JP6821965B2 - Underwater communication device and underwater irradiation device - Google Patents

Underwater communication device and underwater irradiation device Download PDF

Info

Publication number
JP6821965B2
JP6821965B2 JP2016122684A JP2016122684A JP6821965B2 JP 6821965 B2 JP6821965 B2 JP 6821965B2 JP 2016122684 A JP2016122684 A JP 2016122684A JP 2016122684 A JP2016122684 A JP 2016122684A JP 6821965 B2 JP6821965 B2 JP 6821965B2
Authority
JP
Japan
Prior art keywords
underwater
blue semiconductor
unit
communication device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016122684A
Other languages
Japanese (ja)
Other versions
JP2017228889A (en
Inventor
雅也 諏訪
雅也 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2016122684A priority Critical patent/JP6821965B2/en
Publication of JP2017228889A publication Critical patent/JP2017228889A/en
Application granted granted Critical
Publication of JP6821965B2 publication Critical patent/JP6821965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Description

本発明は、水中で可視光通信を行う水中通信装置及び水中照射装置に関する。 The present invention relates to an underwater communication device and an underwater irradiation device that perform visible light communication underwater.

海中における水中移動体同士の無線通信においては、音波や電磁波等の様々な通信媒体が用いられてきた。例えば、音波を用いた場合、信号の減衰が少なく、伝送距離は3km以上と良好である。 Various communication media such as sound waves and electromagnetic waves have been used in wireless communication between underwater mobiles in the sea. For example, when sound waves are used, signal attenuation is small and the transmission distance is as good as 3 km or more.

しかし、伝送容量は、30kbps程度であり、伝播速度も音を用いているため、1500m/sに制限される。 However, the transmission capacity is about 30 kbps, and the propagation speed is also limited to 1500 m / s because sound is used.

そこで、更なる大容量、高速通信を目ざし、近年、光を用いた無線通信方式が注目されている。特に、可視光は、図4(非特許文献1)に示すように、海中での光の吸収が小さく、通信媒体に適している。図5に従来の可視光を用いた水中通信装置の構成ブロック図を示す。 Therefore, in recent years, a wireless communication method using light has been attracting attention with the aim of achieving even higher capacity and higher speed communication. In particular, as shown in FIG. 4 (Non-Patent Document 1), visible light absorbs less light in the sea and is suitable as a communication medium. FIG. 5 shows a block diagram of a conventional underwater communication device using visible light.

水中移動体Aは、光を照射する照射部10Aと、水中移動体Bからの光を受光する受光部20Aと、照射部10Aと受光部20Aとを制御する制御部30Aとを備える。水中移動体Bは、光を照射する照射部10Bと、水中移動体Aからの光を受光する受光部20Bと、照射部10Bと受光部20Bとを制御する制御部30Bとを備える。水中移動体Aと水中移動体Bとは、水中で無線通信を行う。 The underwater moving body A includes an irradiation unit 10A that irradiates light, a light receiving unit 20A that receives light from the underwater moving body B, and a control unit 30A that controls the irradiation unit 10A and the light receiving unit 20A. The underwater moving body B includes an irradiation unit 10B that irradiates light, a light receiving unit 20B that receives light from the underwater moving body A, and a control unit 30B that controls the irradiation unit 10B and the light receiving unit 20B. The underwater mobile body A and the underwater mobile body B perform wireless communication underwater.

この場合、光源として発光ダイオード(LED)を用いた場合、ビームが拡がってしまい、伝送距離が数十m程度と制限される。このため、レーザを用いた水中無線通信が提案されている(特許文献1、特許文献2)。 In this case, when a light emitting diode (LED) is used as the light source, the beam spreads and the transmission distance is limited to about several tens of meters. Therefore, underwater wireless communication using a laser has been proposed (Patent Document 1 and Patent Document 2).

