JP6825856B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP6825856B2
JP6825856B2 JP2016175576A JP2016175576A JP6825856B2 JP 6825856 B2 JP6825856 B2 JP 6825856B2 JP 2016175576 A JP2016175576 A JP 2016175576A JP 2016175576 A JP2016175576 A JP 2016175576A JP 6825856 B2 JP6825856 B2 JP 6825856B2
Authority
JP
Japan
Prior art keywords
resin
polyamide
acid
polyester resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016175576A
Other languages
Japanese (ja)
Other versions
JP2018039927A (en
Inventor
隆行 平井
隆行 平井
小田 哲也
哲也 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2016175576A priority Critical patent/JP6825856B2/en
Publication of JP2018039927A publication Critical patent/JP2018039927A/en
Application granted granted Critical
Publication of JP6825856B2 publication Critical patent/JP6825856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリアミド樹脂とポリエステル樹脂とを含有する樹脂組成物に関する。 The present invention relates to a resin composition containing a polyamide resin and a polyester resin.

ポリアミド樹脂は、その成形体が優れた機械的性質、耐薬品性、耐久性を有することから、自動車分野、電気・電子分野、機械・工業分野、事務機器分野、航空、宇宙分野等の各種部品用の材料として広く利用されている。また、ポリエステル樹脂も、その成形体が優れた機械的性質、耐薬品性を有することから、エンジニアリングプラスチックとして様々な工業分野において使用されている。しかしながら、ポリアミド樹脂からなる成形体は吸水による寸法変化や物性変化が大きく、ポリエステル樹脂からなる成形体は結晶化速度が遅く、成形性が悪いという欠点を有している。このため、これらの欠点を補い、さらに、ポリアミド樹脂とポリエステル樹脂の優れた特性を活用することを目的として、ポリアミド樹脂とポリエステル樹脂とを含有する樹脂組成物が提案されている。しかしながら、ポリアミド樹脂とポリエステル樹脂は相溶性が低く、これらの樹脂を含有する樹脂組成物からなる成形体は、機械的強度に劣るという問題があった。 Polyamide resin has excellent mechanical properties, chemical resistance, and durability in its molded body, so various parts in the fields of automobiles, electrical / electronic fields, mechanical / industrial fields, office equipment fields, aerospace fields, etc. It is widely used as a material for. In addition, polyester resin is also used as an engineering plastic in various industrial fields because its molded product has excellent mechanical properties and chemical resistance. However, the molded product made of polyamide resin has a large dimensional change and physical property change due to water absorption, and the molded product made of polyester resin has a drawback that the crystallization rate is slow and the moldability is poor. Therefore, a resin composition containing a polyamide resin and a polyester resin has been proposed for the purpose of compensating for these drawbacks and further utilizing the excellent properties of the polyamide resin and the polyester resin. However, the polyamide resin and the polyester resin have low compatibility, and a molded product made of a resin composition containing these resins has a problem of being inferior in mechanical strength.

そこで、ポリアミド樹脂とポリエステル樹脂との相溶性を改善し、機械的強度に優れた成形体が得られる樹脂組成物として、特開平5−214244号公報(特許文献1)には、ポリアミド樹脂10〜90質量%と熱可塑性ポリエステル樹脂90〜10質量%とからなる混合物100質量部に、スチレンやメチルメタクリレート等のビニルモノマーとグリシジルエステル基含有ビニルモノマーとからなるビニル系共重合体0.1〜10質量部を配合してなる樹脂組成物が開示されている。しかしながら、この樹脂組成物からなる成形体は曲げ弾性率や曲げ強度に劣るという問題があった。 Therefore, as a resin composition capable of improving the compatibility between the polyamide resin and the polyester resin and obtaining a molded product having excellent mechanical strength, Japanese Patent Application Laid-Open No. 5-214244 (Patent Document 1) describes the polyamide resin 10 to 10. 0.1 to 10 parts of a vinyl copolymer composed of a vinyl monomer such as styrene or methyl methacrylate and a glycidyl ester group-containing vinyl monomer in 100 parts by mass of a mixture of 90% by mass and 90 to 10% by mass of a thermoplastic polyester resin. A resin composition containing parts by mass is disclosed. However, the molded product made of this resin composition has a problem that it is inferior in flexural modulus and bending strength.

特開平5−214244号公報Japanese Unexamined Patent Publication No. 5-214244

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、ポリアミド樹脂とポリエステル樹脂とを含有する樹脂組成物からなる成形体において、曲げ強度を大きく低下させることなく、曲げ弾性率を向上させることが可能な樹脂組成物を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and in a molded product made of a resin composition containing a polyamide resin and a polyester resin, the flexural modulus can be increased without significantly reducing the bending strength. It is an object of the present invention to provide a resin composition which can be improved.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ポリアミド樹脂とポリエステル樹脂とを含有する樹脂組成物にビニルアルコール系重合体を特定の割合で配合することによって、その成形体は、曲げ強度が大きく低下することなく、曲げ弾性率が向上することを見出し、本発明を完成するに至った。 As a result of diligent research to achieve the above object, the present inventors have added a vinyl alcohol-based polymer in a specific ratio to a resin composition containing a polyamide resin and a polyester resin to obtain a molded product thereof. Found that the flexural modulus was improved without significantly reducing the bending strength, and completed the present invention.

すなわち、本発明の樹脂組成物は、動的粘弾性測定によって測定される損失正接−温度曲線のピークから求められるガラス転移温度が50℃以上のポリアミド樹脂と、動的粘弾性測定によって測定される損失正接−温度曲線のピークから求められるガラス転移温度が50℃以上のポリエステル樹脂と、ポリビニルアルコールと、を含有し、
前記ポリアミド樹脂と前記ポリエステル樹脂との合計含有量が99.9〜85.0質量部であり、前記ポリビニルアルコールの含有量が0.1〜15.0質量部であり、前記ポリアミド樹脂と前記ポリエステル樹脂との質量比(ポリアミド樹脂:ポリエステル樹脂)が1:9〜9:1である、ことを特徴とするものである。
That is, the resin composition of the present invention is measured by dynamic viscoelasticity measurement with a polyamide resin having a glass transition temperature of 50 ° C. or higher determined from the peak of the loss tangent-temperature curve measured by dynamic viscoelasticity measurement. It contains a polyester resin having a glass transition temperature of 50 ° C. or higher and polyvinyl alcohol , which are obtained from the peak of the loss tangent-temperature curve.
The total content of the polyamide resin and the polyester resin is 99.9 to 85.0 parts by mass, the content of the polyvinyl alcohol is 0.1 to 15.0 parts by mass, and the polyamide resin and the polyester It is characterized in that the mass ratio with the resin (polyamide resin: polyester resin) is 1: 9 to 9: 1.

