JP6823394B2 - Rigid urethane resin composition and rigid urethane foam - Google Patents

Rigid urethane resin composition and rigid urethane foam Download PDF

Info

Publication number
JP6823394B2
JP6823394B2 JP2016139979A JP2016139979A JP6823394B2 JP 6823394 B2 JP6823394 B2 JP 6823394B2 JP 2016139979 A JP2016139979 A JP 2016139979A JP 2016139979 A JP2016139979 A JP 2016139979A JP 6823394 B2 JP6823394 B2 JP 6823394B2
Authority
JP
Japan
Prior art keywords
flame retardant
weight
parts
isocyanate
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016139979A
Other languages
Japanese (ja)
Other versions
JP2018009120A (en
Inventor
信行 須藤
信行 須藤
英生 大田
英生 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Technical Center Co Ltd
Original Assignee
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Technical Center Co Ltd filed Critical Inoac Technical Center Co Ltd
Priority to JP2016139979A priority Critical patent/JP6823394B2/en
Publication of JP2018009120A publication Critical patent/JP2018009120A/en
Application granted granted Critical
Publication of JP6823394B2 publication Critical patent/JP6823394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、難燃性の良好な硬質ウレタンフォームが得られる硬質ウレタン樹脂組成物に関する。 The present invention relates to a rigid urethane resin composition capable of obtaining a rigid urethane foam having good flame retardancy.

従来、多くの建築物には高断熱や経済性などの理由によって、硬質ウレタンフォームの断熱材が広く用いられている。
硬質ウレタンフォームは可燃性であるため、難燃性が求められる場合には、白セメントやシラス等の無機系材料を主成分とする耐火材料を、硬質ウレタンフォーム表面に施工現場で吹き付ける不燃化工法がある。
また、アルミニウムなどの金属面材を硬質ウレタンフォームの表面に貼り合わせて不燃化する技術も存在する。
Conventionally, hard urethane foam heat insulating materials have been widely used in many buildings for reasons such as high heat insulation and economy.
Rigid urethane foam is flammable, so if flame retardancy is required, a refractory material that is mainly composed of inorganic materials such as white cement and shirasu is sprayed onto the surface of the rigid urethane foam at the construction site. There is.
There is also a technique of attaching a metal surface material such as aluminum to the surface of a rigid urethane foam to make it incombustible.

一方、硬質ウレタンフォーム自体の難燃性を高めることも検討されている。
例えば、ウレタン樹脂に含まれるイソシアネート基の三量化反応を促進する三量化触媒を含み、難燃剤として、赤リンを必須とし、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤およびアンチモン含有難燃剤よりなる群から選ばれる少なくとも2つを添加させることにより、硬質ウレタン樹脂の耐火性を向上させる技術が開示されている(引用文献1)。
また、ウレタン樹脂に粘土鉱物を含有させて耐火性を向上させる技術も開示されている(引用文献2)。
On the other hand, it is also being considered to improve the flame retardancy of the rigid urethane foam itself.
For example, it contains a trimerization catalyst that promotes the trimerization reaction of isocyanate groups contained in urethane resin, requires red phosphorus as a flame retardant, and contains phosphate ester, phosphate-containing flame retardant, bromine-containing flame retardant, and boron. A technique for improving the fire resistance of a rigid urethane resin by adding at least two selected from the group consisting of a flame retardant and an antimony-containing flame retardant is disclosed (Reference 1).
Further, a technique for improving fire resistance by containing a clay mineral in a urethane resin is also disclosed (Reference 2).

しかしながら、無機系材料を主成分とする耐火材料を硬質ウレタンフォーム表面に施工現場で吹き付ける不燃化工法は作業性に劣り、また、金属面材を硬質ウレタンフォームの表面に貼り合わせる技術はコストアップとなる問題がある。
一方、ウレタン樹脂に難燃剤を添加して耐火性を向上させる従来の技術では、高難燃化の実現に多量の難燃剤を必要とし、難燃性と引き替えに諸物性が著しく低下する問題がある。
However, the non-combustible method of spraying a refractory material containing an inorganic material as the main component on the surface of the rigid urethane foam at the construction site is inferior in workability, and the technology of bonding the metal surface material to the surface of the rigid urethane foam increases the cost. There is a problem.
On the other hand, the conventional technique of adding a flame retardant to urethane resin to improve fire resistance requires a large amount of flame retardant to realize high flame retardancy, and there is a problem that various physical properties are significantly deteriorated in exchange for flame retardancy. is there.

さらに、難燃性を向上させるためにウレタン樹脂の液状原料に赤リンなどの粉体難燃剤を多量に含有させると、原料を注入機で注入する際に、原料がノズルに詰まって良好な成形品が得られなくなる虞がある。また、粉体難燃剤を多量に含有させると、原料の粘度が上昇して原料注入時の流動性が低下し、それによっても成形不良を生じ易くなる。また、粉体難燃剤はウレタン樹脂の液状原料に多量にかつ均一に分散させるのが難しく、難燃剤の分散不良により成形品の難燃性を低下させる問題がある。また、粉体難燃剤を多量に含む原料は、貯蔵中に難燃剤の分散不良を生じ易く、原料の貯蔵性の問題がある。 Furthermore, if a large amount of powder flame retardant such as red phosphorus is contained in the liquid raw material of the urethane resin in order to improve the flame retardancy, the raw material is clogged in the nozzle when the raw material is injected by the injection machine, resulting in good molding. There is a risk that the product will not be available. Further, when a large amount of powder flame retardant is contained, the viscosity of the raw material increases and the fluidity at the time of injecting the raw material decreases, which also tends to cause molding defects. Further, it is difficult to disperse the powder flame retardant in a large amount and uniformly in the liquid raw material of the urethane resin, and there is a problem that the flame retardancy of the molded product is lowered due to the poor dispersion of the flame retardant. Further, a raw material containing a large amount of powder flame retardant tends to cause poor dispersion of the flame retardant during storage, and there is a problem of storage stability of the raw material.

特開2014−193995号公報JP-A-2014-193995 特開2014−196476号公報Japanese Unexamined Patent Publication No. 2014-196476

本発明は前記の点に鑑みなされたものであって、粉体難燃剤の添加量を減らしても良好な難燃性が得られる硬質ウレタン樹脂組成物と硬質ウレタンフォームの提供を目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a hard urethane resin composition and a hard urethane foam , which can obtain good flame retardancy even if the amount of the powder flame retardant added is reduced.

請求項1の発明は、ポリオール化合物、イソシアネート、発泡剤、触媒及び添加剤を含む硬質ウレタン樹脂組成物において、前記触媒は三量化触媒であり、イソシアネートインデックスは300以上であり、前記添加剤は、250℃未満の分解温度を有するリン系の低温域難燃剤と、250℃以上400℃未満の分解温度を有するリン系の中温域難燃剤と、400℃以上の分解温度を有するリン系の高温域難燃剤とからなる難燃剤を有し、前記難燃剤に使用されている粉体難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して3重量部以下である、ことを特徴とする。
請求項2の発明は、請求項1において、前記中温域難燃剤は、液体であることを特徴とする。
The invention of claim 1 is a rigid urethane resin composition containing a polyol compound, an isocyanate, a foaming agent, a catalyst and an additive, wherein the catalyst is a trimerization catalyst, the isocyanate index is 300 or more, and the additive is. A phosphorus-based low-temperature flame retardant having a decomposition temperature of less than 250 ° C., a phosphorus-based medium-temperature flame retardant having a decomposition temperature of 250 ° C. or higher and lower than 400 ° C., and a phosphorus-based high-temperature range having a decomposition temperature of 400 ° C. or higher. It has a flame retardant composed of a flame retardant, and the amount of the powder flame retardant used in the flame retardant is 3 parts by weight or less with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate. It is a feature.
The invention of claim 2 is characterized in that, in claim 1, the medium temperature flame retardant is a liquid.

