JP6822860B2 - Anti-vibration device - Google Patents

Anti-vibration device Download PDF

Info

Publication number
JP6822860B2
JP6822860B2 JP2017011972A JP2017011972A JP6822860B2 JP 6822860 B2 JP6822860 B2 JP 6822860B2 JP 2017011972 A JP2017011972 A JP 2017011972A JP 2017011972 A JP2017011972 A JP 2017011972A JP 6822860 B2 JP6822860 B2 JP 6822860B2
Authority
JP
Japan
Prior art keywords
liquid chamber
liquid
pores
flow path
communication portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017011972A
Other languages
Japanese (ja)
Other versions
JP2018119621A (en
Inventor
康寿之 長島
康寿之 長島
勇樹 佐竹
勇樹 佐竹
植木 哲
哲 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2017011972A priority Critical patent/JP6822860B2/en
Publication of JP2018119621A publication Critical patent/JP2018119621A/en
Application granted granted Critical
Publication of JP6822860B2 publication Critical patent/JP6822860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。 The present invention relates to a vibration isolator that is applied to, for example, automobiles, industrial machines, etc., and absorbs and attenuates vibrations of vibration generating parts such as engines.

この種の防振装置として、従来から、振動発生部および振動受部のうちの一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これらの両取付部材を連結する弾性体と、液体が封入された第1取付部材内の液室を主液室と副液室とに区画する仕切部材と、を備える構成が知られている。仕切部材には、主液室と副液室とを連通する制限通路が形成されている。この防振装置では、振動入力時に、両取付部材が弾性体を弾性変形させながら相対的に変位し、主液室の液圧を変動させて制限通路に液体を流通させることで、振動を吸収および減衰している。 Conventionally, as this kind of vibration isolation device, a tubular first mounting member connected to one of a vibration generating portion and a vibration receiving portion, a second mounting member connected to the other, and both mountings thereof. It is known that the structure includes an elastic body for connecting the members and a partition member for partitioning the liquid chamber in the first mounting member in which the liquid is sealed into a main liquid chamber and a sub liquid chamber. The partition member is formed with a restricted passage connecting the main liquid chamber and the sub liquid chamber. In this vibration isolation device, when vibration is input, both mounting members are relatively displaced while elastically deforming the elastic body, and the hydraulic pressure in the main liquid chamber is fluctuated to allow the liquid to flow through the limiting passage to absorb the vibration. And decaying.

ところで、この防振装置では、例えば路面の凹凸等から大きな荷重(振動)が入力され、主液室の液圧が急激に上昇した後、弾性体のリバウンド等によって逆方向に荷重が入力されたときに、主液室が急激に負圧化されることがある。すると、この急激な負圧化により液中に多数の気泡が生成されるキャビテーションが発生し、さらに生成した気泡が崩壊するキャビテーション崩壊に起因して、異音が生じることがある。
そこで、例えば下記特許文献1に示される防振装置のように、制限通路内に弁体を設けることで、大きな振幅の振動が入力されたときであっても、主液室の負圧化を抑制する構成が知られている。
By the way, in this vibration isolator, for example, a large load (vibration) is input due to unevenness of the road surface, the hydraulic pressure in the main liquid chamber rises sharply, and then the load is input in the opposite direction due to the rebound of the elastic body or the like. Occasionally, the main fluid chamber may suddenly become negatively pressurized. Then, this rapid negative pressure causes cavitation in which a large number of bubbles are generated in the liquid, and further, abnormal noise may be generated due to cavitation collapse in which the generated bubbles collapse.
Therefore, for example, by providing a valve body in the restricted passage as in the anti-vibration device shown in Patent Document 1 below, even when a vibration having a large amplitude is input, the main liquid chamber can be made negative pressure. The structure to suppress is known.

特開2012−172832号公報Japanese Unexamined Patent Publication No. 2012-172832

しかしながら、前記従来の防振装置では、弁体が設けられることで構造が複雑になり、弁体のチューニングも必要となるため、製造コストが増加するといった課題がある。また、弁体を設けることで設計自由度が低下し、結果として防振特性が低下するおそれもある。 However, in the conventional anti-vibration device, since the valve body is provided, the structure becomes complicated and the valve body needs to be tuned, so that there is a problem that the manufacturing cost increases. Further, by providing the valve body, the degree of freedom in design is lowered, and as a result, the vibration isolation characteristics may be lowered.

本発明は前記事情に鑑みてなされたもので、簡易な構造で防振特性を低下させることなく、キャビテーション崩壊に起因する異音の発生を抑えることができる防振装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an anti-vibration device capable of suppressing the generation of abnormal noise due to cavitation collapse without deteriorating the anti-vibration characteristics with a simple structure. To do.

前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これら両取付部材を弾性的に連結する弾性体と、液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する障壁を貫通する複数の細孔を備え、前記細孔の内周面に、この細孔の中心軸回りに延びる螺旋溝が形成され、前記複数の細孔は、前記本体流路の流路方向に間隔をあけて配置されるとともに、前記第1連通部および前記第2連通部のうちの他方から前記流路方向に離間して位置するものほど、液体の流通抵抗が大きくなるように形成されていることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The vibration isolator according to the present invention includes a tubular first mounting member connected to one of a vibration generating portion and a vibration receiving portion, a second mounting member connected to the other, and both mounting members. The partition member is provided with an elastic body that elastically connects the two, and a partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber. , A liquid-filled type anti-vibration device in which a limiting passage for communicating the first liquid chamber and the second liquid chamber is formed, and the limiting passage is a first communication portion that opens into the first liquid chamber. A second communication section that opens into the second liquid chamber, and a main body flow path that communicates the first communication section with the second communication section, and is one of the first communication section and the second communication section. At least one includes a plurality of pores penetrating the barrier facing the first liquid chamber or the second liquid chamber, and a spiral groove extending around the central axis of the pores is provided on the inner peripheral surface of the pores. The plurality of pores are formed and arranged at intervals in the flow path direction of the main body flow path, and are separated from the other of the first communication portion and the second communication portion in the flow path direction. It is characterized in that the liquid is formed so that the flow resistance of the liquid increases as the liquid is located .