特開2009−278455号公報JP-A-2009-278455 特開平5−228456号公報Japanese Unexamined Patent Publication No. 5-228456

JAMSTEC Rep.Res.Dev.Volume 19.September 2014,11-18JAMSTEC Rep.Res.Dev.Volume 19.September 2014, 11-18

しかしながら、レーザを用いた水中通信装置では、フジツボ等の大型水生付着生物の幼虫又は生体が照射部に付着していた。即ち、海中遮蔽物等により光路が遮断され、通信が不可能となる。 However, in the underwater communication device using a laser, larvae or living organisms of large aquatic attached organisms such as barnacles are attached to the irradiated portion. That is, the optical path is blocked by an underwater shield or the like, and communication becomes impossible.

大型水生付着生物の除去については、薬液注入や塗料塗布等の化学的除去方法、超音波や紫外線照射等の物理的除去方法、ロボットやウォータージェット等を用いた機械的除去方法がある。 Regarding the removal of large aquatic organisms, there are chemical removal methods such as chemical injection and paint application, physical removal methods such as ultrasonic wave and ultraviolet irradiation, and mechanical removal methods using robots and water jets.

しかし、化学的除去方法では化学物質による環境汚染等が問題視され、超音波では照射部の損傷が避けられない。機械的除去方法では装置の大型化やメンテナンスが困難となる等の課題が多い。 However, with the chemical removal method, environmental pollution caused by chemical substances is regarded as a problem, and damage to the irradiated part is unavoidable with ultrasonic waves. The mechanical removal method has many problems such as an increase in size of the device and difficulty in maintenance.

また、特許文献2では、エキシマレーザを海中遮蔽物に照射して海中遮蔽物を殺傷している。しかし、図4に示すように、紫外線は、海中ではほとんど透過しないため、海中遮蔽物を除去することはできない。 Further, in Patent Document 2, an excimer laser is applied to an underwater shield to kill the underwater shield. However, as shown in FIG. 4, since ultraviolet rays are hardly transmitted in the sea, the underwater shield cannot be removed.

本発明の課題は、大型水生付着生物等の海中遮蔽物を除去することができる水中通信装置及び水中照射装置を提供することにある。 An object of the present invention is to provide an underwater communication device and an underwater irradiation device capable of removing underwater shields such as large aquatic organisms.

本発明に係る水中通信装置は、上記課題を解決するために、他の水中通信装置との間で通信を行う水中通信装置であって、前記他の水中通信装置に可視光を照射する照射部と、前記他の水中通信装置からの可視光を受光する受光部と、前記照射部及び前記受光部を制御する制御部とを有し、前記照射部は、前記可視光として波長が400nm帯の青色を発光する青色半導体レーザと、前記青色半導体レーザから出射された光の内の、海中遮蔽物で反射された光を検出する光検出部と、前記光検出部からの出力に基づき前記通信が可能か否かを判定する通信判定部と、前記通信判定部により前記通信が不可能であると判定された場合に、電力を増加させる電力供給装置と、前記電力供給装置で増加された電力に応じた電流により前記青色半導体レーザを駆動し駆動された前記青色半導体レーザにより前記海中遮蔽物を除去するレーザ駆動部とを備えることを特徴とする。 The underwater communication device according to the present invention is an underwater communication device that communicates with another underwater communication device in order to solve the above problems, and is an irradiation unit that irradiates the other underwater communication device with visible light. The irradiation unit has a light receiving unit that receives visible light from the other underwater communication device, and a control unit that controls the irradiation unit and the light receiving unit. The irradiation unit has a wavelength of 400 nm as the visible light. The communication is performed based on the output from the blue semiconductor laser that emits blue light, the light detection unit that detects the light reflected by the undersea shield among the light emitted from the blue semiconductor laser, and the output from the light detection unit. The communication determination unit that determines whether or not it is possible, the power supply device that increases the power when the communication determination unit determines that the communication is impossible, and the power increased by the power supply device. It is characterized by including a laser driving unit that removes an underwater shield by the blue semiconductor laser driven by driving the blue semiconductor laser by a corresponding current.

