JP6823410B2 - Rigid body with corrugated sheet pore structure and laminated structure - Google Patents
Rigid body with corrugated sheet pore structure and laminated structure Download PDFInfo
- Publication number
- JP6823410B2 JP6823410B2 JP2016179164A JP2016179164A JP6823410B2 JP 6823410 B2 JP6823410 B2 JP 6823410B2 JP 2016179164 A JP2016179164 A JP 2016179164A JP 2016179164 A JP2016179164 A JP 2016179164A JP 6823410 B2 JP6823410 B2 JP 6823410B2
- Authority
- JP
- Japan
- Prior art keywords
- corrugated sheet
- corrugated
- holes
- hole
- slope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Laminated Bodies (AREA)
Description
本発明は、積層体波板層の波板山部に形成した空孔の構造およびその空孔を嵌合
させた積層構造の剛性体において、その空孔を用いて配線や配管を行い、通気性を
もって熱を放熱し、空孔による強度低下の小さい構造に関する。
In the present invention, in a rigid body having a structure of holes formed in the corrugated sheet mountain portion of the corrugated sheet layer of the laminated body and a laminated structure in which the holes are fitted, wiring and piping are performed using the holes to ventilate. It relates to a structure that dissipates heat with properties and has a small decrease in strength due to vacancies.
板材で構成される波板構造積層体で、積層体の波板層の空間を電気配線や配管類の
敷設スペースのためのダクトとして利用する技術がある。
波板層は、山の稜線方向に連続した空間が構成されるため、この方向を通路とする
ことは容易であるが、稜線と直角方向の斜面を横切るためには、中芯に空孔を設けて
通路としている。
It is a corrugated plate structure laminate composed of plate materials, and there is a technology to use the space of the corrugated plate layer of the laminate as a duct for laying space for electrical wiring and piping.
Since the corrugated sheet layer forms a continuous space in the direction of the ridgeline of the mountain, it is easy to use this direction as a passage, but in order to cross the slope in the direction perpendicular to the ridgeline, a hole is made in the center. It is provided as a passage.
このダクト機能を持たせた積層体において、波板層の波板に孔を開け空孔を設けて
通路として利用する場合、この空孔の大きさに反比例して波板層の強度が低下する
ため、空孔は必要最小限に設けられる。 この波板層を分割し隙間を開けて配置
することで必要な空間を作る方式も可能であるが、軽量かつ高強度が求められる
用途には適さない。
In a laminated body having this duct function, when a hole is made in the corrugated sheet of the corrugated sheet layer and a hole is provided to be used as a passage, the strength of the corrugated sheet layer decreases in inverse proportion to the size of the hole. Therefore, the holes are provided to the minimum necessary. It is possible to create the required space by dividing the corrugated sheet layer and arranging it with a gap, but it is not suitable for applications that require light weight and high strength.
ここで、通常は配線や配管の端末部はコネクタや端子が接続され、電線材や配管材
の太さよりも広いダクト機能が必要となり、余裕をもった空孔を設ける必要性が
あるが、波板層では十分な広さの空孔を設けることが困難であるため未処理の電線
や配管を通し、後加工で端末処理をする方法をとり、人手による端末処理が必要で、
非効率的であった。
Here, normally, connectors and terminals are connected to the terminal part of wiring and piping, and a duct function wider than the thickness of the electric wire material and piping material is required, and it is necessary to provide a hole with a margin. Since it is difficult to provide holes with sufficient width in the plate layer, it is necessary to pass untreated wires and pipes and perform terminal treatment by post-processing, which requires manual terminal treatment.
It was inefficient.
また、軟質の配線や配管を通す場合、波板層の鋭利な切断面で傷がつくため、保護
機能を付加する必要があった。 またこれらの配線や配管を交換する場合、積層体
を分解することが困難で、積層体全体を交換している。
In addition, when passing through soft wiring or piping, the sharp cut surface of the corrugated sheet layer is damaged, so it is necessary to add a protective function. Further, when replacing these wirings and pipes, it is difficult to disassemble the laminated body, and the entire laminated body is replaced.
現状の技術に対して、本発明が解決しようとする課題とは、
配線や配管を波板構造積層体内に形成された空間や空孔を経由して積層体の
あらゆる部位に効率よく自在に引き回し敷設し、波板構造積層体の波板層において
空孔形成に伴う強度低下を最小限とし、この空孔に配線や配管を通すとき波板層の
鋭利な切断面による損傷を防止し、接着しにくい波板形状や材質でも接着工法不要
で芯材や表面板を強固に結合し容易に組付分離する、ということである。
The problem to be solved by the present invention with respect to the current technology is
Wiring and piping are efficiently and freely routed and laid in all parts of the laminated body via the spaces and holes formed in the corrugated sheet structure laminated body, and accompanies the formation of holes in the corrugated sheet layer of the corrugated sheet structure laminated body. Minimizes the decrease in strength, prevents damage due to the sharp cut surface of the corrugated sheet layer when passing wiring and piping through this hole, and even if the corrugated sheet shape and material are difficult to adhere, no adhesive method is required and the core material and surface plate can be used. It means that they are firmly bonded and easily assembled and separated.
本発明は、波板構造積層体の波板層山部に等脚逆台形の空孔を設け、その空孔に
配線や配管を通すことが可能な波板構造積層体を形成することを、最も主要な特徴と
する。この等脚逆台形の空孔を適切に設けることにより、複数の課題に対応する
ことが可能となる。
According to the present invention, an isosceles trapezoidal hole is provided in a corrugated sheet layer mountain portion of a corrugated sheet structure laminate, and a corrugated sheet structure laminate capable of passing wiring or piping through the hole is formed. The most important feature. By appropriately providing the isosceles trapezoidal holes, it is possible to deal with a plurality of problems.
