surface of the n-type semiconductor layer 21a that overlaps the region where the recess 20r is not provided in a plan view.

積層体22は、p側電極22a、絶縁層22b、配線層22c、及び絶縁層22dを含む。p側電極22aは、凹部20rの周りにおいて、p形半導体層21bの上に部分的に設けられている。絶縁層22bは、配線層22cがp側電極22a以外と接触しないように、p側電極22aの外周及びp形半導体層21bの表面を覆っている。配線層22cは、p側電極22a及び絶縁層22bの上に設けられており、p側電極22aと絶縁膜22bに設けられた開口部で接続されている。絶縁層22dは、配線層22cの表面と、凹部20rの側面において露出したp形半導体層21b及び発光層21cと、を覆っている。 The laminate 22 includes a p-side electrode 22a, an insulating layer 22b, a wiring layer 22c, and an insulating layer 22d. The p-side electrode 22a is partially provided on the p-type semiconductor layer 21b around the recess 20r. The insulating layer 22b covers the outer circumference of the p-side electrode 22a and the surface of the p-type semiconductor layer 21b so that the wiring layer 22c does not come into contact with other than the p-side electrode 22a. The wiring layer 22c is provided on the p-side electrode 22a and the insulating layer 22b, and is connected to the p-side electrode 22a by an opening provided in the insulating film 22b. The insulating layer 22d covers the surface of the wiring layer 22c and the p-type semiconductor layer 21b and the light emitting layer 21c exposed on the side surface of the recess 20r.

第2接合層23は、絶縁層22dの表面に沿って設けられている。また、n形半導体層21aの一部は、凹部20rの底部において、絶縁層22dに覆われておらず絶縁層22dから露出している。n形半導体層21aの当該一部は、第2接合層23と接触しており、コンタクト面21nが形成されている。 The second bonding layer 23 is provided along the surface of the insulating layer 22d. Further, a part of the n-type semiconductor layer 21a is not covered by the insulating layer 22d but is exposed from the insulating layer 22d at the bottom of the recess 20r. The part of the n-type semiconductor layer 21a is in contact with the second bonding layer 23, and a contact surface 21n is formed.

構造体20が有する各構成要素の材料の一例を説明する。
半導体積層体21は、窒化物半導体層を含む。p側電極22a及び配線層22cは、チタンやニッケルなどの金属材料を含む。絶縁層22b及び絶縁層22eは、酸化シリコンなどの絶縁材料を含む。
An example of the material of each component of the structure 20 will be described.
The semiconductor laminate 21 includes a nitride semiconductor layer. The p-side electrode 22a and the wiring layer 22c contain a metal material such as titanium or nickel. The insulating layer 22b and the insulating layer 22e include an insulating material such as silicon oxide.

図2Aに示した構造体20を図1Cに示した第1金属部11と接合させた後、基板2を除去することで、図2Bに示した構造が得られる。第1面20Sには、凹部20r以外に、凹部20rよりも高低差の小さい凹凸が多数存在するが、これらの凹凸に応じて第1金属部11の形状が変化する。これにより、凹部20r以外でも、第1金属部11と構造体20とを適切に接合することができ、製造される半導体発光装置の放熱性を向上させることができる。 By joining the structure 20 shown in FIG. 2A to the first metal portion 11 shown in FIG. 1C and then removing the substrate 2, the structure shown in FIG. 2B can be obtained. In addition to the recess 20r, the first surface 20S has many irregularities having a height difference smaller than that of the recess 20r, and the shape of the first metal portion 11 changes according to these irregularities. As a result, the first metal portion 11 and the structure 20 can be appropriately joined to each other other than the recess 20r, and the heat dissipation of the manufactured semiconductor light emitting device can be improved.