請求項の発明は、請求項1または2において、前記低温域難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して2〜20重量部、前記中温域難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して2〜20重量部、前記高温域難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して1〜3重量部である、ことを特徴とする。 The invention according to claim 3, in claim 1 or 2, the amount of the low temperature range flame retardant, 2-20 parts by weight per 100 parts by weight of the total amount of the polyol compound and the isocyanate, the amount of the medium temperature range flame retardant Is 2 to 20 parts by weight based on 100 parts by weight of the total amount of the polyol compound and isocyanate, and the amount of the high temperature flame retardant is 1 to 3 parts by weight based on 100 parts by weight of the total amount of the polyol compound and isocyanate. It is characterized by being.

請求項の発明は、請求項1から3の何れか一項において、前記添加剤にはヒンダードアミン系化合物を前記ポリオール化合物とイソシアネートの合計量100重量部に対して0.1〜3重量部含むことを特徴とする。
請求項5の発明は、請求項1から4の何れか一項において、前記低温域難燃剤と前記中温域難燃剤と前記高温域難燃剤の合計量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して20重量部以下であることを特徴とする。
請求項6の発明は、請求項1から5の何れか一項に記載の硬質ウレタン樹脂組成物を発泡硬化してなる硬質ウレタンフォームに係る。
In the invention of claim 4 , in any one of claims 1 to 3 , the additive contains 0.1 to 3 parts by weight of a hindered amine compound with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate. It is characterized by that.
In the invention of claim 5, in any one of claims 1 to 4, the total amount of the low temperature flame retardant, the medium temperature flame retardant and the high temperature flame retardant is the total amount of the polyol compound and isocyanate 100. It is characterized in that it is 20 parts by weight or less with respect to the weight part.
The invention of claim 6 relates to a rigid urethane foam obtained by foaming and curing the rigid urethane resin composition according to any one of claims 1 to 5.

本発明によれば、粉体難燃剤の量をポリオール化合物とイソシアネートの合計量100重量部に対して3重量部以下の少量にしても、難燃性に優れる硬質ウレタンフォームを成形性よく得られるようになり、かつ樹脂組成物の貯蔵性も良好となる。 According to the present invention, even if the amount of the powder flame retardant is as small as 3 parts by weight or less with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate, a hard urethane foam having excellent flame retardancy can be obtained with good moldability. As a result, the storability of the resin composition is also improved.

以下、本発明の実施形態について説明する。本発明は、ポリオール化合物、イソシアネート、発泡剤、触媒及び添加剤を含む硬質ウレタン樹脂組成物からなる。 Hereinafter, embodiments of the present invention will be described. The present invention comprises a rigid urethane resin composition containing a polyol compound, an isocyanate, a foaming agent, a catalyst and an additive.

ポリオール化合物としては、ウレタンフォーム用のポリオールが使用され、特に限定されるものではなく、ポリエーテルポリオール、ポリエステルポリオール、ポリエーテルエステルポリオールの何れでもよく、それらの一種類あるいは複数種類を使用してもよい。 As the polyol compound, a polyol for urethane foam is used, and is not particularly limited, and may be any of a polyether polyol, a polyester polyol, and a polyether ester polyol, and one or more of them may be used. Good.

ポリエーテルポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、シュークロース等の多価アルコールにエチレンオキサイド(EO)、プロピレンオキサイド(PO)等のアルキレンオキサイドを付加したポリエーテルポリオールを挙げることができる。 Examples of the polyether polyol include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, and shoe cloth, and ethylene oxide (EO). ), Polyether polyol to which an alkylene oxide such as propylene oxide (PO) is added.

ポリエステルポリオールとしては、例えば、マロン酸、コハク酸、アジピン酸等の脂肪族カルボン酸やフタル酸等の芳香族カルボン酸と、エチレングリコール、ジエチレングリコール、プロピレングリコール等の脂肪族グリコール等とから重縮合して得られたポリエステルポリオールを挙げることできる。
また、ポリエーテルエステルポリオールとしては、前記ポリエーテルポリオールと多塩基酸を反応させてポリエステル化したもの、あるいは1分子内にポリーエーテルとポリエステルの両セグメントを有するものを挙げることができる。
The polyester polyol is polycondensed from, for example, an aliphatic carboxylic acid such as malonic acid, succinic acid, or adipic acid, an aromatic carboxylic acid such as phthalic acid, and an aliphatic glycol such as ethylene glycol, diethylene glycol, or propylene glycol. The polyester polyol obtained in the above can be mentioned.
In addition, examples of the polyether ester polyol include those obtained by reacting the polyether polyol with a polybasic acid to form a polyester, or those having both a polyether and a polyester segment in one molecule.

イソシアネートとしては、イソシアネート基を2以上有する脂肪族系または芳香族系ポリイソシアネート、それらの混合物、およびそれらを変性して得られる変性ポリイソシアネートを使用することができる。脂肪族系ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキサメタンジイソシアネート等を挙げることができ、芳香族ポリイソシアネートとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート、キシリレンジイソシアネート、ポリメリックポリイソシアネート(クルードMDI)等を挙げることができる。なお、その他プレポリマーも使用することができる。 As the isocyanate, an aliphatic or aromatic polyisocyanate having two or more isocyanate groups, a mixture thereof, and a modified polyisocyanate obtained by modifying them can be used. Examples of the aliphatic polyisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, and dicyclohexamethane diisocyanate, and examples of the aromatic polyisocyanate include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalenediocyanate, and xylyl. Examples thereof include range isocyanate and polypeptide polyisocyanate (crude MDI). In addition, other prepolymers can also be used.

イソシアネートインデックスは300以上が好ましく、より好ましくは300〜400である。イソシアネートインデックスが300未満ではヌレート化率の減少により難燃性が低下する。イソシアネートインデックスは、ポリイソシアネートにおけるイソシアネート基のモル数をポリオールの水酸基などの活性水素基の合計モル数で割った値に100を掛けた値であり、[ポリイソシアネートのNCO当量/活性水素当量×100]で計算される。 The isocyanate index is preferably 300 or more, more preferably 300 to 400. If the isocyanate index is less than 300, the flame retardancy is lowered due to the decrease in the nurateization rate. The isocyanate index is a value obtained by dividing the number of moles of isocyanate groups in polyisocyanate by the total number of moles of active hydrogen groups such as hydroxyl groups of polyol and multiplying by 100. [NCO equivalent of polyisocyanate / active hydrogen equivalent × 100 ] Is calculated.