また、本発明は、他の水中通信装置との間で通信を行う水中通信装置に設けられ、前記他の水中通信装置に可視光を照射する水中照射装置であって、前記可視光として波長が400nm帯の青色を発光する青色半導体レーザと、前記青色半導体レーザから出射された光の内の、海中遮蔽物で反射された光を検出する光検出部と、前記光検出部からの出力に基づき前記通信が可能か否かを判定する通信判定部と、前記通信判定部により前記通信が不可能であると判定された場合に、電力を増加させる電力供給装置と、前記電力供給装置で増加された電力に応じた電流により前記青色半導体レーザを駆動し駆動された前記青色半導体レーザにより前記海中遮蔽物を除去するレーザ駆動部と、を備えることを特徴とする。 Further, the present invention is an underwater irradiation device provided in an underwater communication device that communicates with another underwater communication device and irradiates the other underwater communication device with visible light, and the wavelength of the visible light is different. Based on the blue semiconductor laser that emits blue light in the 400 nm band, the light detection unit that detects the light reflected by the undersea shield among the light emitted from the blue semiconductor laser, and the output from the light detection unit. The communication determination unit that determines whether or not the communication is possible, the power supply device that increases the power when the communication determination unit determines that the communication is impossible, and the power supply device increase the power. It is characterized by including a laser driving unit for removing an undersea shield by the blue semiconductor laser driven by driving the blue semiconductor laser with a current corresponding to the electric power.

本発明によれば、波長が400nm帯の青色半導体レーザは、最も光の減衰が小さいので、遠距離まで通信が行える。また、海中遮蔽物は、炭酸カルシウムや有機物であり、短波長の青色半導体レーザの光を海中遮蔽物に照射すると、海中遮蔽物を殺傷できるため、海中遮蔽物を照射部から除去できる。 According to the present invention, a blue semiconductor laser having a wavelength in the 400 nm band has the smallest light attenuation, so that communication can be performed over a long distance. Further, the underwater shield is calcium carbonate or an organic substance, and when the underwater shield is irradiated with the light of a short wavelength blue semiconductor laser, the underwater shield can be killed, so that the underwater shield can be removed from the irradiated portion.

また、光検出部が海中遮蔽物で反射された光を検出し、通信判定部が光検出部からの出力に基づき通信が可能か否かを判定し、通信が不可能であると判定された場合に、電力供給装置が電力を増加させ、レーザ駆動部は、増加された電力に応じた電流により青色半導体レーザを駆動するので、青色半導体レーザの出力が上昇して、海中遮蔽物を容易に除去できる。 In addition, the photodetector detects the light reflected by the underwater shield, the communication determination unit determines whether communication is possible based on the output from the light detection unit, and it is determined that communication is not possible. In this case, the power supply device increases the power, and the laser drive unit drives the blue semiconductor laser with the current corresponding to the increased power, so that the output of the blue semiconductor laser increases and the underwater shield can be easily removed. Can be removed.

実施例1の水中通信装置の構成ブロック図である。It is a block diagram of the structure of the underwater communication apparatus of Example 1. FIG. 実施例1の水中通信装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation of the underwater communication apparatus of Example 1. FIG. 実施例2の水中通信装置の構成ブロック図である。It is a block diagram of the structure of the underwater communication device of Example 2. 海中における周波数に対する吸収率を示す図である。It is a figure which shows the absorption rate with respect to the frequency in the sea. 従来の水中通信装置の構成ブロック図である。It is a block diagram of the structure of the conventional underwater communication device.

以下、本発明の水中通信装置及び水中照射装置の実施の形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the underwater communication device and the underwater irradiation device of the present invention will be described in detail with reference to the drawings.

(実施例1)
図1は、実施例1の水中通信装置の構成ブロック図である。図1では、1つの水中通信装置の構成を示すが、この1つの水中通信装置と通信を行う図示しない他の水中通信装置も、1つの水中通信装置と同一構成である。
(Example 1)
FIG. 1 is a block diagram of the underwater communication device of the first embodiment. Although FIG. 1 shows the configuration of one underwater communication device, another underwater communication device (not shown) that communicates with this one underwater communication device also has the same configuration as one underwater communication device.

図1に示す水中通信装置は、他の水中通信装置に可視光を照射する照射部1と、他の水中通信装置からの光を受光する受光部2と、照射部1と受光部2とを制御する制御部3とを備える。 The underwater communication device shown in FIG. 1 includes an irradiation unit 1 that irradiates another underwater communication device with visible light, a light receiving unit 2 that receives light from the other underwater communication device, and an irradiation unit 1 and a light receiving unit 2. A control unit 3 for controlling is provided.