本発明の波板構造積層体の空孔構造は、
配線や配管を積層体内に形成された空間や空孔を経由し積層体のあらゆる部位に
効率よく自在に引き回し敷設することができ、積層体の波板層において空孔形成に
伴う強度低下を最小限にでき、この空孔に配線や配管を通すとき波板層の鋭利な
切断面による損傷を防止することができ、接着しにくい波板形状や材質でも接着
工法不要で芯材や表面板を強固に結合し容易に組付分離できるという利点がある。
The pore structure of the corrugated sheet structure laminate of the present invention is
Wiring and piping can be efficiently and freely routed and laid in all parts of the laminated body via the spaces and holes formed in the laminated body, and the decrease in strength due to the formation of holes in the corrugated sheet layer of the laminated body is minimized. It can be limited, and when wiring or piping is passed through this hole, damage due to the sharp cut surface of the corrugated sheet layer can be prevented, and even if the corrugated sheet shape or material is difficult to adhere, no adhesive method is required and the core material and surface plate can be used. It has the advantage that it can be firmly bonded and easily assembled and separated.
本実施の形態の特徴的なところは、配線や配管を波板構造積層体内に形成された
空孔を経由して積層体のあらゆる部位に配線や配管を効率よく自在に引き回し敷設
するという目的を、簡便でかつ強度を維持した構造で波板構造積層体の利便性を
損なうことなく構成することである。
また、波板構造積層体の波板層に一つの波板からなる積層体で、波板山部に特定の
等脚逆台形形状の空孔を形成する形態と
波板構造積層体の波板層に二つの波板からなる積層体で、波板山部の空孔を特定の
等脚逆台形形状にすることにより、二つの波板を隙間なく嵌合させ、波板層の厚み
が増大することなく強固に一体化して形成する形態と
さらに、形成した空孔部に補助的構造を組合せることで、保護機能の付加や接合部
の補強を果たす形態を有する。
The characteristic feature of this embodiment is that the wiring and piping are efficiently and freely routed and laid in all parts of the laminated body via the holes formed in the corrugated sheet structure laminated body. It is a structure that is simple and maintains strength without impairing the convenience of the corrugated sheet structure laminate.
In addition, it is a laminate consisting of one corrugated sheet in the corrugated sheet layer of the corrugated sheet structure laminate, and has a form in which specific isosceles trapezoidal holes are formed in the corrugated sheet mountain portion and the corrugated sheet of the corrugated sheet structure laminate. It is a laminated body consisting of two corrugated sheets in a layer, and by making the holes in the corrugated sheet mountain part into a specific isosceles trapezoidal shape, the two corrugated sheets are fitted without gaps and the thickness of the corrugated sheet layer is increased. It has a form in which it is firmly integrally formed without being formed, and a form in which a protective function is added and a joint portion is reinforced by combining the formed pores with an auxiliary structure.
図1の(a)斜視図は本発明装置の1実施例の斜視図であって、波板1に空孔10
を設けている。爪12は折り返し構造の爪であり、この例で有無は問わない。
図1の空孔は斜面の両側に空孔を設けている。 この構造に関して順次説明を行う。
The perspective view (a) of FIG. 1 is a perspective view of an embodiment of the apparatus of the present invention, and a hole 10 is formed in the corrugated plate 1.
Is provided. The claw 12 is a claw having a folded structure, and it does not matter whether or not it is present in this example.
The holes in FIG. 1 are provided on both sides of the slope. This structure will be described in sequence.
図2の(a)斜視図は既存の波板構造積層体に設けられる空孔構造と配置を示す
斜視図である。ここで形成する空孔は主に波板2の稜線部に稜線空孔20、斜面部
に斜面空孔22、底面部に底面空孔24が形成される。
空孔の形状は丸や四角など簡単な形状で、加工で専用設備が不要な形が選ばれ用途
によって最適形状が選択されることが多い。
The perspective view (a) of FIG. 2 is a perspective view showing a pore structure and an arrangement provided in an existing corrugated sheet structure laminate. The holes formed here are mainly a ridge line hole 20 at the ridgeline portion of the corrugated plate 2, a slope hole 22 at the slope portion, and a bottom surface hole 24 at the bottom surface portion.
The shape of the holes is a simple shape such as a circle or a square, and a shape that does not require special equipment for processing is selected, and the optimum shape is often selected depending on the application.
図3の(a)側面図は波板構造積層体3の基本構造を説明した図で、1枚以上の
波板32から構成される波板層30とその波板層に1枚以上の表面板34と36を
接合させることが特徴の積層体である。
波板層30は、板状の部材に山折りと谷折りを交互に繰り返し、波形の断面形状を
形成した波板32から成り、波板は中芯とも呼ばれる。
さらに、波板構造積層体は積層体を複数積層して使用されることも多い。
The side view (a) of FIG. 3 is a view explaining the basic structure of the corrugated sheet structure laminate 3, and is a corrugated sheet layer 30 composed of one or more corrugated sheets 32 and one or more tables on the corrugated sheet layer. The laminated body is characterized in that the face plates 34 and 36 are joined together.
The corrugated plate layer 30 is composed of a corrugated plate 32 having a corrugated cross-sectional shape formed by alternately repeating mountain folds and valley folds on a plate-shaped member, and the corrugated plate is also called a core.
Further, the corrugated sheet structure laminate is often used by laminating a plurality of laminates.
図4の斜視図は波板山部を説明した斜視図である。
波板は複数の山で構成され、必要に応じて最適形状の空孔が設けられる。
波板の山間隔は山幅+底面幅となり、目的に応じて一つ以上の空孔が設けられる。
この事例では二つの山と四つの空孔で構成している。
The perspective view of FIG. 4 is a perspective view for explaining the corrugated sheet mountain portion.