発泡剤としては、水、代替フロンあるいはペンタンなどの炭化水素を、単独または組み合わせて使用できる。水の場合は、ポリオールとイソシアネートの反応時に炭酸ガスを発生し、その炭酸ガスによって発泡がなされる。発泡剤としての水の量は、ポリオール化合物とイソシアネートの合計量100重量部に対して0〜10重量部が好ましい。また、水と共に他の発泡剤を併用する場合における他の発泡剤の量は適宜決定されるが、ポリオール化合物とイソシアネートの合計量100重量部に対して5〜20重量部の範囲が好ましい。 As the foaming agent, hydrocarbons such as water, CFC substitutes or pentane can be used alone or in combination. In the case of water, carbon dioxide gas is generated during the reaction between the polyol and isocyanate, and the carbon dioxide gas causes foaming. The amount of water as a foaming agent is preferably 0 to 10 parts by weight with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate. The amount of the other foaming agent when the other foaming agent is used together with water is appropriately determined, but is preferably in the range of 5 to 20 parts by weight with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate.

三量化触媒は、イソシアネート基を反応させて三量化させ、イソシアヌレート環の形成を促進する触媒である。三量化触媒としては、公知の三量化触媒を使用することができ、例えば2,4,6−トリス(ジメチルアミノメチル)フェノール、2,4−ビス(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジアルキルアミノアルキル)ヘキサヒドロ−S−トリアジン、酢酸カリウム、2−エチルヘキサン酸カリウム、オクチル酸カリウム等を使用することができる。三量化触媒の量は適宜決定されるが、ポリオール化合物とイソシアネートの合計量100重量部に対して0.5〜5重量部の範囲が好ましい。 The trimerization catalyst is a catalyst that reacts an isocyanate group to triquantize it and promotes the formation of an isocyanurate ring. As the trimerization catalyst, a known trimerization catalyst can be used, for example, 2,4,6-tris (dimethylaminomethyl) phenol, 2,4-bis (dimethylaminomethyl) phenol, 2,4,6. -Tris (dialkylaminoalkyl) hexahydro-S-triazine, potassium acetate, potassium 2-ethylhexanoate, potassium octylate and the like can be used. The amount of the trimerization catalyst is appropriately determined, but is preferably in the range of 0.5 to 5 parts by weight with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate.

なお、三量化触媒と共に公知のウレタン化触媒を併用することもできる。三量化触媒と併用可能な触媒としては、トリエチルアミン、トリエチレンジアミン、ジエタノールアミン、ジメチルアミノモルフォリン、N−エチルモルホリン、テトラメチルグアニジン等のアミン触媒や、スタナスオクトエートやジブチルチンジラウレート等の錫触媒やフェニル水銀プロピオン酸塩あるいはオクテン酸鉛等の金属触媒(有機金属触媒とも称される。)を挙げることができる。 A known urethanization catalyst can be used in combination with the trimerization catalyst. Examples of catalysts that can be used in combination with the trimerization catalyst include amine catalysts such as triethylamine, triethylenediamine, diethanolamine, dimethylaminomorpholine, N-ethylmorpholin, and tetramethylguanidine, and tin catalysts such as stanas octoate and dibutyltin dilaurate. Examples thereof include metal catalysts such as phenylmercury propionate and lead octate (also referred to as organic metal catalysts).

添加剤として含まれる難燃剤は、250℃未満の分解温度を有する低温域難燃剤と、250℃以上400℃未満の分解温度を有する中温域難燃剤と、400℃以上の分解温度を有する高温域難燃剤とを有する。これは、燃焼時の硬質ウレタンフォーム(ヌレートフォーム)の熱分解挙動において、加熱初期、加熱の成長期、加熱の終期という燃焼過程を想定し、各燃焼過程において分解温度を有する温度域での難燃剤を配合することにより、良好な難燃性を発揮させようとするものである。なお、分解温度は、熱重量測定装置を用いて乾燥空気雰囲気下、昇温速度10℃/minにおける10%重量減少温度に基づいて測定される温度である。 The flame retardants contained as additives are a low temperature flame retardant having a decomposition temperature of less than 250 ° C., a medium temperature flame retardant having a decomposition temperature of 250 ° C. or higher and lower than 400 ° C., and a high temperature range having a decomposition temperature of 400 ° C. or higher. Has a flame retardant. This is because the thermal decomposition behavior of hard urethane foam (nurate foam) during combustion assumes the combustion processes of the initial stage of heating, the growth stage of heating, and the final stage of heating, and it is difficult in the temperature range where each combustion process has a decomposition temperature. By blending a fuel agent, it is intended to exhibit good flame retardancy. The decomposition temperature is a temperature measured using a thermogravimetric measuring device in a dry air atmosphere based on a 10% weight loss temperature at a heating rate of 10 ° C./min.

250℃未満の分解温度を有する低温域難燃剤は、250℃未満で分解して難燃性を発揮する難燃剤である。250℃未満の分解温度を有する低温域難燃剤としては、例えば、トリス(βクロロプロピル)ホスフェート(分解温度184℃)、トリエチルホスフェート(液体、分解温度95℃)、[[ビス(2-ヒドロキシエチル)アミノ]メチル]ホスホン酸ジエチル(液体、分解温度95℃)等を挙げることができる。低温域難燃剤は一種類に限られず、複数種類を併用してもよい。低温域難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して2〜20重量部が好ましく、より好ましくは3〜12重量部である。 A low temperature flame retardant having a decomposition temperature of less than 250 ° C. is a flame retardant that decomposes at less than 250 ° C. and exhibits flame retardancy. Examples of low temperature flame retardants having a decomposition temperature of less than 250 ° C. include tris (β-chloropropyl) phosphate (decomposition temperature 184 ° C.), triethyl phosphate (liquid, decomposition temperature 95 ° C.), [[bis (2-hydroxyethyl). ) Amino] methyl] diethyl phosphonate (liquid, decomposition temperature 95 ° C.) and the like. The low temperature flame retardant is not limited to one type, and a plurality of types may be used in combination. The amount of the low temperature flame retardant is preferably 2 to 20 parts by weight, more preferably 3 to 12 parts by weight, based on 100 parts by weight of the total amount of the polyol compound and isocyanate.

250℃以上400℃未満の分解温度を有する中温域難燃剤は、250℃以上400℃未満で分解して難燃性を発揮する難燃剤である。250℃以上400℃未満の分解温度を有する中温域難燃剤としては、例えば、ホスホリルトリクロリドと、フェノール及びレゾルシノールとの縮合物(液体、分解温度383℃)、シクロホスファゼン化合物(粉体、分解温度397℃)、ポリリン酸アンモニウム(II)(粉体、分解温度357℃)等を挙げることができる。中温域難燃剤は一種類に限られず、複数種類を併用してもよい。中温域難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して2〜20重量部が好ましく、より好ましくは3〜15重量部である。 A medium temperature flame retardant having a decomposition temperature of 250 ° C. or higher and lower than 400 ° C. is a flame retardant that decomposes at 250 ° C. or higher and lower than 400 ° C. and exhibits flame retardancy. Examples of the medium temperature flame retardant having a decomposition temperature of 250 ° C. or higher and lower than 400 ° C. include a condensate of phosphoryl trichloride with phenol and resorcinol (liquid, decomposition temperature 383 ° C.), and a cyclophosphazene compound (powder, decomposition temperature). 397 ° C.), ammonium polyphosphate (II) (powder, decomposition temperature 357 ° C.) and the like. The medium temperature flame retardant is not limited to one type, and a plurality of types may be used in combination. The amount of the medium temperature flame retardant is preferably 2 to 20 parts by weight, more preferably 3 to 15 parts by weight, based on 100 parts by weight of the total amount of the polyol compound and isocyanate.

