JP6822042B2 - How to make a rack and pinion housing - Google Patents

How to make a rack and pinion housing Download PDF

Info

Publication number
JP6822042B2
JP6822042B2 JP2016189878A JP2016189878A JP6822042B2 JP 6822042 B2 JP6822042 B2 JP 6822042B2 JP 2016189878 A JP2016189878 A JP 2016189878A JP 2016189878 A JP2016189878 A JP 2016189878A JP 6822042 B2 JP6822042 B2 JP 6822042B2
Authority
JP
Japan
Prior art keywords
fiber
connecting member
rack
housing
pinion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189878A
Other languages
Japanese (ja)
Other versions
JP2018052266A (en
Inventor
貴紀 澤野
貴紀 澤野
村上 豪
豪 村上
兼明 松本
兼明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2016189878A priority Critical patent/JP6822042B2/en
Publication of JP2018052266A publication Critical patent/JP2018052266A/en
Application granted granted Critical
Publication of JP6822042B2 publication Critical patent/JP6822042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ラックアンドピニオンハウジング、及びラックアンドピニオン式ステアリング装置、並びにラックアンドピニオンハウジングの製造方法に関する。 The present invention relates to a rack and pinion housing, a rack and pinion type steering device, and a method for manufacturing the rack and pinion housing.

近年、自動車の省資源・省エネルギー、CO低減のための低燃費化の推進が強く求められている。電動パワーステアリング装置も軽量化の要望が強く、日々技術改良が必要となっている。従来、EPS(Electric Power Steering)減速機のラックアンドピニオンを収納するハウジング(後述する図1のラックアンドピニオンハウジング100参照)は、一般的に金属材料が使用され、多くの場合にアルミニウムが使用されていた。現在は、金属材料から比重の小さい樹脂材料への置き換えについての研究・開発がトレンドとなっている。ラックアンドピニオンを収納するハウジングを樹脂材料で軽量化する場合、剛性の他に、寸法安定性、衝撃性、クリープの低下が問題となる。そのため、樹脂材料への変更によって低下する機械的特性は、さまざまな繊維材料を組み合わせて補強し、高強度化と軽量化を両立させてきた。 In recent years, there has been a strong demand for the promotion of fuel efficiency reduction for resource saving and energy saving of automobiles and CO 2 reduction. There is a strong demand for weight reduction of electric power steering devices, and technological improvements are required every day. Conventionally, the housing for accommodating the rack and pinion of the EPS (Electric Power Steering) reducer (see the rack and pinion housing 100 in FIG. 1 described later) is generally made of a metal material, and in many cases aluminum is used. Was there. Currently, the trend is research and development on the replacement of metal materials with resin materials with a lower specific gravity. When the weight of the housing for accommodating the rack and pinion is reduced with a resin material, in addition to rigidity, dimensional stability, impact resistance, and deterioration of creep become problems. Therefore, the mechanical properties that deteriorate due to the change to the resin material have been reinforced by combining various fiber materials, and both high strength and light weight have been achieved.

そのような繊維材料を組み合わせる先行技術として、特許文献1、特許文献2に記載のカーボンファイバーと樹脂で構成するシート状のプリプレグ(中間素材)を接着する技術が挙げられる。特許文献1では、シート状の中間素材を筒状の芯棒に巻き取り、硬化させる、所謂、シートワインディングによって成形したラックハウジングが開示されている。特許文献2では、炭素繊維シートと熱可塑性樹脂のフィルムとを積層させた2枚の積層シートを、加熱された状態で金型にセットし、金型を型締めして炭素繊維シートにフィルムの熱可塑性樹脂を含浸させ、プレス加工したラックハウジングが開示されている。 As a prior art for combining such fiber materials, there is a technique for adhering a sheet-shaped prepreg (intermediate material) composed of carbon fiber and resin described in Patent Documents 1 and 2. Patent Document 1 discloses a rack housing formed by so-called sheet winding, in which a sheet-shaped intermediate material is wound around a tubular core rod and cured. In Patent Document 2, two laminated sheets in which a carbon fiber sheet and a thermoplastic resin film are laminated are set in a mold in a heated state, and the mold is molded to form a film on the carbon fiber sheet. A rack housing impregnated with a thermoplastic resin and pressed is disclosed.

特開2013−103652号公報Japanese Unexamined Patent Publication No. 2013-103652 特開2016−13673号公報Japanese Unexamined Patent Publication No. 2016-13673

しかしながら、上記の従来技術では、複雑な形状の成形が困難である上、シート状の中間素材の特性が最終製品に影響して、シートの層間の強度が問題となる場合もある。その理由に、接着面には繊維材料が存在しておらず、加えて接着剤(熱可塑性樹脂)の硬化不良等によりボイドが発生する等して、接着強度が不足すること等が挙げられる。特に、自動車を構成する部品には一般的な構造用部材と比較して十分な安全率を含めた強度で設計する必要があり、EPS減速機のラックアンドピニオンの保護をより確実にすることが要望されている。 However, in the above-mentioned conventional technique, it is difficult to form a complicated shape, and the characteristics of the sheet-like intermediate material affect the final product, and the strength between the layers of the sheet may become a problem. The reason is that there is no fiber material on the adhesive surface, and in addition, voids are generated due to poor curing of the adhesive (thermoplastic resin), resulting in insufficient adhesive strength. In particular, the parts that make up an automobile must be designed with sufficient strength to include a safety factor compared to general structural members, and it is possible to further ensure the protection of the rack and pinion of the EPS reduction gear. It is requested.

本発明は上記状況に鑑みてなされたもので、その目的は、複雑な形状であっても、軽量化を図りつつ高い強度が得られるラックアンドピニオンハウジングの製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a rack and pinion housing in which high strength can be obtained while reducing the weight even if the shape is complicated.

本発明は下記構成からなる。
ガラス繊維、炭素繊維、アラミド繊維、芳香族ポリアミド繊維、液晶ポリエステル繊維、炭化ケイ素繊維、ボロン繊維のうち、少なくとも1種類から選択される繊維材を溶媒中で開繊させて繊維含有スラリーを得る開繊工程と、前記繊維含有スラリーを抄造型に注入し、前記抄造型内から前記溶媒を除去することで、前記抄造型から完成品とほぼ同形のプリフォームを成形する抄造工程と、前記プリフォームに形成されているボス部に接続用部材を組み付ける組み付け工程と、前記接続用部材が組み付けられた前記プリフォームを成形用型に装填して、前記プリフォームと前記接続用部材を樹脂により一体成形する成形工程と、を含むことを特徴とするラックアンドピニオンハウジングの製造方法。
The present invention has the following configuration.
A fiber material selected from at least one of glass fiber, carbon fiber, aramid fiber, aromatic polyamide fiber, liquid crystal polyester fiber, silicon carbide fiber, and boron fiber is opened in a solvent to obtain a fiber-containing slurry. A fibering process, a manufacturing process in which the fiber-containing slurry is injected into a manufacturing mold, and the solvent is removed from the manufacturing mold to form a preform having substantially the same shape as the finished product from the manufacturing mold, and the preform. The assembly step of assembling the connecting member to the boss portion formed in the above, and the preform to which the connecting member is assembled are loaded into the molding mold, and the preform and the connecting member are integrally molded with resin. A method of manufacturing a rack and pinion housing, comprising:

本発明によれば、複雑な形状であっても、軽量化を図りつつ高い強度のラックアンドピニオンハウジングが得られる。 According to the present invention, a rack and pinion housing having high strength can be obtained while reducing the weight even if the shape is complicated.