The corrugated sheet is composed of a plurality of peaks, and holes of the optimum shape are provided as needed.
The mountain spacing of the corrugated sheet is the mountain width + bottom width, and one or more holes are provided depending on the purpose.
In this case, it consists of two peaks and four holes.
図5(a)は波板4の稜線空孔5について説明した正面図である。
本図は波板の斜面を正面から見た図であり、実施例1で波板を横からみると稜線部
に図のような等脚逆三角形状の稜線空孔5が形成される。
この図示しない展開図で孔形状は6角形だが、天面を設けた波板では8角形となる。
FIG. 5A is a front view illustrating the ridgeline hole 5 of the corrugated sheet 4.
This figure is a view of the slope of the corrugated sheet viewed from the front, and when the corrugated sheet is viewed from the side in the first embodiment, an equilegged inverted triangular ridgeline hole 5 as shown in the figure is formed at the ridgeline portion.
In this development view (not shown), the hole shape is hexagonal, but in the corrugated plate provided with the top surface, it is octagonal.
図6(a)は波板6の展開図で稜線、斜面、底面の各部に六角形の孔を設ける場合の
大きさを比較したものである。この図の波板6は山二つで構成される。
後で詳しく説明する孔形状としては六角形が最適であり、ここでは六角孔を事例に
説明する。ここで孔は貫通孔とする。
まず、稜線部の孔は山の片斜面に等脚逆台形60が形成され、両斜面では六角形の
孔形状の稜線六角孔62となる。
次に斜面空孔64を形成した場合には、電線配管を通すために山の両斜面に孔を
設けるため、斜面の欠損率を考慮すると最大でも斜面の7割程度の空孔欠損幅が
実用範囲であり、それ以上孔を拡大すると強度が極端に低下する。
さらに底面空孔66においては、山の稜線方向と直角に電線や配管を通すためには
別に稜線空孔62や斜面空孔64を設ける必要があるため底面の空孔は課題の解決
策にならない。
この三つの孔位置を比較すると、稜線空孔62を設けたときに山の両斜面を利用
できることから、最も大きい空孔を形成できることがわかる。
FIG. 6A is a developed view of the corrugated sheet 6 and compares the sizes when hexagonal holes are provided in each of the ridgeline, the slope, and the bottom surface. The corrugated sheet 6 in this figure is composed of two mountains.
A hexagon is the most suitable hole shape to be described in detail later, and here, a hexagonal hole will be described as an example. Here, the hole is a through hole.
First, an isosceles trapezoid 60 is formed on one slope of the mountain as a hole in the ridgeline portion, and a hexagonal hole-shaped ridgeline hexagonal hole 62 is formed on both slopes.
Next, when the slope vacancy 64 is formed, holes are provided on both slopes of the mountain for passing the electric wire pipe. Therefore, considering the deficiency rate of the slope, a maximum vacancy defect width of about 70% of the slope is practical. It is a range, and if the hole is expanded further, the strength will be extremely reduced.
Further, in the bottom hole 66, since it is necessary to separately provide a ridge hole 62 and a slope hole 64 in order to pass an electric wire or a pipe at a right angle to the mountain ridge direction, the bottom hole is not a solution to the problem. ..
Comparing the positions of these three holes, it can be seen that the largest hole can be formed because both slopes of the mountain can be used when the ridgeline hole 62 is provided.
ここで、本考案の対称となる波板層について、波板の形状について説明する。
図7の(a)〜(f)は波板の折構造の形状で、代表的な形状を比較したもの
である。 波形の形状はこれらに限定するものではない。
波板の呼称には、波板、折板、コルゲートシート、蛇腹その他の多くの呼称があり
いろいろな分野、用途、構造、材質が見られる。
ここで、波板の折構造として、強度も比較的強く、山の峰と谷の底面を合わせ持つ
(b)山谷谷折りを代表例として説明する。
Here, the shape of the corrugated sheet will be described with respect to the symmetrical corrugated sheet layer of the present invention.
(A) to (f) of FIG. 7 are the shapes of the folded structure of the corrugated sheet, and are comparisons of typical shapes. The shape of the waveform is not limited to these.
There are many names for corrugated sheet such as corrugated sheet, folded plate, corrugated sheet, bellows and others, and various fields, uses, structures and materials can be seen.
Here, as a corrugated sheet folding structure, (b) Sanya valley folding, which has relatively strong strength and has both mountain peaks and valley bottoms, will be described as a typical example.
波板層に設けられた空孔は波板の強度を低下させるため、空孔は必要最低限の大きさ
に限定されるが、強度の低下よりも空孔を拡大し、その効果を優先する場合がある。
この場合、これまで強度低下はやむを得ないものとされ、必要であれば別体の補強
部材を組み合わせ、強度低下を補っていたが、構造が複雑で製造工程も多くなり
煩雑であったため、波板だけで強度を保つ技術が求められていた。
この改善策として、波板層の基本構造の山部にどのように空孔を設ければ強度低下
を最小にとどめ、かつ最大の空孔を設けることができるかを検討した。
Since the holes provided in the corrugated sheet layer reduce the strength of the corrugated sheet, the holes are limited to the minimum necessary size, but the holes are enlarged rather than the decrease in strength, and the effect is prioritized. In some cases.
In this case, the decrease in strength has been unavoidable so far, and if necessary, a separate reinforcing member has been combined to compensate for the decrease in strength, but the structure is complicated and the manufacturing process is complicated, so the corrugated sheet There was a need for a technique to maintain strength by itself.
As a remedy for this, we examined how to provide holes in the mountainous part of the basic structure of the corrugated sheet layer to minimize the decrease in strength and to provide the maximum holes.