400℃以上の分解温度を有する高温域難燃剤は、400℃以上で分解して難燃性を発揮する難燃剤である。400℃以上の分解温度を有する高温域難燃剤としては、例えば、赤リン(粉体、分解温度490℃)等を挙げることができる。高温域難燃剤は一種類に限られず、複数種類を併用してもよい。高温域難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して1〜3重量部が好ましく、より好ましくは2〜3重量部である。 A high temperature flame retardant having a decomposition temperature of 400 ° C. or higher is a flame retardant that decomposes at 400 ° C. or higher and exhibits flame retardancy. Examples of the high temperature flame retardant having a decomposition temperature of 400 ° C. or higher include red phosphorus (powder, decomposition temperature 490 ° C.). The high temperature flame retardant is not limited to one type, and a plurality of types may be used in combination. The amount of the high temperature flame retardant is preferably 1 to 3 parts by weight, more preferably 2 to 3 parts by weight, based on 100 parts by weight of the total amount of the polyol compound and isocyanate.

本発明では、前記難燃剤(低温域難燃剤、中温域難燃剤、高温域難燃剤)として使用される難燃剤の合計量を、前記ポリオール化合物とイソシアネートの合計量100重量部に対して20重量部以下にするのが難燃剤の効果の点で好ましく、より好ましくは5〜18重量部、さらにより好ましくは5〜16重量部、である。 In the present invention, the total amount of the flame retardants used as the flame retardant (low temperature flame retardant, medium temperature flame retardant, high temperature flame retardant) is 20% by weight based on 100 parts by weight of the total amount of the polyol compound and isocyanate. The amount is preferably 5 to 18 parts by weight, more preferably 5 to 16 parts by weight, from the viewpoint of the effect of the flame retardant.

また、前記難燃剤(低温域難燃剤、中温域難燃剤、高温域難燃剤)には、液体難燃剤と粉体難燃剤とがある。本発明では、前記難燃剤(低温域難燃剤、中温域難燃剤、高温域難燃剤)として使用される粉体難燃剤の合計量を、前記ポリオール化合物とイソシアネートの合計量100重量部に対して3重量部以下にするのが好ましく、より好ましくは0〜3重量部である。 Further, the flame retardant (low temperature range flame retardant, medium temperature range flame retardant, high temperature range flame retardant) includes a liquid flame retardant and a powder flame retardant. In the present invention, the total amount of the powder flame retardant used as the flame retardant (low temperature flame retardant, medium temperature flame retardant, high temperature flame retardant) is applied to 100 parts by weight of the total amount of the polyol compound and isocyanate. It is preferably 3 parts by weight or less, and more preferably 0 to 3 parts by weight.

粉体難燃剤の量を前記範囲とすることにより、粉体難燃剤の過剰添加による次の問題を解決することができる。粉体難燃剤の過剰添加による問題としては、ウレタン樹脂組成物を注入機で注入して発泡させる際に、ウレタン樹脂組成物がノズルに詰まって良好な成形品が得られなくなったり、ウレタン樹脂組成物の粘度が上昇してウレタン樹脂組成物注入時の流動性が低下し、それによって成形不良を生じたり、粉体難燃剤の分散不良により成形品の難燃性が低下したり、ウレタン樹脂組成物の貯蔵中に粉体難燃剤の分散不良を生じたりする等の問題が挙げられる。 By setting the amount of the powder flame retardant within the above range, the following problems due to excessive addition of the powder flame retardant can be solved. Problems caused by excessive addition of the powder flame retardant include the fact that when the urethane resin composition is injected by an injection machine and foamed, the urethane resin composition is clogged in the nozzle and a good molded product cannot be obtained, or the urethane resin composition. The viscosity of the product increases and the fluidity during injection of the urethane resin composition decreases, which causes molding defects, or the poor dispersion of the powder flame retardant reduces the flame retardancy of the molded product, or the urethane resin composition. Problems such as poor dispersion of the powder flame retardant during storage of the product can be mentioned.

さらに添加剤として、ヒンダードアミン系化合物(略称HALS)を含むのが好ましい。通常、ヒンダードアミン系化合物(HALS)は、光安定剤、光酸化防止剤として樹脂の添加剤として用いられる。今回、活性ラジカルの捕捉に着目し、このヒンダードアミン系化合物を含むことにより、他の難燃剤との併用で、燃焼時において燃焼ガスの発生の抑制効果や、燃焼の抑制効果が得られる。ヒンダードアミン系化合物としては、セバシン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、メタクリル酸1,2,2,6,6−ペンタメチル−4−ピペリジル等を挙げることができる。ヒンダードアミン系化合物の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して0.1〜3重量部、より好適には0.3〜3重量部である。なお、ヒンダードアミン系化合物は液体が好ましい。 Further, as an additive, it is preferable to contain a hindered amine compound (abbreviated as HALS). Usually, a hindered amine compound (HALS) is used as a light stabilizer, a photooxidant, and a resin additive. This time, focusing on the capture of active radicals, by including this hindered amine compound, the effect of suppressing the generation of combustion gas during combustion and the effect of suppressing combustion can be obtained when used in combination with other flame retardants. Examples of the hindered amine compound include bissebacate (1,2,2,6,6-pentamethyl-4-piperidyl) and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate. .. The amount of the hindered amine compound is 0.1 to 3 parts by weight, more preferably 0.3 to 3 parts by weight, based on 100 parts by weight of the total amount of the polyol compound and isocyanate. The hindered amine compound is preferably a liquid.

また、添加剤として、整泡剤を含むのが好ましい。整泡剤としては、ポリオキシアルキレン整泡剤、シリコーン整泡剤等の界面活性剤が挙げられる。
その他の添加剤として、酸化防止剤、紫外線吸収剤、抗菌剤等、添加剤として公知のものを添加することができる。
Moreover, it is preferable to contain a foam stabilizer as an additive. Examples of the defoaming agent include surfactants such as a polyoxyalkylene defoaming agent and a silicone defoaming agent.
As other additives, known additives such as antioxidants, ultraviolet absorbers and antibacterial agents can be added.

本発明の硬質ウレタン樹脂組成物を用いて硬質ウレタンフォームを製造する方法としては、ポリオール化合物、発泡剤、触媒及び添加剤を混合したA液成分とイソシアネートを含むB液成分を発泡機で混合して吐出することにより行うことができる。また、発泡機から所定製品形状のキャビティを有する型に注入することによって所定形状の成形品を発泡成形することもできる。なお、本発明の硬質ウレタン樹脂組成物を用いて製造される硬質ウレタンフォームは、イソシアヌレート環を含むものであり、イソシアヌレートフォームとも称される。 As a method for producing a rigid urethane foam using the rigid urethane resin composition of the present invention, a liquid A component in which a polyol compound, a foaming agent, a catalyst and an additive are mixed and a liquid B component containing isocyanate are mixed by a foaming machine. It can be done by discharging. It is also possible to foam-mold a molded product having a predetermined shape by injecting it from a foaming machine into a mold having a cavity having a predetermined product shape. The rigid urethane foam produced by using the rigid urethane resin composition of the present invention contains an isocyanurate ring and is also referred to as an isocyanurate foam.