なお、本発明の樹脂組成物からなる成形体が、曲げ強度が大きく低下せずに、曲げ弾性率が向上する理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の樹脂組成物においては、ビニルアルコール系重合体中の水酸基がポリアミド樹脂とポリエステル樹脂との間のエステル交換反応の触媒として作用し、このエステル交換反応によりポリアミドポリエステル共重合体が生成すると推察される。そして、このポリアミドポリエステル共重合体がポリアミド樹脂とポリエステル樹脂との間の相溶化剤として作用することによって、ポリアミド樹脂とポリエステル樹脂との間の界面強度が向上するため、これらの樹脂の混合状態が改善すると推察される。また、ビニルアルコール系重合体中の水酸基がポリアミド樹脂及びポリエステル樹脂のカルボニル基と強い水素結合を形成することによっても、ポリアミド樹脂とポリエステル樹脂との接着強度が向上するため、これらの樹脂の混合状態が改善すると推察される。このように、本発明の樹脂組成物においては、ビニルアルコール系重合体の共存によって、ポリアミド樹脂とポリエステル樹脂との混合状態が改善するため、成形体の曲げ弾性率が向上すると推察される。 Although it is not always clear why the molded product made of the resin composition of the present invention improves the flexural modulus without significantly reducing the bending strength, the present inventors presume as follows. That is, in the resin composition of the present invention, the hydroxyl group in the vinyl alcohol-based polymer acts as a catalyst for the transesterification reaction between the polyamide resin and the polyester resin, and this transesterification reaction produces a polyamide-polyester copolymer. Then it is inferred. Then, since this polyamide-polyester copolymer acts as a compatibilizer between the polyamide resin and the polyester resin, the interfacial strength between the polyamide resin and the polyester resin is improved, so that the mixed state of these resins is changed. It is presumed that it will improve. Further, the hydroxyl group in the vinyl alcohol-based polymer also forms a strong hydrogen bond with the carbonyl group of the polyamide resin and the polyester resin, so that the adhesive strength between the polyamide resin and the polyester resin is improved, and thus the mixed state of these resins. Is presumed to improve. As described above, in the resin composition of the present invention, it is presumed that the coexistence of the vinyl alcohol-based polymer improves the mixed state of the polyamide resin and the polyester resin, so that the flexural modulus of the molded product is improved.

本発明によれば、ポリアミド樹脂とポリエステル樹脂とを含有する樹脂組成物からなる成形体において、曲げ強度を大きく低下させることなく、曲げ弾性率を向上させることが可能となる。 According to the present invention, in a molded product made of a resin composition containing a polyamide resin and a polyester resin, it is possible to improve the flexural modulus without significantly reducing the bending strength.

以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail according to its preferred embodiment.

本発明の樹脂組成物は、動的粘弾性測定によって測定される損失正接−温度曲線のピークから求められるガラス転移温度(以下、単に「ガラス転移温度」という)が50℃以上のポリアミド樹脂と、動的粘弾性測定によって測定される損失正接−温度曲線のピークから求められるガラス転移温度(以下、単に「ガラス転移温度」という)が50℃以上のポリエステル樹脂と、ビニルアルコール系重合体とを含有するものである。 The resin composition of the present invention comprises a polyamide resin having a glass transition temperature (hereinafter, simply referred to as “glass transition temperature”) determined from the peak of the loss tangent-temperature curve measured by dynamic viscoelasticity measurement and 50 ° C. or higher. Contains a polyester resin having a glass transition temperature (hereinafter, simply referred to as "glass transition temperature") determined from the peak of the loss tangent-temperature curve measured by dynamic viscoelasticity measurement of 50 ° C. or higher, and a vinyl alcohol-based polymer. It is something to do.

(ポリアミド樹脂)
本発明に用いられるポリアミド樹脂としては、アミド結合(−NH−CO−)を介して複数の単量体が重合されることによって形成される鎖状骨格を有する重合体であって、ガラス転移温度が50℃以上のものであれば特に制限はない。ガラス転移温度が50℃以上のポリアミド樹脂を用いることによって、室温を超える温度雰囲気下においても高い機械的強度を有する成形体が得られる。なお、前記ポリアミド樹脂のガラス転移温度の上限としては特に制限はないが、通常、150℃以下である。
(Polyamide resin)
The polyamide resin used in the present invention is a polymer having a chain skeleton formed by polymerizing a plurality of monomers via an amide bond (-NH-CO-), and has a glass transition temperature. There is no particular limitation as long as the temperature is 50 ° C. or higher. By using a polyamide resin having a glass transition temperature of 50 ° C. or higher, a molded product having high mechanical strength can be obtained even in a temperature atmosphere exceeding room temperature. The upper limit of the glass transition temperature of the polyamide resin is not particularly limited, but is usually 150 ° C. or lower.

このようなポリアミド樹脂を構成する単量体としては、例えば、アミノカプロン酸、パラアミノメチル安息香酸等のアミノ酸;ε−カプロラクタム等のラクタムが挙げられる。これらの単量体は1種を単独で使用しても2種以上を併用してもよい。 Examples of the monomer constituting such a polyamide resin include amino acids such as aminocaproic acid and paraaminomethylbenzoic acid; and lactams such as ε-caprolactam. These monomers may be used alone or in combination of two or more.

また、本発明においては、ジアミンとジカルボン酸との共重合体も、前記ポリアミド樹脂として使用することができる。前記ジアミンとしては、例えば、エチレンジアミン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン、1,13−ジアミノトリデカン、1,14−ジアミノテトラデカン、1,15−ジアミノペンタデカン、1,16−ジアミノヘキサデカン、1,17−ジアミノヘプタデカン、1,18−ジアミノオクタデカン、1、19−ジアミノノナデカン、1,20−ジアミノエイコサン、2−メチル−1,5−ジアミノペンタン、2−メチル−1,8−ジアミノオクタン等の脂肪族ジアミン;シクロヘキサンジアミン、ビス−(4−アミノシクロヘキシル)メタン等の脂環式ジアミン;キシリレンジアミン、p−フェニレンジアミン、m−フェニレンジアミン等の芳香族ジアミンが挙げられる。これらのジアミンは1種を単独で使用しても2種以上を併用してもよい。 Further, in the present invention, a copolymer of diamine and dicarboxylic acid can also be used as the polyamide resin. Examples of the diamine include ethylene diamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, and 1,9-diaminononane. 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, 1,15-diaminopentadecane, 1,16-diaminohexadecane, 1,17-diaminoheptadecane, 1,18-diaminooctadecane, 1,19-diaminononadecan, 1,20-diaminoeikosan, 2-methyl-1,5-diaminopentane, 2-methyl-1,8- Aliphatic diamines such as diaminooctane; alicyclic diamines such as cyclohexanediamine and bis- (4-aminocyclohexyl) methane; aromatic diamines such as xylylene diamine, p-phenylenediamine and m-phenylenediamine can be mentioned. These diamines may be used alone or in combination of two or more.

前記ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシリン酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸等の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。これらのジカルボン酸は1種を単独で使用しても2種以上を併用してもよい。 Examples of the dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brushphosphoric acid, and tetradecanedioic acid. Examples thereof include aliphatic dicarboxylic acids such as pentadecanedioic acid and octadecanedioic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid. These dicarboxylic acids may be used alone or in combination of two or more.

このようなポリアミド樹脂として具体的には、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリアミド6T(PA6T)、ポリアミド6I(PA6I)、ポリアミド9T(PA9T)、ポリアミドM5T(PAM5T)、ポリアミド1010(PA1010)、ポリアミド1012(PA1012)、ポリアミド10T(PA10T)、ポリアミドMXD6(PAMXD6)、ポリアミド6T/6(PA6T/6)、ポリアミド6T/66(PA6T/66)、ポリアミド6T/6I(PA6T/6I)、ポリアミド6T/6I/66(PA6T/6I/66)、ポリアミド6T/2M−5T(PA6T/2M−5T)、ポリアミド9T/2M−8T(PA9T/2M−8T)等が挙げられる。これらのポリアミド樹脂は1種を単独で使用しても2種以上を併用してもよい。 Specifically, as such a polyamide resin, polyamide 6 (PA6), polyamide 66 (PA66), polyamide 610 (PA610), polyamide 612 (PA612), polyamide 6T (PA6T), polyamide 6I (PA6I), polyamide 9T ( PA9T), Polyamide M5T (PAM5T), Polyamide 1010 (PA1010), Polyamide 1012 (PA1012), Polyamide 10T (PA10T), Polyamide MXD6 (PAMXD6), Polyamide 6T / 6 (PA6T / 6), Polyamide 6T / 66 (PA6T / 66), Polyamide 6T / 6I (PA6T / 6I), Polyamide 6T / 6I / 66 (PA6T / 6I / 66), Polyamide 6T / 2M-5T (PA6T / 2M-5T), Polyamide 9T / 2M-8T (PA9T / 2M-8T) and the like. These polyamide resins may be used alone or in combination of two or more.