本発明に係る防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これら両取付部材を弾性的に連結する弾性体と、液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する障壁を貫通する複数の細孔を備え、前記細孔は、前記障壁の厚さ方向に螺旋状に延び、前記複数の細孔は、前記本体流路の流路方向に間隔をあけて配置されるとともに、前記第1連通部および前記第2連通部のうちの他方から前記流路方向に離間して位置するものほど、液体の流通抵抗が大きくなるように形成されていることを特徴とする。 The vibration isolator according to the present invention includes a tubular first mounting member connected to one of a vibration generating portion and a vibration receiving portion, a second mounting member connected to the other, and both mounting members. The partition member is provided with an elastic body that elastically connects the two, and a partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber. , A liquid-filled type anti-vibration device in which a limiting passage for communicating the first liquid chamber and the second liquid chamber is formed, and the limiting passage is a first communication portion that opens into the first liquid chamber. A second communication section that opens into the second liquid chamber, and a main body flow path that communicates the first communication section with the second communication section, and is one of the first communication section and the second communication section. At least one includes a plurality of pores penetrating the barrier facing the first liquid chamber or the second liquid chamber, and the pores extend spirally in the thickness direction of the barrier and the plurality of fine particles. The holes are arranged at intervals in the flow path direction of the main body flow path, and are located apart from the other of the first communication portion and the second communication portion in the flow path direction. It is characterized in that it is formed so as to increase the flow resistance of the liquid .

本発明によれば、振動入力時に、両取付部材が、弾性体を弾性変形させながら相対的に変位して、第1液室および第2液室のうちの少なくとも一方の液圧が変動することで、液体が制限通路を通って第1液室と第2液室との間を流通しようとする。このとき液体は、第1連通部および第2連通部のうちの一方を通して制限通路に流入し、本体流路内を通過した後、第1連通部および第2連通部のうちの他方を通して制限通路から流出する。
ここで、液体は、複数の細孔を通して制限通路から第1液室または第2液室に流出する際に、これらの細孔が形成された障壁により圧力損失させられながら各細孔を流通するため、第1液室または第2液室に流入する液体の流速を抑えることができる。しかも、液体が、単一の細孔ではなく複数の細孔を流通するので、液体を複数に分岐させて流通させることが可能になり、個々の細孔を通過した液体の流速を低減させることができる。これにより、仮に防振装置に大きな荷重(振動)が入力されたとしても、細孔を通過して第1液室内または第2液室内に流入した液体と、第1液室内または第2液室内の液体と、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。また、仮に気泡が第1液室や第2液室ではなく制限通路で発生しても、液体を、複数の細孔を通過させることで、発生した気泡同士を、第1液室内または第2液室内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。
以上のように、気泡の発生そのものを抑えることができる上、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持しやすくすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
According to the present invention, at the time of vibration input, both mounting members are relatively displaced while elastically deforming the elastic body, and the hydraulic pressure of at least one of the first liquid chamber and the second liquid chamber fluctuates. Then, the liquid tries to flow between the first liquid chamber and the second liquid chamber through the restricted passage. At this time, the liquid flows into the restricted passage through one of the first communication portion and the second communication portion, passes through the main body flow path, and then passes through the other of the first communication portion and the second communication portion. Outflow from.
Here, when the liquid flows out from the limiting passage to the first liquid chamber or the second liquid chamber through the plurality of pores, the liquid flows through each pore while being pressure-lossed by the barrier formed by these pores. Therefore, the flow velocity of the liquid flowing into the first liquid chamber or the second liquid chamber can be suppressed. Moreover, since the liquid flows through a plurality of pores instead of a single pore, the liquid can be branched and circulated in a plurality of pores, and the flow velocity of the liquid passing through the individual pores can be reduced. Can be done. As a result, even if a large load (vibration) is input to the vibration isolator, the liquid that has passed through the pores and has flowed into the first liquid chamber or the second liquid chamber and the liquid that has flowed into the first liquid chamber or the second liquid chamber and the first liquid chamber or the second liquid chamber. It is possible to suppress the difference in flow velocity between the liquid and the liquid, and it is possible to suppress the generation of vortices due to the difference in flow velocity and the generation of bubbles due to this vortex. Further, even if bubbles are generated in the restricted passage instead of the first liquid chamber or the second liquid chamber, the generated bubbles can be separated from each other in the first liquid chamber or the second liquid chamber by passing the liquid through a plurality of pores. It becomes possible to separate the bubbles in the liquid chamber, suppress the merging and growth of the bubbles, and facilitate the maintenance of the bubbles in a finely dispersed state.
As described above, it is possible to suppress the generation of bubbles themselves, and even if bubbles are generated, it is possible to easily maintain the state in which the bubbles are finely dispersed, so that cavitation collapse occurs in which the bubbles collapse. However, the generated abnormal noise can be suppressed to a small level.

特に、細孔の内周面に螺旋溝が形成されている、または細孔が、障壁の厚さ方向に螺旋状に延びているので、防振装置に大きな荷重が入力されたときに、本体流路から細孔に流入した液体を、細孔内で旋回させることで、液体の流速を低減することが可能になり、前述の流速差を確実に小さく抑えることができる。また、仮に気泡が制限通路で発生しても、この気泡を、細孔で旋回させながら、第1液室内または第2液室内に流入させることが可能になり、第1液室内または第2液室内で気泡が合流するのを確実に抑えることができる。 In particular, since spiral grooves are formed on the inner peripheral surface of the pores or the pores extend spirally in the thickness direction of the barrier, the main body when a large load is applied to the vibration isolator. By swirling the liquid flowing into the pores from the flow path in the pores, the flow velocity of the liquid can be reduced, and the above-mentioned flow velocity difference can be surely suppressed to a small size. Further, even if bubbles are generated in the restricted passage, the bubbles can flow into the first liquid chamber or the second liquid chamber while swirling in the pores, so that the bubbles can flow into the first liquid chamber or the second liquid chamber. It is possible to surely suppress the merging of air bubbles in the room.

ここで、前記複数の細孔は、前記本体流路の流路方向に間隔をあけて配置されるとともに、前記第1連通部および前記第2連通部のうちの他方から前記流路方向に離間して位置するものほど、液体の流通抵抗が大きくなるように形成されているHere, the plurality of pores are arranged at intervals in the flow path direction of the main body flow path, and are separated from the other of the first communication portion and the second communication portion in the flow path direction. It is formed so that the flow resistance of the liquid increases as it is located .

この場合、本体流路内を流れる液体が、第1連通部および第2連通部のうちの一方に到達したときに、複数の細孔のうち、第1連通部および第2連通部のうちの他方側に位置する細孔を慣性力によって通過してしまうのを抑制することができる。これにより、この他方側に位置する細孔にも液体を本体流路から流入させやすくなり、各細孔から第1液室内または第2液室内に流入する液体の流速を均等にして局所的に速くなるのを抑制することができる。したがって、気泡の発生およびキャビテーション崩壊に起因する異音の発生をより効果的に抑えることができる。 In this case, when the liquid flowing in the main body flow path reaches one of the first communication portion and the second communication portion, among the plurality of pores, the first communication portion and the second communication portion. It is possible to prevent the pores located on the other side from passing through the pores due to inertial force. As a result, the liquid can easily flow into the pores located on the other side from the main body flow path, and the flow velocity of the liquid flowing from each pore into the first liquid chamber or the second liquid chamber is made uniform and locally. It can be suppressed from becoming faster. Therefore, it is possible to more effectively suppress the generation of abnormal noise due to the generation of bubbles and the collapse of cavitation.

