JP6824360B2 - データ解析システム及び施策の生成方法 - Google Patents

データ解析システム及び施策の生成方法 Download PDF

Info

Publication number
JP6824360B2
JP6824360B2 JP2019192482A JP2019192482A JP6824360B2 JP 6824360 B2 JP6824360 B2 JP 6824360B2 JP 2019192482 A JP2019192482 A JP 2019192482A JP 2019192482 A JP2019192482 A JP 2019192482A JP 6824360 B2 JP6824360 B2 JP 6824360B2
Authority
JP
Japan
Prior art keywords
measure
business
data
arithmetic unit
analysis system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192482A
Other languages
English (en)
Other versions
JP2020024736A (ja
Inventor
鵜飼 敏之
敏之 鵜飼
難波 康晴
康晴 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019192482A priority Critical patent/JP6824360B2/ja
Publication of JP2020024736A publication Critical patent/JP2020024736A/ja
Application granted granted Critical
Publication of JP6824360B2 publication Critical patent/JP6824360B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、施策を生成するシステム及び方法に関する。
近年、様々な分野においてビッグデータ解析の利用が普及している。例えば、小売業及び物流業等で運用されている業務システムに蓄積されたデータを用いて、業績を向上させるための価値あるノウハウを抽出する利用方法等が注目されている(例えば、特許文献1を参照)。
特許文献1には、「分析システムに入力されるデータに対して、変数生成条件である条件、対象、演算を示す3つのオペレータを予め定義しておき、これらのオペレータにより、多数の説明変数を自動で生成する」技術が記載されている。特許文献1に記載の技術を用いることによって大量データに潜んでいる業績に影響する要因を特定できる。
特開2014−81750号公報
特許文献1に記載の技術では、業績又は業績を評価する指標等の(目的変数)との間の相関が強い説明変数に基づいて、業績に影響する要因を特定し、業績を向上させるための施策の導入を支援している。
目的変数との間の相関が強い説明変数に基づいて生成又は提案される施策は、業務の向上に有効であると考えられる。しかし、相関が強い説明変数のみが業績に影響を与えるとは限らない。したがって、新たな観点で業績を向上させるための施策が生成できない。
本発明は、新たな観点で業務を向上させるための施策を自動的かつ効率的に生成することを目的とする。
本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、データ解析システムであって、記憶装置と、業務に関連する複数の属性を含む第一の業務データと前記業務の業務評価指標により特定されたターゲットデータとを基に、前記業務評価指標の改善に寄与する可能性がある気づき特徴量を算出し、前記気づき特徴量に基づいて、前記業務評価指標を改善するための第一の施策を生成し、前記第一の施策に基づく前記業務が実行された後の第二の業務データに基づいて、前記第一の施策の有効性を評価し、前記第一の施策の有効性を知識ベースとして前記記憶装置に格納し、前記気づき特徴量及び前記知識ベースに基づいて、前記業務評価指標を改善するための第二の施策を生成する、演算装置と、を有することを特徴とする。
本発明の一形態によれば、業務を向上させるための施策を自動的かつ効率的に生成することができる。上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
実施例1のシステムの構成例を説明する図である。 実施例1のデータ解析システムに含まれる計算機のハードウェア構成及びソフトウェア構成の一例を示す図である。 実施例1のデータ解析システムが実行する処理を説明するフローチャートである。 実施例1の業務システムの業務の向上の一例を示す図である。 実施例2の知識ベースのデータ構造の一例を示す図である。 実施例2のデータ解析システムが業務データを変換することによって生成するデータのデータ構造の一例を示す図である。 実施例2のデータ解析システムが業務データを変換することによって生成するデータのデータ構造の一例を示す図である。 実施例3のデータ解析システムが業務データを変換することによって生成するデータのデータ構造の一例を示す図である。 実施例3の変形例のデータ解析システムが業務データを変換することによって生成するデータのデータ構造の一例を示す図である。
以下、本発明に係る実施例を添付図面を用いて説明する。各図において共通の構成については同一の参照符号が付されている。
実施例1では本発明の概要について説明する。図1は、実施例1のシステムの構成例を説明する図である。
システムは、業務システム100及びデータ解析システム110から構成される。業務システム100及びデータ解析システム110は、直接又はネットワークを介して接続される。
業務システム100は、所定の業務を実行するシステムである。業務システム100は、一つ以上の計算機を有する。データ解析システム110は、業務システム100から業務内容及び業務結果等を含む業務データを取得し、業務の向上を示す、業務評価指標の変更を実現するための施策を生成する。業務評価指標は、KPI(Key Performance Indicator)等の業務を評価するための指標である。
業務データは業務に関連するパラメータである属性を複数含む。属性は、例えば、タイムスタンプ、性別、金額、及び処理時間等である。
本実施例のシステムは、以下のようなサイクルで業務システム100及びデータ解析システム110が稼働する。
データ解析システム110は、業務システム100から取得した業務データに基づいて、施策を生成するために使用する気づき特徴量を算出するための気づき特徴量算出処理を実行する(ステップS1)。
気づき特徴量は、業務の向上に影響を与える可能性がある、値データ、変数、関数、及びその組合せである。より具体的には、気づき特徴量は、業務評価指標の改善に寄与する可能性がある、値データ、変数、関数、及びその組合せである。ここで、業務評価指標の改善とは、業務評価指標を目標値に近づけること、業務評価指標を最大化又は最小化すること等を表す。
例えば、商品の販売を行う業務システム100の場合、商品を購入するユーザ及び商品を特定する属性値群が気づき特徴量として算出される。また、スケジュールにしたがって作業を行う業務システム100の場合、作業の組合せが気づき特徴量として算出される。
データ解析システム110は、算出された気づき特徴量に基づいて、業務評価指標を改善するための施策を生成するための施策生成処理を実行する(ステップS2)。
施策生成処理では、データ解析システム110は、例えば、気づき特徴量として算出された属性値群の少なくとも一つの属性値を変更することによって施策を生成する。生成された施策のデータは施策リストに登録される。