このようなポリアミド樹脂の中でも、成形性及び機械的強度に優れた成形体が得られるという観点から、PA6、PA66、PA610、及びPAMXD6が好ましく、PA6がより好ましい。 Among such polyamide resins, PA6, PA66, PA610, and PAMXD6 are preferable, and PA6 is more preferable, from the viewpoint of obtaining a molded product having excellent moldability and mechanical strength.

前記PA6は炭素数が6である単量体のうち、ε−カプロラクタムを単独重合させて得られるポリアミド樹脂であり、前記PA66はヘキサメチレンジアミンとアジピン酸との共重合により得られるポリアミド樹脂であり、前記PA610は植物油であるひまし油由来のセバシン酸と石油由来のヘキサメチレンジアミンとの共重合により得られるポリアミド樹脂である。また、前記PAMXD6はメタキシリレンジアミン(MXDA)とアジピン酸とから得られる結晶性のポリアミド樹脂である。 PA6 is a polyamide resin obtained by homopolymerizing ε-caprolactam among the monomers having 6 carbon atoms, and PA66 is a polyamide resin obtained by copolymerizing hexamethylenediamine and adipic acid. PA610 is a polyamide resin obtained by copolymerizing sebacic acid derived from castor oil, which is a vegetable oil, and hexamethylenediamine derived from petroleum. Further, PAMXD6 is a crystalline polyamide resin obtained from m-xylylenediamine (MXDA) and adipic acid.

このようなポリアミド樹脂の製造方法としては特に制限されず、公知の方法を適宜採用することができる。また、本発明においては、ポリアミド樹脂として、市販のものを用いてもよい。市販のポリアミド樹脂としては、ユニチカ社製のポリアミド6(商品名:ユニチカナイロン6「A1030BRL」)、宇部興産社製のポリアミド6(商品名:UBEナイロン「1015B」)、東レ社製のポリアミド6(商品名:アラミン(登録商標)「CM1017」)、東レ社製のポリアミド66(商品名:アラミン(登録商標)「CM3001−N」)、三菱ガス化学社製のポリアミドMXD6(商品名:レニー(登録商標)「S6001」)等が挙げられる。 The method for producing such a polyamide resin is not particularly limited, and a known method can be appropriately adopted. Further, in the present invention, a commercially available polyamide resin may be used. Commercially available polyamide resins include polyamide 6 manufactured by Unitica (trade name: Unitica nylon 6 "A1030BRL"), polyamide 6 manufactured by Ube Industries (trade name: UBE nylon "1015B"), and polyamide 6 manufactured by Toray (trade name: UBE nylon "1015B"). Product name: Alamin (registered trademark) "CM1017"), Polyamide 66 manufactured by Toray (trade name: Alamin (registered trademark) "CM3001-N"), Polyamide MXD6 manufactured by Mitsubishi Gas Chemicals (trade name: Lenny (registered)) Trademark) "S6001") and the like can be mentioned.

(ポリエステル樹脂)
本発明に用いられるポリエステル樹脂としては、エステル結合(−CO−O−)を介して複数の単量体が重合されることによって形成される鎖状骨格を有する重合体であって、ガラス転移温度が50℃以上のものであれば特に制限はない。ガラス転移温度が50℃以上のポリエステル樹脂を用いることによって、室温を超える温度雰囲気下においても高い機械的強度を有する成形体が得られる。なお、前記ポリエステル樹脂のガラス転移温度の上限としては特に制限はないが、通常、150℃以下である。
(Polyester resin)
The polyester resin used in the present invention is a polymer having a chain skeleton formed by polymerizing a plurality of monomers via an ester bond (-CO-O-), and has a glass transition temperature. There is no particular limitation as long as the temperature is 50 ° C. or higher. By using a polyester resin having a glass transition temperature of 50 ° C. or higher, a molded product having high mechanical strength can be obtained even in a temperature atmosphere exceeding room temperature. The upper limit of the glass transition temperature of the polyester resin is not particularly limited, but is usually 150 ° C. or lower.

このようなポリエステル樹脂を構成する単量体としては、例えば、ヒドロキシ安息香酸、ヒドロキシナフトエ酸、ジフェニレンオキシカルボン酸が挙げられる。これらの単量体は1種を単独で使用しても2種以上を併用してもよい。 Examples of the monomer constituting such a polyester resin include hydroxybenzoic acid, hydroxynaphthoeic acid, and diphenyleneoxycarboxylic acid. These monomers may be used alone or in combination of two or more.

また、本発明においては、ジカルボン酸とジオールとの重縮合物も、前記ポリエステル樹脂として使用することができる。前記ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシリン酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸等の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。これらのジカルボン酸は1種を単独で使用しても2種以上を併用してもよい。 Further, in the present invention, a polycondensate product of a dicarboxylic acid and a diol can also be used as the polyester resin. Examples of the dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brushphosphoric acid, and tetradecanedioic acid. Examples thereof include aliphatic dicarboxylic acids such as pentadecanedioic acid and octadecanedioic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid. These dicarboxylic acids may be used alone or in combination of two or more.

前記ジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、ブタンジオール、ネオペンチルグリコール、ブテンジオール、ペンタンジオール、ヘキサンジオール等の脂肪族ジオール;シクロヘキサンジオール、シクロヘキサンジメタノール等の脂環式ジオール;ハイドロキノン、レゾルシン、ジヒドロキシフェニル、ナフタレンジオール、ジヒドロキシフェニルエーテル、2,2−ビス(4−ヒドロキシフェニル)プロパン等の芳香族ジオールが挙げられる。これらのジオールは1種を単独で使用しても2種以上を併用してもよい。 Examples of the diol include aliphatic diols such as ethylene glycol, propylene glycol, 1,3-propanediol, butanediol, neopentyl glycol, butenediol, pentanediol, and hexanediol; and fats such as cyclohexanediol and cyclohexanedimethanol. Cyclic diols; examples include aromatic diols such as hydroquinone, resorcin, dihydroxyphenyl, naphthalene diol, dihydroxyphenyl ether, and 2,2-bis (4-hydroxyphenyl) propane. These diols may be used alone or in combination of two or more.

このようなポリエステル樹脂として具体的には、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸(PL)、ポリヒドロキシアルカン酸(PHA)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート(PTT)等が挙げられる。これらのポリエステル樹脂は1種を単独で使用しても2種以上を併用してもよい。 Specifically, such polyester resins include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene succinate (PES), polybutylene succinate (PBS), polylactic acid (PL), and polyhydroxyalkanoic acid (PET). PHA), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT) and the like. These polyester resins may be used alone or in combination of two or more.

このようなポリエステル樹脂の中でも、成形性、耐熱性、機械的性質の観点から、PET、PTT、PBT、PENが好ましく、PETがより好ましい。 Among such polyester resins, PET, PTT, PBT, and PEN are preferable, and PET is more preferable, from the viewpoints of moldability, heat resistance, and mechanical properties.

前記PETはエチレングリコールとテレフタル酸との脱水縮合により得られるポリエステル樹脂であり、安価でありながら、高い融点を有し、機械的性質にも優れている。また、前記PTTはテレフタル酸ジメチル又はテレフタル酸と1,3−プロパンジオールとの脱水縮合により得られるポリエステル樹脂である。前記PBTはテレフタル酸と1,4−ブタンジオールとの脱水縮合により得られるポリエステル樹脂である。前記PENは2,6−ナフタレンジカルボン酸とエチレングリコールとの脱水縮合により得られるポリエステル樹脂である。 The PET is a polyester resin obtained by dehydration condensation of ethylene glycol and terephthalic acid, and is inexpensive, has a high melting point, and has excellent mechanical properties. Further, the PTT is a polyester resin obtained by dehydration condensation of dimethyl terephthalate or terephthalic acid and 1,3-propanediol. The PBT is a polyester resin obtained by dehydration condensation of terephthalic acid and 1,4-butanediol. The PEN is a polyester resin obtained by dehydration condensation of 2,6-naphthalenedicarboxylic acid and ethylene glycol.