本発明によれば、簡易な構造で防振特性を低下させることなく、キャビテーション崩壊に起因する異音の発生を抑えることができる。 According to the present invention, it is possible to suppress the generation of abnormal noise due to cavitation collapse without deteriorating the vibration isolation characteristics with a simple structure.

本発明の一実施形態に係る防振装置の縦断面図である。It is a vertical sectional view of the vibration isolation device which concerns on one Embodiment of this invention. 図1に示す防振装置を構成する仕切部材の平面図である。It is a top view of the partition member constituting the vibration isolation device shown in FIG. 図2に示す仕切部材の斜視図である。It is a perspective view of the partition member shown in FIG. 本発明の他の実施形態に係る防振装置を構成する仕切部材の斜視図である。It is a perspective view of the partition member which comprises the vibration isolation device which concerns on other embodiment of this invention.

以下、本発明に係る防振装置の実施の形態について、図1から図3に基づいて説明する。
図1に示すように、防振装置10は、振動発生部および振動受部のいずれか一方に連結される筒状の第1取付部材11と、振動発生部および振動受部のいずれか他方に連結される第2取付部材12と、第1取付部材11および第2取付部材12を互いに弾性的に連結する弾性体13と、第1取付部材11内を後述する主液室(第1液室)14と副液室(第2液室)15とに区画する仕切部材16と、を備える液体封入型の防振装置である。
Hereinafter, embodiments of the vibration isolator according to the present invention will be described with reference to FIGS. 1 to 3.
As shown in FIG. 1, the vibration isolator 10 is attached to a tubular first mounting member 11 connected to either one of the vibration generating portion and the vibration receiving portion and to either one of the vibration generating portion and the vibration receiving portion. The second mounting member 12 to be connected, the elastic body 13 elastically connecting the first mounting member 11 and the second mounting member 12 to each other, and the main liquid chamber (first liquid chamber) described later in the first mounting member 11. ) 14, A liquid-filled type anti-vibration device including a partition member 16 for partitioning into a secondary liquid chamber (second liquid chamber) 15.

以下、第1取付部材11の中心軸線Oに沿う方向を軸方向という。また、軸方向に沿う第2取付部材12側を上側、仕切部材16側を下側という。また、防振装置10を軸方向から見た平面視において、中心軸線Oに直交する方向を径方向といい、中心軸線O周りに周回する方向を周方向という。
なお、第1取付部材11、第2取付部材12、および弾性体13はそれぞれ、平面視した状態で円形状若しくは円環状に形成されるとともに、中心軸線Oと同軸に配置されている。
Hereinafter, the direction along the central axis O of the first mounting member 11 is referred to as an axial direction. Further, the second mounting member 12 side along the axial direction is referred to as an upper side, and the partition member 16 side is referred to as a lower side. Further, in a plan view of the vibration isolator 10 from the axial direction, the direction orthogonal to the central axis O is referred to as the radial direction, and the direction orbiting around the central axis O is referred to as the circumferential direction.
The first mounting member 11, the second mounting member 12, and the elastic body 13 are each formed in a circular shape or an annular shape in a plan view, and are arranged coaxially with the central axis O.

この防振装置10が例えば自動車に装着される場合、第2取付部材12が振動発生部としてのエンジンに連結され、第1取付部材11が振動受部としての車体に連結される。これにより、エンジンの振動が車体に伝達することが抑えられる。 When the vibration isolator 10 is mounted on an automobile, for example, the second mounting member 12 is connected to the engine as a vibration generating portion, and the first mounting member 11 is connected to the vehicle body as a vibration receiving portion. As a result, the vibration of the engine is suppressed from being transmitted to the vehicle body.

第2取付部材12は、軸方向に延在する柱状部材であり、下端部が下方に向けて膨出する半球面状に形成されるとともに、この半球面状の下端部より上方に鍔部12aを有している。第2取付部材12には、その上端面から下方に向かって延びるねじ孔12bが穿設され、このねじ孔12bにエンジン側の取付け具となるボルト(図示せず)が螺合される。第2取付部材12は、弾性体13を介して、第1取付部材11の上端開口部に配置されている。 The second mounting member 12 is a columnar member extending in the axial direction, and is formed in a hemispherical shape in which the lower end portion bulges downward, and the flange portion 12a is formed above the hemispherical lower end portion. have. The second mounting member 12 is bored with a screw hole 12b extending downward from the upper end surface thereof, and a bolt (not shown) serving as a mounting tool on the engine side is screwed into the screw hole 12b. The second mounting member 12 is arranged at the upper end opening of the first mounting member 11 via the elastic body 13.

弾性体13は、第1取付部材11の上端開口部と第2取付部材12の下部の外周面とにそれぞれ加硫接着されて、これらの間に介在させられたゴム体であって、第1取付部材11の上端開口部を上側から閉塞している。弾性体13は、その上端部が第2取付部材12の鍔部12aに当接することで、第2取付部材12に充分に密着し、第2取付部材12の変位により良好に追従するようになっている。弾性体13の下端部には、第1取付部材11における内周面と下端開口縁の内周部とを液密に被覆するゴム膜17が一体に形成されている。なお、弾性体13としては、ゴム以外にも合成樹脂等からなる弾性体を用いることも可能である。 The elastic body 13 is a rubber body that is vulcanized and adhered to the upper end opening of the first mounting member 11 and the outer peripheral surface of the lower portion of the second mounting member 12, and is interposed between them. The upper end opening of the mounting member 11 is closed from above. The upper end of the elastic body 13 comes into contact with the flange portion 12a of the second mounting member 12, so that the elastic body 13 is sufficiently in close contact with the second mounting member 12 and follows the displacement of the second mounting member 12 satisfactorily. ing. At the lower end of the elastic body 13, a rubber film 17 that tightly covers the inner peripheral surface of the first mounting member 11 and the inner peripheral portion of the lower end opening edge is integrally formed. As the elastic body 13, it is also possible to use an elastic body made of synthetic resin or the like in addition to rubber.

第1取付部材11は、下端部にフランジ18を有する円筒状に形成され、フランジ18を介して振動受部としての車体等に連結される。第1取付部材11の内部のうち、弾性体13より下方に位置する部分が、液室19となっている。本実施形態では、第1取付部材11の下端部に仕切部材16が設けられ、さらにこの仕切部材16の下方にダイヤフラム20が設けられている。仕切部材16の外周部22の上面は、第1取付部材11の下端開口縁に当接している。 The first mounting member 11 is formed in a cylindrical shape having a flange 18 at the lower end portion, and is connected to a vehicle body or the like as a vibration receiving portion via the flange 18. The portion of the inside of the first mounting member 11 located below the elastic body 13 is the liquid chamber 19. In the present embodiment, the partition member 16 is provided at the lower end of the first mounting member 11, and the diaphragm 20 is further provided below the partition member 16. The upper surface of the outer peripheral portion 22 of the partition member 16 is in contact with the lower end opening edge of the first mounting member 11.