照射部1は、半導体レーザ11、光検出部12、レーザ制御部13、電力供給装置14、変調装置15、レーザ駆動部16を備えている。 The irradiation unit 1 includes a semiconductor laser 11, a light detection unit 12, a laser control unit 13, a power supply device 14, a modulation device 15, and a laser drive unit 16.

半導体レーザ11は、波長が400nm帯の青色を発光する。海水においては、青色等の短波長の光が赤色光等、他の波長よりも透過する。このため、実施例1では、海水において最も光の減衰の少ない波長が400nm帯の半導体レーザ11を用いている。半導体レーザ11の出力は、数W〜数十Wであり、連続波(CW)を発振する。 The semiconductor laser 11 emits blue light having a wavelength in the 400 nm band. In seawater, light with a short wavelength such as blue is transmitted more than other wavelengths such as red light. Therefore, in Example 1, a semiconductor laser 11 having a wavelength in the 400 nm band, which has the least light attenuation in seawater, is used. The output of the semiconductor laser 11 is several watts to several tens of watts, and oscillates a continuous wave (CW).

また、貝類やフジツボ等の付着生物の主成分は、炭酸カルシウムと有機物であり、短波長の光を発する青色の半導体レーザ11により海中遮蔽物を除去できる。 In addition, the main components of sessile organisms such as shellfish and barnacles are calcium carbonate and organic substances, and the underwater shield can be removed by the blue semiconductor laser 11 that emits light of a short wavelength.

光検出部12は、フォトダイオード等からなり、半導体レーザ11から出射された光の内の、海中遮蔽物で反射された光を検出する。レーザ制御部13は、光検出部12からの出力に基づき、他の水中通信装置との間で通信が可能か否かを判定する通信判定部を構成する。 The photodetection unit 12 is composed of a photodiode or the like, and detects the light reflected by the underwater shield among the light emitted from the semiconductor laser 11. The laser control unit 13 constitutes a communication determination unit that determines whether or not communication with another underwater communication device is possible based on the output from the light detection unit 12.

レーザ制御部13は、通信が不可能であると判定された場合に、電力供給装置14に電力を増加するための信号を出力する。電力供給装置14は、レーザ制御部13からの信号に基づき電力を増加させ、増加された電力をレーザ駆動部16に出力する。 When it is determined that communication is impossible, the laser control unit 13 outputs a signal for increasing the electric power to the electric power supply device 14. The power supply device 14 increases the electric power based on the signal from the laser control unit 13, and outputs the increased electric power to the laser drive unit 16.

レーザ駆動部16は、電力供給装置14からの増加された電力に応じた電流により半導体レーザ11を駆動して半導体レーザ11の出力を増加させる。 The laser drive unit 16 drives the semiconductor laser 11 with a current corresponding to the increased electric power from the power supply device 14 to increase the output of the semiconductor laser 11.

変調装置15は、情報を変調し変調された変調波信号をレーザ駆動部16に出力する。レーザ駆動部16は、変調装置15からの変調波信号と電力供給装置14からの増加された電力とに応じた電流により半導体レーザ11を駆動する。 The modulation device 15 modulates the information and outputs the modulated wave signal to the laser drive unit 16. The laser driving unit 16 drives the semiconductor laser 11 with a current corresponding to the modulated wave signal from the modulation device 15 and the increased power from the power supply device 14.

次に、このように構成された実施例1の水中通信装置の動作を図2に示すフローチャートを参照しながら詳細に説明する。ここでは、第1の水中通信装置と第2の水中通信装置との通信を一例として説明する。 Next, the operation of the underwater communication device of the first embodiment configured in this way will be described in detail with reference to the flowchart shown in FIG. Here, communication between the first underwater communication device and the second underwater communication device will be described as an example.

まず、第1の水中通信装置では、レーザ駆動部16が、変調装置15からの変調波信号と電力供給装置14からの電力とに応じた電流により半導体レーザ11を駆動する。すると、半導体レーザ11は、波長が400nm帯の青色を発光し、青色のレーザ光を第2の水中通信装置に向けて送信する(ステップS11)。 First, in the first underwater communication device, the laser drive unit 16 drives the semiconductor laser 11 with a current corresponding to the modulated wave signal from the modulation device 15 and the electric power from the power supply device 14. Then, the semiconductor laser 11 emits blue light having a wavelength in the 400 nm band, and transmits the blue laser light to the second underwater communication device (step S11).