ラックアンドピニオン式ステアリング装置の全体斜視図である。It is the whole perspective view of the rack and pinion type steering apparatus. 図1に示したラックアンドピニオンハウジングの斜視図である。It is a perspective view of the rack and pinion housing shown in FIG. 図2に示す第1ハウジング部の拡大斜視図である。It is an enlarged perspective view of the 1st housing part shown in FIG. 第1ハウジング部の他の構成例を示す拡大斜視図である。It is an enlarged perspective view which shows the other structural example of the 1st housing part. (A)〜(F)はラックアンドピニオンハウジングの製造工程を説明する工程図である。(A) to (F) are process diagrams for explaining the manufacturing process of the rack and pinion housing. (A)はボス部に接続用部材を組み付けた、ボス部と接続用部材との接合部を表した断面図、(B)は成形後のボス部と接続用部材との接合部を表した断面図である。(A) is a cross-sectional view showing the joint portion between the boss portion and the connecting member in which the connecting member is assembled to the boss portion, and (B) shows the joint portion between the boss portion and the connecting member after molding. It is a sectional view. 繊維材を含むハウジングが接着剤により接続用部材に接合された接合部を表した参考例としての断面図である。It is sectional drawing as a reference example which showed the joint part which the housing containing the fiber material was joined to the connecting member by an adhesive. (A)は接着剤を塗布したボス部に接続用部材を組み付けた、ボス部と接続用部材との接合部を表した断面図、(B)は成形後のボス部と接続用部材との接合部を表した断面図である。(A) is a cross-sectional view showing the joint portion between the boss portion and the connecting member in which the connecting member is assembled to the boss portion coated with the adhesive, and (B) is the cross-sectional view of the boss portion after molding and the connecting member. It is sectional drawing which showed the joint part.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1はラックアンドピニオン式ステアリング装置の全体斜視図である。
コラムアシスト型のラックアンドピニオン式ステアリング装置10は、ステアリングホイール11と、コラム13と、中間シャフト15と、モータ17と、ステアリングギヤユニット19と、タイロッド21とを有する。ステアリングギヤユニット19は、ラック軸23と、ピニオン軸25と、ラックアンドピニオンハウジング100とを有する。ラックアンドピニオンハウジング100は、ラックアンドピニオンの外側を覆うハウジング部27と、ハウジング部27の一部に形成され被接合部材が接続される複数の接合部29とを有する。各接合部29には、後述するボス部と、金属製の接続用部材とを有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall perspective view of a rack and pinion type steering device.
The column-assisted rack and pinion type steering device 10 includes a steering wheel 11, a column 13, an intermediate shaft 15, a motor 17, a steering gear unit 19, and a tie rod 21. The steering gear unit 19 includes a rack shaft 23, a pinion shaft 25, and a rack and pinion housing 100. The rack and pinion housing 100 has a housing portion 27 that covers the outside of the rack and pinion, and a plurality of joint portions 29 that are formed in a part of the housing portion 27 and to which members to be joined are connected. Each joint 29 has a boss, which will be described later, and a metal connecting member.

ラック軸23は、外周の少なくとも一部にラック歯を有し、軸方向へ往復駆動可能にハウジング部27に支持される。ピニオン軸25は、中間シャフト15を含むステアリングシャフトの下端に取り付けられ、ラック軸23のラック歯に噛み合う図示しないピニオンを有する。 The rack shaft 23 has rack teeth on at least a part of the outer circumference, and is supported by the housing portion 27 so as to be reciprocally driven in the axial direction. The pinion shaft 25 has a pinion (not shown) that is attached to the lower end of the steering shaft including the intermediate shaft 15 and meshes with the rack teeth of the rack shaft 23.

ラックアンドピニオン式ステアリング装置10は、ステアリングホイール11の操作力を軽減する操舵補助力を、コラム13の中間部に取り付けたモータ17からステアリングシャフトに付与する。そして、ステアリングシャフトの回転がピニオン軸25を介してラック軸23に伝達されることで、ラック軸23が往復駆動される。 The rack and pinion type steering device 10 applies a steering assist force that reduces the operating force of the steering wheel 11 to the steering shaft from the motor 17 attached to the intermediate portion of the column 13. Then, the rotation of the steering shaft is transmitted to the rack shaft 23 via the pinion shaft 25, so that the rack shaft 23 is reciprocated.

このラック軸23の左右両端にはタイロッド21が連結され、各タイロッド21は図示しない車輪にそれぞれ接続される。したがって、ラックアンドピニオン式ステアリング装置10は、運転者がステアリングホイール11を回転すると、ステアリングシャフトの端部に取り付けられたピニオン軸25が、ハウジング部27に収容されたピニオンを回転する。これにより、ハウジング部27に支持されたラック軸23が左右に往復駆動され、タイロッド21を介して車輪が操舵される。 Tie rods 21 are connected to the left and right ends of the rack shaft 23, and each tie rod 21 is connected to a wheel (not shown). Therefore, in the rack and pinion type steering device 10, when the driver rotates the steering wheel 11, the pinion shaft 25 attached to the end of the steering shaft rotates the pinion housed in the housing portion 27. As a result, the rack shaft 23 supported by the housing portion 27 is reciprocated to the left and right, and the wheels are steered via the tie rod 21.

図2は図1に示したラックアンドピニオンハウジングの斜視図、図3は図2に示す第1ハウジング部28の拡大斜視図である。
図2,図3に示すように、ラックアンドピニオンハウジング100のハウジング部27は、ラック軸23(図1参照)を覆う中空円筒部31と、中空円筒部31の軸方向一端側のピニオンハウジングである第1ハウジング部28と、軸方向他端側の第2ハウジング部32とを有する。第1ハウジング部28と第2ハウジング部32には、ボス部に接続用部材が取り付けられた接合部29が複数箇所に設けられる。
FIG. 2 is a perspective view of the rack and pinion housing shown in FIG. 1, and FIG. 3 is an enlarged perspective view of the first housing portion 28 shown in FIG.
As shown in FIGS. 2 and 3, the housing portion 27 of the rack and pinion housing 100 is a hollow cylindrical portion 31 that covers the rack shaft 23 (see FIG. 1) and a pinion housing on one end side in the axial direction of the hollow cylindrical portion 31. It has a first housing portion 28 and a second housing portion 32 on the other end side in the axial direction. The first housing portion 28 and the second housing portion 32 are provided with joint portions 29 to which connecting members are attached to the boss portions at a plurality of locations.

具体的には、第1ハウジング部28は、ピニオン挿入用のボス部33と、図示しない調整バネが固定されるボス部35と、フロントサブフレーム等の図示しない車体フレームに取り付ける車体固定用のボス部37と、一方のタイロッドが接続されるボス部45とを有する。第2ハウジング部32は、他方のタイロッドが接続されるボス部47と、車体固定用のボス部39とを有する。 Specifically, the first housing portion 28 includes a boss portion 33 for inserting a pinion, a boss portion 35 to which an adjustment spring (not shown) is fixed, and a boss for fixing the vehicle body to be attached to a vehicle body frame (not shown) such as a front subframe. It has a portion 37 and a boss portion 45 to which one tie rod is connected. The second housing portion 32 has a boss portion 47 to which the other tie rod is connected, and a boss portion 39 for fixing the vehicle body.

ボス部33には内周面に雌ねじが形成された接続用部材49が取り付けられる。ボス部35には、同様に雌ねじが形成された接続用部材51が取り付けられる。車体固定用のボス部37,39にはスリーブ状の接続用部材53,55が取り付けられる。また、ボス部45,47には接続用部材57,59が取り付けられる。各接続用部材49,51,53,55,57,59は、鉄系材料、非鉄系材料のいずれかの金属材料、又は硬質樹脂材料からなる。 A connecting member 49 having a female screw formed on the inner peripheral surface is attached to the boss portion 33. A connecting member 51 having a female screw formed therein is attached to the boss portion 35. Sleeve-shaped connecting members 53 and 55 are attached to the boss portions 37 and 39 for fixing the vehicle body. Further, connecting members 57 and 59 are attached to the boss portions 45 and 47. Each connecting member 49, 51, 53, 55, 57, 59 is made of an iron-based material, a non-ferrous metal-based material, or a hard resin material.

ボス部33には、ピニオン軸25(図1参照)が挿入され、挿入されたピニオン軸25の下端のピニオンが、ラック軸23に形成されたラック歯に噛み合う。また、車体固定用のボス部37,39には、接続用部材53,55の孔に図示しないボルトが挿入され、これらのボルトを車体フレームに締結することで、ラックアンドピニオンハウジング100が車体フレームに固定される。 A pinion shaft 25 (see FIG. 1) is inserted into the boss portion 33, and the pinion at the lower end of the inserted pinion shaft 25 meshes with the rack teeth formed on the rack shaft 23. Further, bolts (not shown) are inserted into the holes of the connecting members 53 and 55 in the boss portions 37 and 39 for fixing the vehicle body, and by fastening these bolts to the vehicle body frame, the rack and pinion housing 100 can be attached to the vehicle body frame. Is fixed to.