以下の原料を用いて表1の配合からなる各実施例及び各比較例の硬質ウレタン樹脂組成物を作成した。なお表1における各原料の配合量は重量部である。
・ポリオール化合物:水酸基価235〜265mgKOH/g、数平均分子量380、品名;ファントール6301、日立化成ポリマー社製
・整泡剤:シリコーン整泡剤、品名;SF−2937F、東レダウコーニング社製
・触媒:オクチル酸カリウム(三量化触媒)、品名;DabcoK−15、Air Products社製
・発泡剤1:水
・発泡剤2:1,1,1,3,3−ペンタフルオロプロパン、品名;HFC245fa、セントラル硝子社製
・発泡剤3: 1,1,1,3,3−ペンタフルオロブタン、品名;HFC365mfc、日本ソルベイ社製
・イソシアネート:ポリメリックMDI、品名;MR200、日本ポリウレタン工業社製
・低温域難燃剤:モノリン酸エステル、トリス(クロロピル)ホスフェート(TMCPP、分解温度184℃、液体)、大八化学社製
・中温域難燃剤:縮合リン酸エステル、品名;PFR(分解温度383℃、液体)、ADEKA社製
・高温域難燃剤:赤リン、品名;ノーバエクセル140(分解温度490℃、粉体)、燐化学工業社製
・HALS(ヒンダードアミン系化合物):ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)=デカンジオアートとメチル=1,2,2,6,6−ペンタメチル−4−ピペリジル=セバカートの混合物、品名;LA−72(分解温度274℃、液体)、ADEKA社製
Using the following raw materials, a rigid urethane resin composition of each Example and each Comparative Example having the formulation shown in Table 1 was prepared. The blending amount of each raw material in Table 1 is a part by weight.
-Polycarbonate compound: hydroxyl value 235-265 mgKOH / g, number average molecular weight 380, product name; Fantall 6301, manufactured by Hitachi Kasei Polymer Co., Ltd.-Voin regulator: silicone foam stabilizer, product name; SF-2937F, manufactured by Toray Dow Corning Catalyst: potassium octylate (triquantization catalyst), product name; DabcoK-15, manufactured by Air Products, foaming agent 1: water, foaming agent 2: 1,1,1,3,3-pentafluoropropane, product name: HFC245fa, Central Glass Co., Ltd. ・ Foaming agent 3: 1,1,1,3,3-pentafluorobutane, product name; HFC365mfc, Japan Solbay Co., Ltd. ・ Isocyanate: Polymeric MDI, product name; MR200, Japan Polyurethane Industry Co., Ltd. ・ Low temperature range difficulty Fuel: Monophosphate ester, Tris (chloropyll) phosphate (TMCPP, decomposition temperature 184 ° C, liquid), Daihachi Chemical Co., Ltd. Mid-temperature flame retardant: Condensed phosphate ester, product name; PFR (decomposition temperature 383 ° C, liquid), Made by ADEKA, high temperature flame retardant: red phosphorus, product name; Nova Excel 140 (decomposition temperature 490 ° C, powder), manufactured by Phosphorus Chemical Industry Co., Ltd., HALS (hindered amine compound): bis (1, 2, 2, 6, 6-Pentamethyl-4-piperidyl) = decandioate and methyl = 1,2,2,6,6-pentamethyl-4-piperidyl = sebacato, product name; LA-72 (decomposition temperature 274 ° C, liquid), ADEKA Made by the company

各実施例及び各比較例の硬質ウレタン樹脂組成物を次のように発泡させて硬質ウレタンフォームを作成した。
ポリオール化合物、低温域難燃、中温域難燃剤、高温域難燃剤及びHALS(ヒンダードアミン系化合物)をカップに計量し、室温にてラボミキサーで撹拌した。その後、整泡剤、触媒、発泡剤を加え、室温にてラボミキサーで撹拌した。さらに、イソシアネートを加え、室温にてラボミキサーで撹拌し、フリー発泡にて硬質ウレタンフォーム(イソシアヌレートフォーム)を作成した。
The rigid urethane resin compositions of each Example and each Comparative Example were foamed as follows to prepare a rigid urethane foam.
The polyol compound, low temperature flame retardant, medium temperature flame retardant, high temperature flame retardant and HALS (hindered amine compound) were weighed in a cup and stirred at room temperature with a laboratory mixer. Then, a foam stabilizer, a catalyst, and a foaming agent were added, and the mixture was stirred at room temperature with a laboratory mixer. Further, isocyanate was added, and the mixture was stirred at room temperature with a lab mixer to prepare a hard urethane foam (isocyanurate foam) by free foaming.

作成した各実施例及び各比較例の硬質ウレタンフォームに対して、密度(JIS K7222)の測定、TG(熱重量測定)試験、コーンカロリーメーター試験、水平燃焼試験を行った。各試験結果を表1の下部に示す。 Density (JIS K7222) measurement, TG (thermogravimetric analysis) test, cone calorimeter test, and horizontal combustion test were performed on the prepared rigid urethane foams of Examples and Comparative Examples. The results of each test are shown at the bottom of Table 1.

TG試験は、加熱した時に試料の重量変化を連続的に測定する試験であり、エスアイアイ・ナノテクノロジー株式会社製 示差熱熱重量同時測定装置 Exstar TG/DTA 7200 を用い、昇温速度10℃/minで乾燥空気雰囲気下にて測定を行った。評価は、まず、350℃において重量減少率が23%以下の場合に「◎」、25%以下の場合には「〇」、25%よりも大きい場合に「×」で示した。さらに、600℃において重量減少率が70%以下の場合に「◎」、80%以下の場合には「〇」、80%よりも大きい場合に「×」で示した。そして、2種類の温度の評価において、2つ「◎」がある場合は「◎」、1つ以上「×」がある場合には「×」、その他の場合は「○」で示した。 The TG test is a test that continuously measures the weight change of the sample when heated, and uses the differential thermogravimetric simultaneous measuring device Exstar TG / DTA 7200 manufactured by SII Nanotechnology Co., Ltd. to raise the temperature at 10 ° C./ The measurement was performed in a dry air atmosphere at min. The evaluation was first indicated by "⊚" when the weight loss rate was 23% or less at 350 ° C., "○" when it was 25% or less, and "x" when it was larger than 25%. Further, when the weight loss rate is 70% or less at 600 ° C., it is indicated by “⊚”, when it is 80% or less, it is indicated by “◯”, and when it is larger than 80%, it is indicated by “x”. Then, in the evaluation of the two types of temperatures, when there are two "◎", it is indicated by "◎", when there is one or more "x", it is indicated by "x", and in other cases, it is indicated by "○".