ダイヤフラム20は、ゴムや軟質樹脂等の弾性材料からなり、有底円筒状に形成されている。ダイヤフラム20の上端部は、仕切部材16の外周部22の下面と、仕切部材16より下方に位置するリング状の保持具21と、によって軸方向に挟まれている。仕切部材16の外周部22の上面に、ゴム膜17の下端部が液密に当接している。 The diaphragm 20 is made of an elastic material such as rubber or a soft resin, and is formed in a bottomed cylindrical shape. The upper end of the diaphragm 20 is axially sandwiched by the lower surface of the outer peripheral portion 22 of the partition member 16 and the ring-shaped holder 21 located below the partition member 16. The lower end of the rubber film 17 is in liquidtight contact with the upper surface of the outer peripheral portion 22 of the partition member 16.

このような構成のもとに、第1取付部材11の下端開口縁に、仕切部材16の外周部22、および保持具21が下方に向けてこの順に配置されるとともに、ねじ23によって一体に固定されることにより、ダイヤフラム20は、仕切部材16を介して第1取付部材11の下端開口部に取り付けられている。なお図示の例では、ダイヤフラム20の底部が、外周側で深く中央部で浅い形状になっている。ただし、ダイヤフラム20の形状としては、このような形状以外にも、従来公知の種々の形状を採用することができる。 Under such a configuration, the outer peripheral portion 22 of the partition member 16 and the holder 21 are arranged in this order downward at the lower end opening edge of the first mounting member 11, and are integrally fixed by screws 23. By doing so, the diaphragm 20 is attached to the lower end opening of the first attachment member 11 via the partition member 16. In the illustrated example, the bottom portion of the diaphragm 20 has a shape deep on the outer peripheral side and shallow on the central portion. However, as the shape of the diaphragm 20, in addition to such a shape, various conventionally known shapes can be adopted.

そして、このように第1取付部材11に仕切部材16を介してダイヤフラム20が取り付けられたことにより、前記したように第1取付部材11内に液室19が形成されている。液室19は、第1取付部材11内、すなわち平面視して第1取付部材11の内側に配設され、弾性体13とダイヤフラム20とにより液密に封止された密閉空間となっている。そして、この液室19に液体Lが封入(充填)されている。 Then, as the diaphragm 20 is attached to the first attachment member 11 via the partition member 16 in this way, the liquid chamber 19 is formed in the first attachment member 11 as described above. The liquid chamber 19 is arranged inside the first mounting member 11, that is, inside the first mounting member 11 in a plan view, and is a closed space sealed by the elastic body 13 and the diaphragm 20 in a liquid-tight manner. .. Then, the liquid L is sealed (filled) in the liquid chamber 19.

液室19は、仕切部材16によって主液室14と副液室15とに区画されている。主液室14は、弾性体13の下面13aを壁面の一部として形成されたもので、この弾性体13と第1取付部材11の内周面を液密に覆うゴム膜17と仕切部材16とによって囲まれた空間であり、弾性体13の変形によって内容積が変化する。副液室15は、ダイヤフラム20と仕切部材16とによって囲まれた空間であり、ダイヤフラム20の変形によって内容積が変化する。このような構成からなる防振装置10は、主液室14が鉛直方向上側に位置し、副液室15が鉛直方向下側に位置するように取り付けられて用いられる、圧縮式の装置である。 The liquid chamber 19 is divided into a main liquid chamber 14 and a sub liquid chamber 15 by a partition member 16. The main liquid chamber 14 is formed by forming the lower surface 13a of the elastic body 13 as a part of the wall surface, and the rubber film 17 and the partition member 16 that tightly cover the inner peripheral surfaces of the elastic body 13 and the first mounting member 11 It is a space surrounded by and, and the internal volume changes due to the deformation of the elastic body 13. The auxiliary liquid chamber 15 is a space surrounded by the diaphragm 20 and the partition member 16, and the internal volume changes due to the deformation of the diaphragm 20. The vibration isolator 10 having such a configuration is a compression type device used by attaching the main liquid chamber 14 so as to be located on the upper side in the vertical direction and the sub liquid chamber 15 to be located on the lower side in the vertical direction. ..

仕切部材16の外周部22における主液室14側の上面に、前記ゴム膜17の下端部を液密に保持する保持溝16bが形成されており、これによってゴム膜17と仕切部材16の外周部22の上面との間が液密に閉塞されている。仕切部材16には、主液室14と副液室15とを連通する制限通路24が設けられている。 A holding groove 16b for holding the lower end of the rubber film 17 in a liquid-tight manner is formed on the upper surface of the outer peripheral portion 22 of the partition member 16 on the main liquid chamber 14 side, whereby the outer periphery of the rubber film 17 and the partition member 16 is formed. The space between the portion 22 and the upper surface is tightly closed. The partition member 16 is provided with a restriction passage 24 that communicates the main liquid chamber 14 and the sub liquid chamber 15.

制限通路24は、仕切部材16内に配置された本体流路25と、本体流路25と主液室14とを連通する第1連通部26と、本体流路25と副液室15とを連通する第2連通部27と、を備えている。
本体流路25は、仕切部材16内で周方向に沿って延びていて、本体流路25の流路方向と周方向とは同等の方向になっている。本体流路25は、中心軸線Oと同軸に配置された円弧状に形成され、周方向に沿ってほぼ半周にわたって延びている。本体流路25は、仕切部材16のうち、主液室14に面する第1障壁28、および副液室15に面する第2障壁29により画成されている。第1障壁28および第2障壁29はいずれも、表裏面が軸方向を向く板状に形成されている。第1障壁28は、本体流路25と主液室14とにより軸方向に挟まれ、本体流路25と主液室14との間に位置している。第2障壁29は、本体流路25と副液室15とにより軸方向に挟まれ、本体流路25と副液室15との間に位置している。
The restriction passage 24 connects the main body flow path 25 arranged in the partition member 16, the first communication portion 26 that communicates the main body flow path 25 and the main liquid chamber 14, and the main body flow path 25 and the sub liquid chamber 15. It is provided with a second communication unit 27 that communicates with the user.
The main body flow path 25 extends in the partition member 16 along the circumferential direction, and the flow path direction and the circumferential direction of the main body flow path 25 are in the same direction. The main body flow path 25 is formed in an arc shape coaxially arranged with the central axis O, and extends along the circumferential direction over substantially half a circumference. The main body flow path 25 is defined by a first barrier 28 facing the main liquid chamber 14 and a second barrier 29 facing the sub liquid chamber 15 among the partition members 16. Both the first barrier 28 and the second barrier 29 are formed in a plate shape with the front and back surfaces facing in the axial direction. The first barrier 28 is axially sandwiched between the main body flow path 25 and the main liquid chamber 14, and is located between the main body flow path 25 and the main liquid chamber 14. The second barrier 29 is axially sandwiched between the main body flow path 25 and the auxiliary liquid chamber 15, and is located between the main body flow path 25 and the auxiliary liquid chamber 15.