図8の(a)〜(h)は波板山部の孔形状と配置の代表例であり、山の斜面を正面
から見た図である。ここで孔の形状は展開図で孔を開けたときの孔形状である。
波板に空孔を設ける場合に考慮すべき条件は、
薄い波板に適し、電線や配管類を通しやすく、空孔の端辺は折曲により強化可能で、
接着や溶接などの接合に適した構造で、他の部材と組合せ易く、位置決め精度が出
し易く、応力集中しにくい形状である。
これらの条件から、(a)〜(c)の斜面孔は配線や配管を通し難いため除外し、
(d)〜(h)の稜線空孔のなかでは、(d)と(e)は端辺の折曲による強化が
利用し難く、(f)と(h)は応力集中し易いため、(g)稜線六角孔がもっとも
適した形状であることが解る。この孔を片斜面の正面からみると等脚逆台形になる。
8 (a) to 8 (h) are typical examples of the hole shape and arrangement of the corrugated sheet mountain portion, and are views of the slope of the mountain viewed from the front. Here, the shape of the hole is the shape of the hole when the hole is opened in the developed view.
The conditions to consider when providing holes in the corrugated sheet are
Suitable for thin corrugated sheets, easy to pass electric wires and pipes, and the edges of holes can be strengthened by bending.
It has a structure suitable for joining such as adhesion and welding, and has a shape that is easy to combine with other members, easy to obtain positioning accuracy, and difficult to concentrate stress.
From these conditions, the slope holes (a) to (c) are excluded because it is difficult to pass wiring and piping.
Among the ridgeline vacancies of (d) to (h), (d) and (e) are difficult to use for strengthening by bending the edges, and (f) and (h) are easy to concentrate stress. g) It can be seen that the ridgeline hexagonal hole has the most suitable shape. When this hole is viewed from the front of one slope, it becomes an isosceles trapezoid.
図6の説明で、稜線部に大きな空孔を設けることが可能であり、図8の説明で山の
斜面に等脚逆台形の空孔を設けることが最適なことが解った。
そこで、この稜線空孔に対し、強度を落とさずどの程度まで拡大できるか検討する。
山の斜面の強度はその断面係数に比例するため、形状に合わせて断面係数を算出
することで空孔を開けた場合の強度を比較できる。
単純に空孔を形成する場合、山の斜面は薄板片と考え、山の斜面の強度を計算
すると、断面係数は二乗に反比例して急激に小さくなる。
この空孔斜面幅寸法を大きめに斜面の70%程度としても断面係数は半分以下に
低下するため強度的に問題がある。
一方、空孔部分に折返しを設けてL形の断面形状とした場合、空孔欠損幅を30%
残りの空孔斜面幅を70%としたときが最も断面係数が大きくなり、空孔欠損幅を
50%、空孔斜面幅を50%とした場合でも断面係数は元の斜面高さの薄板と
同程度の断面係数となることが解り、折返し部を設ければ空孔欠損幅を50%まで
拡大可能と判断された。
また、爪のない孔だけの空孔でも、別の補助具と接着し組合せれば、同様に強化
が可能である。
In the explanation of FIG. 6, it is possible to provide a large hole in the ridgeline portion, and in the explanation of FIG. 8, it was found that it is optimal to provide an isosceles trapezoidal hole in the slope of the mountain.
Therefore, we will examine how much the ridgeline vacancies can be expanded without reducing the strength.
Since the strength of a mountain slope is proportional to its cross-sectional coefficient, it is possible to compare the strength when a hole is made by calculating the cross-sectional coefficient according to the shape.
When simply forming holes, the slope of the mountain is considered to be a thin plate piece, and when the strength of the slope of the mountain is calculated, the section modulus sharply decreases in inverse proportion to the square.
Even if the width of the vacant slope is increased to about 70% of the slope, the cross-sectional coefficient is reduced to less than half, which causes a problem in strength.
On the other hand, when the vacancy portion is folded back to form an L-shaped cross section, the vacancy defect width is 30%.
The cross-sectional coefficient is the largest when the remaining vacancy slope width is 70%, and even when the vacancy defect width is 50% and the vacancy slope width is 50%, the cross-section coefficient is the same as that of the original slope height. It was found that the cross-sectional coefficients were about the same, and it was judged that the width of the vacancy defect could be expanded to 50% by providing a folded portion.
Further, even a hole having only a hole without a claw can be similarly strengthened by adhering and combining it with another auxiliary tool.
波板構造積層体の波板層に配線や配管を敷設するための最適な空孔形状を検討した
結果、図6の稜線空孔の配置で示す展開図のように,二つの等脚逆台形を組合せた
6角孔を形成し、図1のように波板層を構成することが、もっとも適していること
が解った。この図1で折返し爪の折返し角度は用途に応じ任意の角度をとり、別の
補助具と組合せる場合は必ずしも爪は必要としない。
このように、稜線部を切取るように等脚逆台形の形に空孔を設けた場合、図9に
示す波板山部の空孔形成条件を定義すれば、空孔による強度低下を最小限とする
必要条件は次のように定義される。
∠αと∠βは60度の時が最も強く、おおむね30〜90度の角度を推奨。
S1とS2が略等しい二等辺三角形のとき最も強度が強くなる。
S2とS3が略等しい等脚逆台形のとき最も強度が強くなる。
hの高さをHの略半分の高さをとしたとき、強度低下が少なく最も大きな空孔を
稜線にまたがって形成することができる。
これらの条件は波板の稜線と底面が平行な場合に成立し、変形させた波板では
空孔形状はこれらの条件に限定されない。
As a result of examining the optimum hole shape for laying wiring and piping in the corrugated sheet layer of the corrugated sheet structure laminate, two isosceles trapezoids are shown in the development view shown in the arrangement of the ridgeline holes in FIG. It was found that it is most suitable to form a hexagonal hole in which the above-mentioned components are combined to form a corrugated sheet layer as shown in FIG. In FIG. 1, the folding angle of the folding claw is arbitrary depending on the application, and the claw is not always required when combined with another auxiliary tool.