コーンカロリーメーター試験は、各実施例及び各比較例の硬質ウレタンフォームから、10cm×10cm×5cm厚の試験用サンプルを切り出し、ISO5660に準拠し、放射熱強度50kw/mにて20分間加熱したときの総発熱量を測定した。また、20分後のサンプルの状態を確認し、亀裂、貫通孔の有無を調べた。さらに燃焼時にサンプルが変形してサンプル上方に設定してある試験機のスパークプラグに接触しているか否かを確認した。評価は亀裂、貫通孔、プラグ接触について、それぞれ無い場合に[〇]で示し、有る場合に「×」で示した。 In the cone calorimeter test, a test sample having a thickness of 10 cm × 10 cm × 5 cm was cut out from the rigid urethane foam of each example and each comparative example, and heated for 20 minutes at a radiant heat intensity of 50 kW / m 2 in accordance with ISO5660. The total calorific value at that time was measured. In addition, the state of the sample after 20 minutes was confirmed, and the presence or absence of cracks and through holes was examined. Furthermore, it was confirmed whether or not the sample was deformed during combustion and was in contact with the spark plug of the testing machine set above the sample. The evaluation was indicated by [○] when there was no crack, through hole, and plug contact, and was indicated by “x” when there was.

水平燃焼試験は、各実施例及び各比較例の硬質ウレタンフォームから、5cm×15cm×13mm厚の試験用サンプルを切り出し、JIS A 9511B法に従い、着火時間と燃焼距離を測定した。着火時間が5秒未満の場合に[○]、5秒以上から10秒未満が[△]、10秒以上が[×]、燃焼距離が15mm未満の場合に[○]、15mm以上20mm未満が[△]、20mm以上が[×]とし、両評価で[○]が二つであれば[◎]、[×]が一つでもあれば[×]、他は[○]で評価を示した。 In the horizontal combustion test, a test sample having a thickness of 5 cm × 15 cm × 13 mm was cut out from the rigid urethane foam of each example and each comparative example, and the ignition time and the combustion distance were measured according to the JIS A 9511B method. [○] when the ignition time is less than 5 seconds, [△] when the ignition time is 5 seconds or more and less than 10 seconds, [×] when the ignition distance is less than 15 mm, [○] when the combustion distance is less than 15 mm, 15 mm or more and less than 20 mm. [△], 20 mm or more is [×], and if there are two [○] in both evaluations, [◎], if there is even one [×], [×], and the others are [○]. It was.

総合判定は、TG試験の評価が「◎」、コーンカロリーメーター試験における総発熱量が10MJ/m以下、かつ亀裂及び貫通孔が無く、さらに粉体難燃剤の合計が3重量部以下の場合に「◎」で示した。また、TG試験の評価が「〇」、コーンカロリーメーター試験における総発熱量が10MJ/m以下、さらに粉体難燃剤の合計が3重量部以下の場合に「〇」で示した。一方、各評価が他の場合については総合判定を「×」で示した。総合判定が「◎」または「〇」の場合に合格とし、総合判定が「×」の場合を不合格とした。 Comprehensive judgment is when the evaluation of the TG test is "◎", the total calorific value in the cone calorimeter test is 10 MJ / m 2 or less, there are no cracks or through holes, and the total amount of the powder flame retardant is 3 parts by weight or less. It is indicated by "◎". In addition, the evaluation of the TG test was "○", the total calorific value in the cone calorimeter test was 10 MJ / m 2 or less, and the total amount of the powder flame retardants was 3 parts by weight or less. On the other hand, when each evaluation is another case, the overall judgment is indicated by "x". A pass was made when the overall judgment was "◎" or "○", and a failure was made when the overall judgment was "x".

Figure 0006823394
Figure 0006823394

各実施例及び各比較例について、表1の測定結果を説明する。
実施例1は、低温域難燃剤が3.9重量部、中温域難燃剤が10.9重量部、高温域難燃剤が2.8重量部、粉体難燃剤が2.8重量部、HALSが0重量部の例であり、TG試験における350℃での重量減少率が23%、600℃の重量減少率が66.7%で評価が「◎」、コーンカロリーメーター試験における総発熱量が6.4MJ/m、亀裂と貫通孔及びプラグ接触の何れも無く、総合判定が「◎」であった。
The measurement results in Table 1 will be described for each Example and each Comparative Example.
In Example 1, the low temperature flame retardant was 3.9 parts by weight, the medium temperature flame retardant was 10.9 parts by weight, the high temperature flame retardant was 2.8 parts by weight, the powder flame retardant was 2.8 parts by weight, and HALS. Is an example of 0 parts by weight, the weight loss rate at 350 ° C. in the TG test is 23%, the weight loss rate at 600 ° C. is 66.7%, the evaluation is "◎", and the total calorific value in the cone calorimeter test is 6.4 MJ / m 2 , there were no cracks, through holes, or plug contact, and the overall judgment was "◎".

実施例2は、低温域難燃剤が3.9重量部、中温域難燃剤が7.4重量部、高温域難燃剤が2.8重量部、粉体難燃剤が2.8重量部、HALSが0.7重量部の例であり、TG試験における350℃での重量減少率は21.5%、600℃の重量減少率が69.8%で評価が「◎」、コーンカロリーメーター試験における総発熱量が8.9MJ/m、亀裂と貫通孔及びプラグ接触の何れも無く、総合判定が「◎」であった。
また、HALSを添加していない上記の実施例1に比べ、難燃剤の合計添加量が少なくても総合判定が「◎」であった。また、HALSを添加していない点だけが異なる下記の実施例3と比べると、TG試験における600℃の重量減少率およびプラグ接触において、HALSを添加した実施例2が形状保持に優れ、耐燃焼性にも優れる。
In Example 2, the low temperature range flame retardant was 3.9 parts by weight, the medium temperature range flame retardant was 7.4 parts by weight, the high temperature range flame retardant was 2.8 parts by weight, the powder flame retardant was 2.8 parts by weight, and HALS. Is an example of 0.7 parts by weight, the weight loss rate at 350 ° C. in the TG test is 21.5%, the weight loss rate at 600 ° C. is 69.8%, and the evaluation is "◎", in the cone calorimeter test. The total calorific value was 8.9 MJ / m 2 , there were no cracks, through holes, or plug contact, and the overall judgment was "⊚".
Further, as compared with Example 1 above in which HALS was not added, the overall judgment was "⊚" even if the total amount of the flame retardant added was small. Further, as compared with Example 3 below, which differs only in that HALS is not added, Example 2 to which HALS is added has excellent shape retention and combustion resistance in the weight loss rate of 600 ° C. and plug contact in the TG test. Excellent in sex.

実施例3は、低温域難燃剤が3.9重量部、中温域難燃剤が7.4重量部、高温域難燃剤が2.8重量部、粉体難燃剤が2.8重量部、HALSが0重量部の例であり、TG試験における350℃での重量減少率が22.9%、600℃の重量減少率が72.4%で評価が「〇」、コーンカロリーメーター試験における総発熱量が9.6MJ/m、亀裂と貫通孔が無く、プラグ接触が有りで、総合判定が「〇」であった。 In Example 3, the low temperature flame retardant was 3.9 parts by weight, the medium temperature flame retardant was 7.4 parts by weight, the high temperature flame retardant was 2.8 parts by weight, the powder flame retardant was 2.8 parts by weight, and HALS. Is an example of 0 parts by weight, the weight loss rate at 350 ° C. in the TG test is 22.9%, the weight loss rate at 600 ° C. is 72.4%, the evaluation is "○", and the total heat generation in the cone calorimeter test. The amount was 9.6 MJ / m 2 , there were no cracks and through holes, there was plug contact, and the overall judgment was "○".