各接合部29には、それぞれ接続用部材49,51,57,59が取り付けられることにより、ボルト、タイロッド等の被接合部材との接合強度を高められる。 By attaching connecting members 49, 51, 57, 59 to each joint 29, the joint strength with the members to be joined such as bolts and tie rods can be increased.

第1ハウジング部28は、図3に示す構成以外にも、例えば図4に示す構成であってもよい。
図4は第1ハウジング部の他の構成例を示す拡大斜視図である。
同図に示す第1ハウジング部28Aは、ピニオン挿入用のボス部33に配置される接続用部材49Aが、その一端部を露出して配置される。また、ボス部45に配置される接続用部材57Aも、その一端部を露出して配置される。
The first housing portion 28 may have a configuration shown in FIG. 4, for example, in addition to the configuration shown in FIG.
FIG. 4 is an enlarged perspective view showing another configuration example of the first housing portion.
In the first housing portion 28A shown in the figure, a connecting member 49A arranged on the boss portion 33 for inserting a pinion is arranged so that one end thereof is exposed. Further, the connecting member 57A arranged on the boss portion 45 is also arranged with one end thereof exposed.

本構成の第1ハウジング部28Aのように、接続用部材49A,57A等の端部がハウジングの外側に露出されることで、これらに接合される被接合部材との接合形態の自由度を向上できる。例えば、ボス部45においては、接続用部材57Aの内周部に雌ネジ部56が形成される他に、外周部に雄ねじ部58が形成される。これにより、雌ネジ部56と雄ねじ部58との双方を利用した被接合部材との接合を実現できる。よって、ボス部45の設計自由度を向上でき、接続強度や接続位置精度をより高められる。 Since the ends of the connecting members 49A, 57A, etc. are exposed to the outside of the housing as in the first housing portion 28A of the present configuration, the degree of freedom of the joining form with the members to be joined to these is improved. it can. For example, in the boss portion 45, a female screw portion 56 is formed on the inner peripheral portion of the connecting member 57A, and a male screw portion 58 is formed on the outer peripheral portion. As a result, it is possible to realize joining with the member to be joined by using both the female screw portion 56 and the male screw portion 58. Therefore, the degree of freedom in designing the boss portion 45 can be improved, and the connection strength and the connection position accuracy can be further improved.

上記のような中空円筒部31と、中空円筒部31の軸方向一端側のピニオンハウジングである第1ハウジング部28と、軸方向他端側の第2ハウジング部32とを有するハウジング部27は、繊維材(例えば炭素繊維)と樹脂材(例えばエポキシ樹脂)との複合材を含んで構成される。繊維材は、樹脂材に埋入された状態となるが、その一部は樹脂材の表面に表出する。ハウジング部27は、シート界面がなく製品全体に均一に強化繊維と樹脂材料が分散しているため、機械的特性に優れる。更に、炭素繊維(比重1.8)とエポキシ樹脂(比重1.4)の複合材にするため、従来のアルミニウム(比重2.7)材料と比較して、軽量なハウジング部27を供することが可能となる。 The housing portion 27 having the hollow cylindrical portion 31 as described above, the first housing portion 28 which is a pinion housing on one end side in the axial direction of the hollow cylindrical portion 31, and the second housing portion 32 on the other end side in the axial direction It is composed of a composite material of a fiber material (for example, carbon fiber) and a resin material (for example, epoxy resin). The fiber material is embedded in the resin material, but a part of the fiber material is exposed on the surface of the resin material. The housing portion 27 is excellent in mechanical properties because there is no sheet interface and the reinforcing fibers and the resin material are uniformly dispersed throughout the product. Further, in order to make a composite material of carbon fiber (specific gravity 1.8) and epoxy resin (specific gravity 1.4), it is possible to provide a housing portion 27 that is lighter than the conventional aluminum (specific gravity 2.7) material. It will be possible.

複合材に用いる樹脂材としては、熱可塑性樹脂又は熱硬化性樹脂を用いることができる。熱可塑性樹脂としては、例えばポリアミド6を用いることができる。熱硬化性樹脂としては、例えばエポキシ樹脂やフェノール樹脂を用いることができる。 As the resin material used for the composite material, a thermoplastic resin or a thermosetting resin can be used. As the thermoplastic resin, for example, polyamide 6 can be used. As the thermosetting resin, for example, an epoxy resin or a phenol resin can be used.

また、複合材に用いる繊維材としては、ガラス繊維、炭素繊維、金属繊維、アラミド繊維、芳香族ポリアミド繊維、液晶ポリエステル繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維のうち、少なくとも1種類から選択することができる。 The fiber material used for the composite material is selected from at least one of glass fiber, carbon fiber, metal fiber, aramid fiber, aromatic polyamide fiber, liquid crystal polyester fiber, silicon carbide fiber, alumina fiber, and boron fiber. be able to.

特に、ガラス繊維、ボロン繊維は、引張強度が高く好ましい。炭素繊維は、耐摩耗性、耐熱性、熱伸縮性、耐酸性、電気伝導性に優れる。金属繊維は、ステンレス、アルミニウム、鉄、ニッケル、銅等の金属糸を用いることができる。アラミド繊維は、引張強度や摩擦抵抗力が強く、高温・耐薬品性にも優れる。芳香族ポリアミド繊維は、非常に優れた耐熱性と強度を持つ。液晶ポリエステル繊維は、非強化状態でもフィラー強化されたエンジニアリングプラスチックを上回る剛性を持つ。アルミナ繊維は、高温域でも使用でき、耐火性を有する。 In particular, glass fiber and boron fiber are preferable because of their high tensile strength. Carbon fiber is excellent in wear resistance, heat resistance, thermal elasticity, acid resistance, and electrical conductivity. As the metal fiber, a metal thread such as stainless steel, aluminum, iron, nickel, or copper can be used. Aramid fiber has strong tensile strength and frictional resistance, and is also excellent in high temperature and chemical resistance. Aromatic polyamide fibers have very good heat resistance and strength. Liquid crystal polyester fibers have higher rigidity than engineering plastics reinforced with fillers even in the non-reinforced state. Alumina fiber can be used even in a high temperature range and has fire resistance.

複合材内の繊維材は、繊維配向方向がランダムであり、一部が接続用部材との界面に表出している。繊維材の平均繊維長は、0.5mm以上、50.8mm(2inch)以下とすることができる。 The fiber material in the composite material has a random fiber orientation direction, and a part of the fiber material is exposed at the interface with the connecting member. The average fiber length of the fiber material can be 0.5 mm or more and 50.8 mm (2 inch) or less.

例えば、繊維材として炭素繊維を用いる場合、0.5mm以上の平均繊維長を有するものがよい。平均繊維長は0.7mm以上のものが好ましく、より好ましくは1mm以上とする。繊維材の平均繊維長を0.5mm以上にすることで、複合材における樹脂材の補強効果を確実に得ることができる。また、平均繊維長は、50.8mm以下のものが好ましい。繊維材の平均繊維長を50.8mm以下にすることで、後述する製造工程において、溶媒内で繊維材が撹拌機に絡まることなくスムーズに開繊でき、複合材をより均質にできる。 For example, when carbon fiber is used as the fiber material, one having an average fiber length of 0.5 mm or more is preferable. The average fiber length is preferably 0.7 mm or more, more preferably 1 mm or more. By setting the average fiber length of the fiber material to 0.5 mm or more, the reinforcing effect of the resin material in the composite material can be surely obtained. The average fiber length is preferably 50.8 mm or less. By setting the average fiber length of the fiber material to 50.8 mm or less, the fiber material can be smoothly opened in the solvent without being entangled with the stirrer in the manufacturing process described later, and the composite material can be made more homogeneous.

樹脂組成物中の炭素繊維配合量は、10〜60重量%が好ましい。より機械的強度の向上が必要な場合は、炭素繊維配合量を増量したり、異なる平均繊維長の炭素繊維を混合したりするとよい。複合材は、靭性を考慮して平均繊維長や繊維配合量を調整する必要もあり、上記範囲にすることで、良好な機械的特性が得られる。 The amount of carbon fiber blended in the resin composition is preferably 10 to 60% by weight. When it is necessary to further improve the mechanical strength, it is advisable to increase the amount of carbon fiber compounded or to mix carbon fibers having different average fiber lengths. It is also necessary to adjust the average fiber length and the fiber compounding amount of the composite material in consideration of toughness, and by setting the above range, good mechanical properties can be obtained.