このようなポリエステル樹脂の製造方法としては特に制限されず、公知の方法を適宜採用することができる。また、本発明においては、ポリエステル樹脂として、市販のものを用いてもよい。市販のポリエステル樹脂としては、帝人社製のポリエチレンテレフタレート(商品名:TR8550FF)、東レ社製のポリブチレンテレフタレート(商品名:トレコン(登録商標)「1401X06」)、帝人社製のポリエチレンナフタレート(商品名:テオネックス(登録商標)「TN8050SC」)等が挙げられる。 The method for producing such a polyester resin is not particularly limited, and a known method can be appropriately adopted. Further, in the present invention, a commercially available polyester resin may be used. Commercially available polyester resins include Teijin's polyethylene terephthalate (trade name: TR8550FF), Toray's polybutylene terephthalate (trade name: Trecon (registered trademark) "1401X06"), and Teijin's polyethylene naphthalate (commodity). Name: Teijin® (registered trademark) "TN8050SC") and the like.

(ビニルアルコール系重合体)
本発明に用いられるビニルアルコール系重合体としては、主としてビニルアルコールモノマー単位を含有する重合体である。このようなビニルアルコール系重合体において、前記ビニルアルコールモノマー単位の割合は、全モノマー単位の50mol%以上であることが好ましく、70mol%以上であることがより好ましく、90mol%以上であることが更に好ましく、95mol%以上であることが特に好ましい。ビニルアルコールモノマー単位の割合が前記下限未満になると、成形体の曲げ強度が大きく低下する傾向にある。
(Vinyl alcohol polymer)
The vinyl alcohol-based polymer used in the present invention is a polymer mainly containing a vinyl alcohol monomer unit. In such a vinyl alcohol-based polymer, the ratio of the vinyl alcohol monomer unit is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more of all the monomer units. It is preferably 95 mol% or more, and particularly preferably 95 mol% or more. When the ratio of the vinyl alcohol monomer unit is less than the above lower limit, the bending strength of the molded product tends to be significantly reduced.

このようなビニルアルコール系重合体としては、例えば、ポリ酢酸ビニルのケン化物(酢酸ビニルの単独重合体をケン化したもの、例えば、ポリビニルアルコール)、エチレン−ビニルアルコール共重合体、エチレン−酢酸ビニル共重合体のケン化物(エチレンと酢酸ビニルとの共重合体をケン化したもの)等が挙げられる。 Examples of such a vinyl alcohol-based polymer include a saponified product of polyvinyl acetate (a saponified product of a homopolymer of vinyl acetate, for example, polyvinyl alcohol), an ethylene-vinyl alcohol copolymer, and an ethylene-vinyl acetate. Examples thereof include a saponified product of a copolymer (a saponified product of a copolymer of ethylene and vinyl acetate).

前記ポリ酢酸ビニルのケン化物において、酢酸ビニルモノマー単位のケン化度としては50%以上が好ましく、70%以上がより好ましく、90%以上が更に好ましく、95%以上が特に好ましい。酢酸ビニルモノマー単位のケン化度が前記下限未満になると、ビニルアルコールモノマー単位の割合が少なくなり、成形体の曲げ強度が大きく低下する傾向にある。 In the saponified product of polyvinyl acetate, the degree of saponification of the vinyl acetate monomer unit is preferably 50% or more, more preferably 70% or more, further preferably 90% or more, and particularly preferably 95% or more. When the degree of saponification of the vinyl acetate monomer unit is less than the above lower limit, the proportion of the vinyl alcohol monomer unit is reduced, and the bending strength of the molded product tends to be significantly reduced.

また、前記エチレン−ビニルアルコール共重合体において、ビニルアルコールモノマーの共重合割合としては50mol%以上が好ましく、70mol%以上がより好ましく、90mol%以上が更に好ましく、95mol%以上が特に好ましい。ビニルアルコールモノマーの共重合割合が前記下限未満になると、成形体の曲げ強度が大きく低下する傾向にある。 Further, in the ethylene-vinyl alcohol copolymer, the copolymerization ratio of the vinyl alcohol monomer is preferably 50 mol% or more, more preferably 70 mol% or more, further preferably 90 mol% or more, and particularly preferably 95 mol% or more. When the copolymerization ratio of the vinyl alcohol monomer is less than the above lower limit, the bending strength of the molded product tends to be significantly reduced.

さらに、前記エチレン−酢酸ビニル共重合体のケン化物においては、酢酸ビニルモノマーの共重合割合が50mol%以上(より好ましくは70mol%以上、更に好ましくは90mol%以上、特に好ましくは95mol%以上)であって、酢酸ビニルモノマー単位のケン化度が50%以上(より好ましくは70%以上、更に好ましくは90%以上、特に好ましくは95%以上)であることが好ましい。酢酸ビニルモノマーの共重合割合又は酢酸ビニルモノマー単位のケン化度が前記下限未満になると、ビニルアルコールモノマー単位の割合が少なくなり、成形体の曲げ強度が大きく低下する傾向にある。 Further, in the saponified product of the ethylene-vinyl acetate copolymer, the copolymerization ratio of the vinyl acetate monomer is 50 mol% or more (more preferably 70 mol% or more, further preferably 90 mol% or more, particularly preferably 95 mol% or more). The degree of saponification of the vinyl acetate monomer unit is preferably 50% or more (more preferably 70% or more, further preferably 90% or more, particularly preferably 95% or more). When the copolymerization ratio of the vinyl acetate monomer or the saponification degree of the vinyl acetate monomer unit is less than the above lower limit, the ratio of the vinyl alcohol monomer unit decreases, and the bending strength of the molded product tends to be significantly reduced.

このようなビニルアルコール系重合体の中でも、成形体の曲げ強度が低下せずに、曲げ弾性率が向上するという観点から、ポリビニルアルコール(通常、ケン化度は98%以上)が最も好ましい。 Among such vinyl alcohol-based polymers, polyvinyl alcohol (usually, the degree of saponification is 98% or more) is most preferable from the viewpoint of improving the flexural modulus without lowering the bending strength of the molded product.

また、このようなビニルアルコール系重合体の製造方法としては特に制限されず、公知の方法を適宜採用することができる。さらに、本発明においては、ビニルアルコール系重合体として、市販のものを用いてもよい。市販のビニルアルコール系重合体としては、日本合成化学工業社製のポリビニルアルコール(商品名:ゴーセノール「N−300」)、日本合成化学工業社製のエチレン−ビニルアルコール共重合体(商品名:ソアノール「D2908」)等が挙げられる。 Further, the method for producing such a vinyl alcohol-based polymer is not particularly limited, and a known method can be appropriately adopted. Further, in the present invention, a commercially available vinyl alcohol polymer may be used. Commercially available vinyl alcohol-based polymers include polyvinyl alcohol manufactured by Nippon Synthetic Chemical Industry Co., Ltd. (trade name: Gosenol "N-300") and ethylene-vinyl alcohol copolymer manufactured by Nippon Synthetic Chemical Industry Co., Ltd. (trade name: Soanol). "D2908") and the like.