In this way, when the holes are provided in the shape of an isosceles trapezoid so as to cut off the ridgeline, if the conditions for forming the holes in the corrugated sheet mountain portion shown in FIG. 9 are defined, the decrease in strength due to the holes is minimized. The requirement to limit is defined as follows.
∠α and ∠β are strongest at 60 degrees, and an angle of about 30 to 90 degrees is recommended.
The strength is strongest when S1 and S2 are approximately equal isosceles triangles.
The strength is strongest when the isosceles trapezoids in which S2 and S3 are substantially equal.
When the height of h is approximately half the height of H, there is little decrease in strength and the largest pore can be formed across the ridgeline.
These conditions are satisfied when the ridgeline and the bottom surface of the corrugated sheet are parallel, and the hole shape of the deformed corrugated sheet is not limited to these conditions.
波板構造積層体の波板層に軟質の配線や配管を敷設する場合、波板の空孔の鋭利な
切断面で損傷を受ける恐れがあり、保護対策が必要となる。
図10は波板空孔部の保護構造を示したもので、空孔10を形成する各辺を折曲げる
構造として配線や配管102と接触する部分に丸みをもった保護部100を形成し、
損傷を防止しかつ空孔による強度低下を軽減することが可能となる。
When laying soft wiring or piping in the corrugated sheet layer of the corrugated sheet structure laminate, there is a risk of damage to the sharp cut surface of the corrugated sheet holes, and protective measures are required.
FIG. 10 shows a protective structure for the corrugated sheet vacancies, and a rounded protective portion 100 is formed at a portion in contact with the wiring or the pipe 102 as a structure in which each side forming the vacancies 10 is bent.
It is possible to prevent damage and reduce the decrease in strength due to vacancies.
さらに、図9の空孔形成条件で∠α=∠β、S1=S2、S3=S4、H≒2h、
L1≒L2と定義すると、図11の2重波板嵌合構造に示すように、同一形状の
空孔を設けた波板を稜線方向に直交させ反転し対向させた状態で、隙間なく嵌合
することがわかる。
ここで、波板の厚さ方向に対して、2枚の波板が組合せて嵌合し形成され、かつ
波板層の厚さは、1枚の波板と略同等であることがわかる。
結果、1枚の波板と比較して、2枚の波板を接着し一体化することで、表面板なしで
剛性体を形成し、強度は波板間の相乗効果で格段に大きくなり、波板形状は強固に
固定され方向性のない剛性の高い積層体を構成する。 図11(b)の上面図で、
2つの波板の稜線空孔を嵌合し形成される空孔40は四角形となる。
Further, under the pore formation conditions of FIG. 9, ∠α = ∠β, S1 = S2, S3 = S4, H≈2h,
When L1 ≈ L2 is defined, as shown in the double corrugated plate fitting structure of FIG. 11, the corrugated plates provided with holes of the same shape are fitted without gaps in a state of being orthogonal to the ridge line direction, inverted, and opposed to each other. You can see that
Here, it can be seen that two corrugated sheets are combined and formed by being fitted in the thickness direction of the corrugated sheet, and the thickness of the corrugated sheet layer is substantially the same as that of one corrugated sheet.
As a result, compared to one corrugated sheet, by adhering and integrating two corrugated sheets, a rigid body is formed without a surface plate, and the strength is significantly increased by the synergistic effect between the corrugated sheets. The corrugated sheet shape is firmly fixed to form a highly rigid laminated body with no directionality. In the top view of FIG. 11 (b),
The holes 40 formed by fitting the ridgeline holes of the two corrugated sheets are quadrangular.
図12は図11の構造体を中芯とし、表面板でサンドイッチした2重波板構造積層体
の実施例である。 これまでの波板構造積層体では波板の形状が保持されないため
積層時波板を保持する位置決め機構が必要であったが、図11のように二つの波板
を嵌合すれば波板はそれぞれ組み合い自然に位置が強制されるため位置決めは不要
となる。 このため、簡単な設備で製造することが可能となり、この中芯だけで
立体形状を形成し、さらに高い剛性を付与することができる。
ここで表面板124は片面でも両面でもよく、接着により波板構造積層体を構成し、
さらに波板底面および表面板に固定のための四角孔を設け固定具で固定してもよい。
また、波板の一つの山部に複数配置される空孔間のピッチ幅は山幅+底面幅となり
空孔間のピッチ幅を広げると、その分底面幅が広くなる関係がある。
図12は平面板状の積層体だが、一方の波板の空孔間の山部を折り、山の稜線に
角度を付ければ、曲面の積層体を形成できる。 そして、図11の山組み構造を縦
に積み重ね、長辺の四方を表面板で覆った柱状の積層体として形成してもよい。
FIG. 12 is an example of a double corrugated plate structure laminate sandwiched between surface plates and the structure of FIG. 11 as a core. Since the shape of the corrugated sheet is not maintained in the conventional corrugated sheet structure laminate, a positioning mechanism for holding the corrugated sheet at the time of stacking is required. However, if two corrugated sheets are fitted as shown in FIG. 11, the corrugated sheet can be formed. Positioning is not required because the positions are naturally forced by each combination. Therefore, it is possible to manufacture with simple equipment, and it is possible to form a three-dimensional shape only with this core and to impart higher rigidity.
Here, the surface plate 124 may be single-sided or double-sided, and a corrugated plate structure laminate is formed by adhesion.
Further, a square hole for fixing may be provided on the bottom surface and the surface plate of the corrugated plate and fixed with a fixture.
Further, the pitch width between a plurality of holes arranged in one mountain portion of the corrugated sheet is the mountain width + the bottom width, and when the pitch width between the holes is widened, the bottom width is increased by that amount.
