JP6825470B2 - Test power wearing cathode plate and its manufacturing method - Google Patents

Test power wearing cathode plate and its manufacturing method Download PDF

Info

Publication number
JP6825470B2
JP6825470B2 JP2017082339A JP2017082339A JP6825470B2 JP 6825470 B2 JP6825470 B2 JP 6825470B2 JP 2017082339 A JP2017082339 A JP 2017082339A JP 2017082339 A JP2017082339 A JP 2017082339A JP 6825470 B2 JP6825470 B2 JP 6825470B2
Authority
JP
Japan
Prior art keywords
cathode plate
value
order
curvature
electrodeposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017082339A
Other languages
Japanese (ja)
Other versions
JP2018178220A (en
Inventor
祐輔 仙波
祐輔 仙波
寛人 渡邉
寛人 渡邉
いつみ 松岡
いつみ 松岡
小林 宙
宙 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017082339A priority Critical patent/JP6825470B2/en
Publication of JP2018178220A publication Critical patent/JP2018178220A/en
Application granted granted Critical
Publication of JP6825470B2 publication Critical patent/JP6825470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、非鉄金属の電解採取法において、本操業前に目的金属の電着状況を確認するための試験電着用陰極板、及びその製造方法に関する。 The present invention relates to a test electrode wearing cathode plate for confirming the electrodeposition status of a target metal before the present operation in an electrowinning method for non-ferrous metals, and a method for manufacturing the same.

非鉄金属の電解採取法において、チタン板の両面にわたって数十個の円形電着部を設け、それ以外は絶縁塗料でマスクが施された(マスキングした)陰極板が知られている。これに対する陽極として、上述の陰極の基本外形と概ね類似した不溶性陽極板が用いられる。電解槽には目的金属イオンを含有した電解液が供給され、前記陽極板と陰極板を電解槽に浸漬して電着(電析)が行われる。 In the electrowinning method for non-ferrous metals, there is known a cathode plate in which dozens of circular electrodeposited portions are provided on both sides of a titanium plate and the other parts are masked (masked) with an insulating paint. As the anode for this, an insoluble anode plate substantially similar to the above-mentioned basic outer shape of the cathode is used. An electrolytic solution containing a target metal ion is supplied to the electrolytic cell, and the anode plate and the cathode plate are immersed in the electrolytic cell to perform electrodeposition (electrolysis).

この電解採取法において、一般的な操業に使用される陰極は、金属板の各面それぞれに、マスキング部と概ね同等程度の面積を占める円形電着部が、均等に千鳥状配置されている。千鳥状配置とは、複数の対象物が水平方向に所定間隔で連続的に並べられた1行に対し、つぎの行では、所定間隔の半分だけ水平方向へずらされて、交互に並べられる配置をいう。 In this electrowinning method, in the cathode used in a general operation, circular electrodeposited portions occupying an area approximately equal to that of the masking portion are uniformly arranged in a staggered pattern on each surface of the metal plate. The staggered arrangement is an arrangement in which a plurality of objects are arranged continuously in the horizontal direction at predetermined intervals, whereas in the next line, the objects are arranged alternately by being horizontally shifted by half of the predetermined intervals. To say.

例えば、特許文献1には、微量の硫黄を含有する、メッキ用の特殊形状の電気ニッケルを製造する方法が知られている。ニッケルをはじめとする金属の電解による精製では、陰極として、電解採取する金属とは別種のチタンなど繰り返し使用できる材質の母板を使用し、所定時間の電解を行った後、電着物を母板より引き剥がして製造する方法が一般的に行われている。この時、陰極上に絶縁物でマスキングを行っておくことにより、任意の特殊形状の電着物を得ることができる。 For example, Patent Document 1 knows a method for producing a specially shaped electric nickel for plating containing a trace amount of sulfur. In purification by electrolysis of metals such as nickel, a base plate made of a material that can be used repeatedly, such as titanium, which is different from the metal collected by electrowinning, is used as the cathode, and after electrolysis for a predetermined time, the electrodeposit is used as the base plate. A method of more peeling and manufacturing is generally performed. At this time, by masking the cathode with an insulating material, an electrodeposited object having an arbitrary special shape can be obtained.

メッキ用の陽極として用いる電気ニッケルは、使用の際に陽極ボックス内での充填性やハンドリングなどの観点から、角が立たない丸みのある小塊状の形状が好まれることが多い。そのため、このような特殊形状の電気ニッケルを電解により製造する場合には、表面に多数の円形状の電着部を有するようにマスキングした陰極を用いて通電し、電着物を剥ぎ取ることにより製造している。 Nickel electronickel used as an anode for plating is often preferred to have a rounded, small-lump shape with no sharp corners from the viewpoint of filling property and handling in the anode box during use. Therefore, when such specially shaped nickel nickel is produced by electrolysis, it is produced by energizing using a cathode masked so as to have a large number of circular electrodeposition portions on the surface and peeling off the electrodeposited material. doing.

また、特許文献2には、メッキ用の特殊形状電気ニッケルの電解採取に用いる陰極について、絶縁物でのマスキングにより形成する電着部が縮小ないし変形することを防止し、電着部の特殊形状を維持することができる方法が開示されている。 Further, in Patent Document 2, regarding the cathode used for electrowinning specially shaped nickel for plating, the electrodeposited portion formed by masking with an insulator is prevented from shrinking or deforming, and the special shape of the electrodeposited portion is described. The methods that can be maintained are disclosed.

特許文献1,2に開示されているように、チタン板の両面にわたって数十個の円形電着部が千鳥状に配置され、それ以外は円形電着面を露出させるように絶縁塗料でマスキングされた陰極板(以下、「千鳥状陰極板」ともいう)が知られている。この千鳥状陰極板による電着の結果、円盤面が平坦で、周縁部には平坦面よりも、円盤の厚さ程度の盛り上がりを含んだ概ね円盤状の電着製品が得られる。 As disclosed in Patent Documents 1 and 2, dozens of circular electrodeposition portions are arranged in a staggered pattern on both sides of the titanium plate, and the other parts are masked with an insulating paint so as to expose the circular electrodeposition surface. A cathode plate (hereinafter, also referred to as a "staggered cathode plate") is known. As a result of electrodeposition by the staggered cathode plate, a disk-shaped electrodeposited product is obtained in which the disk surface is flat and the peripheral portion includes a bulge about the thickness of the disk rather than the flat surface.

ただし、千鳥状陰極板の短所として、金属板の面形状に対する取り数に損失の生じる点がある。板幅に対して効率良く1行目を配置しても、2行目と4行目の幅方向の両端近傍では、千鳥状配置のため、電着物が得られない範囲が発生する。したがって、電着生産物の生産効率に無駄が生じる短所となる。 However, the disadvantage of the staggered cathode plate is that there is a loss in the number of metal plates taken with respect to the surface shape. Even if the first row is arranged efficiently with respect to the plate width, there is a range in which electrodeposition cannot be obtained in the vicinity of both ends in the width direction of the second and fourth rows due to the staggered arrangement. Therefore, there is a disadvantage that the production efficiency of the electrodeposited product is wasted.

特開2002−302787号公報JP-A-2002-302787 特開2008−106292号公報Japanese Unexamined Patent Publication No. 2008-106292

上述のように、非鉄金属の電解採取法において、本操業前に目的金属の電着状況を確認するための試験電着用陰極板が必要であり、その使い勝手をより良くしたものが要望されていた。この試験電着用陰極板として、チタン板等の少なくとも片面に複数の電着部を設け、それ以外は絶縁塗料でマスキングしたものが、本操業に先駆けて行われる模擬実験用として使われている。特に、操業の都度に変化する電解液その他の環境変化に対応するための陰極電着面の最適形状を追求する予備実験が簡略化できる試験片が要望されていた。 As described above, in the electrowinning method for non-ferrous metals, a test electrode wearing cathode plate for confirming the electrodeposition status of the target metal is required before the main operation, and a more convenient one has been desired. .. As this test electrode wearing cathode plate, a titanium plate or the like provided with a plurality of electrodeposited portions on at least one surface and masked with an insulating paint is used for a simulated experiment conducted prior to the main operation. In particular, there has been a demand for a test piece that can simplify the preliminary experiment for pursuing the optimum shape of the cathode electrodeposited surface in order to respond to changes in the electrolytic solution and other environments that change with each operation.

特許文献1に開示されているメッキ用特殊形状電気ニッケルの製造方法は、表面を絶縁物でマスキングし、そのマスキング箇所以外による複数の円形露出面を陰極の電着部として用いた電解方法である。しかし、電着面の形状について、電着物が得られない範囲を極小化して電着生産物の取り数を多くして効率的に生産可能にすると供に、電着面の四隅(角部)を面取りした角丸の曲率半径R値に対応した異常成長状態のほか、必要最低限の曲率半径R値等を、1回の試験電着だけで簡略に知り得る試験片に特化したものではない。つまり、本操業に先駆けて行われる予備実験用の試験電着用陰極板については開示されていない。 The method for producing specially shaped nickel for plating disclosed in Patent Document 1 is an electrolysis method in which the surface is masked with an insulating material and a plurality of circular exposed surfaces other than the masked portion are used as electrodeposition portions of the cathode. .. However, regarding the shape of the electrodeposited surface, the range where the electrodeposited material cannot be obtained is minimized to increase the number of electrodeposited products to enable efficient production, and the four corners (corners) of the electrodeposited surface. In addition to the abnormal growth state corresponding to the radius of curvature R value of the chamfered corners, the minimum required radius of curvature R value, etc. is not specialized for test pieces that can be easily known with only one test electrodeposition. Absent. In other words, there is no disclosure of the test electrode wearing cathode plate for preliminary experiments that is carried out prior to this operation.

また、特許文献2に開示されている特殊形状電気ニッケルの電解採取用陰極の製造方法は、絶縁物でのマスキングにより形成する電着部が縮小ないし変形することを防止し、電着部の特殊形状を維持する方法である。これも、本操業に先駆けて行われる予備実験用の試験電着用陰極板については開示されていない。 Further, the method for manufacturing a cathode for electrowinning of specially shaped electronickel disclosed in Patent Document 2 prevents the electrodeposited portion formed by masking with an insulator from shrinking or deforming, and is special in the electrodeposited portion. It is a method of maintaining the shape. Again, this is not disclosed for the test electrode wearing cathode plate for preliminary experiments conducted prior to this operation.

本発明は、上記課題に鑑みてなされたものであり、電着物が得られない範囲を極小化し、さらに電着生産物の取り数を多くして効率的な生産を可能にすると供に、本操業前に目的金属の電着状況を知り得る試験片、すなわち、目的金属を異常成長させることなく高品質で安定的に得るために、電着面の四隅(角部)を面取りした角丸の曲率半径R値と、異常成長と、の相関性を簡略に知り得る試験電着用陰極板を提供することを目的とする。 The present invention has been made in view of the above problems, and the present invention is made in addition to minimizing the range in which an electrodeposited product cannot be obtained and further increasing the number of electrodeposited products to enable efficient production. A test piece that allows you to know the electrodeposition status of the target metal before operation, that is, a rounded corner with the four corners (corners) of the electrodeposition surface chamfered in order to obtain high quality and stable without abnormal growth of the target metal. It is an object of the present invention to provide a test electrode wearing cathode plate which can easily know the correlation between the radius of curvature R value and the abnormal growth.