データ解析システム110は、施策リストを業務システム100に送信し、施策リストに登録された施策の実行を指示する。なお、データ解析システム110は、施策リストをディスプレイ等の出力装置に送信することによって、データ解析システム110又は業務システム100の管理者に提示してもよい。例えば、施策リストを提示することによって、管理者は適用する施策を選択できる。
業務システム100は、施策リストに登録された施策に基づいて業務を実行する(ステップS3)。業務システム100は、業務データをデータ解析システム110に送信する。
データ解析システム110は、施策リスト及び業務データに基づいて、施策を評価するための施策評価処理を実行する(ステップS4)。
施策評価処理では、データ解析システム110は、生成された施策に基づいて業務を行った結果、業務評価指標が改善されたか否かを判定する。また、データ解析システム110は、施策及び施策の評価結果を知識ベース232に登録する。
本システムでは、前述したステップS1からステップS4までの処理のサイクルが繰り返し実行される。当該サイクルによって、業務の向上に有効な施策の情報が、自動的かつ効率的に、知識ベース232に蓄積される。また、自動的に、業務システム100の業務が向上する。
ここで、データ解析システム110に含まれる計算機200の構成について説明する。図2は、実施例1のデータ解析システム110に含まれる計算機200のハードウェア構成及びソフトウェア構成の一例を示す図である。
計算機200は、ハードウェア構成として演算装置210、主記憶装置211、副記憶装置212、ネットワークインタフェース213、入力装置214、及び出力装置215を有する。各ハードウェア構成は内部バスを介して互いに接続される。
演算装置210は、プロセッサ、GPU(Graphics Processing Unit)、及びFPGA(Field Programmable Gate Array)等であり、主記憶装置211に格納されるプログラムを実行する。
演算装置210がプログラムにしたがって処理を実行することによって、特定の機能を実現するモジュール(機能部)として動作する。以下の説明では、モジュールを主語に処理を説明する場合、演算装置210が当該モジュールを実現するプログラムを実行していることを示す。
主記憶装置211は、DRAM(Dynamic Random Access Memory)等のメモリであり、演算装置210が実行するプログラム及びプログラムが使用する情報を格納する。なお、主記憶装置211は、揮発性の記憶素子から構成されてもよいし、また、不揮発性の記憶素子から構成されてもよい。主記憶装置211に格納されるプログラム及び情報については後述する。
副記憶装置212は、HDD(Hard Disk Drive)及びSSD(Solid State Drive)等であり、データを永続的に格納する。主記憶装置211に格納されるプログラム及び情報は、副記憶装置212に格納されてもよい。この場合、演算装置210は、副記憶装置212からプログラム及び情報を読み出し、主記憶装置211にロードし、ロードされたプログラムを実行する。
ネットワークインタフェース213は、ネットワークを介して外部装置と通信する。
入力装置214は、キーボード、マウス、及びタッチパネル等のデータを入力するための装置である。
出力装置215は、タッチパネル及びディスプレイ等のデータを出力又は表示するための装置である。
なお、計算機200は、副記憶装置212、入力装置214、及び出力装置215を有していなくてもよい。
ここで、主記憶装置211に格納されるプログラム及び情報について説明する。主記憶装置211は、解析モジュール221、施策生成モジュール222、及び評価モジュール223を実現するプログラムを格納する。また、主記憶装置211は、業務データ管理情報231及び知識ベース232を格納する。
業務データ管理情報231は、業務システム100から取得した業務データの履歴を管理するための情報である。
知識ベース232は、施策のデータを管理するための情報である。知識ベース232には、生成された全ての施策のデータが格納されてもよいし、業務を向上させることが確認された施策のデータのみが格納されてもよい。
解析モジュール221は、業務評価指標に関連する値(関連指標)の分布に基づいて、解析するターゲットデータを特定する。さらに、解析モジュール221は、ターゲットデータを解析することによって、気づき特徴量を算出する。
施策生成モジュール222は、解析モジュール221によって算出された気づき特徴量に基づいて施策を生成する。
評価モジュール223は、施策生成モジュール222によって生成された施策及び施策に基づく業務が実行された後に業務システム100から取得された業務データを用いて、生成された施策の有効性を評価する。
なお、計算機200が有する各モジュールについては、複数のモジュールを一つのモジュールにまとめてもよいし、一つのモジュールを機能毎に複数のモジュールに分けてもよい。
次に、計算機200が実行する処理の詳細について説明する。図3は、実施例1のデータ解析システム110が実行する処理を説明するフローチャートである。
まず、気づき特徴量算出処理について説明する。
解析モジュール221は、業務データ管理情報231に格納される業務データ又は業務システム100から業務データを取得し(ステップS11)、業務データを所定のデータに変換する(ステップS12)。例えば、解析モジュール221は、所定の基準にしたがって、業務データを集計し、また、欠損値の補完、異常値の削除、データ表現の揺れの修正等を行う。
解析モジュール221は、変換されたデータを用いて関連指標の分布を算出する(ステップS13)。例えば、解析モジュール221は、商品を購入するユーザ毎の購買額の分布及び作業時間の分布等を算出する。
解析モジュール221は、算出された分布に基づいてターゲットデータを特定する(ステップS14)。ターゲットデータは、業務データそのものでもよいし、複数の業務データを用いて算出又は生成されるデータでもよい。
解析モジュール221は、ターゲットデータを解析することによって、少なくとも一つ以上の気づき特徴量を算出する(ステップS15)。解析モジュール221は、気づき特徴量のリストを施策生成モジュール222に出力する。
従来技術では、全ての業務データの分析結果から得られた相関関係に基づいて、目的変数の原因となる説明変数が特定されていた。このような説明変数を用いた場合、相関を強める業務を実現する施策は生成できるが、相関関係からは発見できない要因を解決する業務を実現する施策を生成できない。すなわち、相関関係とは異なる観点に基づく施策を生成することはできない。
一方、本実施例の解析モジュール221は、関連指標の分布に基づいて、関連指標の特異な部分、例えば、正規分布の一端に局所的に分布するデータをターゲットデータとして選択する。前述のデータは、業務評価指標を大きく変更する要因を含む可能性があるためである。解析モジュール221は、ターゲットデータを分析することによって、相関分析からだけでは発見できない要因、すなわち、業務評価指標の改善に寄与する可能性のある気づき特徴量を算出できる。
次に、施策生成処理について説明する。
施策生成モジュール222は、気づき特徴量のリストに基づいて、施策を生成する(ステップS21)。生成する施策は、施策を行う対象、その対象に施すアクション、及び施策を送信する日時などに関するデータである。施策を行う対象は、ABテストをするために2つの群に分けて、どちらの群に属するかのフラグを与えておく。施策生成モジュール222は、生成された少なくとも1つ以上の施策のデータを施策リストに登録する。