FIG. 12 shows a flat plate-shaped laminate, but a curved laminate can be formed by folding the mountain portion between the holes of one corrugated plate and making an angle on the ridgeline of the mountain. Then, the mountain structure of FIG. 11 may be vertically stacked to form a columnar laminate in which all four sides of the long side are covered with a surface plate.
図13に波板空孔部の折山反転補強構造の二つの実施例を示す。
空孔部の折返し構造で、折返しの爪を形成せず、空隙の等脚逆台形の底辺部を山の
両斜面をつなぐように折り返すことにより、空孔部を強化することができる。
図13の空孔部の山部を反対方向に折山を反転させることで空孔部に加わる力を
分散し、さらにこの部分を表面板に接着すると、この反転折山はトラス構造を構成し
高い剛性を発現する。
ここで、(a)〜(d)は折山反転補強構造の基本構成を示したものであり、
(e)〜(h)は等脚逆台形状の空孔の脚部に折り曲げ爪の保護機能を付加した
爪付折山反転補強構造を示したものである。
FIG. 13 shows two examples of the folded mountain reversal reinforcement structure of the corrugated sheet vacancies.
With the folded structure of the pores, the pores can be strengthened by folding the bottom of the isosceles trapezoid of the void so as to connect both slopes of the mountain without forming a folded claw.
By inverting the ridges of the vacant holes in FIG. 13 in the opposite direction to disperse the force applied to the vacancy, and further adhering this portion to the surface plate, the inverted folds form a truss structure. It develops high rigidity.
Here, (a) to (d) show the basic configuration of the Oriyama reversal reinforcement structure.
(E) to (h) show a claw-attached folding mountain reversal reinforcing structure in which a function of protecting the bent claw is added to the leg portion of the equilateral inverted trapezoidal hole.
図14の(a)〜(d)は2重波板嵌合構造体の爪結合構造1の説明図である。
(a)は受け爪結合構造を示した斜視図であり、同一形状の空孔が形成された2枚
の波板が上下に嵌合固定される。
(b)の側面図で、等脚逆台形形状の空孔の脚辺に受け爪140を形成し、山の
内側に折り込み、(c)の正面図で空孔の底辺に押え爪142を形成し、同じ構造の
空孔を備えた二つの波板を稜線方向に直交させ反転対向組合せ、押え爪を山の外側
に折り曲げ受け爪を押えて結合する。この構造により、接着工法を用いなくとも
二つの波板を機械的に結合することができる。
(d)は展開図で、空孔の内側の面材を利用して爪を形成している。
14 (a) to 14 (d) are explanatory views of the claw coupling structure 1 of the double corrugated plate fitting structure.
(A) is a perspective view showing a receiving claw coupling structure, in which two corrugated plates having holes of the same shape are fitted and fixed vertically.
In the side view of (b), a receiving claw 140 is formed on the leg side of the isosceles trapezoidal hole, folded inside the mountain, and a pressing claw 142 is formed on the bottom of the hole in the front view of (c). Then, two corrugated plates having holes of the same structure are made orthogonal to each other in the direction of the ridgeline and faced in reverse, and the presser claws are bent to the outside of the mountain and the receiving claws are pressed and joined. With this structure, the two corrugated sheets can be mechanically joined without using the bonding method.
(D) is a developed view, in which a nail is formed by using a face material inside the hole.
さらに、空孔の爪の嵌合方法を変えると別の結合方法が可能である。
図15の(a)〜(d)で2重波板嵌合構造体の爪結合構造2の説明図である。
(a)は受け爪結合構造を示した斜視図であり、同一形状の空孔が形成された2枚
の波板が上下に嵌合固定される。
(b)の側面図で、等脚逆台形形状の空孔の脚辺に噛合爪150を形成し、山の
外側に折り曲げ、(c)の正面図で空孔の底辺に押え爪152を形成し、山の外側
同じ構造の空孔を備えた二つの波板を、稜線方向に直交させ反転対向して組合せ
押え爪を山の外側に折り曲げ相手側の斜面を押し広げ結合する。
この構造により、接着工法を用いなくとも二つの波板を機械的に結合することが
できる。(d)は展開図で、空孔の内側の面材を利用して爪を形成している。
ここで、噛合爪150は接着工法を併用する時に糊代の役目を果たし、より強固
に結合できる。
Further, another joining method is possible by changing the fitting method of the claws of the holes.
15 (a) to 15 (d) are explanatory views of the claw coupling structure 2 of the double corrugated plate fitting structure.
(A) is a perspective view showing a receiving claw coupling structure, in which two corrugated plates having holes of the same shape are fitted and fixed vertically.
In the side view of (b), a meshing claw 150 is formed on the leg side of an isobaric inverted trapezoidal hole, bent to the outside of the mountain, and a presser claw 152 is formed on the bottom of the hole in the front view of (c). Then, two corrugated plates having holes of the same structure on the outside of the mountain are inverted and opposed to each other in the direction of the ridgeline, and the holding claws are bent to the outside of the mountain to spread and connect the slope on the opposite side.
With this structure, the two corrugated sheets can be mechanically joined without using the bonding method. (D) is a developed view, in which a nail is formed by using a face material inside the hole.
Here, the meshing claw 150 serves as a glue margin when the adhesive method is used in combination, and can be bonded more firmly.
図16の(a)〜(d)は固定具の基本的な嵌合構造を示す。
(a)上面図で、波板に空孔を設けた波板2枚を稜線方向に直交させ対向して嵌合
させることにより、嵌合部の中央に四角形の空孔が形成される。
この四角形の空孔に別体の板状の固定具A160と固定具B162を挿入して嵌合
すれば、接着材を用いず二つの波板を堅牢に結合させることができる。
さらに実施例3,4の爪結合方式と組合せれば、より強固に嵌合することができる。
16 (a) to 16 (d) show the basic fitting structure of the fixture.