<樹脂組成物>
本発明の樹脂組成物は、このようなポリアミド樹脂とポリエステル樹脂とビニルアルコール系重合体とを含有するものであり、前記ポリアミド樹脂と前記ポリエステル樹脂との合計含有量が99.9〜85質量部である。前記ポリアミド樹脂と前記ポリエステル樹脂との合計含有量が前記下限未満になると、成形体の曲げ強度が大きく低下し、他方、前記上限を超えると、成形体の曲げ弾性率が低下する。また、成形体の曲げ強度が大きく低下せずに、曲げ弾性率が向上するという観点から、前記ポリアミド樹脂と前記ポリエステル樹脂との合計含有量としては99.5〜90質量部が好ましい。
<Resin composition>
The resin composition of the present invention contains such a polyamide resin, a polyester resin, and a vinyl alcohol-based polymer, and the total content of the polyamide resin and the polyester resin is 99.9 to 85 parts by mass. Is. When the total content of the polyamide resin and the polyester resin is less than the lower limit, the bending strength of the molded product is greatly reduced, while when the total content exceeds the upper limit, the flexural modulus of the molded product is lowered. Further, from the viewpoint of improving the flexural modulus without significantly reducing the bending strength of the molded product, the total content of the polyamide resin and the polyester resin is preferably 99.5 to 90 parts by mass.

また、本発明の樹脂組成物においては、前記ビニルアルコール系重合体の含有量が0.1〜15.0質量部である。前記ビニルアルコール系重合体の含有量が前記下限未満になると、成形体の曲げ弾性率が低下し、他方、前記上限を超えると、成形体の曲げ強度が大きく低下する。また、成形体の曲げ強度が大きく低下せずに、曲げ弾性率が向上するという観点から、前記ビニルアルコール系重合体の含有量としては0.5〜10質量部が好ましい。 Further, in the resin composition of the present invention, the content of the vinyl alcohol-based polymer is 0.1 to 15.0 parts by mass. When the content of the vinyl alcohol polymer is less than the lower limit, the flexural modulus of the molded product is lowered, while when the content exceeds the upper limit, the bending strength of the molded product is greatly lowered. Further, the content of the vinyl alcohol-based polymer is preferably 0.5 to 10 parts by mass from the viewpoint of improving the flexural modulus without significantly reducing the bending strength of the molded product.

さらに、本発明の樹脂組成物においては、前記ポリアミド樹脂と前記ポリエステル樹脂との質量比(ポリアミド樹脂:ポリエステル樹脂)が1:9〜9:1である。前記ポリアミド樹脂と前記ポリエステル樹脂との質量比が前記下限未満になると、ポリエステル樹脂の成形性が改善されず、他方、前記上限を超えると、ポリアミド樹脂の吸水性が改善されない。また、アロイ化によってポリアミド樹脂とポリエステル樹脂が相互に欠点を補い合うという観点から、前記ポリアミド樹脂と前記ポリエステル樹脂との質量比としては、7:3〜3:7が好ましい。 Further, in the resin composition of the present invention, the mass ratio of the polyamide resin to the polyester resin (polyamide resin: polyester resin) is 1: 9 to 9: 1. If the mass ratio of the polyamide resin to the polyester resin is less than the lower limit, the moldability of the polyester resin is not improved, while if it exceeds the upper limit, the water absorption of the polyamide resin is not improved. Further, from the viewpoint that the polyamide resin and the polyester resin mutually compensate for the defects by alloying, the mass ratio of the polyamide resin and the polyester resin is preferably 7: 3 to 3: 7.

このような本発明の樹脂組成物の製造方法としては特に制限はなく、公知の方法を適宜採用することができる。例えば、前記ポリアミド樹脂と前記ポリエステル樹脂と前記ビニルアルコール系重合体とを所定の割合で混合(混練)する(混合工程)ことによって、本発明の樹脂組成物を得ることができる。また、前記ポリアミド樹脂、前記ポリエステル樹脂及び前記ビニルアルコール系重合体が可溶な溶媒を用いて溶液混合してもよい。 The method for producing the resin composition of the present invention is not particularly limited, and a known method can be appropriately adopted. For example, the resin composition of the present invention can be obtained by mixing (kneading) the polyamide resin, the polyester resin, and the vinyl alcohol polymer at a predetermined ratio (mixing step). Further, the polyamide resin, the polyester resin and the vinyl alcohol polymer may be mixed in a solution using a soluble solvent.

前記混合工程における混合方法としては特に制限はなく、例えば、押出機(一軸スクリュー押出機、二軸混練押出機等)、ニーダ及びミキサ(高速流動式ミキサ、バドルミキサ、リボンミキサ等)等の混練装置を用いて混合することができる。これらの装置は1種を単独で使用しても2種以上を併用してもよい。また、2種以上の装置を併用する場合には連続的に運転してもよく、回分的に(バッチ式で)運転してもよい。さらに、このような押出機等の混練装置による混合の前に、前記ポリアミド樹脂と前記ポリエステル樹脂と前記ビニルアルコール系重合体とを特定の割合でドライブレンド等により混合し、その後、前記押出機等の混練装置により混合してもよい。 The mixing method in the mixing step is not particularly limited, and for example, a kneading device such as an extruder (single-screw extruder, twin-screw kneading extruder, etc.), kneader and mixer (high-speed flow mixer, baddle mixer, ribbon mixer, etc.) Can be mixed using. These devices may be used alone or in combination of two or more. Further, when two or more kinds of devices are used in combination, they may be operated continuously or batchwise (in a batch system). Further, before mixing by a kneading device such as an extruder or the like, the polyamide resin, the polyester resin and the vinyl alcohol polymer are mixed at a specific ratio by a dry blend or the like, and then the extruder or the like is used. It may be mixed by the kneading device of.

このような混合工程における混合温度としては特に制限はなく、溶融混合を行うことができる温度であればよい。なお、混合温度は、ポリアミド樹脂の種類、ポリエステル樹脂の種類、及びビニルアルコール系重合体の種類により適宜調整されるものであるため、一概にはいえないが、溶融混合できるという観点から、230〜330℃であることが好ましく、240〜300℃であることがより好ましく、250〜270℃であることが更に好ましい。 The mixing temperature in such a mixing step is not particularly limited as long as it is a temperature at which melt mixing can be performed. Since the mixing temperature is appropriately adjusted depending on the type of polyamide resin, the type of polyester resin, and the type of vinyl alcohol polymer, it cannot be said unconditionally, but from the viewpoint of melt mixing, 230 to 230 to The temperature is preferably 330 ° C., more preferably 240 to 300 ° C., and even more preferably 250 to 270 ° C.

本発明の樹脂組成物においては、前記ポリアミド樹脂と前記ポリエステル樹脂と前記ビニルアルコール系重合体の含有量を特定の割合に調整することが重要である。本発明の樹脂組成物を製造する場合、前記ポリアミド樹脂と前記ポリエステル樹脂と前記ビニルアルコール系重合体の仕込量を、樹脂組成物における所望の含有量と同一量に設定することによって、ほぼ所望の含有量の樹脂組成物を得ることができる。 In the resin composition of the present invention, it is important to adjust the contents of the polyamide resin, the polyester resin, and the vinyl alcohol polymer to a specific ratio. When the resin composition of the present invention is produced, it is substantially desired by setting the amount of the polyamide resin, the polyester resin and the vinyl alcohol polymer to be charged to be the same as the desired content in the resin composition. A resin composition having a content can be obtained.