また、第1の水中通信装置では、半導体レーザ11から出射された光の内の、海中遮蔽物で反射された反射光を光検出部12で検出する(ステップS12)。海中遮蔽物は、大型水生付着生物であり、大型水生付着生物は、フジツボ、ムラサキガイ、カキ等の貝類であり、照射部1に付着している。 Further, in the first underwater communication device, the photodetector 12 detects the reflected light reflected by the underwater shield among the light emitted from the semiconductor laser 11 (step S12). The underwater shield is a large aquatic attached organism, and the large aquatic attached organism is a shellfish such as a barnacle, a purple mussel, and an oyster, and is attached to the irradiation unit 1.

次に、レーザ制御部13は、光検出部12からの出力に基づき、第2の水中通信装置との間で通信が可能か否かを判定する(ステップS13)。 Next, the laser control unit 13 determines whether or not communication with the second underwater communication device is possible based on the output from the light detection unit 12 (step S13).

通信が不可能であると判定された場合には(ステップS13のNo)、レーザ制御部13は、電力供給装置14に電力を増加するための信号を出力する。電力供給装置14は、レーザ制御部13からの信号に基づき電力を増加させ、増加された電力をレーザ駆動部16に出力する。 When it is determined that communication is impossible (No in step S13), the laser control unit 13 outputs a signal for increasing the power to the power supply device 14. The power supply device 14 increases the electric power based on the signal from the laser control unit 13, and outputs the increased electric power to the laser drive unit 16.

次に、レーザ駆動部16は、電力供給装置14からの増加された電力に応じた電流により半導体レーザ11を駆動して半導体レーザ11の出力を増加させる(ステップS14)。短波長の青色の半導体レーザ11の光を海中遮蔽物に照射すると、海中遮蔽物を殺傷できるため、海中遮蔽物を照射部1から除去できる(ステップS15)。 Next, the laser driving unit 16 drives the semiconductor laser 11 with a current corresponding to the increased electric power from the power supply device 14 to increase the output of the semiconductor laser 11 (step S14). When the light of the blue semiconductor laser 11 having a short wavelength is irradiated to the underwater shield, the underwater shield can be killed, so that the underwater shield can be removed from the irradiation unit 1 (step S15).

このため、第2の水中通信装置は、第1の水中通信装置から変調波信号を受光部2で受光でき、第2の水中通信装置の制御部3は、受光部2で受光した変調波信号を復調して第1の水中通信装置からの情報を得ることができる。 Therefore, the second underwater communication device can receive the modulated wave signal from the first underwater communication device by the light receiving unit 2, and the control unit 3 of the second underwater communication device receives the modulated wave signal received by the light receiving unit 2. Can be demodulated to obtain information from the first underwater communication device.

従って、第1の水中通信装置と第2の水中通信装置との間で、正常なレーザ通信を行うことができる(ステップS16)。 Therefore, normal laser communication can be performed between the first underwater communication device and the second underwater communication device (step S16).

このように実施例1の水中通信装置によれば、波長が400nm帯の青色半導体レーザは、最も光の減衰が小さいので、遠距離まで通信が行える。また、海中遮蔽物は、炭酸カルシウムや有機物であり、短波長の青色半導体レーザの光を海中遮蔽物に照射すると、海中遮蔽物を殺傷できるため、海中遮蔽物を照射部1から除去できる。 As described above, according to the underwater communication device of the first embodiment, the blue semiconductor laser having a wavelength in the 400 nm band has the smallest light attenuation, so that communication can be performed over a long distance. Further, the underwater shield is calcium carbonate or an organic substance, and when the underwater shield is irradiated with the light of a short wavelength blue semiconductor laser, the underwater shield can be killed, so that the underwater shield can be removed from the irradiation unit 1.

また、光検出部12が海中遮蔽物で反射されてくる光を検出し、レーザ制御部13が通信判定部が光検出部12からの出力に基づき通信が可能か否かを判定し、通信が不可能であると判定された場合に、電力供給装置14が電力を増加させ、レーザ駆動部16は、増加された電力に応じた電流により半導体レーザ11を駆動する。 Further, the light detection unit 12 detects the light reflected by the underwater shield, the laser control unit 13 determines whether or not communication is possible based on the output from the light detection unit 12, and the communication is performed. When it is determined that it is impossible, the power supply device 14 increases the electric power, and the laser driving unit 16 drives the semiconductor laser 11 with a current corresponding to the increased electric power.

従って、半導体レーザ11の出力が上昇するので、海中遮蔽物を容易に除去できる。 Therefore, since the output of the semiconductor laser 11 increases, the underwater shield can be easily removed.

(実施例2)
図3は、実施例2の水中通信装置の構成ブロック図である。図3に示す実施例2の水中通信装置は、図1に示す実施例1の水中通信装置の半導体レーザ11の代わりに、複数個併設された半導体レーザ11a〜11eと、複数個の半導体レーザ11a〜11eから出射される複数のレーザ光を1本の光ファイバ4に結合させる光結合部17とを備えたことを特徴とする。
(Example 2)
FIG. 3 is a block diagram of the underwater communication device of the second embodiment. In the underwater communication device of the second embodiment shown in FIG. 3, a plurality of semiconductor lasers 11a to 11e and a plurality of semiconductor lasers 11a are provided instead of the semiconductor laser 11 of the underwater communication device of the first embodiment shown in FIG. It is characterized by including an optical coupling portion 17 for coupling a plurality of laser beams emitted from the to 11e to one optical fiber 4.

この場合、レーザ駆動部16は、複数個の半導体レーザ11a〜11eに電流を流すことにより複数個の半導体レーザ11a〜11eを駆動する。 In this case, the laser driving unit 16 drives the plurality of semiconductor lasers 11a to 11e by passing an electric current through the plurality of semiconductor lasers 11a to 11e.

このように実施例2の水中通信装置によれば、複数個の半導体レーザ11a〜11eから出射される複数のレーザ光を光結合部17で合成して1本の光ファイバ4に導く。従って、高出力のレーザ出力が得られ、海中遮蔽物を容易に除去でき、遠距離までレーザ通信を行うことができる。 As described above, according to the underwater communication device of the second embodiment, the plurality of laser beams emitted from the plurality of semiconductor lasers 11a to 11e are combined by the optical coupling unit 17 and guided to one optical fiber 4. Therefore, a high-power laser output can be obtained, an underwater shield can be easily removed, and laser communication can be performed over a long distance.

本発明に係る水中通信装置は、レーザ通信装置に適用可能である。 The underwater communication device according to the present invention is applicable to a laser communication device.

1 照射部
2 受光部
3 制御部
4 光ファイバ
1111a〜11e 半導体レーザ
12 光検出部
13 レーザ制御部
14 電力供給装置
15 変調装置
16 レーザ駆動部
17 光結合部



1 Irradiation unit 2 Light receiving unit 3 Control unit 4 Optical fiber 1111a to 11e Semiconductor laser 12 Light detection unit 13 Laser control unit 14 Power supply device 15 Modulation device 16 Laser drive unit 17 Optical coupling unit



Claims (5)