第2連通部27は、第2障壁29を軸方向に貫通する1つの開口部33を備えている。開口部33は、第2障壁29のうち、本体流路25の周方向に沿う一方の端部を形成する部分に配置されている。
第1連通部26は、第1障壁28を軸方向に貫通し、周方向(本体流路25の流路方向)に沿って配置された複数の細孔31を備えている。複数の細孔31は、第1障壁28のうち、本体流路25の周方向に沿う他方の端部を形成する部分に配置されている。
以下では、周方向に沿って、本体流路25の前記一方の端部側を一方側といい、前記他方の端部側を他方側という。
The second communication portion 27 includes one opening 33 that penetrates the second barrier 29 in the axial direction. The opening 33 is arranged in a portion of the second barrier 29 that forms one end along the circumferential direction of the main body flow path 25.
The first communication portion 26 includes a plurality of pores 31 that penetrate the first barrier 28 in the axial direction and are arranged along the circumferential direction (the flow path direction of the main body flow path 25). The plurality of pores 31 are arranged in a portion of the first barrier 28 that forms the other end along the circumferential direction of the main body flow path 25.
Hereinafter, the one end side of the main body flow path 25 is referred to as one side, and the other end side is referred to as the other side along the circumferential direction.

複数の細孔31はいずれも、本体流路25の流路断面積より小さく、平面視において第1障壁28および本体流路25の各内側に配置されている。複数の細孔31の長さは、互いに同等になっている。
複数の細孔31は、第2連通部27から周方向に離間して位置するものほど、液体Lの流通抵抗が大きくなるように形成されている。図示の例では、複数の細孔31は、第2連通部27から周方向に離間して位置するものほど、各細孔31の中心軸O1方向の全域の内径が小さくなるように形成されている。なお、複数の細孔31は、第2連通部27から周方向に離間して位置するものほど、内径の最小値が小さくなるように形成されていればよい。
細孔31は、第1障壁28に、周方向に沿う同等の位置に径方向に間隔をあけて複数形成されている。図示の例では、細孔31は、第1障壁28に径方向に間隔をあけて2つ形成されている。径方向で互いに隣り合う細孔31は、互いに同じ形状で同じ大きさに形成されている。
Each of the plurality of pores 31 is smaller than the flow path cross-sectional area of the main body flow path 25, and is arranged inside each of the first barrier 28 and the main body flow path 25 in a plan view. The lengths of the plurality of pores 31 are equal to each other.
The plurality of pores 31 are formed so that the flow resistance of the liquid L increases as the pores 31 are located apart from the second communication portion 27 in the circumferential direction. In the illustrated example, the plurality of pores 31 are formed so that the inner diameter of each pore 31 in the central axis O1 direction becomes smaller as the pores 31 are located apart from the second communication portion 27 in the circumferential direction. There is. The plurality of pores 31 may be formed so that the minimum value of the inner diameter becomes smaller as the pores 31 are located apart from the second communication portion 27 in the circumferential direction.
A plurality of pores 31 are formed in the first barrier 28 at equivalent positions along the circumferential direction at radial intervals. In the illustrated example, two pores 31 are formed in the first barrier 28 at intervals in the radial direction. The pores 31 adjacent to each other in the radial direction are formed to have the same shape and the same size.

複数の細孔31はいずれも、軸方向に沿って本体流路25側から主液室14側に向かうに従い、つまり軸方向の内側から外側に向かうに従い漸次縮径し、テーパー角が例えば約30度の円錐台状に形成されていて、全ての細孔31において、主液室14側の開口端(以下、「開口端」という)が内径および流路断面積の最小部分となっている。細孔31の開口端の開口面積は、例えば25mm以下、好ましくは0.7mm以上17mm以下としてもよい。
なお、複数の細孔31それぞれの開口端における開口面積を複数の細孔31全てについて合計した、第1連通部26全体の流路断面積は、本体流路25における流路断面積の最小値の例えば1.5倍以上4.0倍以下としてもよい。図示の例では、本体流路25の流路断面積は、全長にわたって同等となっている。
Each of the plurality of pores 31 is gradually reduced in diameter from the main body flow path 25 side toward the main liquid chamber 14 side along the axial direction, that is, from the inner side to the outer side in the axial direction, and the taper angle is, for example, about 30. It is formed in a truncated cone shape, and in all the pores 31, the open end (hereinafter, referred to as “open end”) on the main liquid chamber 14 side is the minimum inner diameter and the cross-sectional area of the flow path. The opening area of the opening end of the pore 31 may be, for example, 25 mm 2 or less, preferably 0.7 mm 2 or more and 17 mm 2 or less.
The channel cross-sectional area of the entire first communication portion 26, which is the sum of the opening areas at the opening ends of the plurality of pores 31 for all of the plurality of pores 31, is the minimum value of the channel cross-sectional area in the main body flow path 25. For example, it may be 1.5 times or more and 4.0 times or less. In the illustrated example, the flow path cross-sectional area of the main body flow path 25 is the same over the entire length.

そして本実施形態では、細孔31の内周面に、細孔31の中心軸O1回りに延びる螺旋溝31aが形成されている。螺旋溝31aは、細孔31の内周面に、細孔31の中心軸O1回りに360°超えた角度範囲にわたって形成されている。螺旋溝31aは、細孔31の内周面に、細孔31の中心軸O1方向の全域にわたって形成されている。螺旋溝31aは、細孔31の内周面に、中心軸O1回りに複数周にわたって延在している。 In the present embodiment, a spiral groove 31a extending around the central axis O1 of the pore 31 is formed on the inner peripheral surface of the pore 31. The spiral groove 31a is formed on the inner peripheral surface of the pore 31 over an angle range exceeding 360 ° around the central axis O1 of the pore 31. The spiral groove 31a is formed on the inner peripheral surface of the pore 31 over the entire area in the direction of the central axis O1 of the pore 31. The spiral groove 31a extends on the inner peripheral surface of the pore 31 over a plurality of circumferences around the central axis O1.