比較例1は、低温域難燃剤が10.5重量部、中温域難燃剤が0重量部、高温域難燃剤が0重量部、粉体難燃剤が0重量部、HALSが0重量部の例であり、TG試験における350℃での重量減少率が23.4%、600℃の重量減少率が92.3%で評価が「×」、コーンカロリーメーター試験における総発熱量が16.5MJ/m、亀裂と貫通孔が有り、プラグ接触については測定できず、総合判定が「×」であった。 Comparative Example 1 is an example in which the low temperature flame retardant is 10.5 parts by weight, the medium temperature flame retardant is 0 parts by weight, the high temperature flame retardant is 0 parts by weight, the powder flame retardant is 0 parts by weight, and the HALS is 0 parts by weight. The weight loss rate at 350 ° C. in the TG test was 23.4%, the weight loss rate at 600 ° C. was 92.3%, the evaluation was "x", and the total calorific value in the cone calorimeter test was 16.5 MJ / m 2 , there were cracks and through holes, plug contact could not be measured, and the overall judgment was "x".

比較例2は、低温域難燃剤が0重量部、中温域難燃剤が0重量部、高温域難燃剤が7重量部、粉体難燃剤が7重量部、HALSが0重量部の例であり、TG試験における350℃での重量減少率が25.2%、600℃の重量減少率が58.3%で評価が「×」、コーンカロリーメーター試験における総発熱量が23.6MJ/m、亀裂と貫通孔が無く、プラグ接触が有りで、総合判定が「×」であった。 Comparative Example 2 is an example of 0 parts by weight of the low temperature flame retardant, 0 parts by weight of the medium temperature flame retardant, 7 parts by weight of the high temperature flame retardant, 7 parts by weight of the powder flame retardant, and 0 part by weight of HALS. , The weight loss rate at 350 ° C in the TG test was 25.2%, the weight loss rate at 600 ° C was 58.3%, the evaluation was "x", and the total calorific value in the cone calorimeter test was 23.6 MJ / m 2. , There were no cracks and through holes, there was plug contact, and the overall judgment was "x".

比較例3は、低温域難燃剤が0重量部、中温域難燃剤が0重量部、高温域難燃剤が0重量部、粉体難燃剤が0重量部、HALSが10.5重量部の例であり、TG試験における350℃での重量減少率が28.3%、600℃の重量減少率が93.8%で評価が「×」、コーンカロリーメーター試験はTG評価が「×」のため実施せず、総合判定が「×」であった。 Comparative Example 3 is an example of 0 parts by weight of the low temperature flame retardant, 0 parts by weight of the medium temperature flame retardant, 0 parts by weight of the high temperature flame retardant, 0 parts by weight of the powder flame retardant, and 10.5 parts by weight of HALS. The weight loss rate at 350 ° C in the TG test is 28.3%, the weight loss rate at 600 ° C is 93.8%, and the evaluation is "x". In the cone calorimeter test, the TG evaluation is "x". It was not carried out, and the overall judgment was "x".

比較例4は、低温域難燃剤が4.8重量部、中温域難燃剤が4.8重量部、高温域難燃剤が0重量部、粉体難燃剤が0重量部、HALSが0重量部の例であり、TG試験における350℃での重量減少率が23.7%、600℃の重量減少率が90.4%で評価が「×」、コーンカロリーメーター試験はTG評価が「×」のため実施せず、総合判定が「×」であった。 In Comparative Example 4, the low temperature flame retardant was 4.8 parts by weight, the medium temperature flame retardant was 4.8 parts by weight, the high temperature flame retardant was 0 parts by weight, the powder flame retardant was 0 parts by weight, and the HALS was 0 parts by weight. In the TG test, the weight loss rate at 350 ° C is 23.7%, the weight loss rate at 600 ° C is 90.4%, and the evaluation is "x". In the cone calorimeter test, the TG evaluation is "x". Therefore, the overall judgment was "x".

比較例5は、低温域難燃剤が4.8重量部、中温域難燃剤が0重量部、高温域難燃剤が5重量部、粉体難燃剤が5重量部、HALSが0重量部の例であり、TG試験における350℃での重量減少率が21.9%、600℃の重量減少率が70.7%で評価が「〇」、コーンカロリーメーター試験における総発熱量は10.4MJ/m、亀裂と貫通孔が無く、プラグ接触が有りで、総合判定が「×」であった。 Comparative Example 5 is an example of 4.8 parts by weight of the low temperature flame retardant, 0 parts by weight of the medium temperature flame retardant, 5 parts by weight of the high temperature flame retardant, 5 parts by weight of the powder flame retardant, and 0 part by weight of HALS. In the TG test, the weight loss rate at 350 ° C was 21.9%, the weight loss rate at 600 ° C was 70.7%, the evaluation was "○", and the total calorific value in the cone calorimeter test was 10.4 MJ / m 2 , there were no cracks and through holes, there was plug contact, and the overall judgment was "x".

比較例6は、低温域難燃剤が12重量部、中温域難燃剤が12重量部、高温域難燃剤が0重量部、粉体難燃剤が0重量部、HALSが0重量部の例であり、TG試験における350℃での重量減少率が23.9%、600℃での重量減少率が90.5%で評価が「×」、コーンカロリーメーター試験はTG評価が「×」のため実施せず、総合判定が「×」であった。 Comparative Example 6 is an example of 12 parts by weight of the low temperature flame retardant, 12 parts by weight of the medium temperature flame retardant, 0 part by weight of the high temperature flame retardant, 0 part by weight of the powder flame retardant, and 0 part by weight of HALS. , The weight loss rate at 350 ° C in the TG test is 23.9%, the weight loss rate at 600 ° C is 90.5% and the evaluation is "x", and the cone calorimeter test is carried out because the TG evaluation is "x". The overall judgment was "x".

比較例7は、低温域難燃剤が12重量部、中温域難燃剤が0重量部、高温域難燃剤が12重量部、粉体難燃剤が12重量部、HALSが0重量部の例であり、TG試験における350℃での重量減少率が26.1%、600℃での重量減少率が78.9%で評価が「×」、コーンカロリーメーター試験はTG評価が「×」のため実施せず、総合判定が「×」であった。 Comparative Example 7 is an example of 12 parts by weight of the low temperature flame retardant, 0 parts by weight of the medium temperature flame retardant, 12 parts by weight of the high temperature flame retardant, 12 parts by weight of the powder flame retardant, and 0 parts by weight of HALS. , The weight loss rate at 350 ° C in the TG test was 26.1%, the weight loss rate at 600 ° C was 78.9%, and the evaluation was "x". The cone calorimeter test was conducted because the TG evaluation was "x". The overall judgment was "x".