本発明の一態様は、非鉄金属の電解採取操業での電解液(90)の条件に応じた電着形態を確認するために前記電解液(90)に浸漬して試験電着させる試験電着用陰極板(100)であって、
少なくとも一方の表面(18)にJ行・K列(J,Kともに1以上の自然数)の格子状配置で複数の突起部(21〜32)が電着面(21〜32)として形成された金属板(17)と、
該金属板(17)の突起部(21〜32)以外の表面(19)に所定形状のマスク(13)を施す非導電膜(50)と、
を有し、
前記突起部(21〜32)を平面視認した形状は、
一辺が所定長さ(E)の正方形を基本形とし、
該正方形の四隅(41〜44)は規定の曲率半径R値で角丸に面取りされ、
該角丸を形成する前記曲率半径R値は、
前記格子状配置の位置の違いに基づいて変化するように規定された構成である。
One aspect of the present invention is test electrodeposition in which a non-ferrous metal is immersed in the electrolytic solution (90) for test electrodeposition in order to confirm the electrodeposition morphology according to the conditions of the electrolytic solution (90) in the electrowinning operation. Cathode plate (100)
A plurality of protrusions (21 to 22) were formed as electrodeposited surfaces (21 to 32) on at least one surface (18) in a grid pattern of J rows and K columns (both J and K are natural numbers of 1 or more). Metal plate (17) and
A non-conductive film (50) in which a mask (13) having a predetermined shape is applied to a surface (19) other than the protrusions (21 to 32) of the metal plate (17).
Have,
The shape of the protrusions (21 to 32) visually recognized in a plane is
Based on a square with a predetermined length (E) on one side,
The four corners (41 to 44) of the square are chamfered with rounded corners at a specified radius of curvature R value.
The radius of curvature R value that forms the rounded corners is
It is a configuration defined to change based on the difference in the position of the grid-like arrangement.

また、本発明の一態様に係る試験電着用陰極板(100)において、前記曲率半径R値は、
前記格子状配置の一端から数える最初の1行目が最小であり、
前記格子状配置の他端まで数えた最後のJ行目が最大であり、
同一行では同一に設定することが好ましい。
Further, in the test electrode wearing cathode plate (100) according to one aspect of the present invention, the radius of curvature R value is
The first line counting from one end of the grid arrangement is the smallest,
The last J-th line counted to the other end of the grid-like arrangement is the maximum.
It is preferable to set the same on the same line.

また、本発明の一態様に係る試験電着用陰極板(100)において、前記曲率半径R値が大きくなる順番は、
前記格子状配置の一端から行数Jを数え、
まず2行進めた位置で順番を1つ進め、
該2行進めた位置から戻すところが有れば1行戻して順番を1つ進めるが、戻すところが無ければさらに2行進めた位置で順番を1つ進めることを繰り返す順番であり、
前記行数Jが、1,3,2,4,6,5,7,9,8,10,…,Jの順番に、
前記曲率半径R値を順次大きくするように変化させることが好ましい。
Further, in the test electrode wearing cathode plate (100) according to one aspect of the present invention, the order in which the radius of curvature R value increases is determined.
Count the number of rows J from one end of the grid-like arrangement,
First, advance one line at the position where you advanced two lines,
If there is a place to return from the position where the two lines are advanced, the order is advanced by one line, but if there is no place to return, the order is repeated to advance the order by one at the position where the position is further advanced by two lines.
The number of lines J is 1,3,2,4,6,5,7,9,8,10, ..., J, in that order.
It is preferable to change the radius of curvature R value so as to gradually increase it.

また、本発明の一態様に係る試験電着用陰極板(100)において、前記金属板(17)を平面視認した基本外形は縦長の長方形であり、
前記格子状配置の行数Jは、前記長方形の縦方向に降順又は昇順であり、
前記格子状配置の列数Kは、前記長方形の横方向に昇順され、
前記行数Jは、2以上10以下であり、
前記列数Kは、2以上10以下であり、
前記突起部(21〜32)の高さ(H)は、50μm以上1000μm以下であり、
前記非導電膜(50)の最小膜厚(T)は、
隣接する前記突起部(21〜32)それぞれの中心間を通る位置(M)における前記突起部(21〜32)の高さ(H)と同一であることが好ましい。
Further, in the test electrode wearing cathode plate (100) according to one aspect of the present invention, the basic outer shape of the metal plate (17) visually recognized in a plane is a vertically long rectangle.
The number of rows J of the grid-like arrangement is in descending order or ascending order in the vertical direction of the rectangle.
The number of columns K in the grid arrangement is ascended in the horizontal direction of the rectangle.
The number of lines J is 2 or more and 10 or less.
The number of columns K is 2 or more and 10 or less.
The height (H) of the protrusions (21 to 32) is 50 μm or more and 1000 μm or less.
The minimum film thickness (T) of the non-conductive film (50) is
It is preferable that the height (H) of the protrusions (21 to 32) is the same as the height (H) at the position (M) passing between the centers of the adjacent protrusions (21 to 32).

また、本発明の一態様に係る試験電着用陰極板(100)において、
隣接する前記突起部(21〜32)それぞれの中心(M)の間を通る位置における前記非導電膜(50)の最小膜厚(T)と、
前記突起部(21〜32)の高さ(H)と、
の差(G)は、200μm以下であることが好ましい。
Further, in the test electrode wearing cathode plate (100) according to one aspect of the present invention,
The minimum film thickness (T) of the non-conductive film (50) at a position passing between the centers (M) of the adjacent protrusions (21 to 32), and
The height (H) of the protrusions (21 to 32) and
The difference (G) is preferably 200 μm or less.

また、本発明の一態様に係る試験電着用陰極板(100)において、前記金属板(17)は、チタン又はステンレス鋼からなることが好ましい。 Further, in the test electrode wearing cathode plate (100) according to one aspect of the present invention, the metal plate (17) is preferably made of titanium or stainless steel.

また、本発明の一態様に係る試験電着用陰極板(100)は、メッキ用電気ニッケルの製造に使用されることが好ましい。 Further, the test electrode wearing cathode plate (100) according to one aspect of the present invention is preferably used for producing nickel for plating.

また、本発明の一態様は、非金属の電解採取操業で電解液(90)の条件に応じた電着形態を確認するために前記電解液(90)に浸漬して試験電着させる試験電着用陰極板(100)の製造方法であって、
金属板(17)の少なくとも一方の表面(18)に、J行・K列(J,Kともに1以上の自然数)の格子状配置で複数の突起部(21〜32)を電着面(21〜32)として形成する第1工程(S10)と、
前記金属板(17)に複数の突起部(21〜32)が電着面(21〜32)として形成された以外の表面(40)に、非導電膜(50)により所定形状のマスク(13)を施す第2工程(S20)と、を有し、
前記第1工程(S10)では、
前記突起部(21〜32)を平面視認した形状を、
一辺が所定長さ(E)の正方形を基本形とし、
該正方形の四隅(41〜44)を規定の曲率半径R値で角丸に面取りし、
該角丸を形成する前記曲率半径R値は、
前記格子状配置の位置の違いに基づいて変化するように規定された、
試験電着用陰極板(100)の製造方法である。
Further, one aspect of the present invention is a test electrodeposition in which the electrolytic solution (90) is immersed in the electrolytic solution (90) for test electrodeposition in order to confirm the electrodeposition morphology according to the conditions of the electrolytic solution (90) in a non-metal electrowinning operation. A method for manufacturing a worn cathode plate (100).
On at least one surface (18) of the metal plate (17), a plurality of protrusions (21 to 32) are arranged on the electrodeposited surface (21) in a grid pattern of J rows and K columns (both J and K are natural numbers of 1 or more). The first step (S10) formed as ~ 32) and
A mask (13) having a predetermined shape by a non-conductive film (50) on a surface (40) other than the metal plate (17) in which a plurality of protrusions (21 to 22) are formed as electrodeposited surfaces (21 to 32). ) In the second step (S20),
In the first step (S10),
The shape of the protrusions (21 to 32) visually recognized in a plane is
Based on a square with a predetermined length (E) on one side,
The four corners (41 to 44) of the square are chamfered with rounded corners at a specified radius of curvature R value.
The radius of curvature R value that forms the rounded corners is
It is defined to change based on the difference in the position of the grid arrangement.
This is a method for manufacturing a cathode plate (100) for wearing a test electric wire.

また、本発明の一態様に係る試験電着用陰極板(100)の製造方法において、前記曲率半径R値は、
前記格子状配置の一端から数える最初の1行目が最小であり、
前記格子状配置の他端まで数えた最後のJ行目が最大であり、
同一行では同一に設定されることが好ましい。
Further, in the method for manufacturing the test electrode wearing cathode plate (100) according to one aspect of the present invention, the radius of curvature R value is
The first line counting from one end of the grid arrangement is the smallest,
The last J-th line counted to the other end of the grid-like arrangement is the maximum.
It is preferable that they are set to be the same in the same line.

また、本発明の一態様に係る試験電着用陰極板(100)の製造方法において、前記曲率半径R値が大きくなる順番は、
前記格子状配置の一端から行数Jを数え、
まず2行進めた位置で順番を1つ進め、
該2行進めた位置から戻すところが有れば1行戻して順番を1つ進めるが、戻すところが無ければさらに2行進めた位置で順番を1つ進めることを繰り返す順番であり、
前記行数Jが、1,3,2,4,6,5,7,9,8,10,…,Jの順番に、
前記曲率半径R値を順次大きくするように変化させることが好ましい。
Further, in the method for manufacturing the test electrode wearing cathode plate (100) according to one aspect of the present invention, the order in which the radius of curvature R value increases is determined.
Count the number of rows J from one end of the grid-like arrangement,
First, advance one line at the position where you advanced two lines,
If there is a place to return from the position where the two lines are advanced, the order is advanced by one line, but if there is no place to return, the order is repeated to advance the order by one at the position where the position is further advanced by two lines.
The number of lines J is 1,3,2,4,6,5,7,9,8,10, ..., J, in that order.
It is preferable to change the radius of curvature R value so as to gradually increase it.

以上説明したように本発明によれば、電着物が得られない範囲を極小化し、さらに電着生産物の取り数を多くして効率的な生産を可能にすると供に、本操業前に目的金属の電着状況を知り得る試験片、すなわち、目的金属を異常成長させることなく高品質で安定的に得るために、電着面の四隅(角部)を面取りした角丸の曲率半径R値と、異常成長と、の相関性を簡略に知り得る試験電着用陰極板を提供することができる。 As described above, according to the present invention, the range in which electrodeposition products cannot be obtained is minimized, and the number of electrodeposition products to be taken is increased to enable efficient production. A test piece that can know the electrodeposition status of a metal, that is, the radius of curvature R value of a rounded corner with chamfered four corners (corners) of the electrodeposited surface in order to obtain high quality and stable without abnormal growth of the target metal. And, it is possible to provide a test electrode wearing cathode plate which can easily know the correlation between the abnormal growth and the abnormal growth.