このような構成からなる防振装置10では、振動入力時に、両取付部材11、12が弾性体13を弾性変形させながら相対的に変位する。すると、主液室14の液圧が変動し、主液室14内の液体Lが制限通路24を通って副液室15に流入し、また、副液室15内の液体Lが制限通路24を通って主液室14に流入する。 In the vibration isolator 10 having such a configuration, both mounting members 11 and 12 are relatively displaced while elastically deforming the elastic body 13 at the time of vibration input. Then, the liquid pressure in the main liquid chamber 14 fluctuates, the liquid L in the main liquid chamber 14 flows into the sub liquid chamber 15 through the limiting passage 24, and the liquid L in the sub liquid chamber 15 flows into the limiting passage 24. It flows into the main liquid chamber 14 through the main liquid chamber 14.

そして本実施形態に係る防振装置10によれば、液体Lが、複数の細孔31を通して制限通路24から主液室14に流出する際に、これらの細孔31が形成された第1障壁28により圧力損失させられながら各細孔31を流通するため、主液室14に流入する液体の流速を抑えることができる。しかも、液体Lが、単一の細孔31ではなく複数の細孔31を流通するので、液体Lを複数に分岐させて流通させることが可能になり、個々の細孔31を通過した液体Lの流速を低減させることができる。これにより、仮に防振装置10に大きな荷重が入力されたとしても、細孔31を通過して主液室14内に流入した液体Lと、主液室14内の液体Lと、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。また、仮に気泡が主液室14ではなく制限通路24で発生しても、液体Lを、複数の細孔31を通過させることで、発生した気泡同士を、主液室14内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。
以上のように、気泡の発生そのものを抑えることができる上、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持しやすくすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
Then, according to the vibration isolator 10 according to the present embodiment, when the liquid L flows out from the restriction passage 24 to the main liquid chamber 14 through the plurality of pores 31, the first barrier in which these pores 31 are formed is formed. Since each pore 31 flows while being pressure-lossed by 28, the flow velocity of the liquid flowing into the main liquid chamber 14 can be suppressed. Moreover, since the liquid L flows through a plurality of pores 31 instead of a single pore 31, the liquid L can be branched into a plurality of pores 31 and circulated, and the liquid L that has passed through the individual pores 31 can be circulated. The flow velocity can be reduced. As a result, even if a large load is input to the vibration isolator 10, the liquid L that has passed through the pores 31 and has flowed into the main liquid chamber 14 is between the liquid L in the main liquid chamber 14. The generated flow velocity difference can be suppressed to be small, and the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices can be suppressed. Further, even if bubbles are generated in the restricted passage 24 instead of the main liquid chamber 14, the generated bubbles are separated from each other in the main liquid chamber 14 by passing the liquid L through the plurality of pores 31. This makes it possible to prevent the bubbles from merging and growing, making it easier to maintain the bubbles in a finely dispersed state.
As described above, it is possible to suppress the generation of bubbles themselves, and even if bubbles are generated, it is possible to easily maintain the state in which the bubbles are finely dispersed, so that cavitation collapse occurs in which the bubbles collapse. However, the generated abnormal noise can be suppressed to a small level.

また、細孔31の内周面に螺旋溝31aが形成されているので、防振装置10に大きな荷重が入力されたときに、本体流路25から細孔31に流入した液体Lを、細孔31内で細孔31の中心軸O1回りに旋回させ、液体Lの流速を低減することが可能になり、前述の流速差を確実に小さく抑えることができる。また、仮に気泡が制限通路24で発生しても、この気泡を、細孔31で旋回させながら、主液室14内に流入させることが可能になり、主液室14内で気泡が合流するのを確実に抑えることができる。 Further, since the spiral groove 31a is formed on the inner peripheral surface of the pore 31, the liquid L flowing into the pore 31 from the main body flow path 25 is thinned when a large load is input to the vibration isolator 10. It is possible to reduce the flow velocity of the liquid L by swirling around the central axis O1 of the pore 31 in the hole 31, and the above-mentioned flow velocity difference can be surely suppressed to a small size. Further, even if bubbles are generated in the restricted passage 24, the bubbles can flow into the main liquid chamber 14 while swirling in the pores 31, and the bubbles merge in the main liquid chamber 14. Can be surely suppressed.

また、複数の細孔31が、第2連通部27から周方向に離間して位置するものほど、液体Lの流通抵抗が大きくなるように形成されているので、本体流路25内を流れる液体Lが、第1連通部26に到達したときに、複数の細孔31のうち、周方向の一方側に位置する細孔31を慣性力によって通過してしまうのを抑制することができる。これにより、この一方側に位置する細孔31にも液体Lを本体流路25から流入させやすくなり、各細孔31から主液室14内に流入する液体Lの流速を均等にして局所的に速くなるのを抑制することができる。したがって、気泡の発生およびキャビテーション崩壊に起因する異音の発生をより効果的に抑えることができる。 Further, since the plurality of pores 31 are formed so that the flow resistance of the liquid L increases as the plurality of pores 31 are located apart from the second communication portion 27 in the circumferential direction, the liquid flowing in the main body flow path 25. When L reaches the first communication portion 26, it is possible to prevent L from passing through the pores 31 located on one side in the circumferential direction among the plurality of pores 31 due to inertial force. As a result, the liquid L can easily flow into the pores 31 located on one side of the pores 31 from the main body flow path 25, and the flow velocity of the liquid L flowing into the main liquid chamber 14 from each pore 31 is made uniform and locally. It can be suppressed from becoming faster. Therefore, it is possible to more effectively suppress the generation of abnormal noise due to the generation of bubbles and the collapse of cavitation.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、前述したような、内周面に螺旋溝31aが形成された細孔31に代えて、図4に示すような、第1障壁28の厚さ方向に螺旋状に延びる細孔32を採用してもよい。以下、前述した細孔31と異なる点についてのみ説明する。
図示の例では、細孔32の内径は、第1障壁28の厚さ方向の全域にわたって同等になっている。細孔32の両端開口部はそれぞれ、軸方向に開口している。細孔32の両端開口部は、同軸に配置されている。
For example, instead of the pore 31 in which the spiral groove 31a is formed on the inner peripheral surface as described above, the pore 32 extending spirally in the thickness direction of the first barrier 28 as shown in FIG. 4 is adopted. You may. Hereinafter, only the points different from the above-mentioned pores 31 will be described.
In the illustrated example, the inner diameters of the pores 32 are equal over the entire thickness direction of the first barrier 28. The openings at both ends of the pores 32 are respectively open in the axial direction. The openings at both ends of the pores 32 are arranged coaxially.