このように、本発明の硬質ウレタン樹脂組成物は、低温域(250℃未満)で分解して難燃性を発揮する低温域難燃剤と、中温域(250℃以上400℃未満)で分解して難燃性を発揮する中温域難燃剤と、高温域(400℃以上)で分解して難燃性を発揮する高温域難燃剤を含む構成としたことにより、粉体難燃剤の添加量を減らしても良好な難燃性を発揮することができる。 As described above, the rigid urethane resin composition of the present invention is decomposed into a low temperature flame retardant that decomposes in a low temperature range (less than 250 ° C.) and exhibits flame retardancy and a medium temperature range (250 ° C. or higher and lower than 400 ° C.). The amount of powder flame retardant added is increased by including a medium temperature flame retardant that exhibits flame retardancy and a high temperature flame retardant that decomposes in a high temperature range (400 ° C or higher) and exhibits flame retardancy. Even if it is reduced, good flame retardancy can be exhibited.

Claims (6)

ポリオール化合物、イソシアネート、発泡剤、触媒及び添加剤を含む硬質ウレタン樹脂組成物において、
前記触媒は三量化触媒であり、
イソシアネートインデックスは300以上であり、
前記添加剤は、250℃未満の分解温度を有するリン系の低温域難燃剤と、250℃以上400℃未満の分解温度を有するリン系の中温域難燃剤と、400℃以上の分解温度を有するリン系の高温域難燃剤とからなる難燃剤を有し、
前記難燃剤に使用されている粉体難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して3重量部以下である、
ことを特徴とする硬質ウレタン樹脂組成物。
In a rigid urethane resin composition containing a polyol compound, an isocyanate, a foaming agent, a catalyst and an additive,
The catalyst is a quantifier catalyst and
Isocyanate index is over 300
The additive has a phosphorus-based low temperature flame retardant having a decomposition temperature of less than 250 ° C., a phosphorus-based medium temperature flame retardant having a decomposition temperature of 250 ° C. or higher and lower than 400 ° C., and a decomposition temperature of 400 ° C. or higher. It has a flame retardant consisting of a phosphorus-based high-temperature flame retardant,
The amount of the powder flame retardant used in the flame retardant is 3 parts by weight or less with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate.
A rigid urethane resin composition characterized by this.
前記中温域難燃剤は、液体であることを特徴とする請求項1に記載の硬質ウレタン樹脂組成物。The hard urethane resin composition according to claim 1, wherein the medium temperature flame retardant is a liquid. 前記低温域難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して2〜20重量部、
前記中温域難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して2〜20重量部、
前記高温域難燃剤の量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して1〜3重量部、
であることを特徴とする請求項1または2に記載の硬質ウレタン樹脂組成物。
The amount of the low temperature flame retardant is 2 to 20 parts by weight with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate.
The amount of the medium temperature flame retardant is 2 to 20 parts by weight with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate.
The amount of the high temperature flame retardant is 1 to 3 parts by weight with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate.
The rigid urethane resin composition according to claim 1 or 2 .
前記添加剤にはヒンダードアミン系化合物を前記ポリオール化合物とイソシアネートの合計量100重量部に対して0.1〜3重量部含むことを特徴とする請求項1から3の何れか一項に記載の硬質ウレタン樹脂組成物。The hard according to any one of claims 1 to 3, wherein the additive contains 0.1 to 3 parts by weight of a hindered amine compound with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate. Urethane resin composition. 前記低温域難燃剤と前記中温域難燃剤と前記高温域難燃剤の合計量は、前記ポリオール化合物とイソシアネートの合計量100重量部に対して20重量部以下であることを特徴とする請求項1から4の何れか一項に記載の硬質ウレタン樹脂組成物。Claim 1 is characterized in that the total amount of the low temperature flame retardant, the medium temperature flame retardant and the high temperature flame retardant is 20 parts by weight or less with respect to 100 parts by weight of the total amount of the polyol compound and isocyanate. The hard urethane resin composition according to any one of 4 to 4. 請求項1から5の何れか一項に記載の硬質ウレタン樹脂組成物を発泡硬化してなる硬質ウレタンフォーム。A rigid urethane foam obtained by foaming and curing the rigid urethane resin composition according to any one of claims 1 to 5.
JP2016139979A 2016-07-15 2016-07-15 Rigid urethane resin composition and rigid urethane foam Active JP6823394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016139979A JP6823394B2 (en) 2016-07-15 2016-07-15 Rigid urethane resin composition and rigid urethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016139979A JP6823394B2 (en) 2016-07-15 2016-07-15 Rigid urethane resin composition and rigid urethane foam

Publications (2)

Publication Number Publication Date
JP2018009120A JP2018009120A (en) 2018-01-18
JP6823394B2 true JP6823394B2 (en) 2021-02-03

Family

ID=60994952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016139979A Active JP6823394B2 (en) 2016-07-15 2016-07-15 Rigid urethane resin composition and rigid urethane foam

Country Status (1)

Country Link
JP (1) JP6823394B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163153B2 (en) * 2018-11-30 2022-10-31 株式会社東北イノアック colored insulation board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201439287A (en) * 2013-01-20 2014-10-16 Sekisui Chemical Co Ltd Flame-retardant urethane resin composition
JP5671591B2 (en) * 2013-01-20 2015-02-18 積水化学工業株式会社 Fireproof urethane resin composition
CN103665305B (en) * 2013-12-06 2016-02-24 上海华峰新材料研发科技有限公司 High-fire-resistance polysiocyanurate rigid foams and preparation method thereof

Also Published As

Publication number Publication date
JP2018009120A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
EP1090056B1 (en) Hydrocarbon blown rigid polyurethane foams having improved flammability performance
US6372811B2 (en) Flame resistant rigid polyurethane foams blown with hydrofluorocarbons
US3803063A (en) Flame retardant,intumescent and non-burning flexible polyurethane foam
KR101492284B1 (en) Insulated pipes
JP6529072B2 (en) Flexible polyurethane foam
CN101395209B (en) Non-halogen flame retardant additives for use in rigid polyurethane foam
TWI335339B (en)
AU2012231542B2 (en) Phosphorous-containing flame retardants for polyurethane foams
KR20080077964A (en) Water-blown, flame retardant rigid polyurethane foam
JP2009507095A (en) Rigid polyisocyanurate foam and method for producing the same
CN113015757B (en) Foamable composition for nonflammable polyurethane foam
KR20070083676A (en) High-temperature rigid polyurethane spray foam for pipe insulation
US20220073691A1 (en) Flame retardant composition for polyurethane foam and flame-retarded polyurethane foam containing the same
CN102822255B (en) Derivatives of diphosphines as flame retardants for polyurethanes
KR20170111861A (en) Flame retarded slabstock polyurethane foam composition
US4145318A (en) Excellent flame-and smoke-retardant non-shrinkable polyurethane foam
US4077920A (en) Flame- and smoke-resistant polyurethane foam and a method for producing said foam
JP6823394B2 (en) Rigid urethane resin composition and rigid urethane foam
US3251785A (en) Flame retardant polyurethane foam and method for forming same
KR101340061B1 (en) Spray type flame retardant polyurethane foam and method for producing the same
JP2013103957A (en) Polyester polyol and manufacturing method of rigid polyurethane foam
JP6776279B2 (en) Rigid urethane resin composition
CN110809666A (en) Flame retardant insulation for internal combustion engines
KR101856307B1 (en) Flame retarded slabstock polyurethane foam composition
CN114174366A (en) Polyurethane foams having improved combustion properties

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210108

R150 Certificate of patent or registration of utility model

Ref document number: 6823394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250