(A) In the top view, a quadrangular hole is formed in the center of the fitting portion by fitting two corrugated sheets having holes in the corrugated sheet so as to be orthogonal to each other in the ridge line direction and facing each other.
If the separate plate-shaped fixtures A160 and B162 are inserted into the quadrangular holes and fitted, the two corrugated plates can be firmly joined without using an adhesive.
Further, when combined with the claw coupling method of Examples 3 and 4, the fitting can be made more firmly.
図17の(a)〜(d)に固定具のバリエーションとして四つの事例を示す。
(a)帯板方式がもっとも強固に嵌合されるが、空孔部は小さい孔しか開けられない。
(b)山板方式は固定具の山部が両面にトラス構造をとるため空孔部の強度が高い。
(c)台形板方式は山板方式より空間を広くとれることが利点である。
(d)下駄状板方式は最も大きな空孔を保ち、配線や配管に有利である。
この固定具方式も接着方式と併用することにより高い強度で結合される。
表面板と波板の底面に四角孔を設ければ、この構図を波板と表面板の接合に利用
することができる。 板から成る固定具はこの四つの方式に限定するものではない。
また、固定具は針金状の部材で形成してもよい。
Four examples of fixture variations are shown in FIGS. 17 (a) to 17 (d).
(A) The strip method is the most tightly fitted, but only small holes can be made in the holes.
(B) In the mountain plate method, the mountain portion of the fixture has a truss structure on both sides, so the strength of the hole portion is high.
(C) The trapezoidal plate method has an advantage that a wider space can be taken than the mountain plate method.
(D) The clog-shaped plate method keeps the largest holes and is advantageous for wiring and piping.
This fixture method is also bonded with high strength when used in combination with the adhesive method.
If a square hole is provided on the bottom surface of the surface plate and the corrugated plate, this composition can be used for joining the corrugated plate and the surface plate. Fixtures made of plates are not limited to these four methods.
Further, the fixture may be formed of a wire-like member.
図18の(a)〜(c)は分割構造の固定具の説明図で、図17(d)と同じ使い
方をするものである。
波板の空孔にあらかじめ配線や配管を敷設した後に波板を嵌合し、補助の固定具で
二つの波板を機械的に結合する場合に、固定具の孔が閉じているため、配線や配管を
通すことができないことから、この固定具を分割し配線や配管を固定具の孔に通す
構造にしたものである。 固定具の分割方法はこの方式に限定するものではない。
18 (a) to 18 (c) are explanatory views of the fixture of the divided structure, and are used in the same manner as in FIG. 17 (d).
When wiring and piping are laid in advance in the holes of the corrugated sheet, the corrugated sheet is fitted, and the two corrugated sheets are mechanically connected with the auxiliary fixture, the holes in the fixture are closed, so wiring Since it is not possible to pass the wiring and piping, the fixture is divided and the wiring and piping are passed through the holes of the fixture. The method of dividing the fixture is not limited to this method.
図19〜図24は実施例1〜5をまとめた図面代用写真である。
ここでは、二つの山で構成される波板に四つの空孔を設け、同一形状の波板二つを
稜線方向に直交させ反転対向して結合した後、板材で形成された固定具で機械的に
強固に結合し剛性体としたものである。
19 to 24 are drawing substitute photographs summarizing Examples 1 to 5.
Here, four holes are provided in a corrugated plate composed of two peaks, two corrugated plates of the same shape are orthogonal to each other in the direction of the ridgeline, inverted and opposed to each other, and then machined with a fixture formed of a plate material. It is a rigid body that is tightly coupled.
産業上、波板構造のものはあらゆる分野で利用されている。例えば、段ボール、
ハニカムパネル、防音パネル、消音器、玩具、文房具、家具、家電製品、電池、
アンテナ、筐体、屋根、壁、床、ドア、塀、看板、橋梁、隧道、昇降装置、
自動車、鉄道、船舶、水中機器、航空機、宇宙機器、兵器などである。
ここで、板状の山を形成する部分であれば、波板に限定されず、全ての箇所に
本考案の構造を適用することができる。 また、接着構造なしで立体を形成できる
ため、耐熱性が要求される部位でも問題なく利用可能であり、接着に不向きな材質
でも利用可能で、なおかつ簡単に分解でき保守性、リサイクル性に優れる。
Industrially, corrugated sheet structures are used in all fields. For example, cardboard,
Honeycomb panels, soundproof panels, mufflers, toys, stationery, furniture, home appliances, batteries,
Antennas, housings, roofs, walls, floors, doors, fences, signboards, bridges, tunnels, lifting devices,
Automobiles, railroads, ships, underwater equipment, aircraft, space equipment, weapons, etc.
Here, as long as it is a portion forming a plate-shaped mountain, the structure of the present invention can be applied to all the portions, not limited to the corrugated plate. In addition, since a three-dimensional object can be formed without an adhesive structure, it can be used without problems even in parts where heat resistance is required, and even materials unsuitable for adhesion can be used, and it can be easily disassembled and has excellent maintainability and recyclability.