また、前記実施形態では、複数の細孔31が、第2連通部27から周方向に離間して位置するものほど、内径が小さくなるように形成された構成を示したが、第2連通部27から周方向に離間して位置するものほど、中心軸O1方向の長さが長くなるように形成された構成を採用してもよい。
また、前記実施形態では、細孔31、32を、第1障壁28に形成したが、第2障壁29に形成してもよいし、第1障壁28および第2障壁29の双方に形成してもよい。
また、前記実施形態では、第1障壁28に周方向に沿って形成された複数の細孔31、32全てについて、内周面に螺旋溝31aを形成するか、あるいは、第1障壁28の厚さ方向に延びる螺旋状に形成した構成を示したが、複数の細孔31、32のうち、少なくとも周方向の他方側の端部に位置するものに限って、内周面に螺旋溝31aを形成するか、あるいは、第1障壁28の厚さ方向に延びる螺旋状に形成してもよい。
Further, in the above-described embodiment, the configuration is shown in which the inner diameter of the plurality of pores 31 is smaller as the plurality of pores 31 are located apart from the second communication portion 27 in the circumferential direction. A configuration may be adopted in which the length in the central axis O1 direction becomes longer as the distance from the 27 in the circumferential direction increases.
Further, in the above embodiment, the pores 31 and 32 are formed in the first barrier 28, but they may be formed in the second barrier 29 or formed in both the first barrier 28 and the second barrier 29. May be good.
Further, in the above embodiment, a spiral groove 31a is formed on the inner peripheral surface of all the plurality of pores 31 and 32 formed in the first barrier 28 along the circumferential direction, or the thickness of the first barrier 28 is increased. Although the configuration shown in a spiral shape extending in the longitudinal direction is shown, the spiral groove 31a is formed on the inner peripheral surface of the plurality of pores 31 and 32 only those located at the end on the other side in the circumferential direction. It may be formed or may be formed in a spiral shape extending in the thickness direction of the first barrier 28.

また、前記実施形態では細孔31を、漸次縮径する円錐台状に形成したが、円柱状(真っ直ぐな円孔形状)に形成する等してもよい。
また、前記実施形態では、複数の細孔31、32を、横断面視円形状に形成したが、本発明はこれに限られない。例えば、複数の細孔31、32を、横断面視角形状に形成する等適宜変更してもよい。
また、前記実施形態では、第1連通部26が、複数の細孔31、32を備えているが、例えば細孔31、32を有しない構成、或いは、細孔31、32より大径の開口、および細孔31、32の双方を有する構成等を採用してもよい。また、第2連通部27が、周方向(本体流路25の流路方向)に沿って配置された複数の開口部33を備えていてもよい。
さらに、前記実施形態では、本体流路25が周方向に延びているが、本発明はこれに限られない。
Further, in the above-described embodiment, the pores 31 are formed in a truncated cone shape with a gradually reduced diameter, but may be formed in a columnar shape (a straight circular hole shape) or the like.
Further, in the above-described embodiment, the plurality of pores 31 and 32 are formed in a circular shape in a cross-sectional view, but the present invention is not limited to this. For example, the plurality of pores 31 and 32 may be appropriately changed, such as forming a cross-sectional viewing angle shape.
Further, in the above embodiment, the first communication portion 26 includes a plurality of pores 31 and 32, but does not have, for example, the pores 31 and 32, or an opening having a diameter larger than the pores 31 and 32. , And a configuration having both pores 31 and 32 and the like may be adopted. Further, the second communication portion 27 may include a plurality of openings 33 arranged along the circumferential direction (flow path direction of the main body flow path 25).
Further, in the above-described embodiment, the main body flow path 25 extends in the circumferential direction, but the present invention is not limited to this.

また、前記実施形態では、仕切部材16を第1取付部材11の下端部に配置し、仕切部材16の外周部22を第1取付部材11の下端開口縁に当接させているが、例えば仕切部材16を第1取付部材11の下端開口縁より充分上方に配置し、この仕切部材16の下側、すなわち第1取付部材11の下端部にダイヤフラム20を配設することで、第1取付部材11の下端部からダイヤフラム20の底面にかけて副液室15を形成するようにしてもよい。 Further, in the above embodiment, the partition member 16 is arranged at the lower end portion of the first mounting member 11, and the outer peripheral portion 22 of the partition member 16 is brought into contact with the lower end opening edge of the first mounting member 11, for example. The first mounting member is formed by arranging the member 16 sufficiently above the lower end opening edge of the first mounting member 11 and arranging the diaphragm 20 on the lower side of the partition member 16, that is, on the lower end of the first mounting member 11. The auxiliary liquid chamber 15 may be formed from the lower end of the 11 to the bottom surface of the diaphragm 20.

また、前記実施形態では、支持荷重が作用することで主液室14に正圧が作用する圧縮式の防振装置10について説明したが、主液室14が鉛直方向下側に位置し、かつ副液室15が鉛直方向上側に位置するように取り付けられ、支持荷重が作用することで主液室14に負圧が作用する吊り下げ式の防振装置にも適用可能である。
また、前記実施形態では、仕切部材16が、第1取付部材11内の液室19を、弾性体13を壁面の一部に有する主液室14、および副液室15に仕切るものとしたが、これに限られるものではない。例えば、ダイヤフラム20を設けるのに代えて弾性体13を設け、副液室15を設けるのに代えて、弾性体13を壁面の一部に有する受圧液室を設けてもよい。例えば、仕切部材16が、液体Lが封入される第1取付部材11内の液室19を、第1液室14および第2液室15に仕切り、第1液室14および第2液室15のうちの少なくとも1つが、弾性体13を壁面の一部に有する他の構成に適宜変更することが可能である。
また、本発明に係る防振装置10は、車両のエンジンマウントに限定されるものではなく、エンジンマウント以外に適用することも可能である。例えば、建設機械に搭載された発電機のマウントにも適用することも可能であり、或いは、工場等に設置される機械のマウントにも適用することも可能である。
Further, in the above-described embodiment, the compression type vibration isolator 10 in which a positive pressure acts on the main liquid chamber 14 when a supporting load acts has been described, but the main liquid chamber 14 is located on the lower side in the vertical direction and The auxiliary liquid chamber 15 is attached so as to be located on the upper side in the vertical direction, and can be applied to a suspension type vibration isolator in which a negative pressure acts on the main liquid chamber 14 when a supporting load acts.
Further, in the above-described embodiment, the partition member 16 partitions the liquid chamber 19 in the first mounting member 11 into a main liquid chamber 14 having an elastic body 13 as a part of a wall surface and a sub liquid chamber 15. , Not limited to this. For example, instead of providing the diaphragm 20, the elastic body 13 may be provided, and instead of providing the auxiliary liquid chamber 15, a pressure receiving liquid chamber having the elastic body 13 as a part of the wall surface may be provided. For example, the partition member 16 partitions the liquid chamber 19 in the first mounting member 11 in which the liquid L is sealed into the first liquid chamber 14 and the second liquid chamber 15, and the first liquid chamber 14 and the second liquid chamber 15 At least one of them can be appropriately modified to another configuration having the elastic body 13 as a part of the wall surface.
Further, the anti-vibration device 10 according to the present invention is not limited to the engine mount of the vehicle, and can be applied to other than the engine mount. For example, it can be applied to a mount of a generator mounted on a construction machine, or it can be applied to a mount of a machine installed in a factory or the like.

その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 In addition, it is possible to replace the components in the embodiment with well-known components as appropriate without departing from the spirit of the present invention, and the above-described modifications may be appropriately combined.

10 防振装置
11 第1取付部材
12 第2取付部材
13 弾性体
14 主液室(第1液室)
15 副液室(第2液室)
16 仕切部材
19 液室
24 制限通路
25 本体流路
26 第1連通部
27 第2連通部
28 第1障壁
29 第2障壁
31、32 細孔
31a 螺旋溝
O1 中心軸
L 液体
10 Anti-vibration device 11 1st mounting member 12 2nd mounting member 13 Elastic body 14 Main liquid chamber (1st liquid chamber)
15 Secondary liquid chamber (second liquid chamber)
16 Partition member 19 Liquid chamber 24 Restricted passage 25 Main body flow path 26 First communication part 27 Second communication part 28 First barrier 29 Second barrier 31, 32 Pore 31a Spiral groove O1 Central axis L Liquid

Claims (2)

振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、
これら両取付部材を弾性的に連結する弾性体と、
液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、
前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、
前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、
前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する障壁を貫通する複数の細孔を備え、
前記細孔の内周面に、この細孔の中心軸回りに延びる螺旋溝が形成され
前記複数の細孔は、前記本体流路の流路方向に間隔をあけて配置されるとともに、前記第1連通部および前記第2連通部のうちの他方から前記流路方向に離間して位置するものほど、液体の流通抵抗が大きくなるように形成されていることを特徴とする防振装置。
A tubular first mounting member connected to either one of the vibration generating portion and the vibration receiving portion, and a second mounting member connected to the other.
An elastic body that elastically connects these two mounting members,
A partition member for partitioning the liquid chamber in the first mounting member in which the liquid is sealed into the first liquid chamber and the second liquid chamber is provided, and the liquid chamber is provided.
A liquid-filled type anti-vibration device in which a limiting passage connecting the first liquid chamber and the second liquid chamber is formed in the partition member.
The restricted passage includes a first communication portion that opens into the first liquid chamber, a second communication portion that opens into the second liquid chamber, and a main body flow path that communicates the first communication portion and the second communication portion. With,
At least one of the first communication section and the second communication section includes a plurality of pores penetrating the first liquid chamber or the barrier facing the second liquid chamber.
A spiral groove extending around the central axis of the pore is formed on the inner peripheral surface of the pore .
The plurality of pores are arranged at intervals in the flow path direction of the main body flow path, and are positioned apart from the other of the first communication portion and the second communication portion in the flow path direction. A vibration isolation device characterized in that the more the liquid is formed, the greater the flow resistance of the liquid .
振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、
これら両取付部材を弾性的に連結する弾性体と、
液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、
前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、
前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、
前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する障壁を貫通する複数の細孔を備え、
前記細孔は、前記障壁の厚さ方向に螺旋状に延び
前記複数の細孔は、前記本体流路の流路方向に間隔をあけて配置されるとともに、前記第1連通部および前記第2連通部のうちの他方から前記流路方向に離間して位置するものほど、液体の流通抵抗が大きくなるように形成されていることを特徴とする防振装置。
A tubular first mounting member connected to either one of the vibration generating portion and the vibration receiving portion, and a second mounting member connected to the other.
An elastic body that elastically connects these two mounting members,
A partition member for partitioning the liquid chamber in the first mounting member in which the liquid is sealed into the first liquid chamber and the second liquid chamber is provided, and the liquid chamber is provided.
A liquid-filled type anti-vibration device in which a limiting passage connecting the first liquid chamber and the second liquid chamber is formed in the partition member.
The restricted passage includes a first communication portion that opens into the first liquid chamber, a second communication portion that opens into the second liquid chamber, and a main body flow path that communicates the first communication portion and the second communication portion. With,
At least one of the first communication section and the second communication section includes a plurality of pores penetrating the first liquid chamber or the barrier facing the second liquid chamber.
The pores spirally extend in the thickness direction of the barrier .
The plurality of pores are arranged at intervals in the flow path direction of the main body flow path, and are positioned apart from the other of the first communication portion and the second communication portion in the flow path direction. A vibration isolation device characterized in that the more the liquid is formed, the greater the flow resistance of the liquid .
JP2017011972A 2017-01-26 2017-01-26 Anti-vibration device Active JP6822860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017011972A JP6822860B2 (en) 2017-01-26 2017-01-26 Anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017011972A JP6822860B2 (en) 2017-01-26 2017-01-26 Anti-vibration device

Publications (2)

Publication Number Publication Date
JP2018119621A JP2018119621A (en) 2018-08-02
JP6822860B2 true JP6822860B2 (en) 2021-01-27

Family

ID=63043730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017011972A Active JP6822860B2 (en) 2017-01-26 2017-01-26 Anti-vibration device

Country Status (1)

Country Link
JP (1) JP6822860B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6983060B2 (en) 2017-12-26 2021-12-17 株式会社ブリヂストン Anti-vibration device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179448A (en) * 1981-04-27 1982-11-05 Bridgestone Corp Vibro-isolating rubber
JPS5989844A (en) * 1982-11-13 1984-05-24 Tokai Rubber Ind Ltd Vibration isolating supporter
JPS629042A (en) * 1985-07-05 1987-01-17 Toyota Motor Corp Vibration absorbing rubber device
JP6450619B2 (en) * 2015-03-19 2019-01-09 株式会社ブリヂストン Vibration isolator

Also Published As

Publication number Publication date
JP2018119621A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6391186B2 (en) Vibration isolator and method for suppressing generation of abnormal noise caused by cavitation collapse
JP6450619B2 (en) Vibration isolator
JP5557837B2 (en) Vibration isolator
JP6995113B2 (en) Anti-vibration device
JP7044479B2 (en) Anti-vibration device
CN109073033B (en) Vibration isolation device
JP6674334B2 (en) Anti-vibration device
JP6824818B2 (en) Anti-vibration device
JP6822860B2 (en) Anti-vibration device
JP6975628B2 (en) Anti-vibration device
JP6836458B2 (en) Anti-vibration device
JP6853674B2 (en) Anti-vibration device
JP7027147B2 (en) Anti-vibration device
WO2018193895A1 (en) Vibration dampening device
JP6913012B2 (en) Anti-vibration device
JP6986489B2 (en) Anti-vibration device
JP7161842B2 (en) Anti-vibration device
JP6871050B2 (en) Anti-vibration device
JP6986488B2 (en) Anti-vibration device
JP2017227298A (en) Vibration control device
JP2020118251A (en) Vibration control device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210107

R150 Certificate of patent or registration of utility model

Ref document number: 6822860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250