また、接合後の第1金属部11における孔10aの平均径は、例えば、第1面20Sの形状に応じて変化する。一例として、図2Bに示したように、接合後の孔10aの平均径は、第1面20Sの凸部と接合された部分では小さくなり、第1面20Sの凹部と接合された部分では大きくなる。 Further, the average diameter of the holes 10a in the first metal portion 11 after joining changes depending on, for example, the shape of the first surface 20S. As an example, as shown in FIG. 2B, the average diameter of the holes 10a after joining is small in the portion joined to the convex portion of the first surface 20S and large in the portion joined to the concave portion of the first surface 20S. Become.

図3は、本発明の一実施形態に係る半導体装置の製造方法を用いて製造される半導体発光装置を表す平面図である。
図4は、図3のIV−IV断面図である。
FIG. 3 is a plan view showing a semiconductor light emitting device manufactured by using the method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 4 is a sectional view taken along line IV-IV of FIG.

図3及び図4に表した半導体発光装置100は、図2Bに示した構造に加え、裏面電極31、pパッド電極32、及び保護層33をさらに有する。 The semiconductor light emitting device 100 shown in FIGS. 3 and 4 further includes a back surface electrode 31, a p-pad electrode 32, and a protective layer 33 in addition to the structure shown in FIG. 2B.

図3に示したように、半導体積層体21には複数の凹部20rが行列状に設けられている。配線層22cは、半導体積層体21が設けられている領域から延出して設けられ、その延出した部分の一部にpパッド電極32が設けられている。つまり、pパッド電極32は、半導体積層体21が設けられた領域の外側に設けられている。 As shown in FIG. 3, the semiconductor laminate 21 is provided with a plurality of recesses 20r in a matrix. The wiring layer 22c is provided so as to extend from the region where the semiconductor laminate 21 is provided, and the p-pad electrode 32 is provided in a part of the extending portion. That is, the p-pad electrode 32 is provided outside the region where the semiconductor laminate 21 is provided.

図4に示したように、裏面電極31は、半導体発光装置100の下面(基板1の金属層10とは反対側の面)に設けられている。pパッド電極32は、半導体発光装置100の上面に、半導体積層体21から離間して設けられている。pパッド電極32は、図4に示したように、絶縁層22bから露出した配線層22cと接続されている。保護層33は、半導体積層体21の表面を覆っている。n形半導体層21aの上面には、半導体発光装置100における光取り出し効率向上のために、凹凸構造等が形成されていても良い。 As shown in FIG. 4, the back surface electrode 31 is provided on the lower surface of the semiconductor light emitting device 100 (the surface of the substrate 1 opposite to the metal layer 10). The p-pad electrode 32 is provided on the upper surface of the semiconductor light emitting device 100 at a distance from the semiconductor laminate 21. As shown in FIG. 4, the p-pad electrode 32 is connected to the wiring layer 22c exposed from the insulating layer 22b. The protective layer 33 covers the surface of the semiconductor laminate 21. An uneven structure or the like may be formed on the upper surface of the n-type semiconductor layer 21a in order to improve the light extraction efficiency of the semiconductor light emitting device 100.

上述した実施形態に係る製造方法を用いた場合、以下の構成を有する半導体発光装置100が製造される。
第1金属部11は、複数の孔10aを有する。また、第1金属部11の一部は、上下方向において第1面20Sの凹部20rと重なる。第1金属部11の別の一部は、上下方向において、第1面20Sの凹部20rが設けられている面以外の面と重なる。そして、第1金属部11の別の一部における孔10aの平均径は、第1金属部11の一部における孔10aの平均径よりも小さい。また、第1金属部11の別の一部における孔10aの密度は、第1金属部11の一部における孔10aの密度よりも小さい。
When the manufacturing method according to the above-described embodiment is used, the semiconductor light emitting device 100 having the following configuration is manufactured.
The first metal portion 11 has a plurality of holes 10a. Further, a part of the first metal portion 11 overlaps with the recess 20r of the first surface 20S in the vertical direction. Another part of the first metal portion 11 overlaps with a surface other than the surface provided with the recess 20r of the first surface 20S in the vertical direction. The average diameter of the holes 10a in another part of the first metal portion 11 is smaller than the average diameter of the holes 10a in a part of the first metal portion 11. Further, the density of the holes 10a in another part of the first metal portion 11 is smaller than the density of the holes 10a in a part of the first metal portion 11.

第1金属部11中に、第1金属及び第2金属を含む複数の第2金属部12が設けられている場合、第1金属部11の別の一部における第2金属部12の平均径は、第1金属部11の一部における第2金属部12の平均径よりも小さい。また、第1金属部11の別の一部における第2金属部12の密度は、第1金属部11の一部における第2金属部12の密度よりも小さい。 When a plurality of second metal portions 12 including the first metal and the second metal are provided in the first metal portion 11, the average diameter of the second metal portion 12 in another part of the first metal portion 11 Is smaller than the average diameter of the second metal portion 12 in a part of the first metal portion 11. Further, the density of the second metal portion 12 in another part of the first metal portion 11 is smaller than the density of the second metal portion 12 in a part of the first metal portion 11.

前述の実施形態は、本発明を具現化した例であり、本発明はこの実施形態には限定されない。当業者が上述の実施形態を適宜設計変更して実施し得る形態も、本発明の要旨を包含する限り、本発明の範囲に含まれる。 The above-described embodiment is an example embodying the present invention, and the present invention is not limited to this embodiment. A form in which a person skilled in the art can appropriately design and implement the above-described embodiment is also included in the scope of the present invention as long as the gist of the present invention is included.

1、2…基板、 10…金属層、 10a…孔、 11…第1金属部、 12…第2金属部、 13…第1接合層、 20…構造体、 20S…第1面、 20r…凹部、 21…半導体積層体、 21a…n形半導体層、 21b…p形半導体層、 21c…発光層、 21n…コンタクト面、 22…積層体、 22a…p側電極、 22b…絶縁層、 22c…配線層、 22d…絶縁層、 23…第2接合層、 31…裏面電極、 32…pパッド電極、 33…保護層、 100…半導体発光装置、 D…深さ、 SP…空間、 T、T1、T2…厚み 1, 2 ... Substrate, 10 ... Metal layer, 10a ... Hole, 11 ... First metal part, 12 ... Second metal part, 13 ... First junction layer, 20 ... Structure, 20S ... First surface, 20r ... Recess , 21 ... semiconductor laminate, 21a ... n-type semiconductor layer, 21b ... p-type semiconductor layer, 21c ... light emitting layer, 21n ... contact surface, 22 ... laminate, 22a ... p side electrode, 22b ... insulation layer, 22c ... wiring Layer, 22d ... Insulation layer, 23 ... Second bonding layer, 31 ... Back electrode, 32 ... p pad electrode, 33 ... Protective layer, 100 ... Semiconductor light emitting device, D ... Depth, SP ... Space, T, T1, T2 … Thickness

Claims (13)

第1金属及び第2金属を含む金属層を基板の上に形成する準備工程と、
前記金属層の少なくとも一部における前記第2金属を除去することで、前記第1金属からなり、複数の孔が設けられた多孔質状の第1金属部を前記基板の上に形成する形成工程と、
凹部が設けられた第1面と、半導体積層体と、を有する構造体を準備する別の準備工程と、
前記構造体に対して、前記第1金属部の一部を、前記第1面の前記凹部と接合し、前記第1金属部の別の一部を、前記第1面の前記凹部が設けられている面以外の面と接合する接合工程と、を備え、
前記接合工程において、前記凹部の少なくとも一部を前記第1金属部で埋め込むとともに、前記第1金属部の前記別の一部における複数の前記孔の平均径が、前記第1金属部の前記一部における複数の前記孔の平均径よりも小さくなるように、前記第1面に前記第1金属部を接合する半導体装置の製造方法。
A preparatory step for forming a metal layer containing a first metal and a second metal on a substrate, and
A forming step of forming a porous first metal portion made of the first metal and provided with a plurality of holes on the substrate by removing the second metal in at least a part of the metal layer. When,
A first surface having a recess provided with another preparation step of preparing a structure having a semiconductor laminated body, and
A part of the first metal portion is joined to the recess on the first surface of the structure, and another part of the first metal portion is provided with the recess on the first surface. It is provided with a joining process for joining with a surface other than the surface on which it is formed.
In the joining step, at least a part of the recess is embedded in the first metal portion, and the average diameter of the plurality of holes in the other part of the first metal portion is the one of the first metal portion. A method for manufacturing a semiconductor device in which the first metal portion is joined to the first surface so as to be smaller than the average diameter of the plurality of holes in the portion.
前記形成工程において、前記第1金属部の厚みが、前記金属層の前記第1金属部以外の第2金属部の厚みよりも大きくなるよう、前記第1金属部を形成する請求項記載の半導体装置の製造方法。 In the forming step, the first metal portion of the thickness, to be larger than the thickness of the second metal portion other than the first metal portion of the metal layer, according to claim 1, wherein forming the first metal portion Manufacturing method of semiconductor devices. 前記接合工程において、前記第2金属部を溶融させることで、前記第1金属部の孔の少なくとも一部に、前記第2金属部を充填させる請求項記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 2 , wherein in the joining step, at least a part of the holes of the first metal part is filled with the second metal part by melting the second metal part. 記準備工程において形成される前記金属層の厚みは、前記凹部の深さよりも大きい請求項のいずれか1つに記載の半導体装置の製造方法。 The thickness of the metal layer formed in the previous Kijun Bei The method for manufacturing a semiconductor device as claimed in any one of claim 1 to 3, greater than the depth of the recess. 前記第1金属は、金、銀、ニッケル、及びクロムからなる群より選択された少なくとも1つであり、
前記第2金属は、錫である請求項のいずれか1つに記載の半導体装置の製造方法。
The first metal is at least one selected from the group consisting of gold, silver, nickel, and chromium.
The method for manufacturing a semiconductor device according to any one of claims 1 to 4 , wherein the second metal is tin.
前記形成工程において形成される前記第1金属部の厚みは、前記凹部の深さよりも大きい請求項1〜のいずれか1つに記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 5 , wherein the thickness of the first metal portion formed in the forming step is larger than the depth of the recess. 前記接合工程において、前記凹部の一部を前記第1金属部で埋め込むことで、前記凹部において前記第1面と前記第1金属部とに囲まれた空間を形成する請求項1〜のいずれか1つに記載の半導体装置の製造方法。 Any of claims 1 to 6 in which, in the joining step, a part of the recess is embedded in the first metal portion to form a space surrounded by the first surface and the first metal portion in the recess. The method for manufacturing a semiconductor device according to one. 前記空間における圧力は、大気圧未満である請求項記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 7 , wherein the pressure in the space is less than atmospheric pressure. 前記半導体積層体は、n形半導体層と、p形半導体層と、前記n形半導体層と前記p形半導体層との間に設けられた発光層と、を含み、
前記p形半導体層及び前記発光層は、平面視において、前記n形半導体層の表面のうち前記凹部が設けられていない領域と重なる表面に設けられた請求項1〜のいずれか1つに記載の半導体装置の製造方法。
The semiconductor laminate includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting layer provided between the n-type semiconductor layer and the p-type semiconductor layer.