施策生成モジュール222は、生成された一つ以上の施策のデータを含む施策リストを業務システム100に送信する(ステップS22)。
なお、施策生成モジュール222は、知識ベース232又はユーザ入力に基づいて、施策リストに含まれる施策の選択及び調整を行ってもよい。
例えば、施策生成モジュール222は、知識ベース232を参照して、生成された施策と同一内容の施策が存在するか否かを判定する。知識ベース232に生成された施策と同一内容の施策が存在する場合、施策生成モジュール222は、当該施策の効果504が「無効」であるか否かを判定する。施策の効果504が「無効」である場合、施策生成モジュール222は、生成された施策を施策リストから削除する。
また、別の方法としては、施策生成モジュール222は、効果504が「有効」である施策のデータが施策リストに含まれていない場合、当該施策のデータを施策リストに登録する。
業務システム100は、施策リストを受信した場合、施策に基づいて実行する業務を制御する。また、業務システム100は、業務データをデータ解析システム110に送信する。
なお、施策の有効性を判定するために、業務システム100は、ABテスト等に基づいて、施策に基づく制御を行う業務と施策に基づく制御を行わない業務とを行う。
次に、施策評価処理について説明する。
評価モジュール223は、施策のループ処理を開始する(ステップS41)。具体的には、評価モジュール223は、施策リストに登録された施策の中から評価する施策を選択する。
評価モジュール223は、選択された施策に基づく業務が実行された後に業務システム100から取得した業務データを用いて、選択された施策の有効性を評価する(ステップS42)。例えば、ステップS21で与えたABテストのフラグに基づいて、2つの群を比較し、施策の有効性を評価する。このとき、評価モジュール223は、ステップS12と同様に業務データを変換し、変換されたデータを用いて施策の有効性を評価してもよい。
評価モジュール223は、知識ベース232に施策のデータ及び施策の有効性の判定結果を登録する(ステップS43)。
評価モジュール223は、施策リストに登録された全ての施策について評価が完了したか否かを判定する(ステップS44)。
施策リストに登録された全ての施策について評価が完了していないと判定された場合、評価モジュール223は、ステップS41に戻り、同様の処理を実行する。
施策リストに登録された全ての施策について評価が完了したと判定された場合、評価モジュール223は、ステップS1に戻り、同様の処理を実行する。
図4は、実施例1の業務システム100の業務の向上の一例を示す図である。
ここでは物流業務を管理する業務システム100を考える。横軸は、スケジューラが設定した運搬時刻と実際の運搬時刻との間の差(時間幅)を表し、縦軸は、時間幅に対応する業務データの数を表す。この場合、時間幅の合計値を業務評価指標として用いることができる。したがって、時間幅の合計値が小さいほど業務が向上するものと考えられる。
各時間幅に対応する業務データは、図4に示す分布のようにばらつきがある。データ解析システム110は、時間幅が小さい業務データをターゲットデータとして特定し、ターゲットデータに着目した解析を行うことによって気づき特徴量を算出する。さらに、データ解析システム110は、気づき特徴量に基づいて施策を生成する。
施策に基づく業務を実行した結果、図4に示すように関連指標の分布が変化した場合、時間幅の合計値が小さくなっているため、業務が向上していることを示す。
本実施例によれば、関連指標の分布から解析するターゲットデータを特定し、解析することによって、相関分析からだけでは発見できない要因、すなわち、気づき特徴量を算出することができる。
また、ある気づき特徴量に基づいて生成された施策に基づく業務が実行された後もたいていの場合、関連指標のばらつきが存在するので、同様の処理を実行することによって、新たな要因(気づき特徴量)に基づいて施策を生成できる。したがって、業務システム100の運用に伴って、有益な施策、すなわち、業務のノウハウを自動的かつ効率に取得でき、かつ、周回するごとに蓄積でき、また、業務の向上を実現できる。
次に、実施例2から実施例4を用いて、実施例1のシステムの具体的な適用例について説明する。
実施例2では、商品の販売を行う業務システム100を例に具体的なデータ処理について説明する。一ヶ月間の総売上が業務評価指標として設定されているものとする。
図5は、実施例2の知識ベース232のデータ構造の一例を示す図である。
知識ベース232は、施策ID501、施策502、日時503、及び効果504から構成されるレコードを格納する。一つのレコードが一つの施策に対応する。なお、一つのレコードに含まれるフィールドは一例であってこれに限定されない。例えば、施策が適用された回数を格納するフィールド等が含まれてもよい。
施策ID501は、施策の識別情報を格納するフィールドである。施策502は、生成された施策の情報を格納するフィールドである。
日時503は、施策が適用された日時を格納するフィールドである。なお、施策のデータが、複数回、業務システムに送信されている場合、日時503には最新の日時が格納されるものとする。
効果504は、施策の評価結果を格納する。本実施例では、効果504には「有効」及び「無効」のいずれかが格納される。「有効」は施策の効果があることを示し、「無効」は施策の効果がないことを示す。なお、効果の程度を示す数値が格納されてもよい。
次に、具体的なデータ処理について説明する。まず、気づき特徴量算出処理について説明する。
ステップS12において、解析モジュール221は、業務データを図6Aに示すようなデータに変換する。
ここで、業務データを変換することによって生成されるデータについて説明する。図6A及び図6Bは、実施例2のデータ解析システム110が業務データを変換することによって生成するデータのデータ構造の一例を示す図である。
図6Aは、施策に基づく業務が実行される前に取得された業務データを集計することによって生成された集計データ600−1を示す。図6Bは、施策に基づく業務が実行された後に取得された業務データを集計することによって生成された集計データ600−2を示す。
集計データ600−1、600−2は、顧客ID601、年代602、性別603、集計期間604、購買品605、購買額606、及びクーポン利用607から構成されるレコードを格納する。顧客毎に一つのレコードが存在する。なお、一つのレコードに含まれるフィールドは一例であってこれに限定されない。
顧客ID601は、商品を販売する業務を行う業務システム100のユーザの識別情報を格納するフィールドである。年代602及び性別603は、ユーザの年代及び性別を格納するフィールドである。
集計期間604は、業務データを集計した期間を格納するフィールドである。本実施例では、顧客毎に一か月単位の業務データを集計され、一つのレコードに集計した業務データが登録される。
購買品605及び購買額606は、ユーザが購入した商品及び商品の金額を格納するフィールドである。クーポン利用607は、ユーザが使用したクーポンの内容を格納するフィールドである。
一つのレコードには、ユーザの一か月分の商品の購入に関する行が含まれる。すなわち、一つのレコードには、購買品605、購買額606、及びクーポン利用607から構成される行が一つ以上含まれる。
気づき特徴量算出処理の説明に戻る。
ステップS13では、解析モジュール221は、購買額606の分布を算出する。例えば、購買額606の値が購買額の幅に含まれるレコードの数を示す分布が考えられる。
ステップS14では、解析モジュール221は、購買額606の値が閾値より大きいレコードをターゲットデータとして特定する。