他の水中通信装置との間で通信を行う水中通信装置であって、
前記他の水中通信装置に可視光を照射する照射部と、
前記他の水中通信装置からの可視光を受光する受光部と、
前記照射部及び前記受光部を制御する制御部とを有し、
前記照射部は、前記可視光として波長が400nm帯の青色を発光する青色半導体レーザと、
前記青色半導体レーザから出射された光の内の、海中遮蔽物で反射された光を検出する光検出部と、
前記光検出部からの出力に基づき前記通信が可能か否かを判定する通信判定部と、
前記通信判定部により前記通信が不可能であると判定された場合に、電力を増加させる電力供給装置と、
前記電力供給装置で増加された電力に応じた電流により前記青色半導体レーザを駆動し駆動された前記青色半導体レーザにより前記海中遮蔽物を除去するレーザ駆動部と、
を備えることを特徴とする水中通信装置。
An underwater communication device that communicates with other underwater communication devices.
An irradiation unit that irradiates the other underwater communication device with visible light,
A light receiving unit that receives visible light from the other underwater communication device,
It has a control unit that controls the irradiation unit and the light receiving unit.
The irradiation unit includes a blue semiconductor laser that emits blue light having a wavelength in the 400 nm band as visible light.
A photodetector that detects the light reflected by the underwater shield among the light emitted from the blue semiconductor laser, and
A communication determination unit that determines whether or not the communication is possible based on the output from the optical detection unit, and
A power supply device that increases power when the communication determination unit determines that the communication is impossible.
A laser drive unit that removes an underwater shield by the blue semiconductor laser driven by driving the blue semiconductor laser with a current corresponding to the increased power in the power supply device.
An underwater communication device characterized by being provided with.
前記青色半導体レーザの出力は、数W〜数十Wであることを特徴とする請求項1記載の水中通信装置。 The underwater communication device according to claim 1, wherein the output of the blue semiconductor laser is several watts to several tens of watts. 前記青色半導体レーザは、複数個併設され、
前記レーザ駆動部は、複数個の前記青色半導体レーザを駆動し、
複数個の前記青色半導体レーザからの複数の光を1本の光ファイバに結合させる光結合部を備えることを特徴とする請求項1又は請求項2記載の水中通信装置。
A plurality of the blue semiconductor lasers are installed side by side.
The laser driving unit drives a plurality of the blue semiconductor lasers.
The underwater communication device according to claim 1 or 2, further comprising an optical coupling unit that couples a plurality of lights from the plurality of blue semiconductor lasers to one optical fiber.
他の水中通信装置との間で通信を行う水中通信装置に設けられ、前記他の水中通信装置に可視光を照射する水中照射装置であって、
前記可視光として波長が400nm帯の青色を発光する青色半導体レーザと、
前記青色半導体レーザから出射された光の内の、海中遮蔽物で反射された光を検出する光検出部と、
前記光検出部からの出力に基づき前記通信が可能か否かを判定する通信判定部と、
前記通信判定部により前記通信が不可能であると判定された場合に、電力を増加させる電力供給装置と、
前記電力供給装置で増加された電力に応じた電流により前記青色半導体レーザを駆動し駆動された前記青色半導体レーザにより前記海中遮蔽物を除去するレーザ駆動部と、
を備えることを特徴とする水中照射装置。
An underwater irradiation device provided in an underwater communication device that communicates with another underwater communication device and irradiates the other underwater communication device with visible light.
A blue semiconductor laser that emits blue light with a wavelength in the 400 nm band as visible light,
A photodetector that detects the light reflected by the underwater shield among the light emitted from the blue semiconductor laser, and
A communication determination unit that determines whether or not the communication is possible based on the output from the optical detection unit, and
A power supply device that increases power when the communication determination unit determines that the communication is impossible.
And Les chromatography The drive unit for removing the sea shield by the blue semiconductor laser in which the driving blue semiconductor laser is driven by a current corresponding to the increased power by the power supply device,
An underwater irradiation device characterized by comprising.
前記青色半導体レーザは、複数個併設され、
前記レーザ駆動部は、複数個の前記青色半導体レーザを駆動し、
複数個の前記青色半導体レーザからの複数の光を1本の光ファイバに結合させる光結合部を備えることを特徴とする請求項4記載の水中照射装置。
A plurality of the blue semiconductor lasers are installed side by side.
The laser driving unit drives a plurality of the blue semiconductor lasers.
The underwater irradiation apparatus according to claim 4, further comprising an optical coupling portion for coupling a plurality of lights from the plurality of blue semiconductor lasers to one optical fiber.
JP2016122684A 2016-06-21 2016-06-21 Underwater communication device and underwater irradiation device Active JP6821965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016122684A JP6821965B2 (en) 2016-06-21 2016-06-21 Underwater communication device and underwater irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122684A JP6821965B2 (en) 2016-06-21 2016-06-21 Underwater communication device and underwater irradiation device

Publications (2)

Publication Number Publication Date
JP2017228889A JP2017228889A (en) 2017-12-28
JP6821965B2 true JP6821965B2 (en) 2021-01-27