The p-type semiconductor layer and the light emitting layer in plan view, to one of the claims 1-8 provided on the surface which overlaps with a region where the recess is not provided in the surface of the n-type semiconductor layer The method for manufacturing a semiconductor device according to the description.
前記構造体には、前記n形半導体層と電気的に接続された導電層が前記第1面に沿って設けられ、
前記接合工程において、前記第1金属部と前記導電層とを接合する請求項記載の半導体装置の製造方法。
The structure is provided with a conductive layer electrically connected to the n-type semiconductor layer along the first surface.
The method for manufacturing a semiconductor device according to claim 9 , wherein in the joining step, the first metal portion and the conductive layer are joined.
前記凹部は、互いに離れて行列状に設けられた請求項1〜10のいずれか1つに記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 10, wherein the recesses are provided in a matrix separated from each other. 複数の孔が設けられた多孔質状の第1金属部を基板の上に形成する形成工程と、 A forming step of forming a porous first metal portion having a plurality of holes on a substrate, and
凹部が設けられた第1面と、半導体積層体と、を有する構造体を準備する第1準備工程と、 A first preparation step for preparing a structure having a first surface provided with a recess and a semiconductor laminate,
前記構造体に対して、前記第1金属部の一部を、前記第1面の前記凹部と接合し、前記第1金属部の別の一部を、前記第1面の前記凹部が設けられている面以外の面と接合する接合工程と、を備え、 A part of the first metal portion is joined to the recess on the first surface of the structure, and another part of the first metal portion is provided with the recess on the first surface. It is provided with a joining process for joining with a surface other than the surface on which it is formed.
前記形成工程において形成される前記第1金属部の厚みは、前記凹部の深さよりも大きく、 The thickness of the first metal portion formed in the forming step is larger than the depth of the recess.
前記接合工程において、前記凹部の少なくとも一部を前記第1金属部で埋め込むとともに、前記第1金属部の前記別の一部における複数の前記孔の平均径が、前記第1金属部の前記一部における複数の前記孔の平均径よりも小さくなるように、前記第1面に前記第1金属部を接合する半導体装置の製造方法。 In the joining step, at least a part of the recess is embedded in the first metal portion, and the average diameter of the plurality of holes in the other part of the first metal portion is the one of the first metal portion. A method for manufacturing a semiconductor device in which the first metal portion is joined to the first surface so as to be smaller than the average diameter of the plurality of holes in the portion.
複数の孔が設けられた多孔質状の第1金属部を基板の上に形成する形成工程と、 A forming step of forming a porous first metal portion having a plurality of holes on a substrate, and
凹部が設けられた第1面と、半導体積層体と、を有する構造体を準備する第1準備工程と、 A first preparation step for preparing a structure having a first surface provided with a recess and a semiconductor laminate,
前記構造体に対して、前記第1金属部の一部を、前記第1面の前記凹部と接合し、前記第1金属部の別の一部を、前記第1面の前記凹部が設けられている面以外の面と接合する接合工程と、を備え、 A part of the first metal portion is joined to the recess on the first surface of the structure, and another part of the first metal portion is provided with the recess on the first surface. It is provided with a joining process for joining with a surface other than the surface on which it is formed.
前記接合工程において、前記凹部の一部を前記第1金属部で埋め込むことで、前記凹部において前記第1面と前記第1金属部とに囲まれた空間を形成するとともに、前記第1金属部の前記別の一部における複数の前記孔の平均径が、前記第1金属部の前記一部における複数の前記孔の平均径よりも小さくなるように、前記第1面に前記第1金属部を接合する半導体装置の製造方法。 In the joining step, by embedding a part of the recess with the first metal portion, a space surrounded by the first surface and the first metal portion is formed in the recess, and the first metal portion is formed. The first metal portion on the first surface so that the average diameter of the plurality of holes in the other part of the first metal portion is smaller than the average diameter of the plurality of holes in the portion of the first metal portion. A method for manufacturing a semiconductor device for joining.
JP2018162883A 2018-08-31 2018-08-31 Manufacturing method of semiconductor devices Active JP6826761B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018162883A JP6826761B2 (en) 2018-08-31 2018-08-31 Manufacturing method of semiconductor devices
US16/555,648 US10892392B2 (en) 2018-08-31 2019-08-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018162883A JP6826761B2 (en) 2018-08-31 2018-08-31 Manufacturing method of semiconductor devices