ステップS15では、解析モジュール221は、レコードに含まれる属性値を解析することによって、購買額が閾値より大きいユーザに共通する属性値群を気づき特徴量として算出する。
例えば、ターゲットデータとして特定されたレコードの中に、年代602及び性別603が「30」及び「男性」であり、かつ、購買品605が「食品」であるレコードが多数含まれる場合、解析モジュール221は、属性値群「30」、「男性」、及び「食品」を気づき特徴量として算出する。なお、気づき特徴量は複数特定されてもよい。例えば、属性値群「40」、「女性」、及び「雑貨」が気づき特徴量として算出されてもよい。
次に、施策生成処理について説明する。
ステップS21では、施策生成モジュール222は、属性値群のリストの中から一つの属性値群を選択し、選択された属性値群に基づいて施策を生成する。施策生成モジュール222は、属性値群のリストに含まれる全ての属性値群について同様の処理を実行する。
本実施例は施策を生成する方法に限定されない。生成する施策としては、選択された属性値群から特定されるユーザを対象に、改善アクションを行う施策(強化施策)、及び選択された属性値群に類似する属性値群から特定されるユーザを対象に、改善アクションを行う施策(拡大施策)が考えられる。
例えば、選択された属性値群が「30」、「男性」、及び「食品」である場合、施策生成モジュール222は、「30代の男性を対象に、食品のレコメンドを行う」という強化施策を生成し、また、「20代の男性を対象に、食品の5%引きクーポンを配信する」という拡大施策を生成する。
次に、施策評価処理について説明する。
ステップS42では、評価モジュール223は、ステップS11からステップS13までと同様にして、施策に基づく業務が実行された後に取得した業務データを図6Bに示す集計データ600−2に変換し、購買額606の分布を算出する。評価モジュール223は、施策に基づく業務が実行されたユーザの購買額及び施策に基づく業務が実行されていないユーザの購買額に基づいて施策の有効性を判定する。例えば、各グループの購買額の差が閾値より大きい場合、評価モジュール223は、施策が有効であると判定する。
なお、集計データ600−1が用いられてもよい。例えば、施策に基づく業務が実行されたユーザの購買額が上昇し、施策に基づく業務が実行されていないユーザの購買額が変化していない場合、評価モジュール223は、施策が有効であると判定する。
なお、前述の判定方法は一例であってこれに限定されない。
ステップS43では、評価モジュール223は、知識ベース232にレコードを追加し、追加されたレコードの施策ID501に識別情報を設定し、また、施策502に選択された施策の情報を設定する。評価モジュール223は、追加されたレコードの日時503に、施策リストが送信された日時等を設定し、また、効果504に判定結果を設定する。なお、施策生成モジュール222は、施策の生成に用いた気づき特徴量を知識ベース232に格納してもよい。
実施例2によれば、業務システム100の運用に伴う総売上の向上及び総売上高の減少の抑止が可能となる。
実施例3では、配送業務を行う業務システム100を例に具体的なデータ処理について説明する。業務システム100では、複数の配送業務が行われるものとする。また、各配送業務の総作業時間が業務評価指標として設定されているものとする。
次に、具体的なデータ処理について説明する。まず、気づき特徴量算出処理について説明する。
ステップS12において、解析モジュール221は、業務データを図7に示すようなデータに変換する。
ここで、業務データを変換することによって生成されるデータについて説明する。図7は、実施例3のデータ解析システム110が業務データを変換することによって生成するデータのデータ構造の一例を示す図である。
図7は、一つの配送業務に関連する業務データを集計することによって生成された集計データ700を示す。一つの配送業務に対して一つの集計データ700が生成される。
集計データ700は、作業ID701、割当順番702、作業対象703、作業開始時刻704、及び作業時間705から構成されるレコードを格納する。作業毎に一つのレコードが存在する。なお、一つのレコードに含まれるフィールドは一例であってこれに限定されない。
作業ID701は、作業の識別情報を格納するフィールドである。割当順番702は、作業の実行順序を示す番号を格納するフィールドである。作業対象703は、作業の対象を示す情報を格納するフィールドである。作業対象703には、例えば、商品の名称又は識別情報が格納される。作業開始時刻704は、作業が開始された時刻を格納するフィールドである。作業時間705は、作業が行われた時間を格納するフィールドである。本実施例では、作業時間705は作業間の関連性を示す関連指標として扱われる。
なお、業務データに作業時間が含まれていない場合、各業務データに含まれる作業開始時刻の差が作業時間として算出される。
気づき特徴量算出処理の説明に戻る。
ステップS13では、解析モジュール221は、作業時間705の分布を算出する。例えば、作業時間705の値が作業時間の幅に含まれるレコードの数を示す分布が考えられる。
ステップS14では、解析モジュール221は、作業時間705の値が閾値より小さい作業の組み合わせをターゲットデータとして特定する。
ステップS15では、解析モジュール221は、ターゲットデータを用いた統計処理を実行し、条件を満たす作業の組合せを気づき特徴量として算出する。例えば、解析モジュール221は、複数の集計データ700から特定されたターゲットデータについて、作業時間705の平均値等を算出し、当該平均値等が閾値より小さい作業の組合せを、気づき特徴量として算出する。
次に、施策生成処理について説明する。
ステップS21では、施策生成モジュール222は、気づき特徴量のリストに登録される作業の組合せを可能な限り含むように作業の割当順番702を変更することによって、作業の実行スケジュールを施策として生成する。なお、総作業時間が最小となる作業の実行スケジュールは複数存在してもよい。施策生成モジュール222は、算出された総作業時間を予測総作業時間として一時的に保持する。なお、予測総作業時間は、施策の識別情報と対応づけて管理される。
なお、施策生成モジュール222は、外部から入力された作業の実行スケジュールを修正する処理を実行してもよい。具体的には、施策生成モジュール222は、スケジューラ又はユーザによって生成された作業の実行スケジュールを受け付け、気づき特徴量のリストを参照して、作業の実行スケジュールを修正する。
次に、施策評価処理について説明する。
ステップS42では、評価モジュール223は、ステップS11からステップS12までと同様にして、施策に基づく業務が実行された後に取得した業務データを図7に示すような集計データ700に変換する。施策として送信された作業のスケジュールに基づく実際の総作業時間と、ステップS21において算出された予測総作業時間との差が閾値より小さい場合、評価モジュール223は、施策が有効であると判定する。
なお、施策に基づく業務が実行される前の業務データから生成された集計データ700が用いられてもよい。例えば、施策に基づく業務の実行前後の総作業時間の差が閾値より小さい場合、評価モジュール223は、施策が有効であると判定する。
なお、前述の判定方法は一例であってこれに限定されない。
ステップS43では、評価モジュール223は、知識ベース232にレコードを追加し、追加されたレコードの施策ID501に識別情報を設定し、また、施策502に選択された施策の情報を設定する。評価モジュール223は、追加されたレコードの日時503に、施策リストが送信された日時等を設定し、また、効果504に判定結果を設定する。なお、施策生成モジュール222は、施策の生成に用いた気づき特徴量を知識ベース232に格納してもよい。