本発明の一実施形態に係る試験電着用陰極板(以下、「本陰極板」ともいう)の使用状態を示す斜視図である。It is a perspective view which shows the use state of the test electrode wearing cathode plate (hereinafter, also referred to as "this cathode plate") which concerns on one Embodiment of this invention. 本陰極板の概略を示した斜視図である。It is a perspective view which showed the outline of this cathode plate. 電着面の四隅(角部)を面取りした角丸の曲率半径R値(以下、単に「R値」ともいう)について、複数の突起部が格子状に配置された位置の違いに基づいて変化(以下、「配置に応じたR値の変化」ともいう)することを説明するための図であり、図3(A)は平面図、図3(B)はY−Y線断面図、図3(C)はX−X線断面図、図3(D)は、図3(C)の破線丸囲い部の拡大図、図3(E)は、図3(D)の破線丸囲い部の拡大図、をそれぞれ示している。The radius of curvature R value (hereinafter, simply referred to as "R value") of the rounded corners of the four corners (corners) of the electrodeposited surface changes based on the difference in the positions where a plurality of protrusions are arranged in a grid pattern. (Hereinafter, also referred to as “change of R value according to arrangement”), FIG. 3 (A) is a plan view, and FIG. 3 (B) is a sectional view taken along line YY. 3 (C) is a sectional view taken along line XX, FIG. 3 (D) is an enlarged view of the broken line circled portion of FIG. 3 (C), and FIG. 3 (E) is a broken line circled portion of FIG. 3 (D). The enlarged view of is shown respectively. 本発明の一実施形態に係る試験電着用陰極板の製造方法(以下、「本方法」ともいう)の手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure of the manufacturing method (hereinafter, also referred to as "the present method") of the test electrode wearing cathode plate which concerns on one Embodiment of this invention. 図1の使用状態で本陰極板に試験電着した結果を説明するための一部平面拡大図である。It is a partial plan enlarged view for demonstrating the result of test electrodeposition on this cathode plate in the use state of FIG. R値と異常成長との関係を説明するための斜視図であり、図6(A)はR値が小さいため、いびつな形状に生成された製品、図6(B)はR値が大きいため、理想に近い形状に生成された製品、をそれぞれ示している。It is a perspective view for demonstrating the relationship between the R value and abnormal growth, FIG. 6A is a product generated in a distorted shape because the R value is small, and FIG. 6B is a large R value. , Products produced in a shape close to the ideal, respectively.

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. It should be noted that the present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and all the configurations described in the present embodiment are essential as a means for solving the present invention. Is not always the case.

図1は、本陰極板の使用状態を示す斜視図である。図1に示すように、金属の電解採取は、採取したい金属のイオンを含む水溶液(以下、電解液90という)に陽極(以下、「陽極(Ni)板」ともいう)80と陰極(本陰極板)100を浸漬させて通電し、本陰極板100上に当該金属を析出させることにより行われる。なお、本陰極板100の下方から不図示のエアブロウノズルから気泡が供給されている。一方、電解液の供給機構については、図解説明ともに、ここでは省略する。また、代表的な電解採取の例としては、銅、亜鉛、ニッケル、コバルト、鉛、白金族金属が適用されている。ここでは、メッキ用電気ニッケルの製造に使用される電解採取を例示する。 FIG. 1 is a perspective view showing a usage state of the cathode plate. As shown in FIG. 1, in electrowinning of a metal, an anode (hereinafter, also referred to as “anode (Ni) plate”) 80 and a cathode (main cathode) are added to an aqueous solution (hereinafter, referred to as an electrolytic solution 90) containing ions of the metal to be collected. The plate) 100 is immersed and energized to deposit the metal on the main cathode plate 100. Bubbles are supplied from below the cathode plate 100 from an air blow nozzle (not shown). On the other hand, the electrolyte supply mechanism will be omitted here together with the illustrated explanation. Further, as a typical example of electrowinning, copper, zinc, nickel, cobalt, lead and platinum group metals are applied. Here, electrowinning used in the production of nickel for plating is illustrated.

本陰極板100は、非鉄金属、例えばニッケルの電解採取法において、本操業前に目的金属の電着状況を確認するための試験電着用に反復利用可能な金属板17である。ニッケルの電解採取法において、電解槽には、電解液90としてNiCl(塩化ニッケル(II)、nickel(II) chloride)水溶液を満たし、その電解液90に、無垢のNi板でなる陽極80と、例えばチタン製の本陰極板100と、を浸漬する。これら、陽極(Ni)板80及び本陰極板100のそれぞれに対し、直流電源装置から所定の直流電流を流す。 The cathode plate 100 is a metal plate 17 that can be repeatedly used for test electrodeposition to confirm the electrodeposition status of the target metal before the main operation in the electrowinning method for non-ferrous metals such as nickel. In the electrowinning method for nickel, the electrolytic cell is filled with an aqueous solution of NiCl 2 (nickel (II) chloride, nickel (II) chloride) as the electrolytic solution 90, and the electrolytic cell 90 is filled with an anode 80 made of a solid Ni plate. For example, the main cathode plate 100 made of titanium is immersed. A predetermined direct current is passed from the DC power supply device to each of the anode (Ni) plate 80 and the main cathode plate 100.

この直流電流によって、電解液90中のNiイオンは本陰極板100側に移動する。このNiイオンが、負電圧を印加された本陰極板100に電着されて金属Niとなる。このようにして所望の厚さだけ電着された金属Niが、機械工具等により本陰極板100から剥ぎ取られて製品となる。ここで産出される金属Ni製品の形状は、後述するような、本陰極板100に形成された「電着面の形状」に影響される。 Due to this direct current, Ni ions in the electrolytic solution 90 move to the main cathode plate 100 side. The Ni ions are electrodeposited on the main cathode plate 100 to which a negative voltage is applied to become metallic Ni. The metal Ni electrodeposited to a desired thickness in this way is peeled off from the cathode plate 100 by a machine tool or the like to obtain a product. The shape of the metallic Ni product produced here is influenced by the "shape of the electrodeposited surface" formed on the cathode plate 100, which will be described later.

図2は、本陰極板の概略を示した斜視図である。図2に示すように、本陰極板100の母材を形成する金属板17は、チタン又はステンレス鋼からなる長方形の無垢板であり、その表面の所定位置を電解採取法における電着面21〜32として用いられるものである。なお、金属板17は、硬度が高くて耐久性に優れたチタン製であることが好ましい。 FIG. 2 is a perspective view showing an outline of the cathode plate. As shown in FIG. 2, the metal plate 17 forming the base material of the cathode plate 100 is a rectangular solid plate made of titanium or stainless steel, and the electrodeposition surface 21 to a predetermined position on the surface thereof in the electrowinning method is used. It is used as 32. The metal plate 17 is preferably made of titanium having high hardness and excellent durability.

図3は、電着面の四隅(角部)を面取りした角丸の曲率半径R値について、複数の突起部が格子状に配置された位置の違いに基づいて変化すること(配置に応じたR値の変化)を説明するための図である。図3(A)は平面図である。図3(B)はY−Y線断面図である。図3(C)は、X−X線断面図である。図3(D)は、図3(C)における破線丸囲い部の拡大図である。図3(E)は、図3(D)における破線丸囲い部の拡大図である。また、図3(A)でいう平面図とは、図1に示すような本陰極板100を立てた姿勢において、正面から視認した図をいう。 FIG. 3 shows that the radius of curvature R value of the rounded corners chamfered at the four corners (corners) of the electrodeposited surface changes based on the difference in the positions where a plurality of protrusions are arranged in a grid pattern (depending on the arrangement). It is a figure for demonstrating (change of R value). FIG. 3A is a plan view. FIG. 3B is a sectional view taken along line YY. FIG. 3C is a cross-sectional view taken along line XX. FIG. 3 (D) is an enlarged view of the broken line circled portion in FIG. 3 (C). FIG. 3 (E) is an enlarged view of the broken line circled portion in FIG. 3 (D). Further, the plan view referred to in FIG. 3A means a view viewed from the front in a posture in which the cathode plate 100 is erected as shown in FIG.

また、曲率とは、曲率半径R値の逆数(1/R)である。方形(以下、一例として正方形とする)の電着面21〜32において、それぞれの四隅41〜44に対し、面取りした角丸形状を示す場合、曲率半径R値と、その逆数(1/R)との何れで表示しても構わないが、本願においては、曲率半径R値に統一している。なお、電着面21〜32が、異なるR値であっても、それぞれの四隅41〜44は、左上を41、右上を42、右下を43、左下を44と、共通の符号で説明している。また、1つの電着面に対する四隅41〜44に対しては、同一のR値を例示しているが、それに限定しなくても構わない。 The curvature is the reciprocal (1 / R) of the radius of curvature R value. In the case of showing a chamfered rounded corner shape for each of the four corners 41 to 44 on the electrodeposited surfaces 21 to 22 of a square (hereinafter, a square as an example), the radius of curvature R value and its reciprocal (1 / R) However, in the present application, the radius of curvature R value is unified. Even if the electrodeposited surfaces 21 to 22 have different R values, the four corners 41 to 44 are described with common reference numerals such as 41 for the upper left, 42 for the upper right, 43 for the lower right, and 44 for the lower left. ing. Further, although the same R value is illustrated for the four corners 41 to 44 with respect to one electrodeposition surface, the R value may not be limited to that.

図3に示すように、この金属板17において、少なくとも一方の表面18に、微小な高さHのテーブル状をなす複数の突起部21〜32が、J行・K列(J,Kともに1以上の自然数)に格子状配置され、その表面が電着面21〜32として形成されている。なお、後述するように、各位置の突起部21〜32に対する平面視認形状は、位置付けに応じて変形するように構成されている。 As shown in FIG. 3, in the metal plate 17, a plurality of protrusions 21 to 22 forming a table shape having a minute height H are formed on at least one surface 18 in rows J and columns K (both J and K are 1). It is arranged in a grid pattern on the above natural numbers), and its surface is formed as electrodeposited surfaces 21 to 32. As will be described later, the plane visual recognition shape with respect to the protrusions 21 to 22 at each position is configured to be deformed according to the positioning.

図3(A)に例示するように、金属板17を平面視認した基本外形は縦長の長方形で、一例として、縦×横×厚さ=200mm×100mm×4mmである。また、突起部(電着面)21〜32の格子状配置について、行数J値は長方形の縦方向に降順又は昇順である。同様に、格子状配置の列数K値は、長方形の横方向に降順又は昇順されるものとする。その行数J値は2以上10以下であり、列数K値は2以上10以下であることが好ましいが、一例として、行数J・列数Kは3行×3列である。 As illustrated in FIG. 3A, the basic outer shape of the metal plate 17 viewed in a plane is a vertically long rectangle, and as an example, length x width x thickness = 200 mm x 100 mm x 4 mm. Further, regarding the grid-like arrangement of the protrusions (electroplated surfaces) 21 to 22, the number of rows J value is in descending order or ascending order in the vertical direction of the rectangle. Similarly, the K value of the number of columns arranged in a grid pattern shall be in descending or ascending order in the horizontal direction of the rectangle. The number of rows J value is preferably 2 or more and 10 or less, and the number of columns K value is preferably 2 or more and 10 or less. As an example, the number of rows J and the number of columns K are 3 rows × 3 columns.