本発明の樹脂組成物においては、本発明の目的を阻害しない範囲で、前記ポリアミド樹脂、前記ポリエステル樹脂及び前記前記ビニルアルコール系重合体以外の他の成分を含有させることができる。このような他の成分としては、上記以外の他の熱可塑性樹脂、難燃剤、難燃助剤、着色剤、抗酸化剤、充填剤、強化剤、抗紫外線剤、熱安定化剤、抗菌剤、帯電防止剤等を配合できる。これらの他の成分は1種を単独で使用しても2種以上を併用してもよい。なお、これらの他の成分を樹脂組成物に含有させる場合、その含有量としては、前記樹脂組成物の全量に対して70質量%以下であることが好ましい。 The resin composition of the present invention may contain components other than the polyamide resin, the polyester resin and the vinyl alcohol polymer as long as the object of the present invention is not impaired. Such other components include thermoplastic resins other than the above, flame retardants, flame retardants, colorants, antioxidants, fillers, strengthening agents, anti-ultraviolet agents, heat stabilizers, antibacterial agents. , Antistatic agent, etc. can be blended. These other components may be used alone or in combination of two or more. When these other components are contained in the resin composition, the content thereof is preferably 70% by mass or less with respect to the total amount of the resin composition.

前記他の熱可塑性樹脂としては、例えば、ポリフェニレンオキシド系樹脂、ABS系樹脂、ポリオレフィン系樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂等が挙げられる。これらの熱可塑性樹脂は1種を単独で使用しても2種以上を併用してもよい。 Examples of the other thermoplastic resin include polyphenylene oxide-based resin, ABS-based resin, polyolefin-based resin, polycarbonate resin, polyphenylene sulfide resin, and the like. These thermoplastic resins may be used alone or in combination of two or more.

前記難燃剤としては、例えば、ハロゲン系難燃剤(ハロゲン化芳香族化合物)、リン系難燃剤(窒素含有リン酸塩化合物、リン酸エステル等)、窒素系難燃剤(グアニジン、トリアジン、メラミン、及びこれらの誘導体等)、無機系難燃剤(金属水酸化物等)、ホウ素系難燃剤、シリコーン系難燃剤、硫黄系難燃剤、赤リン系難燃剤等が挙げられる。これらの難燃剤は1種を単独で使用しても2種以上を併用してもよい。 Examples of the flame retardant include halogen-based flame retardants (halogenated aromatic compounds), phosphorus-based flame retardants (nitrogen-containing phosphate compounds, phosphate esters, etc.), nitrogen-based flame retardants (guanidine, triazine, melamine, and the like. These derivatives, etc.), inorganic flame retardants (metal hydroxides, etc.), boron-based flame retardants, silicone-based flame retardants, sulfur-based flame retardants, red phosphorus-based flame retardants, and the like. These flame retardants may be used alone or in combination of two or more.

前記難燃助剤としては、例えば、各種アンチモン化合物、亜鉛を含む金属化合物、ビスマスを含む金属化合物、水酸化マグネシウム、粘土質珪酸塩等が挙げられる。これらの難燃助剤は1種を単独で使用しても2種以上を併用してもよい。 Examples of the flame retardant aid include various antimony compounds, metal compounds containing zinc, metal compounds containing bismuth, magnesium hydroxide, clay silicate and the like. These flame retardant aids may be used alone or in combination of two or more.

前記着色剤としては、例えば、顔料及び染料等が挙げられる。 Examples of the colorant include pigments and dyes.

前記充填剤としては、例えば、ガラス成分(ガラス繊維、ガラスビーズ、ガラスフレーク等)、シリカ、無機繊維(ガラス繊維、アルミナ繊維、カーボン繊維)、黒鉛、珪酸化合物(珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー等)、金属酸化物(酸化鉄、酸化チタン、酸化亜鉛、酸化アンチモン、アルミナ等)、カルシウム、マグネシウム、亜鉛等の金属の炭酸塩及び硫酸塩、有機繊維(芳香族ポリエステル繊維、芳香族ポリアミド繊維、フッ素樹脂繊維、ポリイミド繊維、植物性繊維等)が挙げられる。これらの充填剤は1種を単独で使用しても2種以上を併用してもよい。 Examples of the filler include glass components (glass fibers, glass beads, glass flakes, etc.), silica, inorganic fibers (glass fibers, alumina fibers, carbon fibers), graphite, silicate compounds (calcium silicate, aluminum silicate, kaolin, etc.). Tark, clay, etc.), metal oxides (iron oxide, titanium oxide, zinc oxide, antimony oxide, alumina, etc.), carbonates and sulfates of metals such as calcium, magnesium, zinc, organic fibers (aromatic polyester fiber, fragrance, etc.) Group polyamide fibers, fluororesin fibers, polyimide fibers, vegetable fibers, etc.) can be mentioned. These fillers may be used alone or in combination of two or more.

前記強化剤としては、例えば、ガラス繊維、炭素繊維、カーボンナノチューブ(単層および多層)、炭化ケイ素ウィスカ、アルミナ繊維、BN繊維、アラミド繊維、チタニア繊維、ジルコニア繊維、Si−Ti−C−O繊維、金系繊維、銀系繊維、鉄系繊維、銅系繊維、気相法炭素繊維(VGCF)、ボロン繊維、ポリ(パラフェニレンベンゾビスオキサゾール)(PBO)繊維等の強化繊維が挙げられる。これらの強化剤は1種を単独で使用しても2種以上を併用してもよい。また、これらの強化剤のうち、機械的特性が向上するという観点から、ガラス繊維、炭素繊維、アルミナ繊維、BN繊維、アラミド繊維、PBO繊維が好ましく、ガラス繊維、炭素繊維がより好ましい。 Examples of the reinforcing agent include glass fiber, carbon fiber, carbon nanotube (single layer and multilayer), silicon carbide whisker, alumina fiber, BN fiber, aramid fiber, titania fiber, zirconia fiber, and Si-Ti-CO fiber. , Gold-based fiber, silver-based fiber, iron-based fiber, copper-based fiber, vapor phase carbon fiber (VGCF), boron fiber, poly (paraphenylene benzobisoxazole) (PBO) fiber and other reinforcing fibers. These fortifiers may be used alone or in combination of two or more. Further, among these reinforcing agents, glass fiber, carbon fiber, alumina fiber, BN fiber, aramid fiber, and PBO fiber are preferable, and glass fiber and carbon fiber are more preferable, from the viewpoint of improving mechanical properties.

このような本発明の樹脂組成物は、所望の形状に成形して各種用途に使用することができる。本発明の樹脂組成物を所望の形状に成形する方法としては特に制限はなく、公知の成形方法を適宜採用することができる。具体的には、射出成形、押出成形、移送成形、真空成形、ブロー成形、発泡成形、延伸成形、プレス成形、押出複合成形、射出圧縮成形、加飾成形、ガスアシスト射出成形、発泡射出成形、低圧成形、超薄肉射出成形(超高速射出成形)及び金型内複合成形(インサート成形、アウトサート成形)等の成形方法が挙げられる。 Such a resin composition of the present invention can be molded into a desired shape and used for various purposes. The method for molding the resin composition of the present invention into a desired shape is not particularly limited, and a known molding method can be appropriately adopted. Specifically, injection molding, extrusion molding, transfer molding, vacuum molding, blow molding, foam molding, stretch molding, press molding, extrusion composite molding, injection compression molding, decorative molding, gas assisted injection molding, foam injection molding, Molding methods such as low-pressure molding, ultra-thin wall injection molding (ultra-high-speed injection molding), and in-mold composite molding (insert molding, outsert molding) can be mentioned.