実施例3によれば、業務システム100の運用に伴う総作業時間の削減及び総作業時間の増加の抑止が可能となる。
(実施例3の変形例)
変形例では、三つ以上の作業の並びが、気づき特徴量として算出される。以下、実施例3との差異を中心に変形例について説明する。
実施例3の変形例では、気づき特徴量算出処理が一部異なる。
ステップS12では、解析モジュール221は、業務データを図8に示すようなデータに変換する。
ここで、業務データを変換することによって生成されるデータについて説明する。図8は、実施例3の変形例のデータ解析システム110が業務データを変換することによって生成するデータのデータ構造の一例を示す図である。
図8は、一つの業務に関連する業務データを集計することによって生成された集計データ800を示す。一つの配送業務に対して一つの集計データ800が生成される。
集計データ800は、作業ID801、割当順番802、作業対象803、作業開始時刻804、及び順列805から構成されるレコードを格納する。作業毎に一つのレコードが存在する。なお、一つのレコードに含まれるフィールドは一例であってこれに限定されない。
作業ID801、割当順番802、作業対象803、及び作業開始時刻804は、作業ID701、割当順番702、作業対象703、及び作業開始時刻704と同一のフィールドである。
順列805は、自レコードの前後の作業対象の並び(順列)、すなわち、作業の並びを格納するフィールドである。例えば、作業ID801が「0002」の場合、自レコードの前のレコードの作業対象803は「商品A」であり、自レコードの作業対象803は「商品B」であり、また、自レコードの後のレコードの作業対象803は「商品A」であるため、順列805には「ABA」が格納される。
なお、自レコードの前又は自レコードの後にレコードが存在しない場合、順列805には自レコードの作業対象と自レコードの後又は自レコードの前の作業対象のみが格納される。
気づき特徴量算出処理の説明に戻る。
ステップS13では、解析モジュール221は、各集計データ800の総作業時間の分布を算出する。例えば、算出された総作業時間が時間幅に含まれる作業スケジュールの数を示す分布が考えられる。
ステップS14では、解析モジュール221は、総作業時間が閾値より小さい作業スケジュールに対応する集計データ800をターゲットデータとして特定する。
ステップS15では、解析モジュール221は、集計データ800を用いた統計処理を実行し、総作業時間が小さい作業スケジュールに共通する作業の並びを気づき特徴量として算出する。例えば、解析モジュール221は、複数の集計データ800の順列805を参照して、作業の並びの組合せ毎の出現回数を算出し、当該出現回数が閾値より大きい作業の並びを、気づき特徴量として算出する。
例えば、解析モジュール221は、総作業時間が30分より小さい配送業務に対応する集計データ800情報を解析した結果、「BBA」及び「AAC」の出現回数が閾値より大きい場合、「BBA」及び「AAC」を気づき特徴量として算出する。
実施例3の変形例では、施策生成処理が一部異なる。
ステップS21では、施策生成モジュール222は、気づき特徴量のリストに登録される作業の並びを可能な限り含むように作業の割当順番702を変更することによって、作業の実行スケジュールを施策として生成する。
業務システム100が実行する処理及び施策評価処理は同一である。なお、施策生成モジュール222は、施策の生成に用いた気づき特徴量を知識ベース232に格納してもよい。
実施例4では、除外する施策の基準に基づいて施策が生成される。以下、実施例1との差異を中心に実施例4について説明する。
実施例4の計算機200は、除外する施策に関する情報を定義する制約情報を保持する。制約情報を保持する方法としては、知識ベース232に格納する方法と、知識ベース232とは別に保持する方法が考えられる。
まず、知識ベース232に制約情報が登録されている例を説明する。この場合、制約情報としては、除外する施策を示すデータが考えられる。
例えば、実施例4の知識ベース232には、施策502に「10代への酒のレコメンド」が設定され、効果504に「禁止」が設定されたレコードが制約情報として格納される。「禁止」は、施策502に設定された施策の生成の禁止を示す値である。
前述したようなレコードは、業務システム100の運用者等が設定してもよいし、また、データ解析システム110が生成してもよい。データ解析システム110が生成する方法としては、例えば、データ解析システム110が、業務評価指標を改悪し、かつ、関連指標の分布の広がりを増大させるデータを算出し、当該データを用いて施策を生成すればよい。
実施例4では、施策生成処理が一部異なる。具体的には、ステップS21において、施策生成モジュール222は、気づき特徴量のリストから一つの気づき特徴量を選択し、選択された気づき特徴量に基づいて施策を生成する。施策生成モジュール222は、知識ベース232を参照し、生成された施策は生成が禁止された施策であるか否かを判定する。生成が禁止された施策ではない場合、施策生成モジュール222は、生成された施策のデータを施策リストに登録する。
次に、知識ベース232とは別に制約情報を保持する例を説明する。この場合、知識ベース232に登録された制約情報と同一形式の情報を格納する制約情報と、除外する気づき特徴量を示す制約情報とが考えられる。
除外する気づき特徴量を格納する制約情報の場合、気づき特徴量算出処理が一部異なる。具体的には、ステップS15において、解析モジュール221は、制約情報を参照して、算出された気づき特徴量が除外対象の気づき特徴量であるか否かを判定する。算出された気づき特徴量が除外対象の気づき特徴量ではないと判定された場合、解析モジュール221は、気づき特徴量を気づき特徴量のリストに登録する。
実施例4によれば、不整合を起こすような施策に基づく業務の実行を予め抑止することができる。また、制約情報を用いることによって気づき特徴量を算出するための探索範囲を狭めることができるため、計算コストを削減できる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。また、例えば、上記した実施例は本発明を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成に追加、削除、置換することが可能である。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、本発明は、実施例の機能を実現するソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をコンピュータに提供し、そのコンピュータが備えるプロセッサが記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施例の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD−ROM、DVD−ROM、ハードディスク、SSD(Solid State Drive)、光ディスク、光磁気ディスク、CD−R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
また、本実施例に記載の機能を実現するプログラムコードは、例えば、アセンブラ、C/C++、perl、Shell、PHP、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装できる。
さらに、実施例の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することによって、それをコンピュータのハードディスクやメモリ等の記憶手段又はCD−RW、CD−R等の記憶媒体に格納し、コンピュータが備えるプロセッサが当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。
上述の実施例において、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。
特許請求の範囲に記載した以外の本発明の観点の代表的なものとして、次のものがあげられる。
(1)業務システムが実行する業務を制御する施策を生成するデータ解析システムであって、
前記データ解析システムは、演算装置、前記演算装置に接続される記憶装置、及び前記演算装置に接続され、前記業務システムと通信するためのインタフェースを有する少なくとも一つの計算機を含み、
前記演算装置は、
前記インタフェースを介して、前記業務システムから前記業務に関連する複数の属性を含む業務データを取得し、
前記属性の値又は前記属性の値に基づいて算出される値であって、前記業務を評価するための業務評価指標に関連する関連指標の分布に基づいて、解析するターゲットデータを特定し、
前記ターゲットデータを解析することによって、前記業務評価指標の改善に寄与する可能性がある気づき特徴量を算出し、
前記気づき特徴量に基づいて、前記業務評価指標を改善するための施策を生成し、
前記インタフェースを介して、前記生成された施策のデータを出力することを特徴とするデータ解析システム。
(2)(1)に記載のデータ解析システムであって、
前記演算装置は、
前記生成された施策に基づく業務が実行された後の前記業務システムから、前記業務データを取得し、
前記生成された施策及び前記業務データに基づいて、前記生成された施策の有効性を評価する施策評価処理を実行し、
前記生成された施策のデータ及び前記施策評価処理の結果を対応づけて知識ベースとして前記記憶装置に格納し、
前記業務評価指標を改善するための施策を生成する場合、前記気づき特徴量及び前記知識ベースに基づいて、前記業務評価指標を改善するための施策を生成することを特徴とするデータ解析システム。
(3)(2)に記載のデータ解析システムであって、
前記演算装置は、
前記関連指標の分布の特定の範囲に対応する業務データを前記ターゲットデータとして特定し、
前記ターゲットデータとして特定された業務データに含まれる前記属性の値を解析することによって、前記属性の値の組合せを前記気づき特徴量として算出し、
前記気づき特徴量として算出された前記属性の値の組合せに含まれる少なくとも一つの前記属性の値を変更することによって、前記業務評価指標を改善するための施策を生成することを特徴とするデータ解析システム。
(4)(2)に記載のデータ解析システムであって、
前記業務システムは、複数の作業を含む業務を実行し、
前記演算装置は、
前記複数の作業間の関連性を示す前記関連指標の分布に基づいて、前記作業の実行順序を構成する作業の順列又は組合せを前記ターゲットデータとして特定し、
前記ターゲットデータを解析することによって、前記業務評価指標の改善に寄与する可能性がある作業の順列又は組合せを前記気づき特徴量として算出し、
前記気づき特徴量として算出された前記作業の順列又は組合せに基づいて、前記作業の実行スケジュールを、前記業務評価指標を改善するための施策として生成することを特徴とするデータ解析システム。
(5)(2)に記載のデータ解析システムであって、
前記記憶装置は、除外する施策に関する情報を管理するための制約情報を格納し、
前記演算装置は、前記制約情報に基づいて、前記生成された施策が前記除外する施策であるか否かを判定することを特徴とするデータ解析システム。
(6)データ解析システムが実行する、業務システムが実行する業務を制御する施策の生成方法であって、
前記データ解析システムは、演算装置、前記演算装置に接続される記憶装置、及び前記演算装置に接続され、前記業務システムと通信するためのインタフェースを有する少なくとも一つの計算機を含み、
前記施策の生成方法は、
前記演算装置が、前記インタフェースを介して、前記業務システムから前記業務に関連するパラメータである複数の属性を含む業務データを取得する第1のステップと、
前記演算装置が、前記属性の値又は前記属性の値に基づいて算出される値であって、前記業務を評価するための業務評価指標に関連する関連指標の分布に基づいて、解析するターゲットデータを特定する第2のステップと、
前記演算装置が、前記ターゲットデータを解析することによって、前記業務評価指標の改善に寄与する可能性がある気づき特徴量を算出する第3のステップと、
前記演算装置が、前記気づき特徴量に基づいて、前記業務評価指標を改善するための施策を生成する第4のステップと、
前記演算装置が、前記インタフェースを介して、前記生成された施策のデータを出力する第5のステップと、を含むことを特徴とする施策の生成方法。
(7)(6)に記載の施策の生成方法であって、
前記演算装置が、前記施策に基づく業務が実行された後の前記業務システムから、前記業務データを取得するステップと、
前記演算装置が、前記生成された施策及び前記業務データに基づいて、前記生成された施策の有効性を評価する施策評価処理を実行するステップと、
前記演算装置が、前記生成された施策のデータ及び前記施策評価処理の結果を対応づけて知識ベースとして前記記憶装置に格納するステップと、を含み、
前記第4のステップは、前記演算装置が、前記気づき特徴量及び前記知識ベースに基づいて、前記業務評価指標を改善するための施策を生成するステップを含むことを特徴とする施策の生成方法。
(8)(7)に記載の施策の生成方法であって、
前記第2のステップは、前記演算装置が、前記関連指標の分布の特定の範囲に対応する業務データを前記ターゲットデータとして特定するステップを含み、
前記第3のステップは、前記演算装置が、前記ターゲットデータとして特定された業務データに含まれる前記属性の値を解析することによって、前記属性の値の組合せを前記気づき特徴量として算出するステップを含み、
前記第4のステップは、前記演算装置が、前記気づき特徴量として算出された前記属性の値の組合せに含まれる少なくとも一つの前記属性の値を変更することによって、前記業務評価指標を改善するための施策を生成するステップを含むことを特徴とする施策の生成方法。
(9)(7)に記載の施策の生成方法であって、
前記業務システムは、複数の作業を含む業務を実行し、
前記第2のステップは、前記演算装置が、前記複数の作業間の関連性を示す前記関連指標の分布に基づいて、前記作業の実行順序を構成する作業の順列又は組合せを前記ターゲットデータとして特定するステップを含み、
前記第3のステップは、前記演算装置が、前記ターゲットデータを解析することによって、前記業務評価指標の改善に寄与する可能性がある作業の順列又は組合せを前記気づき特徴量として算出するステップを含み、
前記第4のステップは、前記演算装置が、前記気づき特徴量として算出された前記作業の順列又は組合せに基づいて、前記作業の実行スケジュールを、前記業務評価指標を改善するための施策として生成するステップを含むことを特徴とする施策の生成方法。
(10)(7)に記載の施策の生成方法であって、
前記記憶装置は、除外する施策に関する情報を管理するための制約情報を格納し、
前記第4のステップは、前記演算装置が、前記制約情報に基づいて、前記生成された施策が前記除外する施策であるか否かを判定するステップを含むことを特徴とする施策の生成方法。
100 業務システム
110 データ解析システム
200 計算機
210 演算装置
211 主記憶装置
212 副記憶装置
213 ネットワークインタフェース
214 入力装置
215 出力装置
221 解析モジュール
222 施策生成モジュール
223 評価モジュール
231 業務データ管理情報
232 知識ベース