このように、2≦J≦10,2≦K10とする理由は、Niの電解採取法による本操業で用いられ陰極板(以下、「本操業用陰極板」ともいう)の外形寸法は、1m×1m位である。これに対し、試験電着用陰極板100は、本操業用陰極板よりもはるかに小さく、必要最小限の大きさで試験目的を達成できるような手軽なものとするためである。 In this way, the reason why 2 ≦ J ≦ 10, 2 ≦ K10 is that the external dimensions of the cathode plate (hereinafter, also referred to as “cathode plate for main operation”) used in the main operation by the electrowinning method of Ni is 1 m. It is about × 1m. On the other hand, the test electrode wearing cathode plate 100 is much smaller than the cathode plate for main operation, and is easy to achieve the test purpose with the minimum necessary size.

以下に、陰極板100の形状について、より具体的に例示する。本陰極板100における突起部21〜32を平面視認した形状は、一辺が所定長さEの正方形を基本形である。E=15mm、突起部21〜32の相互間隔は12mm、突起部(電着面)21〜32の格子状配置は、行数J・列数Kが3行×3列である。突起部(電着面)21〜32について、個別の大きさを変えずに、格子状配置について10行×10列に拡張した場合でも、外形寸法は、0.3m×0.3m位に収まるので、手軽と感じられる範囲である。 The shape of the cathode plate 100 will be more specifically illustrated below. The shape of the protrusions 21 to 22 of the cathode plate 100 viewed in a plane is basically a square having a predetermined length E on one side. E = 15 mm, the mutual distance between the protrusions 21 to 32 is 12 mm, and the grid arrangement of the protrusions (electroplated surfaces) 21 to 32 has a number of rows J and a number of columns K of 3 rows × 3 columns. Even if the protrusions (electroplated surfaces) 21 to 22 are expanded to 10 rows x 10 columns in a grid pattern without changing their individual sizes, the external dimensions are within 0.3 m x 0.3 m. Therefore, it is a range that feels easy.

また、突起部21〜32の高さHは、50μm以上1000μm以下であり、非導電膜(以下、「樹脂膜」、「塗膜」又は「マスク」ともいう)50の最小膜厚(以下、「樹脂膜厚」、「塗膜厚」又は、単に「膜厚」ともいう)Tは、隣接する突起部21〜32それぞれの中心間を通る位置M(図3)における突起部21〜32の高さHと同一である。例えば、H=300μmであることが好ましい。 The height H of the protrusions 21 to 32 is 50 μm or more and 1000 μm or less, and the minimum film thickness (hereinafter, also referred to as “resin film”, “coating film” or “mask”) of the non-conductive film (hereinafter, also referred to as “resin film”, “coating film” or “mask”) 50. "Resin film thickness", "coating film thickness", or simply "film thickness") T refers to the protrusions 21 to 22 at the position M (FIG. 3) passing between the centers of the adjacent protrusions 21 to 32. It is the same as the height H. For example, it is preferable that H = 300 μm.

なお、突起部21〜32の高さHと、膜厚Tが同一で、しかも膜厚Tが均等であり、両者が面一であることが好ましい。しかし、図3(E)に示すように、突起部21〜32の高さHと、膜厚Tとの差(以下「誤差」ともいう)Gが、規定範囲内であれば、実用上の問題は少ない。この点については、より詳しくは、隣接する突起部21〜32それぞれの中心Mの間を通る位置における非導電膜50の最小膜厚Tと、突起部21〜32の高さHとの差Gは、200μm以下であることが好ましい。なお、図3(E)では、T<Hのみ示しているが、逆にH<Tの場合も同様である。 It is preferable that the height H of the protrusions 21 to 32 and the film thickness T are the same, the film thickness T is uniform, and both are flush with each other. However, as shown in FIG. 3 (E), if the difference (hereinafter, also referred to as “error”) G between the height H of the protrusions 21 and 22 and the film thickness T is within the specified range, it is practical. There are few problems. Regarding this point, more specifically, the difference G between the minimum film thickness T of the non-conductive film 50 and the height H of the protrusions 21 to 22 at the position passing between the centers M of the adjacent protrusions 21 to 32. Is preferably 200 μm or less. Although only T <H is shown in FIG. 3 (E), the same applies to the case of H <T.

その一方で、突起部21〜32の高さHについては、極めて低いテーブル状である点で全て一律である。また、ここでは、複数の突起部21〜32が、金属板17の表面18において、どこに位置付けられているかを明確に特定することがより重要である。したがって、各位置の突起部21〜32と、それぞれの電着面21〜32と、に同一符号を付して図解し説明している。 On the other hand, the heights H of the protrusions 21 to 22 are all uniform in that they have an extremely low table shape. Further, here, it is more important to clearly specify where the plurality of protrusions 21 to 22 are located on the surface 18 of the metal plate 17. Therefore, the protrusions 21 to 22 at each position and the electrodeposited surfaces 21 to 32 are illustrated and described with the same reference numerals.

図3(D)及び図3(E)に示すように、金属板17の表面18において、電着面21〜32以外の表面19に、例えば樹脂製のマスク50が被覆されている。マスク50は、金属板17における表面18に配置された複数の突起部21〜32を露出させる窓枠形状であり、それぞれの窓孔に突起部21〜32が密嵌される関係である。 As shown in FIGS. 3 (D) and 3 (E), on the surface 18 of the metal plate 17, for example, a resin mask 50 is coated on the surface 19 other than the electrodeposited surfaces 21 to 32. The mask 50 has a window frame shape that exposes a plurality of protrusions 21 to 22 arranged on the surface 18 of the metal plate 17, and the protrusions 21 to 32 are tightly fitted into the respective window holes.

また、マスク50は、テーブル状の突起部21〜32の微小な高さHに相当する厚さである。したがって、各テーブルの表面を形成する電着面21〜32と、マスク50と、は面一であることが好ましい。ただし、面一であることは、過度に厳格である必要もなく、上述した程度の許容範囲(200μm以下)であれば、面一に対する誤差Gがあっても構わない。 Further, the mask 50 has a thickness corresponding to a minute height H of the table-shaped protrusions 21 to 32. Therefore, it is preferable that the electrodeposited surfaces 21 to 32 forming the surface of each table and the mask 50 are flush with each other. However, being flush does not have to be overly strict, and there may be an error G with respect to flush as long as it is within the allowable range (200 μm or less) described above.

また、図1に示すように、電着面21〜32以外の表面19の全てに樹脂製のマスク50が被覆されているとは限らず、金属板17の表面18における上方や縁部には、マスク50が被覆されず、無垢の金属板17が露出した箇所も残されている。 Further, as shown in FIG. 1, not all the surfaces 19 other than the electrodeposited surfaces 21 to 22 are covered with the resin mask 50, and the upper surface and the edge portion of the surface 18 of the metal plate 17 are not always covered with the resin mask 50. , The mask 50 is not covered, and the part where the solid metal plate 17 is exposed is left.

その結果、マスク50は、金属板17の表面18において、額縁状の露出部を残し、やや下方寄りに長方形の外形を有する。そのマスク50内において、横3列、縦3列の格子状に略方形の電着面21〜32が配置されている。以下に、J行・K列に格子状配置された突起部21〜32の表面に形成された電着面21〜32(同一符号)について、より詳細に説明する。 As a result, the mask 50 has a rectangular outer shape slightly downward on the surface 18 of the metal plate 17, leaving a frame-shaped exposed portion. In the mask 50, substantially square electrodeposited surfaces 21 to 32 are arranged in a grid pattern of three horizontal rows and three vertical rows. Hereinafter, the electrodeposited surfaces 21 to 32 (same reference numerals) formed on the surfaces of the protrusions 21 to 32 arranged in a grid pattern in rows J and K will be described in more detail.

突起部21〜32を平面視認した形状は、一辺が所定長さEの正方形を基本形である。これら正方形の四隅(以下、「角部」ともいう)41〜44は、規定のR値で角丸に面取りされている。これら角丸を形成するR値は、格子状配置の位置の違いに基づいて変化するように規定されている。このR値は、格子状配置の一端から数える最初の1行目が最小であり、格子状配置の他端まで数えた最後のJ行目が最大であり、同一行では同一に設定されている。以下、「配置に応じたR値の変化」について、より詳細に説明する。 The shape of the protrusions 21 to 22 viewed in a plane is basically a square having a predetermined length E on one side. The four corners (hereinafter, also referred to as "corners") 41 to 44 of these squares are chamfered with rounded corners at a specified R value. The R-values that form these rounded corners are defined to change based on the difference in the position of the grid arrangement. This R value is set to be the same in the same row, with the first line counting from one end of the grid arrangement being the minimum and the last J line counting to the other end of the grid arrangement being the maximum. .. Hereinafter, "change in R value according to arrangement" will be described in more detail.

R値の大小関係は、R1<R2<R3<R4である。ただし、R値が大きくなる順番は、行数J値に単純比例するものではない。図3に示すように、R値について、1行目の突起部21〜23はR1、2行目の突起部24〜26はR3、3行目の突起部27〜29はR2、4行目の突起部30〜32はR4である。 The magnitude relationship of the R value is R1 <R2 <R3 <R4. However, the order in which the R value increases is not simply proportional to the number of rows J value. As shown in FIG. 3, regarding the R value, the protrusions 21 to 23 in the first row are R1, the protrusions 24 to 26 in the second row are R3, and the protrusions 27 to 29 in the third row are R2 and the fourth row. The protrusions 30 to 32 of the above are R4.

行数J値について、まず格子状配置の一端、ここでは上からJ=1行目と数える。つまり、1行目の突起部21〜23はR1である。そこから下へ2行進めたJ=3行目の位置でR値は順番を1つ進めてR1からR2へと1段階大きくなる。つまり、3行目の突起部27〜29はR2である。 Regarding the number of rows J value, first, one end of the grid arrangement, here, J = 1st row from the top. That is, the protrusions 21 to 23 in the first row are R1. At the position of J = 3rd line, which is advanced two lines downward from there, the R value advances one order and increases by one step from R1 to R2. That is, the protrusions 27 to 29 on the third row are R2.

このように、2行進めた3行目の位置から戻すところが有れば1行戻したJ=2行目の位置でR値は順番を1つ進めてR2からR3へと1段階大きくなる。つまり、2行目の突起部24〜26はR3である。そこから下へ2行進めたJ=4行目の位置でR値は順番を1つ進めてR3からR4へと1段階大きくなる。つまり、4行目の突起部30〜32はR4である。 In this way, if there is a place to return from the position of the third line advanced by two lines, the R value advances one line in order at the position of J = the second line returned by one line and increases by one step from R2 to R3. That is, the protrusions 24 to 26 in the second row are R3. At the position of J = 4th line, which is advanced two lines downward from there, the R value advances one order and increases by one step from R3 to R4. That is, the protrusions 30 to 32 on the fourth row are R4.

行数J=4までしか例示していないが、5≦Jである場合、J=4から1行戻してJ=3としたくても戻すところがない、すなわち1行戻した3行目は、既に数えられている。このように戻るところが無いならば、さらに下へ2行進めた6行目でR値の順番をR4からR5へと1つ進める。このように行の飛び越しを繰り返す順番により、R値の大小関係を変化させる。つまり、「配置に応じたR値の変化」については、行数J値が、1,3,2,4,6,5,7,9,8,10,…,Jの順番に、曲率半径R値を順次大きく変化させる。 Only up to the number of lines J = 4 is illustrated, but when 5 ≦ J, there is no place to return even if you want to return one line from J = 4 to J = 3, that is, the third line that has returned one line is already It is being counted. If there is no place to return in this way, the order of the R values is advanced by one from R4 to R5 on the sixth line, which is advanced two lines further down. The magnitude relationship of the R value is changed according to the order in which the line skipping is repeated in this way. That is, with respect to "change in R value according to arrangement", the radius of curvature of the number of rows J value is 1,3,2,4,6,5,7,9,8,10, ..., J in that order. The R value is changed significantly in sequence.

上述の「配置に応じたR値の変化」について、行の飛び越しを繰り返す順番により、R値の大小関係を変化させている。このことによって、電解液90が位置別に極端な成分変化する不具合を避ける効果がある。ここで、その作用を説明する。電着速度について、R値が小さい電着面22の近傍では、電流密度の高い角部41〜44に対して急激に電着物が異常成長することに伴って、電解液90が極端に成分変化する。 Regarding the above-mentioned "change in R value according to arrangement", the magnitude relationship of R value is changed according to the order in which line skipping is repeated. This has the effect of avoiding the problem that the electrolytic solution 90 has an extreme component change depending on the position. Here, the operation will be described. Regarding the electrodeposition speed, in the vicinity of the electrodeposition surface 22 having a small R value, the electrolytic solution 90 undergoes an extreme change in component as the electrodeposited material rapidly grows abnormally with respect to the corners 41 to 44 having a high current density. To do.

その点について、R値が大きい電着面31の近傍では比較的緩慢である。したがって、行の飛び越しを繰り返す順番により、R値の大小関係を変化させていることにより、「配置に応じたR値の極端な変化」を緩和する作用がある。そのため、本陰極板100の下方からのエアブロウと相まって、電解液90の位置別による極端な成分変化を避けられる効果がある。 In that respect, it is relatively slow in the vicinity of the electrodeposited surface 31 having a large R value. Therefore, by changing the magnitude relation of the R value according to the order in which the jumping of the rows is repeated, there is an effect of alleviating the "extreme change of the R value according to the arrangement". Therefore, in combination with the air blow from below the main cathode plate 100, there is an effect of avoiding an extreme component change due to the position of the electrolytic solution 90.

図4は、本発明の一実施形態に係る試験電着用陰極板の製造方法(以下、「本方法」ともいう)の手順を説明するためのフローチャートである。本方法は、非金属の電解採取操業で電解液90の条件に応じた電着形態を確認するために電解液90に浸漬して試験電着させる試験電着用陰極板100の製造方法である。図4に示すように、本方法は、第1工程(S10)と、第2工程(S20)と、を有している。 FIG. 4 is a flowchart for explaining a procedure of a method for manufacturing a test electrode wearing cathode plate (hereinafter, also referred to as “the present method”) according to an embodiment of the present invention. This method is a method for manufacturing a test electrode-wearing cathode plate 100 which is immersed in an electrolytic solution 90 and subjected to test electrodeposition in order to confirm the electrodeposition morphology according to the conditions of the electrolytic solution 90 in a non-metal electrowinning operation. As shown in FIG. 4, this method has a first step (S10) and a second step (S20).

第1工程(S10)では、金属板17の少なくとも一方の表面18に、J行・K列(J,Kともに1以上の自然数)の格子状配置で複数の突起部21〜32を電着面21〜32として形成する。この第1工程(S10)では、突起部21〜32を平面視認した形状を、一辺が所定長さEの正方形を基本形とし、正方形の四隅41〜44を規定の曲率半径R値で角丸に面取りする。このとき、角丸を形成する曲率半径R値は、格子状配置の位置の違いに基づいて変化するように規定される。 In the first step (S10), a plurality of protrusions 21 to 22 are electrodeposited on at least one surface 18 of the metal plate 17 in a grid pattern of J rows and K columns (both J and K are natural numbers of 1 or more). It is formed as 21 to 32. In this first step (S10), the shape of the protrusions 21 to 22 that are visually recognized in a plane is based on a square having a predetermined length E on one side, and the four corners 41 to 44 of the square are rounded with a predetermined radius of curvature R value. Chamfer. At this time, the radius of curvature R value forming the rounded corners is defined to change based on the difference in the position of the grid arrangement.

つぎの第2工程(S20)では、金属板17に複数の突起部21〜32が電着面21〜32として形成された以外の表面19に、非導電膜50により所定形状のマスク50を施す。なお、マスク50は、金属板17の表面18において、額縁状の露出部を残しても良い。あるいは、電着面21〜32として形成された以外の表面19の全部と、裏面や端面の全部とを完全に被覆しても構わない。 In the next second step (S20), a mask 50 having a predetermined shape is applied to the surface 19 other than the metal plate 17 in which the plurality of protrusions 21 to 32 are formed as the electrodeposited surfaces 21 to 32 by the non-conductive film 50. .. The mask 50 may leave a frame-shaped exposed portion on the surface 18 of the metal plate 17. Alternatively, the entire surface 19 other than those formed as the electrodeposited surfaces 21 to 22 and the entire back surface and end surface may be completely covered.

その場合、図3(E)を用いて上述したように、非導電膜50の(最小)膜厚Tと、突起部21〜32の高さHとの差G、すなわち、面一に対する誤差Gが許容範囲(200μm以下)であれば、金属板17の裏面や端面の全部については、膜厚Tの厚さに多少の不均一が生じても構わない。それによって、第2工程(S20)では、より簡素な絶縁塗料や樹脂コーティング等による絶縁被覆の方法を採用することが可能である。 In that case, as described above with reference to FIG. 3 (E), the difference G between the (minimum) film thickness T of the non-conductive film 50 and the height H of the protrusions 21 to 32, that is, the error G with respect to the plane. As long as is within the permissible range (200 μm or less), the thickness of the film thickness T may be slightly uneven on the entire back surface and end surface of the metal plate 17. As a result, in the second step (S20), it is possible to adopt a simpler method of insulating coating with an insulating paint, a resin coating, or the like.

電着面21〜32は、縦列K毎に方形の四隅41〜44が異なる曲率半径R値となるように面取りされている。これは、電解液90中において、電流集中が生じ易い電着21〜32面の四隅41〜44において、電着物の異常成長による不具合を是正すると供に、効率良く電着物を生産するために、電着面21〜32の四隅41〜44に対する面取り形状を確認し、選択するためのものである。 The electrodeposited surfaces 21 to 22 are chamfered so that the four corners 41 to 44 of the square have different radius of curvature R values for each column K. This is to correct defects due to abnormal growth of the electrodeposited material at the four corners 41 to 44 of the electrodeposited surfaces 21 to 22 where current concentration is likely to occur in the electrolytic solution 90, and to efficiently produce the electrodeposited material. This is for confirming and selecting the chamfered shape of the electrodeposited surfaces 21 to 22 with respect to the four corners 41 to 44.

したがって、本陰極板100は、縦列K毎に異なる電着面21〜32の面取り形状により、本操業前の試験電解時において、電着面21〜32の形状の相違に基づく電着物の電着状態の相違を試験することができ、本操業用陰極板における電着面の面取り形状の判断に寄与することができる。 Therefore, the cathode plate 100 has a different chamfered shape of the electrodeposited surfaces 21 to 32 for each column K, so that the electrodeposited material is electrodeposited based on the difference in the shape of the electrodeposited surfaces 21 to 32 during the test electrolysis before the main operation. Differences in state can be tested, which can contribute to the determination of the chamfered shape of the electrodeposited surface in the cathode plate for this operation.

本陰極板100は、格子状の位置に電着面21〜32が並ぶように、また、電着面21〜32が正方形となるようにマスクが施され、正方形の四隅41〜44は、それぞれ異なる曲率半径R値と(曲率)を備えている。 The cathode plate 100 is masked so that the electrodeposited surfaces 21 to 32 are lined up in a grid pattern and the electrodeposited surfaces 21 to 32 are square, and the four corners 41 to 44 of the square are respectively. It has a different radius of curvature R value and (curvature).

このような形状の特徴を有する本陰極板100は、上述した電着物が得られない範囲を極小化することができるので、電着生産物を効率良く生産することが可能になる。さらに、曲率半径R値と製品不具合の関係を調査することができる。 Since the cathode plate 100 having such a shape feature can minimize the range in which the above-mentioned electrodeposited product cannot be obtained, the electrodeposited product can be efficiently produced. Furthermore, the relationship between the radius of curvature R value and the product defect can be investigated.

図5は、図1の使用状態で本陰極板に試験電着した結果を説明するための一部平面拡大図である。図5に示すように、電解採取法において、本操業前に目的金属の電着状況を確認するために、本陰極板100を用いて試験電着した結果、電着面21〜32に、それぞれのR値に基づく傾向的な形状で電着する。また、平面視認形状のみならず、立体視認形状については、図6の斜視図を用いて後述する。なお、ここでは電着物として金属Niを例示している。 FIG. 5 is a partially enlarged plan view for explaining the result of test electrodeposition on the cathode plate in the state of use of FIG. As shown in FIG. 5, in the electrowinning method, as a result of test electrodeposition using the cathode plate 100 in order to confirm the electrodeposition status of the target metal before the main operation, the electrodeposition surfaces 21 to 22 were respectively. Electrowinning is performed in a tendency shape based on the R value of. Further, not only the plane visual recognition shape but also the three-dimensional visual recognition shape will be described later using the perspective view of FIG. Here, metal Ni is exemplified as the electrodeposited material.

電着面21〜23は、それらの角部41〜44において、R値がR1と小さく、そうでない箇所よりも集中的に電流密度が高くなるため、それに応じて大きく突出し、いびつな形状に金属Niが電着する。この電着面21〜23の上下及び縦横方向には、まちまちであるが、平均の厚さP1で薄く電着している。 The electrodeposited surfaces 21 to 23 have a small R value of R1 at their corners 41 to 44, and the current density is concentrated higher than those where they are not, so that the electrodeposited surfaces project greatly accordingly and the metal has a distorted shape. Ni is electrodeposited. The electrodeposition surfaces 21 to 23 are electrodeposited thinly with an average thickness P1 although they are different in the vertical and horizontal directions.

このように、電着厚さP1が薄い場合、電着面21〜23の隣接する相互間において、電着物を得られない範囲(以下、「非電着部」ともいう)Qが少なからず発生すると共に、大きく突出した角部41〜44どうしが、ブリッジVを形成し、隣接する相互間で連結されてしまう。そこで、非電着部Qを極小化して電着量を確保する(後述する第1評価基準)と共に、理想的な電着物の形状を得る(後述する第2評価基準)ためのR値を模索することが、本陰極板100の主な目的である。 As described above, when the electrodeposition thickness P1 is thin, a range (hereinafter, also referred to as “non-electroplated portion”) Q in which an electrodeposited object cannot be obtained is generated between adjacent surfaces 21 to 23. At the same time, the large protruding corners 41 to 44 form a bridge V and are connected to each other adjacent to each other. Therefore, the R value for obtaining the ideal shape of the electrodeposited object (the second evaluation standard described later) is searched for while minimizing the non-electroplated portion Q to secure the electrodeposition amount (the first evaluation standard described later). This is the main purpose of the cathode plate 100.

一方、電着面21〜23とは逆に、電着面30〜32では、それらの角部41〜44におけるR値がR4と緩やかなため、大きく突出することなく、上下及び縦横方向に概ね均等で比較的大きな厚さP4で、より丸みを帯びた平面視認形状に金属Niが電着する。また、上述した1行目と4行目の電着面21〜23,30〜32の中間位置、すなわち、2行目と3行目の電着面24〜26,27〜29では、それらの上下及び縦横方向には、まちまちであるが、中位の厚さP3,P2で、それぞれ電着している。 On the other hand, contrary to the electrodeposition surfaces 21 to 23, on the electrodeposition surfaces 30 to 32, the R values at the corners 41 to 44 are as gentle as R4, so that they do not protrude significantly and are generally in the vertical and horizontal directions. Metal Ni is electrodeposited on a more rounded planar visual shape with a uniform and relatively large thickness P4. Further, at the intermediate positions between the electrodeposited surfaces 21 to 23, 30 to 32 in the first and fourth rows described above, that is, the electrodeposited surfaces 24 to 26, 27 to 29 in the second and third rows, those Although it varies in the vertical and horizontal directions, it is electrodeposited with medium thicknesses P3 and P2, respectively.

本陰極板100は、試験電着のための試験片であり、本操業前に目的金属の電着状況を1回の電解採取で簡略に確認することができる。ここで、電着状況を確認するために、図5に示した試験電着の結果を評価する。多項目にわたる評価基準があるなかで、ここでは以下の2点に限定して評価する。 The cathode plate 100 is a test piece for test electrodeposition, and the electrodeposition status of the target metal can be easily confirmed by one electrowinning before the main operation. Here, in order to confirm the electrodeposition status, the result of the test electrodeposition shown in FIG. 5 is evaluated. Among the evaluation criteria covering multiple items, the evaluation is limited to the following two points.

第1評価基準として、1枚板に多数存在する電着面21〜32の何れか1箇所における電着量を比較考慮する。すなわち、第1評価基準とは、1つの電着面から得られる電着量の多寡をいう。これは、当然に多い程良い。第2評価基準として、1枚板に多種類のR値の混在する電着面21〜32それぞれのR値別に得られる製品形状を比較考慮する。これは、薄手の直方体、又は厚手の円盤型に近い程良く、当然に均一な仕上がりである方が良い。すなわち、第2評価基準とは、電着製品の形の良さをいう。 As the first evaluation criterion, the amount of electrodeposition at any one of the electrodeposited surfaces 21 to 22 existing in a large number on one plate is compared and considered. That is, the first evaluation criterion refers to the amount of electrodeposition obtained from one electrodeposition surface. Of course, the more this is, the better. As the second evaluation standard, the product shapes obtained for each R value of the electrodeposited surfaces 21 to 22 in which many types of R values are mixed in one plate are compared and considered. This is better as it is closer to a thin rectangular parallelepiped or a thick disk shape, and naturally it is better to have a uniform finish. That is, the second evaluation standard refers to the good shape of the electrodeposited product.

上述した電着量の多寡をいう第1評価基準によれば、電着面21〜23は、それらの角部41〜44以外において、非電着部Qが発生する分だけ不利であり、電着面30〜32の方が有利である。また、上述した製品形状及びその均一性をいう第2評価基準によれば、電着面21〜23は、それらの角部41〜44が大きくいびつに突出するだけでなく、ブリッジVで複数単位が連結された状態のままでは、商品価値が得られないため不利であり、電着面30〜32の方が、同一形状で有利である。 According to the first evaluation standard, which refers to the amount of electrodeposition described above, the electrodeposited surfaces 21 to 23 are disadvantageous as much as the non-electroplated portion Q is generated except for the corner portions 41 to 44. The landing surface 30 to 32 is more advantageous. Further, according to the second evaluation standard for the product shape and its uniformity described above, not only the corners 41 to 44 of the electrodeposited surfaces 21 to 23 project greatly in a distorted manner, but also a plurality of units of the bridge V. In the state of being connected, it is disadvantageous because the commercial value cannot be obtained, and the electrodeposited surfaces 30 to 32 are more advantageous in the same shape.

なお、ここでは、R値がR4の電着面31が優良評価で、R値がR1の電着面22は劣悪評価との結果であるが、これは一例に過ぎない。すなわち、電解液90その他の環境が変化する都度に、四隅41〜44に対する最適な面取り形状も変化するので、図5に示す結果とは異なる場合があることは当然である。 Here, the electrodeposition surface 31 having an R value of R4 is a good evaluation, and the electrodeposition surface 22 having an R value of R1 is a poor evaluation, but this is only an example. That is, each time the electrolytic solution 90 and other environments change, the optimum chamfer shape for the four corners 41 to 44 also changes, so it is natural that the result may differ from the result shown in FIG.

図6は、図3に示した電着面の四隅(角部)を面取りした角丸のR値と異常成長との関係を説明するための斜視図である。まず、図6(A)は図2及び図3における電着面22の角部41〜44において、R値がR1と小さいため、いびつな形状に電着Niが生成された製品を示している。逆に、図6(B)は図2及び図3における電着面31の角部41〜44において、R値がR4と大きいため、理想に近い形状に電着Niが生成された製品を示している。 FIG. 6 is a perspective view for explaining the relationship between the R value of the rounded corners chamfered at the four corners (corners) of the electrodeposited surface shown in FIG. 3 and the abnormal growth. First, FIG. 6A shows a product in which electrodeposited Ni is generated in a distorted shape because the R value is as small as R1 at the corners 41 to 44 of the electrodeposited surface 22 in FIGS. 2 and 3. .. On the contrary, FIG. 6B shows a product in which electrodeposited Ni is generated in a shape close to an ideal because the R value is as large as R4 at the corners 41 to 44 of the electrodeposited surface 31 in FIGS. 2 and 3. ing.

なお、本陰極板100を用いた電着の予備試験では、同一行における両端の列よりも中心の列の電着状態を高い信頼性のある試験結果として採用する。例えば、図3(A)及び図5において、両端に位置する第1列や第3列の電着結果は参考として見るに止め、中心に位置する第2列の電着結果を試験結果として採用する。 In the preliminary test of electrodeposition using the cathode plate 100, the electrodeposition state of the central column rather than the columns at both ends in the same row is adopted as a highly reliable test result. For example, in FIGS. 3 (A) and 5, the electrodeposition results of the first and third rows located at both ends are only viewed as a reference, and the electrodeposition results of the second row located at the center are adopted as test results. To do.

このように、本陰極板100は、正方形を基本形とする各電着面21〜32を格子状配置した陰極板であるため、従来の円形だけの各電着面を千鳥配置した陰極板に比べ、電着物が得られない範囲を極小化し電着生産物の取り数を多くして効率的な生産を可能にできる。 As described above, since the cathode plate 100 is a cathode plate in which the electrodeposited surfaces 21 to 22 having a square shape are arranged in a grid pattern, it is compared with the conventional cathode plate in which the electrodeposited surfaces having only a circular shape are arranged in a staggered manner. , It is possible to minimize the range in which electrodeposition products cannot be obtained and increase the number of electrodeposition products to be taken, enabling efficient production.

そればかりでなく、正方形の四隅41〜44における目的金属の異常成長により、製品形状がいびつ化し、マスク50が破損される不具合を避けることを可能にできる。つまり、異常成長の原因である電流集中を緩和できるように、試行錯誤して最適値を求めるべきR値の角丸を形成する。さらに、1枚の試験片の面上に異なる複数のR値でなる角丸を形成する。 Not only that, it is possible to avoid the problem that the product shape is distorted due to the abnormal growth of the target metal at the four corners 41 to 44 of the square and the mask 50 is damaged. That is, the rounded corners of the R value for which the optimum value should be obtained are formed by trial and error so that the current concentration that causes the abnormal growth can be alleviated. Further, rounded corners having a plurality of different R values are formed on the surface of one test piece.

これにより、本操業前に目的金属の電着状況を1回の予備実験で簡略に知り得る試験片が得られる。すなわち、目的金属を異常成長させることなく高品質で安定的に得るために、電着面の四隅(角部)を面取りした角丸の曲率半径R値に対する、異常成長の関係を、1回の予備実験で簡略に知り得る試験電着用陰極板100を提供できる。 As a result, a test piece can be obtained that allows the electrodeposition status of the target metal to be easily known in one preliminary experiment before the main operation. That is, in order to obtain high quality and stable target metal without abnormal growth, the relationship of abnormal growth with respect to the radius of curvature R value of the rounded corners chamfered at the four corners (corners) of the electrodeposited surface is set once. It is possible to provide a test electrode wearing cathode plate 100 which can be easily known in a preliminary experiment.

本陰極板100は、各電着面21〜32それぞれの角部41〜44に対し、異なるR値を設定している。そのため、曲率半径R値と製品不具合の関係を、1回の試験電着によって調査できる。また、円形だけの各電着面を千鳥配置した場合、上述した電着物が得られない範囲が生ずる。その点について、本陰極板100が、各電着面を円形から、正方形に近づけることにより、上述した電着物が得られない範囲を極小化することができるので、電着生産物を効率よく生産可能になる。以下、この点も交えて、より詳細に説明する。 The cathode plate 100 sets different R values for the corners 41 to 44 of each of the electrodeposited surfaces 21 to 32. Therefore, the relationship between the radius of curvature R value and the product defect can be investigated by one test electrodeposition. Further, when each of the electrodeposited surfaces having only a circle is arranged in a staggered manner, there is a range in which the above-mentioned electrodeposited material cannot be obtained. Regarding this point, the cathode plate 100 can minimize the range in which the above-mentioned electrodeposited material cannot be obtained by making each electrodeposited surface from a circular shape to a square shape, so that the electrodeposited product can be efficiently produced. It will be possible. Hereinafter, this point will be described in more detail.

特許文献1,2に開示されているように、千鳥状陰極板による電着の結果、円盤面が平坦で、周縁部には平坦面よりも、円盤の厚さ程度の盛り上がりを含んだ概ね円盤状の電着製品が得られる。本操業用陰極板には、千鳥状陰極板の長所を生かせる形状の陰極板を採用することが好ましい。 As disclosed in Patent Documents 1 and 2, as a result of electrodeposition by the staggered cathode plate, the disk surface is flat, and the peripheral portion is generally a disk containing a bulge about the thickness of the disk rather than the flat surface. The shape of the electrodeposited product is obtained. For the cathode plate for this operation, it is preferable to adopt a cathode plate having a shape that makes the best use of the advantages of the staggered cathode plate.

ただし、千鳥状陰極板の短所として、金属板の面形状に対する取り数に損失の生じる点がある。すなわち、板幅に対して効率良く1行目を配置しても、2行目と4行目の幅方向の両端近傍では、千鳥状配置のため、電着物が得られない無駄な範囲が発生する。したがって、1回の電解採取操業で生産可能な電着生産物の取り数を最大限まで追求する生産効率の点で、無駄を生じるという短所になる。 However, the disadvantage of the staggered cathode plate is that there is a loss in the number of metal plates taken with respect to the surface shape. That is, even if the first row is efficiently arranged with respect to the plate width, there is a wasteful range in which electrodeposits cannot be obtained due to the staggered arrangement near both ends in the width direction of the second and fourth rows. To do. Therefore, there is a disadvantage that waste is generated in terms of production efficiency in which the number of electrodeposited products that can be produced in one electrowinning operation is pursued to the maximum.

そこで、円形電着部の千鳥状配置に代えて、正方形のテーブル形状を基本形とする電着部(以下、「正方形電着部」又は単に「電着部」ともいう)21〜32を格子状に配置することにより、電着生産物の生産効率に無駄を解消できた。すなわち、正方形電着部21〜32を格子状に配置された陰極板(以下、「角型格子列の陰極板」ともいう)100であれば、板幅に対して効率良く等間隔で1行目を配置し、行の間隔Fも列の間隔Fに揃えて2行目以降も整然かつ均等に配置される。 Therefore, instead of the staggered arrangement of the circular electrodeposition portions, the electrodeposition portions (hereinafter, also referred to as "square electrodeposition portions" or simply "electrodeposition portions") having a square table shape as a basic shape are arranged in a grid pattern. By arranging it in, it was possible to eliminate waste in the production efficiency of electrodeposited products. That is, if the cathode plates (hereinafter, also referred to as “cathode plates of a square lattice row”) 100 in which the square electrodeposited portions 21 to 22 are arranged in a grid pattern, one row is efficiently arranged at equal intervals with respect to the plate width. The eyes are arranged so that the row spacing F is aligned with the column spacing F, and the second and subsequent rows are arranged in an orderly and even manner.

また、本陰極板100の縦横の大きさは、正方形電着部21〜32の一辺の長さEと、各行の間隔Fと、各列の間隔Fと、これらの間隔Fの半分以下〜数倍の余白部を本陰極板100の周縁部に設定するように配慮されている。 Further, the vertical and horizontal dimensions of the cathode plate 100 are the length E of one side of the square electrodeposited portions 21 to 32, the interval F of each row, the interval F of each column, and half or less to the number of these intervals F. Consideration is given to setting a double margin portion on the peripheral edge portion of the cathode plate 100.

上述のように、角型格子列の本陰極板100は、千鳥状陰極板にない長所を有するが、以下にいう短所もある。すなわち、正方形電着部21〜32は、円形電着部と異なりエッジ部、特に四隅41〜44の電流密度が高くなるので、それに応じて、他の箇所よりも多くの電着が生じるため、目的製品の形状に不均一が生じるという短所である。 As described above, the main cathode plate 100 of the square grid array has advantages that the staggered cathode plate does not have, but also has the following disadvantages. That is, unlike the circular electrodeposition portion, the square electrodeposition portions 21 to 22 have a higher current density at the edge portions, particularly at the four corners 41 to 44, so that more electrodeposition is generated than at other locations. The disadvantage is that the shape of the target product is uneven.

それを解消するために、正方形電着部21〜32の四隅41〜44を面取りして緩やかな曲面を形成する試みがある。一方、電解液90その他の環境は、操業の都度に変化する。そのような環境変化に伴って、最適な四隅41〜44を面取り形状も変化する。そこで、非鉄金属の電解採取操業で電解液90その他の環境条件に応じた電着形態を確認するため、電解液90に浸漬して試験電着することが必要となる。それには、本操業用陰極板を模擬して小さく形成された試験片、すなわち試験電着用陰極板が用いられる。 In order to solve this problem, there is an attempt to chamfer the four corners 41 to 44 of the square electrodeposited portions 21 to 22 to form a gentle curved surface. On the other hand, the electrolyte 90 and other environments change with each operation. Along with such changes in the environment, the chamfered shape of the optimum four corners 41 to 44 also changes. Therefore, in order to confirm the electrodeposition form according to the electrolytic solution 90 and other environmental conditions in the electrowinning operation of the non-ferrous metal, it is necessary to immerse in the electrolytic solution 90 and perform test electrodeposition. For this purpose, a test piece formed small by simulating the cathode plate for this operation, that is, a cathode plate worn with a test electrode is used.

このように、電解液90その他の環境が変化する都度に、四隅41〜44に対する最適な面取り形状も変化するなかで、簡略な試験電着により、四隅41〜44の面取り形状の最適な曲率半径R値を見出すことが要望されていた。さらに、曲率半径R値と製品不具合の関係を、1回の試験電着によって調査できることが望ましい。 In this way, the optimum chamfer shape for the four corners 41 to 44 also changes each time the electrolyte 90 and other environments change, and the optimum radius of curvature of the chamfer shape for the four corners 41 to 44 is performed by simple test electrodeposition. It was requested to find the R value. Further, it is desirable that the relationship between the radius of curvature R value and the product defect can be investigated by one test electrodeposition.

調査の目的は、電着製品1個の電着量、及び電解採取1回の取り数で損することなく、ほぼ正方形の電着部21〜32の四隅41〜44における目的金属の異常成長を抑制することである。この異常成長により、製品形状がいびつ化し、マスク50が破損される不具合が生じる。この異常成長を抑制するため、四隅41〜44を角丸に面取りすることにより、R値を大きくして緩やかな曲面にする程に、異常成長の原因である電流集中が緩和される。 The purpose of the investigation is to suppress the abnormal growth of the target metal at the four corners 41 to 44 of the substantially square electrodeposited portions 21 to 22 without losing the amount of electrodeposition of one electrodeposited product and the number of electrowinnings taken at one time. It is to be. Due to this abnormal growth, the shape of the product becomes distorted and the mask 50 is damaged. In order to suppress this abnormal growth, by chamfering the four corners 41 to 44 with rounded corners, the current concentration that causes the abnormal growth is alleviated as the R value is increased to make a gentle curved surface.

しかし、R値を大きくし過ぎると正方形が円形になり、取り数で損する千鳥状陰極板に戻ってしまう。このように相反する利害得失の妥協点を見出すことが必要となる。そこで、本発明者らは、R値の異なる多種類の電着面21〜32が、1枚板の面上に配置された試験片を発明した。この試験片、すなわち本陰極板100によれば、取り数で損しないばかりか、R値と異常成長との相関性のほか、必要最低限のR値を究明する等について、1回の試験電着によって知り得るように工夫されている。 However, if the R value is made too large, the square becomes circular and returns to the staggered cathode plate, which is lost due to the number of takes. It is necessary to find a compromise between such conflicting interests and disadvantages. Therefore, the present inventors have invented a test piece in which various types of electrodeposited surfaces 21 to 22 having different R values are arranged on the surface of a single plate. According to this test piece, that is, this cathode plate 100, not only does it not lose in the number of takens, but also the correlation between the R value and abnormal growth, as well as the investigation of the minimum necessary R value, etc. It is devised so that you can know it by wearing it.

本発明によれば、電気ニッケルを始めとする非鉄金属の電解採取法において、電着物が得られない範囲を極小化し、さらに電着生産物の取り数を多くして効率的な生産を可能にすると供に、本操業前に目的金属の電着状況を知り得る試験片、すなわち、目的金属を異常成長させることなく高品質で安定的に得るために、電着面の四隅(角部)を面取りした角丸の曲率半径R値と、異常成長と、の相関性を簡略に知り得る試験電着用陰極板を提供することできる。 According to the present invention, in the electrowinning method for non-ferrous metals such as electrolytic nickel, the range in which electrodeposition products cannot be obtained is minimized, and the number of electrodeposition products taken is increased to enable efficient production. Then, a test piece that can know the electrodeposition status of the target metal before the main operation, that is, the four corners (corners) of the electrodeposition surface in order to obtain high quality and stable without abnormal growth of the target metal. It is possible to provide a test electrode wearing cathode plate capable of easily knowing the correlation between the radius of curvature R value of the chamfered rounded corners and the abnormal growth.

本発明は、非鉄金属の電解採取法において、本操業前に目的金属の電着状況について管理指標を得る手段として利用される可能性がある。特に、操業の都度に変化する電解液その他の環境変化に対応するための陰極電着面の最適形状を追求する予備実験を簡略化できる試験片、すなわち試験電着用陰極板、及びその製造方法として好適に利用される可能性がある。 INDUSTRIAL APPLICABILITY The present invention may be used as a means for obtaining a control index for the electrodeposition status of a target metal before the main operation in the electrowinning method for non-ferrous metals. In particular, as a test piece that can simplify the preliminary experiment for pursuing the optimum shape of the cathode electrodeposited surface to respond to changes in the electrolyte and other environments that change with each operation, that is, a cathode plate that wears a test electrode, and a manufacturing method thereof. It may be preferably used.

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。したがって、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment and each embodiment of the present invention have been described in detail as described above, those skilled in the art can understand that many modifications that do not substantially deviate from the novel matters and effects of the present invention are possible. , Will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、試験電着用陰極板や、それに対してマスクを被覆する非導電膜の材料及び構成も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described at least once in a specification or drawing with a different term in a broader or synonymous manner may be replaced by that different term anywhere in the specification or drawing. Further, the material and structure of the cathode plate worn by the test electrode and the non-conductive material and the structure for coating the mask on the cathode plate are not limited to those described in the respective embodiments and the respective examples of the present invention, and various modifications can be carried out. is there.

13 マスク、17 金属板、18 (本陰極板の)一方の表面、19 (突起部21〜32以外の)表面、21〜32 (金属板10)突起部・電着面、41〜44 正方形の四隅(角部)、50 非導電膜(樹脂膜、塗膜)、80 陽極80(Ni)板、90 電解液、100 試験電着用陰極板(本陰極板)、E (正方形一辺の)長さ、F 行・列の間隔、G (面一に対する)差(誤差)、H (突起部21〜32の)高さ、J 行数、K 列数(J,Kともに1以上の自然数)、M (突起部21〜32それぞれの中心間を通る)位置、P1,P2,P3 (電着)厚さ、Q 非電着部、R (角丸を形成する)曲率半径R値、T (非導電膜50の)最小膜厚、S10 第1工程、S20 第2工程、V ブリッジ 13 Mask, 17 Metal plate, 18 One surface (of this cathode plate), 19 Surface (other than protrusions 21 to 32), 21 to 32 (Metal plate 10) Projection / electrodeposition surface, 41 to 44 square Four corners (corners), 50 non-conductive (resin film, coating), 80 anode 80 (Ni) plate, 90 electrolyte, 100 test electrode wearing cathode plate (main cathode plate), E (one side of square) length , F row / column spacing, G (relative to flush) difference (error), H (protrusions 21 to 22) height, J rows, K columns (natural numbers of 1 or more for both J and K), M Position (passing between the centers of each of the protrusions 21 to 32), P1, P2, P3 (electrodeposition) thickness, Q non-electrodeposition part, R (forming rounded corners) radius of curvature R value, T (non-conductive) Minimum film thickness (of film 50), S10 1st step, S20 2nd step, V-bridge

Claims (10)