上述したハウジング部27のボス部33,35,37,39,45,47と接続用部材49,51,53,55,57,59とのそれぞれの界面には、接着剤層を形成して、この接着剤層によりボス部と接続用部材とが接着されていてもよい。接着剤層を形成する接着剤としては、ポリビニルアルコール、フェノール樹脂、エポキシ樹脂等を使用できる。 An adhesive layer is formed at each interface between the boss portions 33, 35, 37, 39, 45, 47 of the housing portion 27 and the connecting members 49, 51, 53, 55, 57, 59 described above. The boss portion and the connecting member may be adhered to each other by this adhesive layer. As the adhesive for forming the adhesive layer, polyvinyl alcohol, phenol resin, epoxy resin and the like can be used.

上記構成のハウジング部27は、接続用部材49,51,53,55,57,59を除く全体が複合材により構成される。ただし、これに限らず、少なくとも第1ハウジング部28,第2ハウジング部32のみを複合材で構成する等、適宜な変更が可能である。 The housing portion 27 having the above configuration is entirely made of a composite material except for the connecting members 49, 51, 53, 55, 57, 59. However, the present invention is not limited to this, and appropriate changes can be made such that at least only the first housing portion 28 and the second housing portion 32 are made of a composite material.

次に、ラックアンドピニオンハウジング100の製造方法を説明する。
図5(A)〜(F)はラックアンドピニオンハウジングの製造工程を説明する工程図である。
ラックアンドピニオンハウジングの製造工程は、繊維材の開繊工程と、プリフォームを成形する抄造工程と、成形されたプリフォームに接続用部材を組み付ける組み付け工程と、樹脂成形する成形工程とを、この順に有する。
Next, a method of manufacturing the rack and pinion housing 100 will be described.
5 (A) to 5 (F) are process diagrams illustrating a manufacturing process of the rack and pinion housing.
The manufacturing process of the rack and pinion housing includes a fiber material opening process, a preform molding process, an assembly process of assembling a connecting member to the molded preform, and a resin molding molding process. Have in order.

開繊工程では、図5(A)に示すように、繊維材である炭素繊維を含む多数のビレット61を、溶媒74を入れた容器62内に投入し、撹拌機63を駆動して溶媒中の炭素繊維を開繊させる。 In the fiber-spreading step, as shown in FIG. 5 (A), a large number of billets 61 containing carbon fibers as a fiber material are put into a container 62 containing the solvent 74, and a stirrer 63 is driven into the solvent. To open the carbon fiber of.

これにより、図5(B)に示すように、均質な繊維含有スラリー65を得る。溶媒としては、安定性、取り扱い性、コストの観点から水(白水)が好ましいが、その他、エタノール、メタノールなどの溶剤又はこれらの混合系であってもよい。 As a result, as shown in FIG. 5 (B), a homogeneous fiber-containing slurry 65 is obtained. As the solvent, water (white water) is preferable from the viewpoint of stability, handleability, and cost, but in addition, a solvent such as ethanol or methanol or a mixed system thereof may be used.

続いて抄造工程では、図5(C)に示すように、ハウジング成形用の抄造型67内に、成形用芯金87とともに繊維含有スラリー65を封入する。抄造型67に設けられた排出管66には、図示しない吸引ポンプが接続される。また、抄造型67の型面には、型の形状に沿って抄造ネット68が配置される。吸引ポンプが、排出管66を通じて空気や繊維含有スラリー65の溶媒を型外部に排出すると、抄造型67に配置された抄造ネット68に繊維積層体が抄造される。そして、抄造後に得られる湿潤状態の繊維積層体を、乾燥処理により固化させる。 Subsequently, in the papermaking step, as shown in FIG. 5C, the fiber-containing slurry 65 is sealed together with the molding core metal 87 in the papermaking mold 67 for housing molding. A suction pump (not shown) is connected to the discharge pipe 66 provided in the papermaking mold 67. Further, a papermaking net 68 is arranged on the mold surface of the papermaking mold 67 along the shape of the mold. When the suction pump discharges air or the solvent of the fiber-containing slurry 65 to the outside of the mold through the discharge pipe 66, the fiber laminate is manufactured on the papermaking net 68 arranged in the papermaking mold 67. Then, the wet fiber laminate obtained after papermaking is solidified by a drying treatment.

これにより、図5(D)に示すように、抄造型67から、完成品とほぼ同形の中空のプリフォーム69が成形される。なお、抄造型67はこれに限らず、例えば完成品を、軸芯を含む平面で二分割した半円筒状のプリフォームを抄造するものであってもよい。その場合、得られた半円筒状のプリフォームを接合して、最終的に図5(D)に示す中空のプリフォーム69の形状にすればよい。なお、図示例では説明の簡単のため、前述のボス部33のみを設けた形状を例示している。他のボス部35,37,39,45,47については、ボス部33と同様であるため説明を省略する。 As a result, as shown in FIG. 5 (D), a hollow preform 69 having substantially the same shape as the finished product is formed from the drafting mold 67. The papermaking mold 67 is not limited to this, and for example, the finished product may be made by making a semi-cylindrical preform obtained by dividing the finished product into two by a plane including the axis. In that case, the obtained semi-cylindrical preforms may be joined to finally form the hollow preform 69 shown in FIG. 5 (D). In the illustrated example, for the sake of simplicity, the shape in which only the boss portion 33 is provided is illustrated. The other boss portions 35, 37, 39, 45, 47 are the same as the boss portion 33, and thus the description thereof will be omitted.

次に、組み付け工程では、図5(E)に示すように、中空のプリフォーム69に形成されるボス部33に接続用部材49を組み付ける。 Next, in the assembling step, as shown in FIG. 5 (E), the connecting member 49 is assembled to the boss portion 33 formed in the hollow preform 69.

そして、成形工程では、図5(F)に示すように、接続用部材49が組み付けられた中空のプリフォーム69を成形用芯金89とともに成形用型71に装填して、プランジャーギアポンプ等を駆動源とする材料供給部72によって、熱可塑性樹脂又はエポキシ樹脂等の主剤と、硬化剤との混合液となる樹脂材73を定圧で型内に注入する。 Then, in the molding step, as shown in FIG. 5 (F), the hollow preform 69 to which the connecting member 49 is assembled is loaded into the molding mold 71 together with the molding core metal 89, and the plunger gear pump or the like is loaded. A resin material 73, which is a mixture of a main agent such as a thermoplastic resin or an epoxy resin and a curing agent, is injected into the mold at a constant pressure by a material supply unit 72 as a driving source.

ここで、樹脂材73を成形用型71へ注入する前に、成形用型71を予備加熱しておくことが好ましい。より好ましくは成形用芯金89とともに予備加熱しておくことが好ましい。その場合、樹脂材73が均一に加熱されることで、成形不良が生じにくくなり、硬化時間も短縮でき、生産性が向上する。 Here, it is preferable to preheat the molding die 71 before injecting the resin material 73 into the molding die 71. More preferably, it is preheated together with the molding core metal 89. In that case, since the resin material 73 is uniformly heated, molding defects are less likely to occur, the curing time can be shortened, and productivity is improved.

また、図5(E)のステップにおける金属製の接続用部材49とボス部33との接合には、接着剤を併用するのがよい。具体的には、プリフォーム69のボス部33に接着剤を塗布することで接着剤が浸潤されたボス部33に、接続用部材49を取り付ける。これにより、接続用部材49がボス部33に接着される。その状態で成形工程を実施することで、接続用部材49が樹脂によりボス部33に強固に固定される。その結果、接続用部材49とボス部33との接合強度を一層向上できる。 Further, it is preferable to use an adhesive together for joining the metal connecting member 49 and the boss portion 33 in the step of FIG. 5 (E). Specifically, the connecting member 49 is attached to the boss portion 33 in which the adhesive is infiltrated by applying the adhesive to the boss portion 33 of the preform 69. As a result, the connecting member 49 is adhered to the boss portion 33. By carrying out the molding process in that state, the connecting member 49 is firmly fixed to the boss portion 33 by the resin. As a result, the joint strength between the connecting member 49 and the boss portion 33 can be further improved.

このように、組み付け工程は、予めボス部33の表面に接着剤を塗布しておき、接続用部材49をボス部33に接着剤で固定する工程を含むものであってもよい。接着剤は熱硬化性樹脂であればよく、エポキシ樹脂、その他に親和性のある樹脂であれば特に限定されない。 As described above, the assembling step may include a step of applying an adhesive to the surface of the boss portion 33 in advance and fixing the connecting member 49 to the boss portion 33 with the adhesive. The adhesive may be a thermosetting resin, and is not particularly limited as long as it is an epoxy resin or a resin having an affinity for other substances.

更に、樹脂材としてエポキシ樹脂、繊維材として炭素繊維を用いて構成される複合材においては、複合材の強度を向上させるため、樹脂材と繊維材との密着性と繊維分散性を向上させることが好ましい。そのため、繊維材をエポキシ、ウレタン、サイジング剤で密着させてもよい。サイジング剤は、有機官能基と、樹脂、エラストマーとの反応を考慮して適宜選定することができる。 Further, in a composite material composed of an epoxy resin as a resin material and a carbon fiber as a fiber material, in order to improve the strength of the composite material, the adhesion between the resin material and the fiber material and the fiber dispersibility should be improved. Is preferable. Therefore, the fiber material may be adhered with epoxy, urethane, or a sizing agent. The sizing agent can be appropriately selected in consideration of the reaction between the organic functional group and the resin or elastomer.

なお、本発明の目的を損なわない範囲内で、成形用の樹脂材料に各種添加剤を配合してもよい。添加剤としては、例えば、黒鉛、六方晶窒化ホウ素、フッ素雲母、四フッ化エチレン樹脂粉末、二硫化タングステン、及び二硫化モリブデン等の固体潤滑剤、無機粉末、有機粉末、潤滑油、可塑剤、ゴム、酸化防止剤、熱安定剤、紫外線吸収剤、光保護剤、難燃剤、帯電防止剤、離型剤、流動性改良剤、熱伝導性改良剤、非粘着性付与剤、結晶化促進剤、増核剤、顔料、染料剤等を例示することができる。 Various additives may be added to the resin material for molding within a range that does not impair the object of the present invention. Examples of the additive include solid lubricants such as graphite, hexagonal boron nitride, fluorine mica, ethylene tetrafluoride resin powder, tungsten disulfide, and molybdenum disulfide, inorganic powder, organic powder, lubricating oil, and plasticizer. Rubber, antioxidants, heat stabilizers, UV absorbers, light protectants, flame retardants, antistatic agents, mold release agents, fluidity improvers, thermal conductivity improvers, non-adhesive imparts, crystallization accelerators , Nucleating agents, pigments, dyes and the like can be exemplified.

成形用型71において、注入した樹脂材73を硬化させた後、プリフォーム69と接続用部材49とが一体成形された複合品を、成形用芯金89とともに成形用型71から取り出し、複合品から成形用芯金89を取り外す。これにより、接続用部材49が樹脂材73によってプリフォーム69と一体にされたラックアンドピニオンハウジング100が得られる。 In the molding die 71, after the injected resin material 73 is cured, the composite product in which the preform 69 and the connecting member 49 are integrally molded is taken out from the molding die 71 together with the molding core metal 89, and the composite product Remove the molding core metal 89 from. As a result, a rack and pinion housing 100 in which the connecting member 49 is integrated with the preform 69 by the resin material 73 is obtained.

次に、上記の製造方法により得られたラックアンドピニオンハウジング100の作用を説明する。
本構成のラックアンドピニオンハウジング100は、繊維材からなる前駆体であるプリフォーム69に、円筒状のボス部33が形成される。このボス部33の円筒内周部には、金属製の接続用部材49が嵌入されることで、接続用部材49の外周部が密着する。そして、接続用部材49が取り付けられた繊維材からなるプリフォーム69をインサート材として成形することで、繊維材の隙間内に樹脂材が含浸される。接続用部材49は、この含浸された樹脂材によってプリフォーム69(繊維材)と一体にされる。
Next, the operation of the rack and pinion housing 100 obtained by the above manufacturing method will be described.
In the rack and pinion housing 100 having this configuration, a cylindrical boss portion 33 is formed on a preform 69 which is a precursor made of a fiber material. A metal connecting member 49 is fitted into the inner peripheral portion of the cylinder of the boss portion 33, so that the outer peripheral portion of the connecting member 49 is brought into close contact with the inner peripheral portion of the cylinder. Then, by molding the preform 69 made of the fiber material to which the connecting member 49 is attached as the insert material, the resin material is impregnated in the gap of the fiber material. The connecting member 49 is integrated with the preform 69 (fiber material) by the impregnated resin material.

図6(A)はボス部33に接続用部材49を組み付けた、ボス部33と接続用部材49との接合部を表した断面図、(B)は成形後のボス部33と接続用部材49との接合部を表した断面図である。 FIG. 6A is a cross-sectional view showing a joint portion between the boss portion 33 and the connecting member 49 in which the connecting member 49 is assembled to the boss portion 33, and FIG. 6B is a cross-sectional view showing the joint portion between the boss portion 33 and the connecting member 49 after molding. It is sectional drawing which showed the joint part with 49.

図6(A)に示すように、ボス部33の繊維材75は、接続用部材49が組み付けられることで、多数の繊維材75が接続用部材49に密着する。しかも、繊維材75は、抄造により繊維配向方向がランダムに配向されているため、各繊維の接続用部材49との接触方向もランダムとなる。 As shown in FIG. 6A, a large number of fiber materials 75 are brought into close contact with the connecting member 49 by assembling the connecting member 49 to the fiber material 75 of the boss portion 33. Moreover, since the fiber orientation direction of the fiber material 75 is randomly oriented by papermaking, the contact direction of each fiber with the connecting member 49 is also random.

そして、図6(B)に示すように、成形工程により繊維材75の隙間に樹脂材73が含浸されると、樹脂材73によって接続用部材49とボス部33とが接合される。接続用部材49とボス部33との接合界面76は、繊維材75の一部が接続用部材49に密着した状態となっている。また、ボス部33側では、繊維材75が樹脂マトリクス内に均等に分散配置された状態となっている。 Then, as shown in FIG. 6B, when the resin material 73 is impregnated in the gaps between the fiber materials 75 by the molding process, the connecting member 49 and the boss portion 33 are joined by the resin material 73. At the joining interface 76 between the connecting member 49 and the boss portion 33, a part of the fiber material 75 is in close contact with the connecting member 49. Further, on the boss portion 33 side, the fiber material 75 is in a state of being evenly dispersed and arranged in the resin matrix.

ここで、図7に参考例を示す。図7は繊維材75を含むハウジング部27Aが接着剤79により接続用部材49Aに接合された接合部を表した断面図である。この参考例の場合、接続用部材49Aとハウジング部27Aとは、接着剤79を介して接合されている。この接着剤79は、繊維材75が含有されたハウジング部27Aへ進入できないため、ハウジング部27Aよりも弱い脆弱層81となって、接続用部材49Aとの間に介装されることになる。そのため、ハウジング部27A又は接続用部材49Aが大きな外力を受けた場合に、この脆弱層81が剥離面となって破壊に至る可能性がある。 Here, a reference example is shown in FIG. FIG. 7 is a cross-sectional view showing a joint portion in which the housing portion 27A including the fiber material 75 is joined to the connecting member 49A by the adhesive 79. In the case of this reference example, the connecting member 49A and the housing portion 27A are joined via an adhesive 79. Since the adhesive 79 cannot enter the housing portion 27A containing the fiber material 75, it becomes a fragile layer 81 weaker than the housing portion 27A and is interposed with the connecting member 49A. Therefore, when the housing portion 27A or the connecting member 49A receives a large external force, the fragile layer 81 may become a peeling surface and may be destroyed.

一方、図6(B)に示す本構成の接合構造においては、ボス部33において、樹脂材73が接続用部材49を覆い、且つ、繊維材75の一部が接合界面76に表出して接続用部材49に密着し、この状態で繊維材75間に樹脂材73が含浸されている。これにより、ハウジング部27のボス部33は、脆弱部を有することなく、樹脂材73によって接続用部材49と強固に接合される。しかも、繊維材75が接合界面76まで配置されるため、接合界面76における接続用部材49とボス部33との剥離が生じにくい。また、繊維材75がランダム配置されるため、任意方向からの外力に対する強度を向上できる。更に、樹脂材73と繊維材75により構成される複合材料は、単層構造であるため、複合材料の内部に界面が存在しない。そのため、従来発生していた複合材料内における炭素繊維シート間の界面剥離が発生せず、接合強度を高く保つことができる。 On the other hand, in the joining structure of the present configuration shown in FIG. 6B, in the boss portion 33, the resin material 73 covers the connecting member 49, and a part of the fiber material 75 is exposed and connected to the joining interface 76. It is in close contact with the member 49, and in this state, the resin material 73 is impregnated between the fiber materials 75. As a result, the boss portion 33 of the housing portion 27 is firmly joined to the connecting member 49 by the resin material 73 without having a fragile portion. Moreover, since the fiber material 75 is arranged up to the joining interface 76, peeling between the connecting member 49 and the boss portion 33 at the joining interface 76 is unlikely to occur. Further, since the fiber materials 75 are randomly arranged, the strength against an external force from an arbitrary direction can be improved. Further, since the composite material composed of the resin material 73 and the fiber material 75 has a single-layer structure, there is no interface inside the composite material. Therefore, the interfacial peeling between the carbon fiber sheets in the composite material, which has been conventionally generated, does not occur, and the bonding strength can be maintained high.

また、繊維材75は、平均繊維長が0.5mm以上、50.8mm以下とされている。そのため、繊維材75を溶媒内でスムーズに開繊でき、繊維材75がムラなく分散された均質なプリフォーム69を形成することと、成形後における繊維材75による樹脂材73の補強効果を確実に得ることを両立できる。 Further, the fiber material 75 has an average fiber length of 0.5 mm or more and 50.8 mm or less. Therefore, the fiber material 75 can be smoothly opened in the solvent, the uniform preform 69 in which the fiber material 75 is evenly dispersed is formed, and the reinforcing effect of the resin material 73 by the fiber material 75 after molding is ensured. It is possible to obtain both.

次に、前述した成形工程より前の組み付け工程において、接続用部材49を、接着剤を塗布したボス部33に組み付ける場合を説明する。
図8(A)は接着剤79を塗布したボス部33に接続用部材49を組み付けた、ボス部33と接続用部材49との接合部を表した断面図、(B)は成形後のボス部33と接続用部材49との接合部を表した断面図である。
Next, a case where the connecting member 49 is assembled to the boss portion 33 coated with the adhesive will be described in the assembling step prior to the molding step described above.
FIG. 8A is a cross-sectional view showing a joint portion between the boss portion 33 and the connecting member 49 in which the connecting member 49 is assembled to the boss portion 33 coated with the adhesive 79, and FIG. 8B is a boss after molding. It is sectional drawing which showed the joint part of part 33 and connection member 49.

本構成によれば、図8(A)に示すように、接続用部材49は、ボス部33の繊維材75の隙間に含浸した接着剤79によってボス部33に接着される。この接合界面76に形成される接着層は、繊維材75が存在する複合材接着層83となって、高い接合強度が得られる。こののち、成形工程にて複合材接着層83の外側にある繊維材の隙間に樹脂材73が含浸される。 According to this configuration, as shown in FIG. 8A, the connecting member 49 is adhered to the boss portion 33 by the adhesive 79 impregnated in the gap between the fiber materials 75 of the boss portion 33. The adhesive layer formed at the bonding interface 76 becomes the composite adhesive layer 83 in which the fiber material 75 is present, and high bonding strength can be obtained. After that, the resin material 73 is impregnated in the gaps between the fiber materials on the outside of the composite material adhesive layer 83 in the molding process.

図8(B)に示すように、ボス部33の繊維材75の隙間に樹脂材73が含浸されると、複合材接着層83の外側の繊維材75は樹脂材73によって覆われた複合材層85となる。これら複合材接着層83と複合材層85は、共に繊維材75がランダムに配向された複合材の層となる。接続用部材49との接着力は、樹脂材73よりも接着剤79の方が高いため、複合材接着層83は、前述の図6(B)に示す場合よりも更に強力に、接続用部材49を接着固定する。その結果、接続用部材49のハウジング部27への接合強度が、樹脂材73で接合する場合と比較して更に向上する。また、接続用部材49との接合強度は、複合材接着層83と樹脂材73との親和性の高い材料ほど向上する。 As shown in FIG. 8B, when the resin material 73 is impregnated in the gaps between the fiber materials 75 of the boss portion 33, the fiber material 75 outside the composite material adhesive layer 83 is a composite material covered with the resin material 73. It becomes layer 85. Both the composite material adhesive layer 83 and the composite material layer 85 are layers of the composite material in which the fiber material 75 is randomly oriented. Since the adhesive 79 has a higher adhesive force with the connecting member 49 than the resin material 73, the composite adhesive layer 83 is stronger than the case shown in FIG. 6 (B) described above. 49 is adhesively fixed. As a result, the bonding strength of the connecting member 49 to the housing portion 27 is further improved as compared with the case of bonding with the resin material 73. Further, the bonding strength with the connecting member 49 is improved as the material has a higher affinity between the composite adhesive layer 83 and the resin material 73.

本構成においても、接合界面76で剥離することがなく、任意方向からの外力に対する強度を向上できる。また、樹脂材73と繊維材75からなる複合材により構成されるため、軽量で高強度なラックアンドピニオンハウジング100が得られる。 Also in this configuration, the strength against an external force from an arbitrary direction can be improved without peeling at the bonding interface 76. Further, since it is composed of a composite material made of a resin material 73 and a fiber material 75, a lightweight and high-strength rack and pinion housing 100 can be obtained.

以上説明した各構成のラックアンドピニオンハウジング100を備えるラックアンドピニオン式ステアリング装置は、ハウジング部が、樹脂材料と繊維材の複合材によって構成されるが、複合材からなるハウジング部と接続用部材との接合界面に脆弱層が形成されることがない。そのため、接続用部材とハウジング部との接合強度の低下が抑えられる。また、ハウジング部は、繊維材がランダムな配向方向で均一に分散されているため、外部から衝撃を受けても破損し難くなり、EPS減速機のラックアンドピニオンを確実に保護できる。また、ハウジング部を複合材により構成するため、従来のアルミダイカスト品等からなるハウジングに比べて軽量化できる。更に、このように、本構成のラックアンドピニオン式ステアリング装置によれば、必要な強度や剛性を確保しつつ、軽量化することができる。 In the rack and pinion type steering device including the rack and pinion housing 100 having each configuration described above, the housing portion is composed of a composite material of a resin material and a fiber material, and the housing portion made of the composite material and the connecting member are used. No fragile layer is formed at the joint interface of the housing. Therefore, a decrease in joint strength between the connecting member and the housing portion can be suppressed. Further, since the fiber material is uniformly dispersed in the housing portion in a random orientation direction, it is less likely to be damaged even if it receives an impact from the outside, and the rack and pinion of the EPS reduction gear can be reliably protected. Further, since the housing portion is made of a composite material, the weight can be reduced as compared with a conventional housing made of die-cast aluminum or the like. Further, as described above, according to the rack and pinion type steering device having this configuration, it is possible to reduce the weight while ensuring the necessary strength and rigidity.

本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 The present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the combination of the configurations of the embodiments with each other, the description of the specification, and well-known techniques. It is the planned invention and is included in the scope of seeking protection.