Publications (2)

Publication Number Publication Date
JP2020035948A JP2020035948A (en) 2020-03-05
JP6826761B2 true JP6826761B2 (en) 2021-02-10

Family

ID=69640114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018162883A Active JP6826761B2 (en) 2018-08-31 2018-08-31 Manufacturing method of semiconductor devices

Country Status (2)

Country Link
US (1) US10892392B2 (en)
JP (1) JP6826761B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129088B (en) * 2019-12-17 2022-09-09 武汉华星光电半导体显示技术有限公司 Organic light emitting diode display device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169931A (en) * 1993-12-16 1995-07-04 Hitachi Ltd Semiconductor device and its manufacture
US8008683B2 (en) 2008-10-22 2011-08-30 Samsung Led Co., Ltd. Semiconductor light emitting device
US8202741B2 (en) * 2009-03-04 2012-06-19 Koninklijke Philips Electronics N.V. Method of bonding a semiconductor device using a compliant bonding structure
KR101252032B1 (en) 2010-07-08 2013-04-10 삼성전자주식회사 Semiconductor light emitting device and method of manufacturing the same
US9070851B2 (en) * 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
JP5892378B2 (en) 2011-06-20 2016-03-23 国立大学法人東北大学 Manufacturing method of package material
JP2013179215A (en) * 2012-02-29 2013-09-09 Toyohashi Univ Of Technology Led array and photoelectric integrated device
JP6135213B2 (en) * 2012-04-18 2017-05-31 日亜化学工業株式会社 Semiconductor light emitting device
KR101936277B1 (en) * 2012-07-12 2019-01-08 엘지이노텍 주식회사 Light emitting device, light emitting device package, and light unit
JP5839326B2 (en) 2012-10-16 2016-01-06 国立大学法人東北大学 Packaged device, packaging material manufacturing method and packaging method
JP5828406B2 (en) 2012-12-30 2015-12-02 国立大学法人東北大学 Substrate bonding method
DE102013103079A1 (en) * 2013-03-26 2014-10-02 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
US9844134B2 (en) * 2015-01-29 2017-12-12 Infineon Technologies Ag Device including a metallization layer and method of manufacturing a device
JP2016169411A (en) * 2015-03-12 2016-09-23 日立化成株式会社 Porous silver-made sheet and metallic member conjugate using the porous silver-made sheet
JP2016174018A (en) 2015-03-16 2016-09-29 株式会社東芝 Semiconductor light emitting element
JP6430007B2 (en) * 2015-07-01 2018-11-28 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2020035948A (en) 2020-03-05
US10892392B2 (en) 2021-01-12
US20200075825A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6269664B2 (en) Method for manufacturing LED or solar cell structure
JP2015173177A (en) semiconductor light-emitting element
JP2011253975A (en) Light emitting device and method for manufacturing the same
JP6367175B2 (en) Semiconductor light emitting device
US9231163B2 (en) Semiconductor light emitting apparatus
CN101273446B (en) Method for connecting layers, corresponding component and organic light-emitting diode
JP2005347313A (en) Manufacturing method of semiconductor device
JP6826761B2 (en) Manufacturing method of semiconductor devices
TW201230260A (en) Package carrier and manufacturing method thereof
JP5749336B2 (en) Radiation emitting semiconductor body, method for manufacturing radiation emitting semiconductor body, and radiation emitting semiconductor component
KR102328383B1 (en) Method for manufacturing optoelectronic semiconductor chip, and optoelectronic semiconductor chip
JP3812549B2 (en) Semiconductor device
CN106531861A (en) Semiconductor light emitting device
JP6245791B2 (en) Vertical nitride semiconductor device and manufacturing method thereof
JP2014154693A (en) Group iii nitride semiconductor light-emitting element and manufacturing method of the same
JP7096489B2 (en) Manufacturing method of semiconductor device
US10510683B2 (en) Packaging structures for metallic bonding based opto-electronic device and manufacturing methods thereof
JP2017076741A (en) Semiconductor device and manufacturing method of the same
JP2006086361A (en) Semiconductor light-emitting element and its manufacturing method
JP4333483B2 (en) Semiconductor device
CN109713090B (en) LED chip with vertical structure and manufacturing method thereof
JP7004918B2 (en) Manufacturing method of semiconductor device
JP2017069366A (en) Semiconductor device and method of manufacturing the same
US20200395731A1 (en) Insulated Laser Coolers
JP2015130399A (en) Light emitting element and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201230

R150 Certificate of patent or registration of utility model

Ref document number: 6826761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250