非鉄金属の電解採取操業での電解液の条件に応じた電着形態を確認するために前記電解液に浸漬して試験電着させる試験電着用陰極板であって、
少なくとも一方の表面にJ行・K列(J,Kともに1以上の自然数)の格子状配置で複数の突起部が電着面として形成された金属板と、
該金属板の突起部以外の表面に所定形状のマスクを施す非導電膜と、
を有し、
前記突起部を平面視認した形状は、
一辺が所定長さの正方形を基本形とし、
該正方形の四隅は規定の曲率半径R値で角丸に面取りされ、
該角丸を形成する前記曲率半径R値は、
前記格子状配置の位置の違いに基づいて変化するように規定された試験電着用陰極板。
A test electrode-wearing cathode plate that is immersed in the electrolytic solution and subjected to test electrodeposition in order to confirm the electrodeposition morphology according to the conditions of the electrolytic solution in the electrowinning operation of a non-ferrous metal.
A metal plate in which a plurality of protrusions are formed as electrodeposited surfaces in a grid pattern of J rows and K columns (both J and K are natural numbers of 1 or more) on at least one surface.
A non-conductive film that applies a mask of a predetermined shape to the surface other than the protrusions of the metal plate, and
Have,
The shape of the protrusions viewed in a plane is
The basic shape is a square with one side of a predetermined length.
The four corners of the square are chamfered with rounded corners with a specified radius of curvature R value.
The radius of curvature R value that forms the rounded corners is
A test electrode wearing cathode plate defined to change based on the difference in the position of the grid arrangement.
前記曲率半径R値は、
前記格子状配置の一端から数える最初の1行目が最小であり、
前記格子状配置の他端まで数えた最後のJ行目が最大であり、
同一行では同一に設定された、
請求項1に記載の試験電着用陰極板。
The radius of curvature R value is
The first line counting from one end of the grid arrangement is the smallest,
The last J-th line counted to the other end of the grid-like arrangement is the maximum.
Set the same on the same line,
The cathode plate for wearing a test electric according to claim 1.
前記曲率半径R値が大きくなる順番は、
前記格子状配置の一端から行数を数え、
まず2行進めた位置で順番を1つ進め、
該2行進めた位置から戻すところが有れば1行戻して順番を1つ進めるが、戻すところが無ければさらに2行進めた位置で順番を1つ進めることを繰り返す順番であり、
前記行数Jが、1,3,2,4,6,5,7,9,8,10,…,Jの順番に、
前記曲率半径R値を順次大きくするように変化させた、
請求項2に記載の試験電着用陰極板。
The order in which the radius of curvature R value increases is
Count the number of rows from one end of the grid layout and
First, advance one line at the position where you advanced two lines,
If there is a place to return from the position where the two lines are advanced, the order is advanced by one line, but if there is no place to return, the order is repeated to advance the order by one at the position where the position is further advanced by two lines.
The number of lines J is 1,3,2,4,6,5,7,9,8,10, ..., J, in that order.
The radius of curvature R value was changed so as to increase sequentially.
The cathode plate for wearing a test electric according to claim 2.
前記金属板を平面視認した基本外形は縦長の長方形であり、
前記格子状配置の行数Jは、前記長方形の縦方向に降順又は昇順であり、
前記格子状配置の列数Kは、前記長方形の横方向に昇順され、
前記行数Jは、2以上10以下であり、
前記列数Kは、2以上10以下であり、
前記突起部の高さは、50μm以上1000μm以下であり、
前記非導電膜の最小膜厚は、
隣接する前記突起部それぞれの中心間を通る位置における前記突起部の高さと同一である、
請求項1〜3の何れかに記載の試験電着用陰極板。
The basic outer shape of the metal plate viewed in a plane is a vertically long rectangle.
The number of rows J of the grid-like arrangement is in descending order or ascending order in the vertical direction of the rectangle.
The number of columns K in the grid arrangement is ascended in the horizontal direction of the rectangle.
The number of lines J is 2 or more and 10 or less.
The number of columns K is 2 or more and 10 or less.
The height of the protrusion is 50 μm or more and 1000 μm or less.
The minimum film thickness of the non-conductive film is
It is the same as the height of the protrusion at a position passing between the centers of the adjacent protrusions.
The cathode plate for wearing a test electrode according to any one of claims 1 to 3.
隣接する前記突起部それぞれの中心間を通る位置における前記非導電膜の最小膜厚と、
前記突起部の高さと、の差は、200μm以下である、
請求項1〜4の何れかに記載の試験電着用陰極板。
The minimum film thickness of the non-conductive film at a position passing between the centers of the adjacent protrusions, and
The difference from the height of the protrusion is 200 μm or less.
The cathode plate for testing electricity according to any one of claims 1 to 4.
前記金属板は、チタン又はステンレス鋼からなる、
請求項1〜5の何れか1項に記載の試験電着用陰極板。
The metal plate is made of titanium or stainless steel.
The cathode plate for wearing a test electrode according to any one of claims 1 to 5.
メッキ用電気ニッケルの製造に使用される、
請求項1〜6の何れか1項に記載の試験電着用陰極板。
Used in the manufacture of nickel for plating,
The cathode plate for wearing a test electrode according to any one of claims 1 to 6.
非金属の電解採取操業で電解液の条件に応じた電着形態を確認するために前記電解液に浸漬して試験電着させる試験電着用陰極板の製造方法であって、
金属板の少なくとも一方の表面に、J行・K列(J,Kともに1以上の自然数)の格子状配置で複数の突起部を電着面として形成する第1工程(S10)と、
前記金属板に複数の突起部が電着面として形成された以外の表面に、非導電膜により所定形状のマスクを施す第2工程(S20)と、を有し、
前記第1工程(S10)では、
前記突起部を平面視認した形状を、
一辺が所定長さの正方形を基本形とし、
該正方形の四隅を規定の曲率半径R値で角丸に面取りし、
該角丸を形成する前記曲率半径R値は、
前記格子状配置の位置の違いに基づいて変化するように規定された、
試験電着用陰極板の製造方法。
This is a method for manufacturing a test electrode-wearing cathode plate which is immersed in the electrolytic solution and subjected to test electrodeposition in order to confirm the electrodeposition morphology according to the conditions of the electrolytic solution in a non-metal electrowinning operation.
The first step (S10) of forming a plurality of protrusions as electrodeposited surfaces on at least one surface of a metal plate in a grid pattern of J rows and K columns (both J and K are natural numbers of 1 or more).
It has a second step (S20) of applying a mask having a predetermined shape by a non-conductive film on a surface other than a plurality of protrusions formed as electrodeposited surfaces on the metal plate.
In the first step (S10),
The shape of the protrusions viewed in a plane
The basic shape is a square with one side of a predetermined length.
The four corners of the square are chamfered with rounded corners with a specified radius of curvature R value.
The radius of curvature R value that forms the rounded corners is
It is defined to change based on the difference in the position of the grid arrangement.
A method for manufacturing a cathode plate for testing electricity.
前記曲率半径R値は、
前記格子状配置の一端から数える最初の1行目が最小であり、
前記格子状配置の他端まで数えた最後のJ行目が最大であり、
同一行では同一に設定された、
請求項8に記載の試験電着用陰極板の製造方法。
The radius of curvature R value is
The first line counting from one end of the grid arrangement is the smallest,
The last J-th line counted to the other end of the grid-like arrangement is the maximum.
Set the same on the same line,
The method for manufacturing a test electrode wearing cathode plate according to claim 8.
前記曲率半径R値が大きくなる順番は、
前記格子状配置の一端から行数Jを数え、
まず2行進めた位置で順番を1つ進め、
該2行進めた位置から戻すところが有れば1行戻して順番を1つ進めるが、戻すところが無ければさらに2行進めた位置で順番を1つ進めることを繰り返す順番であり、
前記行数Jが、1,3,2,4,6,5,7,9,8,10,…,Jの順番に、
前記曲率半径R値を順次大きくするように変化させた、
請求項9に記載の試験電着用陰極板の製造方法。
The order in which the radius of curvature R value increases is
Count the number of rows J from one end of the grid-like arrangement,
First, advance one line at the position where you advanced two lines,
If there is a place to return from the position where the two lines are advanced, the order is advanced by one line, but if there is no place to return, the order is repeated to advance the order by one at the position where the position is further advanced by two lines.
The number of lines J is 1,3,2,4,6,5,7,9,8,10, ..., J, in that order.
The radius of curvature R value was changed so as to increase sequentially.
The method for manufacturing a test electrode wearing cathode plate according to claim 9.
JP2017082339A 2017-04-18 2017-04-18 Test power wearing cathode plate and its manufacturing method Active JP6825470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017082339A JP6825470B2 (en) 2017-04-18 2017-04-18 Test power wearing cathode plate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082339A JP6825470B2 (en) 2017-04-18 2017-04-18 Test power wearing cathode plate and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018178220A JP2018178220A (en) 2018-11-15
JP6825470B2 true JP6825470B2 (en) 2021-02-03

Family

ID=64282750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082339A Active JP6825470B2 (en) 2017-04-18 2017-04-18 Test power wearing cathode plate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6825470B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040915A (en) * 1976-06-15 1977-08-09 The International Nickel Company, Inc. Method for producing regular electronickel or S nickel rounds from electroplating baths giving highly stressed deposits
JPH10317197A (en) * 1997-05-14 1998-12-02 Sumitomo Metal Mining Co Ltd Electric nickel for plating, cathode plate for for its production and production
WO2010028428A1 (en) * 2008-09-09 2010-03-18 Steelmore Holdings Pty Ltd A cathode and a method of forming a cathode

Also Published As

Publication number Publication date
JP2018178220A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
KR102474454B1 (en) Deposition mask manufacturing method and deposition mask
US8177945B2 (en) Multi-anode system for uniform plating of alloys
US6896784B2 (en) Method for controlling local current to achieve uniform plating thickness
CN102149855B (en) Electroforming method
EP3746298A1 (en) Method and apparatus for continuous electrochemical production of three-dimensional structures
WO2018016362A1 (en) Metal electrodeposition cathode plate and production method therefor
JP2019099897A (en) Metal foil manufacturing device, electrode sheet and manufacturing method of metal foil
JP2018199857A5 (en)
JP6825470B2 (en) Test power wearing cathode plate and its manufacturing method
NO149896B (en) RECTANGULAR REPEATED USE UNITS OF CATODE
JP6638589B2 (en) Cathode plate for metal electrodeposition and method for producing the same
CN103215618A (en) Method for adjusting shape of open pore of electroformed anode baffle plate
US2225734A (en) Electrolytic method of making screens
JP2013095968A (en) Method of manufacturing plating film
JP6070521B2 (en) Manufacturing method of special shape electrodeposits
KR101832988B1 (en) Mother plate and producing method of the same, and producing method of the same
US4139430A (en) Process of electrodeposition and product utilizing a reusable integrated cathode unit
JP7188219B2 (en) Cathode plate for metal electrodeposition
KR101860013B1 (en) Mask
JP7238524B2 (en) Cathode plate for metal electrodeposition
JP3745748B2 (en) Manufacturing method of mold by electroforming
JP2024008385A (en) Method of producing cathode plate for use in electrodepositing metal
JP7348693B2 (en) Ball mounting mask and its manufacturing method
CN220883716U (en) Electroforming silk screen
TWI737340B (en) Etching method of circuit board and circuit board made by same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6825470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150