本発明の樹脂組成物からなる成形体は、曲げ強度が大きく低下することなく、曲げ弾性率が向上したものであり、様々な用途に使用することができる。例えば、自動車分野、電気・電子分野、機械・工業分野、事務機器分野、航空・宇宙分野において、好適に用いることができる。具体的には、自動車、鉄道車両、船舶及び飛行機等の外装材、内装材及び構造材等として用いられる。これらのうち、自動車用品としては、自動車用外装材、自動車用内装材、自動車用構造材、エンジンルーム内部品等が挙げられる。また、建築物及び家具等の内装材、外装材及び構造材等が挙げられる。すなわち、ドア表装材、ドア構造材、各種家具(机、椅子、棚、箪笥等)の表装材、構造材等が挙げられる。更に、家電製品(薄型TV、冷蔵庫、洗濯機、掃除機、携帯電話、携帯ゲーム機、ノート型パソコン等)の筐体及び構造体等としても活用できる。 The molded product made of the resin composition of the present invention has an improved flexural modulus without significantly reducing the bending strength, and can be used for various purposes. For example, it can be suitably used in the fields of automobiles, electrical / electronic fields, mechanical / industrial fields, office equipment fields, and aerospace fields. Specifically, it is used as an exterior material, interior material, structural material, etc. of automobiles, railroad vehicles, ships, airplanes, and the like. Among these, examples of automobile supplies include automobile exterior materials, automobile interior materials, automobile structural materials, engine room interior parts, and the like. In addition, interior materials such as buildings and furniture, exterior materials, structural materials and the like can be mentioned. That is, door surface materials, door structural materials, surface materials for various furniture (desks, chairs, shelves, chests of drawers, etc.), structural materials, and the like can be mentioned. Further, it can be used as a housing and a structure of home appliances (thin TV, refrigerator, washing machine, vacuum cleaner, mobile phone, portable game machine, notebook computer, etc.).

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、樹脂ガラス転移温度は以下の方法により測定した。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The resin glass transition temperature was measured by the following method.

<ガラス転移温度>
樹脂を厚さ500μmのフィルム状に成形した後、動的粘弾性測定装置(アイティー計測制御(株)製)を用いて、測定温度範囲−100〜200℃、昇温速度10℃/分、周波数10Hzの条件で動的粘弾性測定を行い、得られた損失正接(tanδ)−温度曲線におけるピークからガラス転移温度を求めた。
<Glass transition temperature>
After molding the resin into a film with a thickness of 500 μm, using a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd.), the measurement temperature range is -100 to 200 ° C., and the temperature rise rate is 10 ° C./min. Dynamic viscoelasticity measurement was performed under the condition of a frequency of 10 Hz, and the glass transition temperature was obtained from the peak in the obtained loss tangent (tan δ) -temperature curve.

(実施例1)
ポリアミド6(PA6)(ユニチカ(株)製「A1030BRL」、ガラス転移温度:73℃)49.75質量部と、ポリエチレンテレフタレート(PET)(帝人(株)製「TR8550FF」、ガラス転移温度:93℃)49.75質量部と、ポリビニルアルコール(PVOH)(日本合成化学工業(株)製「ゴーセノールN−300」、ケン化度:98.0〜99.0%)0.5質量部とをドライブレンドにより混合した後、混練・押出成形評価試験装置((株)東洋精機製作所製「ラボプラストミル」)を用いて270℃で5分間溶融混練した。得られた混練物を、プレス成形機を用いて温度270℃、圧力6MPaの条件で100mm×100mm×2mmの平板状にプレス成形した後、幅20mmに切り出して試験片を作製した。
(Example 1)
Polyamide 6 (PA6) (“A1030BRL” manufactured by Unitika Co., Ltd., glass transition temperature: 73 ° C.) 49.75 parts by mass and polyethylene terephthalate (PET) (“TR8550FF” manufactured by Teijin Limited, glass transition temperature: 93 ° C.) ) 49.75 parts by mass and 0.5 parts by mass of polyvinyl alcohol (PVOH) (“Gosenol N-300” manufactured by Nippon Synthetic Chemical Industry Co., Ltd., saponification degree: 98.0-99.0%) After mixing by blending, the mixture was melt-kneaded at 270 ° C. for 5 minutes using a kneading / extrusion evaluation test device (“Laboplast Mill” manufactured by Toyo Seiki Seisakusho Co., Ltd.). The obtained kneaded product was press-molded into a flat plate of 100 mm × 100 mm × 2 mm under the conditions of a temperature of 270 ° C. and a pressure of 6 MPa using a press molding machine, and then cut into a width of 20 mm to prepare a test piece.

(実施例2)
PA6の配合量を45質量部、PETの配合量を45質量部、PVOHの配合量を10質量部に変更した以外は実施例1と同様にして試験片を作製した。
(Example 2)
A test piece was prepared in the same manner as in Example 1 except that the compounding amount of PA6 was changed to 45 parts by mass, the compounding amount of PET was changed to 45 parts by mass, and the compounding amount of PVOH was changed to 10 parts by mass.

(実施例3)
PVOHの代わりにエチレン−ビニルアルコール共重合体(EVOH)(日本合成化学工業(株)製「ソアノールD2908」、エチレン含有率:29mol%)10質量部を用いた以外は実施例2と同様にして試験片を作製した。
(Example 3)
Same as in Example 2 except that 10 parts by mass of ethylene-vinyl alcohol copolymer (EVOH) (“Soanol D2908” manufactured by Nippon Synthetic Chemical Industry Co., Ltd., ethylene content: 29 mol%) was used instead of PVOH. A test piece was prepared.

(比較例1)
PA6の配合量を50質量部、PETの配合量を50質量部に変更し、PVOHを配合しなかった以外は実施例1と同様にして試験片を作製した。
(Comparative Example 1)
A test piece was prepared in the same manner as in Example 1 except that the blending amount of PA6 was changed to 50 parts by mass and the blending amount of PET was changed to 50 parts by mass, and PVOH was not blended.

(比較例2)
PVOHの代わりにエチレン−グリシジルメタクリレート共重合体(E−GMA)(住友化学(株)製「ボンドファーストE」、グリシジルメタクリレート含有率:12質量%)10質量部を用いた以外は実施例2と同様にして試験片を作製した。
(Comparative Example 2)
Example 2 and Example 2 except that 10 parts by mass of ethylene-glycidyl methacrylate copolymer (E-GMA) (“Bond First E” manufactured by Sumitomo Chemical Co., Ltd., glycidyl methacrylate content: 12% by mass) was used instead of PVOH. A test piece was prepared in the same manner.

(比較例3)
PA6の配合量を40質量部、PETの配合量を40質量部、PVOHの配合量を20質量部に変更した以外は実施例1と同様にして試験片を作製した。
(Comparative Example 3)
A test piece was prepared in the same manner as in Example 1 except that the compounding amount of PA6 was changed to 40 parts by mass, the compounding amount of PET was changed to 40 parts by mass, and the compounding amount of PVOH was changed to 20 parts by mass.

(比較例4)
PA6の配合量を25質量部、PETの配合量を25質量部、PVOHの配合量を50質量部に変更した以外は実施例1と同様にして試験片を作製した。
(Comparative Example 4)
A test piece was prepared in the same manner as in Example 1 except that the compounding amount of PA6 was changed to 25 parts by mass, the compounding amount of PET was changed to 25 parts by mass, and the compounding amount of PVOH was changed to 50 parts by mass.

(比較例5)
PA6の配合量を15質量部、PETの配合量を15質量部、PVOHの配合量を70質量部に変更した以外は実施例1と同様にして試験片を作製した。
(Comparative Example 5)
A test piece was prepared in the same manner as in Example 1 except that the compounding amount of PA6 was changed to 15 parts by mass, the compounding amount of PET was changed to 15 parts by mass, and the compounding amount of PVOH was changed to 70 parts by mass.

<曲げ試験>
得られた試験片を80℃で12時間真空乾燥した後、絶乾状態の試験片を用いて、JIS K7171で規定される方法に準拠して3点曲げ試験を行い、曲げ弾性率及び曲げ強度を測定した。これらの結果を各成分の配合量とともに表1に示す。
<Bending test>
After vacuum-drying the obtained test piece at 80 ° C. for 12 hours, a three-point bending test is performed using the test piece in an absolutely dry state in accordance with the method specified by JIS K7171, and the flexural modulus and bending strength are obtained. Was measured. These results are shown in Table 1 together with the blending amount of each component.