Claims (16)

  1. データ解析システムであって、
    記憶装置と、
    業務に関連する複数の属性を含む第一の業務データと前記業務の業務評価指標により特定されたターゲットデータとを基に、前記業務評価指標の改善に寄与する可能性がある気づき特徴量を算出し、前記気づき特徴量に基づいて、前記業務評価指標を改善するための第一の施策を生成し、前記第一の施策に基づく前記業務が実行された後の第二の業務データに基づいて、前記第一の施策の有効性を評価し、前記第一の施策の有効性を知識ベースとして前記記憶装置に格納し、前記気づき特徴量及び前記知識ベースに基づいて、前記業務評価指標を改善するための第二の施策を生成する、演算装置と、
    を有することを特徴とするデータ解析システム。
  2. 請求項1に記載のデータ解析システムであって、
    前記演算装置は、前記業務評価指標に関連する関連指標の分布に基づいて、前記ターゲットデータを特定することを特徴とするデータ解析システム。
  3. 請求項2に記載のデータ解析システムであって、
    前記演算装置は、
    前記関連指標の分布の特定の範囲に対応する業務データを前記ターゲットデータとして特定し、
    前記ターゲットデータとして特定された業務データに含まれる前記属性の値を解析することによって、前記属性の値の組合せを前記気づき特徴量として算出することを特徴とするデータ解析システム。
  4. 請求項3に記載のデータ解析システムであって、
    前記演算装置は、前記気づき特徴量として算出された前記属性の値の組合せに含まれる少なくとも一つの前記属性の値を変更することによって、前記第一の施策又は第二の施策を生成することを特徴とするデータ解析システム。
  5. 請求項2に記載のデータ解析システムであって、
    前記業務は、複数の作業を含み、
    前記演算装置は、
    前記複数の作業間の関連性を示す前記関連指標の分布に基づいて、前記作業の実行順序を構成する作業の順列又は組合せを前記ターゲットデータとして特定し、
    前記ターゲットデータを解析することによって、前記業務評価指標の改善に寄与する可能性がある作業の順列又は組合せを前記気づき特徴量として算出することを特徴とするデータ解析システム。
  6. 請求項5に記載のデータ解析システムであって、
    前記演算装置は、前記気づき特徴量として算出された前記作業の順列又は組合せに基づいて、前記作業の実行スケジュールを、前記第一の施策又は前記第二の施策として生成することを特徴とするデータ解析システム。
  7. 請求項1に記載のデータ解析システムであって、
    前記記憶装置は、除外する施策に関する情報を管理するための制約情報を格納し、
    前記演算装置は、前記制約情報に基づいて、前記生成された施策が前記除外する施策であるか否かを判定することを特徴とするデータ解析システム。
  8. 請求項1に記載のデータ解析システムであって、
    前記演算装置によって生成された施策のデータを出力するインタフェースを有することを特徴とするデータ解析システム。
  9. データ解析システムが実行する、業務を制御する施策の生成方法であって、
    前記データ解析システムは、演算装置及び記憶装置を有し、
    前記施策の生成方法は、
    前記演算装置が、前記業務に関連する複数の属性を含む第一の業務データと前記業務の業務評価指標により特定されたターゲットデータとを基に、前記業務評価指標の改善に寄与する可能性がある気づき特徴量を算出する第1のステップと、
    前記演算装置が、前記気づき特徴量に基づいて、前記業務評価指標を改善するための第一の施策を生成する第2のステップと、
    前記演算装置が、前記第一の施策に基づく前記業務が実行された後の第二の業務データに基づいて、前記第一の施策の有効性を評価する第3のステップと、
    前記演算装置が、前記第一の施策の有効性を知識ベースとして前記記憶装置に格納する第4のステップと、
    前記演算装置が、前記気づき特徴量及び前記知識ベースに基づいて、前記業務評価指標を改善するための第二の施策を生成する第5のステップと、
    を含むことを特徴とする施策の生成方法。
  10. 請求項9に記載の施策の生成方法であって、
    前記第1のステップは、前記演算装置が、前記業務評価指標に関連する関連指標の分布に基づいて、前記ターゲットデータを特定するステップを含むことを特徴とする施策の生成方法。
  11. 請求項10に記載の施策の生成方法であって、
    前記第1のステップは、
    前記演算装置が、前記関連指標の分布の特定の範囲に対応する業務データを前記ターゲットデータとして特定するステップと、
    前記演算装置が、前記ターゲットデータとして特定された業務データに含まれる前記属性の値を解析することによって、前記属性の値の組合せを前記気づき特徴量として算出するステップと、を含むことを特徴とする施策の生成方法。
  12. 請求項11に記載の施策の生成方法であって、
    前記第2のステップ及び前記第5のステップは、前記演算装置が、前記気づき特徴量として算出された前記属性の値の組合せに含まれる少なくとも一つの前記属性の値を変更することによって、施策を生成するステップを含むことを特徴とする施策の生成方法。
  13. 請求項10に記載の施策の生成方法であって、
    前記業務は、複数の作業を含み、
    前記第1のステップは、
    前記演算装置が、前記複数の作業間の関連性を示す前記関連指標の分布に基づいて、前記作業の実行順序を構成する作業の順列又は組合せを前記ターゲットデータとして特定するステップと、
    前記演算装置が、前記ターゲットデータを解析することによって、前記業務評価指標の改善に寄与する可能性がある作業の順列又は組合せを前記気づき特徴量として算出するステップと、を含むことを特徴とする施策の生成方法。
  14. 請求項13に記載の施策の生成方法であって、
    前記第2のステップ及び前記第5のステップは、前記演算装置が、前記気づき特徴量として算出された前記作業の順列又は組合せに基づいて、前記作業の実行スケジュールを施策として生成するステップを含むことを特徴とする施策の生成方法。
  15. 請求項9に記載の施策の生成方法であって、
    前記記憶装置は、除外する施策に関する情報を管理するための制約情報を格納し、
    前記第2のステップ及び前記第5のステップは、前記演算装置が、前記制約情報に基づいて、生成された施策が前記除外する施策であるか否かを判定するステップを含むことを特徴とする施策の生成方法。
  16. 請求項9に記載の施策の生成方法であって、
    前記データ解析システムは、前記演算装置によって生成された施策のデータを出力するインタフェースを有することを特徴とする施策の生成方法。
JP2019192482A 2019-10-23 2019-10-23 データ解析システム及び施策の生成方法 Active JP6824360B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192482A JP6824360B2 (ja) 2019-10-23 2019-10-23 データ解析システム及び施策の生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192482A JP6824360B2 (ja) 2019-10-23 2019-10-23 データ解析システム及び施策の生成方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017203318A Division JP6608411B2 (ja) 2017-10-20 2017-10-20 データ解析システム及び施策の生成方法

Publications (2)

Publication Number Publication Date
JP2020024736A JP2020024736A (ja) 2020-02-13
JP6824360B2 true JP6824360B2 (ja) 2021-02-03

Family

ID=69618830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192482A Active JP6824360B2 (ja) 2019-10-23 2019-10-23 データ解析システム及び施策の生成方法

Country Status (1)

Country Link
JP (1) JP6824360B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046131B2 (ja) * 2020-08-26 2022-04-01 楽天グループ株式会社 サーバ、情報処理方法およびプログラム
JPWO2022196070A1 (ja) * 2021-03-15 2022-09-22

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002269329A (ja) * 2001-01-05 2002-09-20 Yasufumi Uchiumi 業務改善支援システムおよびその方法
JP4376887B2 (ja) * 2006-11-02 2009-12-02 日本電信電話株式会社 業務プロセスにおける業務効率低下の原因侯補を抽出する方法、その装置およびプログラム
JP5034990B2 (ja) * 2008-02-06 2012-09-26 富士通株式会社 業務プロセス分析プログラム、方法及び装置

Also Published As

Publication number Publication date
JP2020024736A (ja) 2020-02-13

Similar Documents

Publication Publication Date Title
CN111401777B (zh) 企业风险的评估方法、装置、终端设备及存储介质
JP4717945B2 (ja) 業務分析プログラムおよび業務分析装置
US20200372529A1 (en) System and method for selecting promotional products for retail
Sakao et al. A method to improve integrated product service offerings based on life cycle costing
JP6608411B2 (ja) データ解析システム及び施策の生成方法
US8332263B2 (en) System and method for configuring scoring rules and generating supplier performance ratings
AU2020257057A1 (en) Methods and apparatus for the analyzing, manipulating, formatting, templating, styling and/or publishing of data collected from a plurality of sources
Choi et al. Prioritization of association rules in data mining: Multiple criteria decision approach
JP6824360B2 (ja) データ解析システム及び施策の生成方法
US20050049907A1 (en) Using page-view data to project demand for an item
US20090319334A1 (en) Integrating enterprise data and syndicated data
JPWO2020157927A1 (ja) 診断システムおよび診断方法
KR102186051B1 (ko) 특허 평가 시스템
Delanote et al. Optimization of the annual planning of targeted offers in direct marketing
US20210019796A1 (en) Pricebook transaction log management systems and methods
KR102562565B1 (ko) 자동화 기반의 데이터 수집 및 분석을 통해 벤치마크 정보를 제공하는 비즈니스 분석 정보 제공 방법, 장치, 및 프로그램
Burnay et al. User-experience in business intelligence-a quality construct and model to design supportive BI dashboards
Arinze Market planning with computer models: a case study in the software industry
CN115660203A (zh) 生命周期价值的预测方法及装置、存储介质、电子设备
US20170161799A1 (en) Sales price management device, sales price management system, sales price management method, and sales price management program
JP7563998B2 (ja) 計算機及び施策の評価方法
US20230368230A1 (en) Incremental value assessment tool and user interface
Fleig et al. KeyPro-A decision support system for discovering important business processes in information systems
Sahin et al. Optimal policies under risk for changing software systems based on customer satisfaction
Čančer Considering interactions among multiple criteria for the server selection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210112

R150 Certificate of patent or registration of utility model

Ref document number: 6824360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150