以上の通り、本明細書には次の事項が開示されている。
(1) ラック歯を有するラック軸にピニオンが噛み合わされたラックアンドピニオンの外側を覆うハウジング部と、前記ハウジング部の一部に形成され被接合部材が接続される接合部と、を備えるラックアンドピニオンハウジングであって、前記ハウジング部は、繊維材と樹脂材との複合材を含んで構成され、前記接合部は、前記複合材からなるボス部と前記ボス部に固定される接続用部材とを有し、前記繊維材は、繊維配向方向がランダムであり、前記ボス部における前記繊維材の一部が前記接続用部材との界面に表出していることを特徴とするラックアンドピニオンハウジング。
このラックアンドピニオンハウジングによれば、ハウジング部が繊維材と樹脂材料からなる複合材で形成されるため、接続用部材が脆弱層を介することなくボス部に取り付け可能となる。つまり、ハウジング部のボス部は、樹脂材料が接続用部材との接合界面まで充填される。また、繊維材の一部は、接続用部材との接合界面に表出して、接続用部材に密着する。よって、ハウジング部の接続用部材との界面には、繊維材の存在しない脆弱層が存在しなくなる。よって、接続用部材とハウジングとの間で剥離が生じず、高強度な接続構造にできる。
As described above, the following matters are disclosed in this specification.
(1) A rack and pinion including a rack and pinion having a rack shaft having rack teeth and a pinion meshed with the outside of the rack and pinion, and a joint portion formed in a part of the housing portion to which a member to be joined is connected. A pinion housing, wherein the housing portion includes a composite material of a fiber material and a resin material, and the joint portion includes a boss portion made of the composite material and a connecting member fixed to the boss portion. The rack and pinion housing is characterized in that the fiber orientation direction is random, and a part of the fiber material in the boss portion is exposed at an interface with the connecting member.
According to this rack and pinion housing, since the housing portion is formed of a composite material made of a fiber material and a resin material, the connecting member can be attached to the boss portion without passing through a fragile layer. That is, the boss portion of the housing portion is filled with the resin material up to the bonding interface with the connecting member. Further, a part of the fiber material is exposed at the joining interface with the connecting member and adheres to the connecting member. Therefore, the fragile layer in which the fiber material does not exist does not exist at the interface of the housing portion with the connecting member. Therefore, peeling does not occur between the connecting member and the housing, and a high-strength connection structure can be obtained.

(2) 前記繊維材は、ガラス繊維、炭素繊維、金属繊維、アラミド繊維、芳香族ポリアミド繊維、液晶ポリエステル繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維のうち、少なくとも1種類から選択されるものであることを特徴とする(1)のラックアンドピニオンハウジング。
このラックアンドピニオンハウジングによれば、上記の繊維材を樹脂材に混合して固化させることにより、金属に比べ軽量で、しかも十分な強度が得られる。
(2) The fiber material is selected from at least one of glass fiber, carbon fiber, metal fiber, aramid fiber, aromatic polyamide fiber, liquid crystal polyester fiber, silicon carbide fiber, alumina fiber and boron fiber. The rack and pinion housing of (1), which is characterized by being present.
According to this rack and pinion housing, by mixing the above fiber material with a resin material and solidifying it, lighter weight and sufficient strength can be obtained as compared with metal.

(3) 前記繊維材の平均繊維長は0.5mm以上、50.8mm以下であることを特徴とする(1)又は(2)のラックアンドピニオンハウジング。
このラックアンドピニオンハウジングによれば、繊維材を溶媒内でスムーズに開繊でき、均質なプリフォームを形成することと、成形後における繊維材による樹脂材料の補強効果を確実に得ることを両立できる。
(3) The rack and pinion housing according to (1) or (2), wherein the average fiber length of the fiber material is 0.5 mm or more and 50.8 mm or less.
According to this rack and pinion housing, the fiber material can be smoothly opened in a solvent to form a homogeneous preform, and the effect of reinforcing the resin material by the fiber material after molding can be surely obtained at the same time. ..

(4) 前記接続用部材と前記ボス部との界面に、接着剤層が形成されることを特徴とする(1)〜(3)のいずれか1つのラックアンドピニオンハウジング。
このラックアンドピニオンハウジングによれば、繊維材の隙間に樹脂材料が含浸される前に、接続用部材が接着剤によってボス部に接着される。これにより、接続用部材をより強力にボス部に固定できる。また、成形工程において、接続用部材とハウジングとの位置ずれが生じることもない。
(4) The rack and pinion housing according to any one of (1) to (3), wherein an adhesive layer is formed at an interface between the connecting member and the boss portion.
According to this rack and pinion housing, the connecting member is adhered to the boss portion by an adhesive before the gaps between the fiber materials are impregnated with the resin material. As a result, the connecting member can be more strongly fixed to the boss portion. Further, in the molding process, the positional deviation between the connecting member and the housing does not occur.

(5) 前記接着剤層は、ポリビニルアルコール、フェノール樹脂、エポキシ樹脂の少なくともいずれかを含むことを特徴とする(4)のラックアンドピニオンハウジング。
このラックアンドピニオンハウジングによれば、繊維材の隙間に含浸される樹脂材料と、接続用部材をボス部に接着する接着剤との親和性を確保でき、接続用部材とハウジングとの接合強度を高められる。
(5) The rack and pinion housing according to (4), wherein the adhesive layer contains at least one of polyvinyl alcohol, phenol resin, and epoxy resin.
According to this rack and pinion housing, the affinity between the resin material impregnated in the gaps between the fibrous materials and the adhesive that adheres the connecting member to the boss portion can be ensured, and the bonding strength between the connecting member and the housing can be improved. Can be enhanced.

(6) 前記樹脂材は、熱可塑性樹脂又は熱硬化性樹脂であることを特徴とする(1)〜(5)のいずれか1つのラックアンドピニオンハウジング。
このラックアンドピニオンハウジングによれば、熱可塑性樹脂を用いることにより、硬化時間が不要となり、ハウジングを短時間で製造できる。また、熱硬化性樹脂を用いることにより、再度加熱をしても変形・溶解しないので、ハウジングの耐熱性を高められる。
(6) The rack and pinion housing according to any one of (1) to (5), wherein the resin material is a thermoplastic resin or a thermosetting resin.
According to this rack and pinion housing, by using the thermoplastic resin, the curing time is not required, and the housing can be manufactured in a short time. Further, by using a thermosetting resin, the heat resistance of the housing can be improved because it is not deformed or melted even if it is heated again.

(7) (1)〜(6)のいずれか一つに記載のラックアンドピニオンハウジングと、
外周の少なくとも一部にラック歯を有し、前記ラックアンドピニオンハウジングに往復駆動可能に支持されるラック軸と、
ステアリングシャフトの下端に取り付けられて、前記ラックアンドピニオンハウジングに回転可能に支持され、前記ラック軸のラック歯に噛み合うピニオンを有するピニオン軸と、
を有し、
前記ピニオン軸の回転で前記ラック軸を往復駆動し、タイロッドを介して車輪を操舵するラックアンドピニオン式ステアリング装置。
このラックアンドピニオン式ステアリング装置によれば、ラック軸を覆うラックアンドピニオンハウジングが、樹脂材と繊維材との複合材によって構成されるので、従来の例えばアルミダイカスト品からなるハウジングに比べて、強度を維持しつつ軽量化が図れる。
(7) The rack and pinion housing according to any one of (1) to (6) and
A rack shaft having rack teeth on at least a part of the outer circumference and being reciprocally supported by the rack and pinion housing.
A pinion shaft attached to the lower end of the steering shaft, rotatably supported by the rack and pinion housing, and having a pinion that meshes with the rack teeth of the rack shaft.
Have,
A rack-and-pinion type steering device that reciprocates the rack shaft by rotation of the pinion shaft and steers wheels via a tie rod.
According to this rack and pinion type steering device, since the rack and pinion housing covering the rack shaft is composed of a composite material of a resin material and a fiber material, it is stronger than a conventional housing made of, for example, an aluminum die-cast product. It is possible to reduce the weight while maintaining the above.