表1に示した結果から明らかなように、ポリアミド樹脂とポリエステル樹脂とを含有する樹脂組成物にビニルアルコール系重合体を0.1〜15.0質量%の割合で配合した本発明の樹脂組成物(実施例1〜3)は、ビニルアルコール系重合体を含まない樹脂組成物(比較例1)に比べて、曲げ強度が大きく低下することなく、曲げ弾性率が向上することがわかった。また、ビニルアルコール系重合体としてポリビニルアルコールを配合した樹脂組成物(実施例2)は、エチレン−ビニルアルコール共重合体を配合した樹脂組成物(実施例3)に比べて、曲げ強度が向上することがわかった。 As is clear from the results shown in Table 1, the resin composition of the present invention in which a vinyl alcohol-based polymer is blended in a resin composition containing a polyamide resin and a polyester resin at a ratio of 0.1 to 15.0% by mass. It was found that the products (Examples 1 to 3) improved the bending elasticity without significantly lowering the bending strength as compared with the resin composition (Comparative Example 1) containing no vinyl alcohol polymer. Further, the resin composition containing polyvinyl alcohol as the vinyl alcohol-based polymer (Example 2) has improved bending strength as compared with the resin composition containing an ethylene-vinyl alcohol copolymer (Example 3). I understand.

一方、ビニルアルコール系重合体の代わりに、エチレン−グリシジルメタクリレート共重合体配合した樹脂組成物(比較例2)は、ビニルアルコール系重合体を含まない樹脂組成物(比較例1)に比べて、曲げ弾性率及び曲げ強度が大きく低下することがわかった。また、ビニルアルコール系重合体を15.0質量%を超える割合で配合した樹脂組成物(比較例3〜5)は、ビニルアルコール系重合体を含まない樹脂組成物(比較例1)に比べて、曲げ弾性率が向上するものの、曲げ強度が大きく低下することがわかった。 On the other hand, the resin composition containing an ethylene-glycidyl methacrylate copolymer instead of the vinyl alcohol-based polymer (Comparative Example 2) is different from the resin composition not containing the vinyl alcohol-based polymer (Comparative Example 1). It was found that the bending elasticity and bending strength were greatly reduced. Further, the resin composition (Comparative Examples 3 to 5) in which the vinyl alcohol-based polymer is blended in a proportion exceeding 15.0% by mass is compared with the resin composition (Comparative Example 1) containing no vinyl alcohol-based polymer. It was found that although the flexural modulus was improved, the bending strength was significantly reduced.

以上説明したように、本発明によれば、ポリアミド樹脂とポリエステル樹脂とを含有する樹脂組成物からなる成形体において、曲げ強度を大きく低下させることなく、曲げ弾性率を向上させることが可能となる。 As described above, according to the present invention, in a molded product made of a resin composition containing a polyamide resin and a polyester resin, it is possible to improve the flexural modulus without significantly reducing the bending strength. ..

したがって、本発明の樹脂組成物は、良好な曲げ強度と曲げ弾性率とを兼ね備えていることが要求される用途、例えば、自動車用の外装材、内装材、構造材、エンジンルーム内部品等の原材料として有用である。 Therefore, the resin composition of the present invention is used for applications that are required to have both good bending strength and flexural modulus, for example, exterior materials for automobiles, interior materials, structural materials, parts in engine rooms, and the like. It is useful as a raw material.

Claims (1)

動的粘弾性測定によって測定される損失正接−温度曲線のピークから求められるガラス転移温度が50℃以上のポリアミド樹脂と、
動的粘弾性測定によって測定される損失正接−温度曲線のピークから求められるガラス転移温度が50℃以上のポリエステル樹脂と、
ポリビニルアルコールと、を含有し、
前記ポリアミド樹脂と前記ポリエステル樹脂との合計含有量が99.9〜85.0質量部であり、
前記ポリビニルアルコールの含有量が0.1〜15.0質量部であり、
前記ポリアミド樹脂と前記ポリエステル樹脂との質量比(ポリアミド樹脂:ポリエステル樹脂)が1:9〜9:1である、ことを特徴とする樹脂組成物。
Polyamide resin with a glass transition temperature of 50 ° C or higher determined from the peak of the loss tangent-temperature curve measured by dynamic viscoelasticity measurement,
A polyester resin with a glass transition temperature of 50 ° C or higher determined from the peak of the loss tangent-temperature curve measured by dynamic viscoelasticity measurement,
Contains polyvinyl alcohol ,
The total content of the polyamide resin and the polyester resin is 99.9 to 85.0 parts by mass.
The content of the polyvinyl alcohol is 0.1 to 15.0 parts by mass.
A resin composition characterized in that the mass ratio of the polyamide resin to the polyester resin (polyamide resin: polyester resin) is 1: 9 to 9: 1.
JP2016175576A 2016-09-08 2016-09-08 Resin composition Active JP6825856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175576A JP6825856B2 (en) 2016-09-08 2016-09-08 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175576A JP6825856B2 (en) 2016-09-08 2016-09-08 Resin composition

Publications (2)

Publication Number Publication Date
JP2018039927A JP2018039927A (en) 2018-03-15
JP6825856B2 true JP6825856B2 (en) 2021-02-03

Family

ID=61625275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175576A Active JP6825856B2 (en) 2016-09-08 2016-09-08 Resin composition

Country Status (1)

Country Link
JP (1) JP6825856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372715B (en) * 2021-06-23 2022-12-16 杭州本松新材料技术股份有限公司 Red phosphorus flame-retardant reinforced nylon composite material and application thereof

Also Published As

Publication number Publication date
JP2018039927A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
US9169392B2 (en) Composite material based on polyamide and on poly(lactic acid), manufacturing process and use thereof
JP6239297B2 (en) Nonwoven fabric, sheet or film, molded article, and method for producing nonwoven fabric
KR102292160B1 (en) Polyamide resin composition for molded article to be in contact with high-pressure hydrogen, and molded article obtained therefrom
KR101279648B1 (en) Reinforced polyamide moulding materials
JP5928668B1 (en) Polyamide resin composition for molded articles that come into contact with high-pressure hydrogen and molded articles using the same
JP2003246926A (en) Molding material, molded product produced therefrom and use of the same
WO2006054774A1 (en) Polyamide resin composition containing glass fiber
JP6967108B2 (en) Highly fluid polyamide resin composition
EP2700678A2 (en) Biodegradable polymer composite material
JP2011102360A (en) Fiber-reinforced polyamide resin composition
JP6825856B2 (en) Resin composition
JP2016113603A (en) Polyamide resin composition and polyamide resin molding comprising the same
JP2003128846A (en) Resin structure
WO2009154263A1 (en) Film for wrapping goods having protrusions
JP5157705B2 (en) Resin structure
JP4609743B2 (en) Resin structure and its use
JP5935956B1 (en) Polyamide resin composition for molded articles that come into contact with high-pressure hydrogen and molded articles using the same
JP5349911B2 (en) Thermoplastic resin composition, molded product and fuel system component
JP6811603B2 (en) Polyamide resin composition and molded article made of the same
JP6858080B2 (en) Resin composition
JP6789429B1 (en) Liquid crystal polyester resin pellets and liquid crystal polyester resin molded products
JP4151336B2 (en) Resin composition and method for producing the same
JP2018172521A (en) Polyamide resin composition and molded article thereof
JP2019026686A (en) Resin composition, molding, fiber and film
JP2019108526A (en) Polyamide resin composition for deposition, and molded article using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210114

R150 Certificate of patent or registration of utility model

Ref document number: 6825856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250