Family

ID=60892283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122684A Active JP6821965B2 (en) 2016-06-21 2016-06-21 Underwater communication device and underwater irradiation device

Country Status (1)

Country Link
JP (1) JP6821965B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114984B2 (en) * 2018-03-29 2022-08-09 株式会社島津製作所 Underwater laser light source
CN108986827B (en) * 2018-06-21 2022-09-06 大连理工大学 Underwater voice real-time transmission method based on LiFi optical communication
JP2020149990A (en) 2019-03-11 2020-09-17 株式会社島津製作所 Laser device and transmitter
JPWO2021002093A1 (en) * 2019-07-04 2021-01-07
JP7353610B2 (en) * 2019-10-03 2023-10-02 株式会社島津製作所 Underwater optical wireless communication system, underwater optical wireless communication method, and underwater mobile object
JP7398335B2 (en) 2019-12-04 2023-12-14 東亜建設工業株式会社 Method for estimating communication distance in visible light communication
CN113137920B (en) * 2021-05-19 2022-09-23 重庆大学 Underwater measurement equipment and underwater measurement method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228456A (en) * 1992-02-21 1993-09-07 Tohoku Electric Power Co Inc Method for preventing fouling of organism in water pipe
JPH08165624A (en) * 1994-12-13 1996-06-25 Hitachi Zosen Corp Method of preventing adhesion of aquatic organism in water pipe
JPH08164188A (en) * 1994-12-13 1996-06-25 Tohoku Electric Power Co Inc Laser irradiation device for method for preventing adhesion of living things in water pipe
US6868236B2 (en) * 2002-07-18 2005-03-15 Terabeam Corporation Apparatus and method for combining multiple optical beams in a free-space optical communications system
JP2006304056A (en) * 2005-04-22 2006-11-02 Canon Inc Optical space communication device
JP4869182B2 (en) * 2007-08-28 2012-02-08 三菱電機特機システム株式会社 Underwater communication system
JP5051545B2 (en) * 2008-05-15 2012-10-17 独立行政法人海洋研究開発機構 Underwater visible light communication system and underwater visible light communication method
WO2015145527A1 (en) * 2014-03-24 2015-10-01 中国電力株式会社 Method for killing pteriomorphia and barnacles using light irradiation

Also Published As

Publication number Publication date
JP2017228889A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6821965B2 (en) Underwater communication device and underwater irradiation device
US10623110B2 (en) High-bandwidth underwater data communication system
US10710125B2 (en) Method and apparatus for removing biofouling from a protected surface in a liquid environment
Kaushal et al. Underwater optical wireless communication
US20160127042A1 (en) Multi-Modal Optical Communication Systems and Methods
US20120050520A1 (en) Method and Apparatus for Anti-Biofouling of Optics in Liquid Environments
KR101141663B1 (en) Using visible light underwater communication device and method
RU2690031C2 (en) Underwater data transmission system with high throughput capacity
US20160121009A1 (en) Optical Communication Systems and Methods
DE602004031164D1 (en) Device for emitting optical radiation
Sawa et al. Practical Performance and Prospect of Underwater Optical Wireless Communication——Results of Optical Characteristic Measurement at Visible Light Band under Water and Communication Tests with the Prototype Modem in the Sea——
US8818197B2 (en) Methods and systems for high bandwidth optical communication
JP5051545B2 (en) Underwater visible light communication system and underwater visible light communication method
US20130167429A1 (en) Safe mosquito killer
JP6951359B2 (en) Integrated system for real-time antifouling and biofouling monitoring
JP7114984B2 (en) Underwater laser light source
Leccese et al. LED-to-LED wireless communication between divers
WO2008088397A3 (en) Optical power modulation at high frequency
JP2017038099A (en) Spatial optical transmission device
Hagem et al. Optical wireless link budget calculations for real time swimmers feedback
JP6674207B2 (en) Spatial optical transmission equipment
KR20240029541A (en) A System for Generating a Photoacoustic Wave for Killing a Virus and a Pathogenic Bacterium Remaining in a Feces
Shanthi et al. Communication Between Submarines Using Li-Fi Technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R151 Written notification of patent or utility model registration

Ref document number: 6821965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151