(8) 繊維材を溶媒中で開繊させて繊維含有スラリーを得る開繊工程と、前記繊維含有スラリーを抄造型に注入し、前記抄造型内から前記溶媒を除去することで、前記抄造型から完成品とほぼ同形のプリフォームを成形する抄造工程と、前記プリフォームに形成されているボス部に接続用部材を組み付ける組み付け工程と、前記接続用部材が組み付けられた前記プリフォームを成形用型に装填して、前記プリフォームと前記接続用部材を樹脂により一体成形する成形工程と、を含むことを特徴とするラックアンドピニオンハウジングの製造方法。
このラックアンドピニオンハウジングの製造方法によれば、開繊工程で得られた繊維含有スラリーが、抄造工程においてプリフォーム用の抄造型に封入されて乾燥される。抄造型から取り出された繊維は、完成品とほぼ同形のプリフォームとされ、プリフォームの一部のボス部に、金属製の接続用部材が組み付けられる。つまり、繊維材からなるボス部には、接続用部材が密着した状態となる。プリフォームは、この状態で成形用型に配置されて樹脂が注入される。したがって、成形用型から取り出されたラックアンドピニオンハウジングは、接続用部材が繊維材の一部と密着した状態で、樹脂材により強固に一体成形された状態となる。よって、接続用部材とボス部との接合強度を向上できる。
(8) The fabrication mold is obtained by opening the fiber material in a solvent to obtain a fiber-containing slurry, and by injecting the fiber-containing slurry into a fabrication mold and removing the solvent from the inside of the fabrication mold. A manufacturing process for molding a preform having almost the same shape as the finished product, an assembling step for assembling a connecting member to the boss portion formed on the preform, and a molding process for assembling the preform to which the connecting member is assembled. A method for manufacturing a rack and pinion housing, which comprises a molding step of loading into a mold and integrally molding the preform and the connecting member with a resin.
According to this rack and pinion housing manufacturing method, the fiber-containing slurry obtained in the fiber-spreading step is sealed in a preform manufacturing mold and dried in the baking step. The fibers taken out from the molding mold are made into a preform having almost the same shape as the finished product, and a metal connecting member is attached to a part of the boss portion of the preform. That is, the connecting member is in close contact with the boss portion made of the fiber material. The preform is placed in the molding mold in this state and the resin is injected. Therefore, the rack and pinion housing taken out from the molding die is in a state of being firmly integrally molded with the resin material in a state where the connecting member is in close contact with a part of the fiber material. Therefore, the joint strength between the connecting member and the boss portion can be improved.

(9) 前記組み付け工程は、前記接続用部材を前記ボス部に接着剤で固定する工程を含むことを特徴とする(8)のラックアンドピニオンハウジングの製造方法。
このラックアンドピニオンハウジングの製造方法によれば、プリフォームの成形後、プリフォームのボス部に、接続用部材が接着剤で固定される。これにより、接続用部材とボス部との接合強度が更に向上する。
(9) The method for manufacturing a rack and pinion housing according to (8), wherein the assembling step includes a step of fixing the connecting member to the boss portion with an adhesive.
According to this rack and pinion housing manufacturing method, after molding the preform, the connecting member is fixed to the boss portion of the preform with an adhesive. As a result, the joint strength between the connecting member and the boss portion is further improved.

10 ラックアンドピニオン式ステアリング装置
21 タイロッド
23 ラック軸
25 ピニオン軸
27 ハウジング部
29 接合部
33,35,37,39,45,47 ボス部
49,51,53,55,57,59 接続用部材
65 繊維含有スラリー
67 抄造型
69 プリフォーム
71 成形用型
73 樹脂材
75 繊維材
79 接着剤
100 ラックアンドピニオンハウジング
10 Rack and pinion type steering device 21 Tie rod 23 Rack shaft 25 Pinion shaft 27 Housing part 29 Joint part 33, 35, 37, 39, 45, 47 Boss part 49, 51, 53, 55, 57, 59 Connection member 65 Fiber Containing slurry 67 Extraction mold 69 Preform 71 Molding mold 73 Resin material 75 Fiber material 79 Adhesive 100 Rack and pinion housing

Claims (2)

ガラス繊維、炭素繊維、アラミド繊維、芳香族ポリアミド繊維、液晶ポリエステル繊維、炭化ケイ素繊維、ボロン繊維のうち、少なくとも1種類から選択される繊維材を溶媒中で開繊させて繊維含有スラリーを得る開繊工程と、
前記繊維含有スラリーを抄造型に注入し、前記抄造型内から前記溶媒を除去することで、前記抄造型から完成品とほぼ同形のプリフォームを成形する抄造工程と、
前記プリフォームに形成されているボス部に接続用部材を組み付ける組み付け工程と、
前記接続用部材が組み付けられた前記プリフォームを成形用型に装填して、前記プリフォームと前記接続用部材を樹脂により一体成形する成形工程と、
を含むことを特徴とするラックアンドピニオンハウジングの製造方法。
A fiber material selected from at least one of glass fiber, carbon fiber, aramid fiber, aromatic polyamide fiber, liquid crystal polyester fiber, silicon carbide fiber, and boron fiber is opened in a solvent to obtain a fiber-containing slurry. Textile process and
A papermaking step of injecting the fiber-containing slurry into a papermaking mold and removing the solvent from the papermaking mold to form a preform having substantially the same shape as the finished product from the papermaking mold.
Assembling process of assembling the connecting member to the boss portion formed on the preform,
A molding step of loading the preform to which the connecting member is assembled into a molding mold and integrally molding the preform and the connecting member with a resin.
A method of manufacturing a rack and pinion housing, which comprises.
前記組み付け工程は、前記接続用部材を前記ボス部に接着剤で固定する工程を含む
ことを特徴とする請求項に記載のラックアンドピニオンハウジングの製造方法。
The method for manufacturing a rack and pinion housing according to claim 1 , wherein the assembling step includes a step of fixing the connecting member to the boss portion with an adhesive.
JP2016189878A 2016-09-28 2016-09-28 How to make a rack and pinion housing Active JP6822042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189878A JP6822042B2 (en) 2016-09-28 2016-09-28 How to make a rack and pinion housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189878A JP6822042B2 (en) 2016-09-28 2016-09-28 How to make a rack and pinion housing

Publications (2)

Publication Number Publication Date
JP2018052266A JP2018052266A (en) 2018-04-05
JP6822042B2 true JP6822042B2 (en) 2021-01-27

Family

ID=61834924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189878A Active JP6822042B2 (en) 2016-09-28 2016-09-28 How to make a rack and pinion housing

Country Status (1)

Country Link
JP (1) JP6822042B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912425B2 (en) * 2018-07-25 2021-08-04 ファナック株式会社 Robot arm and its manufacturing method and robot

Also Published As

Publication number Publication date
JP2018052266A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6414668B2 (en) Gears and manufacturing method thereof
JP6481849B2 (en) Gear and gear manufacturing method
Cao Enhanced buckling strength of the thin-walled continuous carbon fiber–reinforced thermoplastic composite through dual coaxial nozzles material extrusion process
JP5585069B2 (en) Manufacturing method of connecting member
US9797500B2 (en) Method for manufacturing rack housing and rack housing
WO2012102315A1 (en) Joined body of carbon fiber reinforced composite material
JP6233048B2 (en) Rack housing manufacturing method and rack housing
JP5515984B2 (en) Chassis frame
US20130078439A1 (en) Structure of fiber-reinforced composite material-made component part, and production method for the component part
FR2909634A1 (en) METHOD FOR MANUFACTURING A STRUCTURAL PART OF A BODY OR CHASSIS OF A MOTOR VEHICLE
US9695925B2 (en) Method of manufacturing bar member and bar member
US20160280025A1 (en) Assembly Comprising a Frame Element and a Connecting Element, and Method for Securing a Connecting Element to a Frame Element
JP6822042B2 (en) How to make a rack and pinion housing
CN108284618B (en) Structural component made of composite material and method for the production thereof
JP7056431B2 (en) How to manufacture gearbox components and how to manufacture preforms for gearbox components
IT201800007974A1 (en) LIGHTENED SUSPENSION MAST ASSEMBLY FOR ONE VEHICLE
JP7302753B2 (en) Cage manufacturing method and rolling bearing manufacturing method
JP7190614B1 (en) Carbon fiber reinforced resin cylinder for propulsion shaft
JP2009522131A (en) Insert member and injection molded member provided with insert member
JP6907800B2 (en) Gearbox components and gearboxes, and methods for manufacturing gearbox components
US20220381372A1 (en) Tube body intermediate and method for producing tube body
US20220379570A1 (en) Method for producing tube body
CN112721226A (en) Method for manufacturing telescopic rod and telescopic rod
JP2020138364A (en) Method for manufacturing pipe body used in power transmission shaft
CN117425558A (en) Method for manufacturing composite material molded article, method for manufacturing cage and rolling bearing, and method for manufacturing gear box component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R150 Certificate of patent or registration of utility model

Ref document number: 6822042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250