1 波板
2 波板
4 波板
10 空孔
40 空孔
12 爪
20 稜線空孔
22 斜面空孔
24 底面空孔
60 等脚逆台形
62 六角稜線空孔
64 六角斜面空孔
66 六角底面空孔
100 保護部
102 配線や配管
120 2重波板積層構造体
124 表面板
126 表面板
1 Corrugated plate 2 Corrugated plate 4 Corrugated plate 10 Holes 40 Holes 12 Claws 20 Ridge holes 22 Slope holes 24 Bottom holes 60 Isosceles trapezoidal 62 Hexagonal ridge holes 64 Hexagonal slope holes 66 Hexagon bottom holes 100 Protective unit 102 Wiring and piping 120 Double corrugated plate laminated structure 124 Surface plate 126 Surface plate
Claims (2)
前記空孔の脚辺と底辺に、前記空孔の内側の面材から成る折り返し構造の爪を備えることを特徴とする波板構造。
A corrugated plate formed by bending one plate, a ridge line arranged at a mountain portion of the corrugated plate, a slope arranged in contact with the ridge line, and an inside of the mountain portion separated by a slope tangent to the ridge line. Space and the outer space, and the space inside the mountain part, which is provided with an isobaric inverted trapezoidal hole with the ridgeline as the long side and the top side and the short side and the bottom side arranged in the middle part of the slope. And the outer space is a corrugated plate structure that forms a continuous space through the holes .
A corrugated plate structure characterized in that the legs and bottoms of the holes are provided with claws having a folded structure made of a face material inside the holes.
前記山部の山角度∠αと前記空孔脚部の挟角∠βが略等しく、かつ前記空孔の斜面高さhを前記波板の高さHの略1/2とした前記空孔を、前記稜線に対して対称に前記斜面の両側に備え、前記空孔を形成した前記波板に対し、同一形状の波板を前記稜線方向に直交し反転対向し、限定しない接合方法により一体化した剛性体を形成することを特徴とする波板構造。 A corrugated plate formed by bending one plate, a ridge line arranged at a mountain portion of the corrugated plate, a slope arranged in contact with the ridge line, and an inside of the mountain portion separated by a slope tangent to the ridge line. Space and the outer space, and the space inside the mountain part, which is provided with an isobaric inverted trapezoidal hole with the ridgeline as the long side and the top side and the short side and the bottom side arranged in the middle part of the slope. And the outer space is a corrugated plate structure that forms a continuous space through the holes .
The hole where the mountain angle ∠α of the mountain portion and the sandwich angle ∠β of the hole leg are substantially equal, and the slope height h of the hole is approximately 1/2 of the height H of the corrugated sheet. Is provided on both sides of the slope symmetrically with respect to the ridgeline, and corrugated sheets having the same shape are orthogonally opposed to the corrugated sheet having the same shape in the direction of the ridgeline and are integrated by an unlimited joining method. A corrugated sheet structure characterized by forming a rigid body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016179164A JP6823410B2 (en) | 2016-09-14 | 2016-09-14 | Rigid body with corrugated sheet pore structure and laminated structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016179164A JP6823410B2 (en) | 2016-09-14 | 2016-09-14 | Rigid body with corrugated sheet pore structure and laminated structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018043401A JP2018043401A (en) | 2018-03-22 |
JP6823410B2 true JP6823410B2 (en) | 2021-02-03 |
Family
ID=61692381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016179164A Active JP6823410B2 (en) | 2016-09-14 | 2016-09-14 | Rigid body with corrugated sheet pore structure and laminated structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6823410B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4835530Y1 (en) * | 1968-03-01 | 1973-10-25 | ||
JPS5024534B1 (en) * | 1968-03-21 | 1975-08-16 | ||
JPS5548026Y2 (en) * | 1975-04-10 | 1980-11-11 | ||
JPS5319629A (en) * | 1976-08-05 | 1978-02-23 | Idemitsu Kosan Co | Solid trussslike light structure material |
US5619837A (en) * | 1995-07-26 | 1997-04-15 | Disanto; Fabricio N. | Corrugated panel structure |
JP3043000B2 (en) * | 1997-10-02 | 2000-05-22 | 侃 田代 | Space truss composite board |
CN107379646A (en) * | 2017-07-17 | 2017-11-24 | 西安交通大学 | A kind of porous material perforation ripple composite light multifunction clips laminate and preparation method |
-
2016
- 2016-09-14 JP JP2016179164A patent/JP6823410B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018043401A (en) | 2018-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8585313B2 (en) | Post coupler | |
US7739844B2 (en) | Composite building panel | |
US5393588A (en) | Sandwiched structural panel having a bi-directional core structure | |
JP2008532775A5 (en) | ||
ATE189287T1 (en) | A FLOOR COMPOSED OF A MULTIPLE PANELS MECHANICALLY CONNECTED TO EACH OTHER | |
KR20080068695A (en) | Method for manufacturing of cellular board, cellular board, method for producing cellular board element of steel plate strip, and production line | |
US20090064622A1 (en) | Joining Clip for Modular Panels | |
US10201226B2 (en) | Construction system and method and related articles | |
JP5101197B2 (en) | Plate-like body connector, simple partition structure and simple partition set | |
JPS61501861A (en) | Deployable structural composite elements and methods of forming and/or assembling these elements to create multidimensional structures | |
WO2015012692A1 (en) | Elongated construction element | |
JP6823410B2 (en) | Rigid body with corrugated sheet pore structure and laminated structure | |
BR112020014621A2 (en) | PANEL FOR A BUILDING STRUCTURE THAT HAS A PRESET BEND AND METHOD OF MANUFACTURING SUCH A PANEL | |
JP5306008B2 (en) | Structural glulam | |
JPH0542336A (en) | Honeycomb core and its manufacture | |
JP5811082B2 (en) | Connection structure for aircraft interior panels | |
JP3184573U (en) | Partition substrate and partition using the substrate | |
TWM520987U (en) | Structure of force magnifying plate | |
JP3138123U (en) | Laminated board | |
JP7505703B2 (en) | Cardboard Duct | |
JP5386299B2 (en) | Cosmetic member fixing method | |
JP5425665B2 (en) | MESH STRUCTURE, ITS MANUFACTURING METHOD, AND FLASH PANEL | |
JP6577294B2 (en) | Connecting unit and duct construction method | |
JP2006336360A (en) | Block member for partition, and partition plate | |
JPH07102686A (en) | Truss panel type core and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190705 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6823410 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |