JP7398335B2 - Method for estimating communication distance in visible light communication - Google Patents

Method for estimating communication distance in visible light communication Download PDF

Info

Publication number
JP7398335B2
JP7398335B2 JP2020081538A JP2020081538A JP7398335B2 JP 7398335 B2 JP7398335 B2 JP 7398335B2 JP 2020081538 A JP2020081538 A JP 2020081538A JP 2020081538 A JP2020081538 A JP 2020081538A JP 7398335 B2 JP7398335 B2 JP 7398335B2
Authority
JP
Japan
Prior art keywords
visible light
receiving device
irradiance
environmental conditions
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020081538A
Other languages
Japanese (ja)
Other versions
JP2021093708A (en
Inventor
繁 福岡
貴彦 網野
友博 森澤
敏之 保利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Publication of JP2021093708A publication Critical patent/JP2021093708A/en
Application granted granted Critical
Publication of JP7398335B2 publication Critical patent/JP7398335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、可視光通信における通信可能距離の推定方法に関し、さらに詳しくは、対象環境条件下において送信装置と受信装置との間で可視光通信を行うときの所望の通信速度での通信可能距離を簡便に推定できる方法に関するものである。 The present invention relates to a method for estimating the communicable distance in visible light communication, and more specifically, the communicable distance at a desired communication speed when performing visible light communication between a transmitting device and a receiving device under target environmental conditions. The present invention relates to a method for easily estimating .

気中や水中での通信方法として、可視光を使用してデータの無線通信を行う可視光通信が利用されている(例えば、特許文献1参照)。その中でも発光ダイオードを使用する可視光通信は、人体に安全でありコストも低く抑えられるため、汎用性に優れている。しかしながら、発光ダイオードによって照射する可視光は水や浮遊物質などの影響を受け易いため、所望の通信速度での通信可能距離は可視光通信を行う対象環境条件によってそれぞれ異なる。例えば、気中では、霧の有無や雨の有無、外来光の強さなどの環境条件が異なると通信可能距離が異なる。水中では、水の濁り具合や塩分濃度、外来光の強さなどの環境条件が異なると通信可能距離が異なる。 2. Description of the Related Art Visible light communication, in which data is wirelessly communicated using visible light, is used as a communication method in the air or underwater (for example, see Patent Document 1). Among these, visible light communication that uses light emitting diodes is safe for the human body and has low costs, making it highly versatile. However, since the visible light emitted by the light emitting diode is easily affected by water, suspended substances, etc., the communicable distance at a desired communication speed varies depending on the environmental conditions under which visible light communication is performed. For example, in the air, the communicable distance varies depending on environmental conditions such as the presence or absence of fog, the presence or absence of rain, and the intensity of external light. Underwater, the communication distance varies depending on environmental conditions such as water turbidity, salinity, and intensity of external light.

特許文献1に記載の発明では、水中移動体に設けられた可視光放射装置が複数種類の波長の可視光を放射する。そして、観測装置に設けた可視光受光部が受光した可視光の波長を波長判定部によって判定することで、水中移動体に設けられた可視光通信装置と観測装置に設けられた可視光通信装置との可視光通信に最適な可視光の波長を把握している。しかしながら、この方法では、所望の通信速度での通信可能距離を把握することはできない。 In the invention described in Patent Document 1, a visible light emitting device provided on an underwater vehicle emits visible light of multiple types of wavelengths. Then, by determining the wavelength of the visible light received by the visible light receiving section provided in the observation device by the wavelength determination section, the visible light communication device provided in the underwater moving object and the visible light communication device provided in the observation device are determined. We understand the wavelength of visible light that is optimal for visible light communication with. However, with this method, it is not possible to determine the communicable distance at a desired communication speed.

所望の通信速度での通信可能距離を把握する方法としては、例えば、対象環境条件下において、送信装置と受信装置との離間距離を変えながら可視光通信試験を繰り返し行って、所望の通信速度が得られる送信装置と受信装置との離間距離を探す方法が考えられる。しかしながら、その方法では、送信装置と受信装置とを数十メートル~数百メートル程度離間させた状態で、可視光通信試験を何度も繰り返す必要がある。それ故、送信装置と受信装置との位置合わせや離間距離の計測に非常に多くの手間と時間を要する。 One way to determine the possible communication distance at a desired communication speed is, for example, to repeatedly conduct visible light communication tests while changing the distance between the transmitting device and the receiving device under the target environmental conditions, and to determine the desired communication speed. One possible method is to find the distance between the transmitting device and the receiving device that can be obtained. However, with this method, it is necessary to repeat the visible light communication test many times with the transmitting device and the receiving device separated from each other by several tens of meters to several hundred meters. Therefore, it takes a great deal of effort and time to align the transmitting device and the receiving device and to measure the separation distance between them.

特開2009-278455号公報JP2009-278455A

本発明の目的は、対象環境条件下において送信装置と受信装置との間で可視光通信を行うときの所望の通信速度での通信可能距離を簡便に推定できる方法を提供することにある。 An object of the present invention is to provide a method that can easily estimate the communicable distance at a desired communication speed when performing visible light communication between a transmitting device and a receiving device under target environmental conditions.

上記目的を達成するため本発明の可視光通信における通信可能距離の推定方法は、対象環境条件下において送信装置と受信装置との間で可視光通信を行うときの所望の通信速度での通信可能距離の推定方法であって、前記送信装置が照射する可視光の透過率cを予め把握している環境条件下で、互いに離間して配置した前記送信装置から前記受信装置に前記可視光を照射する事前試験を行い、その事前試験における環境条件下の透過率cと、前記送信装置の照射位置から前記受信装置の受光位置までの離間距離Lと、前記受信装置が受光する可視光の放射照度Eとを、下記(1)式に代入して前記送信装置の光源強度Iを算出する事前試験工程と、
E=I・c/L …(1)
前記送信装置と前記受信装置との間で可視光通信を行うときの前記所望の通信速度に対応する前記受信装置が受光する前記可視光の放射照度Eを把握する放射照度把握工程と、前記対象環境条件下、または、前記対象環境条件を再現した環境条件下において、互いに離間して配置した前記送信装置から前記受信装置に前記可視光を照射する現場環境試験を行い、前記現場環境試験での前記送信装置の照射位置から前記受信装置の受光位置までの離間距離Lおよび前記受信装置が受光する前記可視光の放射照度Eと、前記事前試験工程で予め算出した前記送信装置の光源強度Iとを、前記(1)式に代入して、前記対象環境条件下における前記可視光の透過率cを算出する透過率把握工程とを行い、前記透過率把握工程で算出した前記対象環境条件下における前記可視光の透過率cと、前記事前試験工程で算出した前記送信装置の光源強度Iと、前記放射照度把握工程で把握した前記所望の通信速度に対応する前記受信装置が受光する前記可視光の放射照度Eとを、前記(1)式に代入することで前記通信可能距離Lを推定することを特徴する。
In order to achieve the above object, the method of estimating the communication distance in visible light communication of the present invention enables communication at a desired communication speed when performing visible light communication between a transmitting device and a receiving device under target environmental conditions. A distance estimation method, wherein the visible light is emitted from the transmitting devices arranged at a distance from each other to the receiving device under an environmental condition in which the transmittance c of the visible light emitted by the transmitting devices is known in advance. Conduct a preliminary test to determine the transmittance c under the environmental conditions in the preliminary test, the separation distance L from the irradiation position of the transmitter to the light receiving position of the receiver, and the irradiance of visible light received by the receiver. A preliminary test step of calculating the light source intensity I of the transmitting device by substituting E into the following equation (1);
E=I・c L /L 2 …(1)
an irradiance grasping step of grasping the irradiance E of the visible light received by the receiver corresponding to the desired communication speed when performing visible light communication between the transmitter and the receiver, and the target An on-site environmental test is conducted in which the visible light is irradiated from the transmitting devices placed apart from each other to the receiving device under environmental conditions or under environmental conditions that reproduce the target environmental conditions, and the on-site environmental test The separation distance L from the irradiation position of the transmitting device to the light receiving position of the receiving device, the irradiance E of the visible light received by the receiving device, and the light source intensity I of the transmitting device calculated in advance in the preliminary test step. and a transmittance grasping step of calculating the transmittance c of the visible light under the target environmental conditions by substituting the above into equation (1), and calculating the transmittance c under the target environmental conditions calculated in the transmittance grasping step. The transmittance c of the visible light at It is characterized in that the communicable distance L is estimated by substituting the irradiance E of visible light into the equation (1).

本発明によれば、事前試験工程を行っておけば、透過率把握工程では、対象環境条件下、または、対象環境条件下を再現した環境条件下において現場環境試験を行い、現場環境試験における送信装置の照射位置から受信装置の受光位置までの離間距離Lおよび受信装置が受光する可視光の放射照度Eと、事前試験工程で予め算出した送信装置の光源強度Iとを、(1)式に代入するだけで、対象環境条件下における可視光の透過率cを簡易に算出できる。そして、透過率把握工程で算出した対象環境条件下における可視光の透過率cと、事前試験工程で算出した送信装置の光源強度Iと、放射照度把握工程で把握した所望の通信速度に対応する受信装置の放射照度Eとを(1)式に代入するだけで、対象環境条件下における所望の通信速度での通信可能距離Lを簡便に推定できる。 According to the present invention, if the preliminary test process is performed, in the transmittance understanding process, an on-site environmental test is performed under the target environmental condition or an environmental condition that reproduces the target environmental condition, and the transmission in the on-site environmental test is performed. The distance L from the irradiation position of the device to the light receiving position of the receiver, the irradiance E of visible light received by the receiver, and the light source intensity I of the transmitter calculated in advance in the preliminary test process are expressed in equation (1). By simply substituting, the visible light transmittance c under the target environmental conditions can be easily calculated. Then, it corresponds to the visible light transmittance c under the target environmental conditions calculated in the transmittance understanding process, the light source intensity I of the transmitting device calculated in the preliminary test process, and the desired communication speed calculated in the irradiance understanding process. By simply substituting the irradiance E of the receiving device into equation (1), the communicable distance L at a desired communication speed under the target environmental conditions can be easily estimated.

事前試験工程と放射照度把握工程は対象環境条件下で行う必要はなく、室内などで簡易に行える。透過率把握工程の現場環境試験では、送信装置の照射位置から受信装置の受光位置までの離間距離Lを数メートル程度に設定すればよく、送信装置から受信装置に可視光を照射する作業も1回行えばよい。それ故、現場環境試験も少ない作業工数で速やかに完了することができる。 The preliminary testing process and the irradiance understanding process do not need to be performed under the target environmental conditions, and can be easily performed indoors. In the on-site environment test in the transmittance understanding process, it is sufficient to set the distance L from the irradiation position of the transmitter to the light receiving position of the receiver to be approximately several meters, and the work of irradiating visible light from the transmitter to the receiver also requires 1. All you have to do is go around. Therefore, on-site environmental tests can be quickly completed with fewer man-hours.

送信装置と受信装置との間で可視光通信を行っている状況を平面視で例示する説明図である。FIG. 2 is an explanatory diagram illustrating, in plan view, a situation in which visible light communication is performed between a transmitting device and a receiving device. 送信装置の照射位置から受信装置の受光位置までの離間距離と、受信装置が受光する可視光の照度との関係を例示するグラフ図である。FIG. 2 is a graph diagram illustrating the relationship between the separation distance from the irradiation position of the transmitting device to the light receiving position of the receiving device and the illuminance of visible light received by the receiving device. 受信装置が受光する可視光の放射照度と照度との関係を例示するグラフ図である。FIG. 2 is a graph diagram illustrating a relationship between irradiance and illuminance of visible light received by a receiving device. 受信装置が受光する可視光の照度と通信速度との関係を例示するグラフ図である。FIG. 2 is a graph diagram illustrating the relationship between the illuminance of visible light received by a receiving device and communication speed.

以下、本発明の可視光通信における通信可能距離の推定方法を図に示した実施形態に基づいて説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for estimating a communicable distance in visible light communication according to the present invention will be described below based on the embodiment shown in the drawings.

図1に例示するように、本発明は、対象環境条件下において送信装置1と受信装置2との間で可視光通信を行うときの所望の通信速度での通信可能距離を推定する方法である。送信装置1は、可視光Vを照射する送信レンズ3を備えている。受信装置2は、送信装置1から照射された可視光Vを受光する受信レンズ4を備えている。 As illustrated in FIG. 1, the present invention is a method for estimating the communicable distance at a desired communication speed when performing visible light communication between a transmitting device 1 and a receiving device 2 under target environmental conditions. . The transmitting device 1 includes a transmitting lens 3 that emits visible light V. The receiving device 2 includes a receiving lens 4 that receives visible light V emitted from the transmitting device 1.

この実施形態では、対象環境条件を海洋の水中とし、送信装置1と受信装置2とをそれぞれ個々の防水ケース5で囲った状態で可視光通信を行う場合を例示する。防水ケース5は例えば、可視光Vの透過率cが高いアクリル樹脂やガラスなどで形成するとよい。対象環境条件とする水深が深い場合には、防水ケース5は例えば、繊維強化プラスチック(FRP)やガラス等を組み合わせて形成するとよい。防水ケース5は送信装置1や受信装置2を収容できる内空部を有しており、対象環境条件での水圧に耐え得る構成であれば材質や寸法などは特に限定されない。防水ケース5は任意に用いることができ、例えば、対象環境条件が水中でない場合には防水ケース5を使用しなくてもよい。対象環境条件は可視光通信が可能な環境条件であれば特に限定されない。対象環境条件としては、例えば、霧や雨、外来光などの影響を受ける気中や、濁りや塩分濃度、外来光などの影響を受ける水中(海や湖等)、水以外の液体中などが挙げられる。 In this embodiment, a case will be exemplified in which the target environmental condition is underwater in the ocean, and visible light communication is performed with the transmitting device 1 and the receiving device 2 each surrounded by an individual waterproof case 5. The waterproof case 5 may be made of, for example, acrylic resin or glass that has a high transmittance c of visible light V. When the target environmental condition is deep water, the waterproof case 5 may be formed of a combination of fiber-reinforced plastic (FRP), glass, etc., for example. The waterproof case 5 has an inner space that can accommodate the transmitting device 1 and the receiving device 2, and the material and dimensions are not particularly limited as long as the structure can withstand water pressure under the target environmental conditions. The waterproof case 5 can be used arbitrarily; for example, if the target environmental condition is not underwater, the waterproof case 5 may not be used. The target environmental conditions are not particularly limited as long as they allow visible light communication. Target environmental conditions include, for example, air that is affected by fog, rain, and extraneous light, underwater (sea, lake, etc.) that is affected by turbidity, salinity, and extraneous light, and liquids other than water. Can be mentioned.

本発明では、事前試験工程と放射照度把握工程と透過率把握工程とを行い、その後に前述した所望の通信速度での通信可能距離を算出する。 In the present invention, a preliminary test step, an irradiance understanding step, and a transmittance understanding step are performed, and then the communicable distance at the desired communication speed described above is calculated.

図2は、送信装置1および受信装置2の機種は同じであるが、送信装置1に異なる送信レンズ3を取り付けて送信装置1の光源強度I(W/m)を異ならせた2つのパターン(A、B)について、可視光Vの透過率cが約1.0である大気中において可視光通信を行った場合の、送信装置1の照射位置(送信レンズ3の先端)から受信装置2の受光位置(受信レンズ4の先端)までの離間距離L(m)と、受信装置2が受光する可視光Vの照度(lux)との関係をグラフ化したデータである。図2に示すように、送信装置1に取り付ける送信レンズ3が異なると、送信装置1の光源強度Iが異なる。また、送信装置1の機種が異なる場合にも、送信装置1の光源強度Iは異なる。そのため、事前試験工程を行うことで、対象環境条件下で使用する送信装置1(送信レンズ3を含む)の光源強度Iを把握する。 FIG. 2 shows two patterns in which the transmitting device 1 and the receiving device 2 are of the same model, but different transmitting lenses 3 are attached to the transmitting device 1, and the light source intensity I (W/m 2 ) of the transmitting device 1 is made different. Regarding (A, B), when visible light communication is performed in the atmosphere where the transmittance c of visible light V is approximately 1.0, from the irradiation position of the transmitting device 1 (the tip of the transmitting lens 3) to the receiving device 2 This is data graphing the relationship between the separation distance L (m) to the light receiving position (the tip of the receiving lens 4) and the illuminance (lux) of the visible light V received by the receiving device 2. As shown in FIG. 2, when the transmitting lenses 3 attached to the transmitting device 1 are different, the light source intensity I of the transmitting device 1 is different. Further, the light source intensity I of the transmitting device 1 also differs when the model of the transmitting device 1 is different. Therefore, by performing a preliminary test step, the light source intensity I of the transmitting device 1 (including the transmitting lens 3) used under the target environmental conditions is determined.

事前試験工程では、送信装置1が照射する可視光Vの透過率cを予め把握している環境条件下で、互いに離間して配置した送信装置1から受信装置2に可視光Vを照射する事前試験を行い、その際に受信装置2が受光する可視光Vの放射照度E(W/m)を把握する。事前試験を行う場所は、可視光Vの透過率cを予め把握している環境条件下であれば特に限定されない。霧や雨、ガスなどの影響がない通常の大気中における可視光Vの透過率cは約1.0であるので、事前試験は室内などの大気中で行うとよい。例えば、可視光Vの透過率cが既知の液体(純水など)を入れた水槽等の中で事前試験を行ってもよい。 In the preliminary test process, under environmental conditions in which the transmittance c of the visible light V emitted by the transmitting device 1 is known in advance, visible light V is irradiated from the transmitting devices 1 spaced apart from each other to the receiving device 2. A test is conducted, and the irradiance E (W/m 2 ) of the visible light V received by the receiving device 2 at that time is determined. The place where the preliminary test is performed is not particularly limited as long as it is under environmental conditions where the transmittance c of visible light V is known in advance. Since the transmittance c of visible light V in the normal atmosphere, which is not affected by fog, rain, gas, etc., is about 1.0, it is preferable to conduct the preliminary test in the atmosphere, such as indoors. For example, a preliminary test may be conducted in a water tank or the like containing a liquid (such as pure water) whose transmittance c of visible light V is known.

この実施形態のように、対象環境条件下において防水ケース5を用いて可視光通信を行うことを想定している場合には、同様に送信装置1と受信装置2とをそれぞれ防水ケース5で囲った状態で事前試験を行うことが好ましい。受信装置2が受光する可視光Vの放射照度Eは、パワーメータなどを用いて計測できる。 As in this embodiment, when it is assumed that visible light communication is performed using the waterproof case 5 under target environmental conditions, the transmitting device 1 and the receiving device 2 are each surrounded by the waterproof case 5 in the same way. It is preferable to conduct a preliminary test under the condition that the The irradiance E of the visible light V received by the receiving device 2 can be measured using a power meter or the like.

図3は、送信装置1および受信装置2の機種は同じであるが、送信装置1に異なる送信レンズ3を取り付けて送信装置1の光源強度Iを異ならせた2つのパターン(A、B)について、受信装置2が受光する可視光Vの放射照度Eと照度との関係をグラフ化したデータである。図3に示すように、送信装置1の光源強度Iの違いによらず、受信装置2が受光する可視光Vの放射照度Eと照度とは線形関係にある。そのため、受信装置2が受光する可視光Vの放射照度Eを把握する際には、受信装置2が受光する可視光Vの照度を計測し、その計測した照度を放射照度Eに換算することもできる。受信装置2が受光する可視光Vの照度は、照度計などを用いて計測できる。 FIG. 3 shows two patterns (A, B) in which the transmitting device 1 and the receiving device 2 are of the same model, but different transmitting lenses 3 are attached to the transmitting device 1, and the light source intensity I of the transmitting device 1 is made different. , is data graphing the relationship between the irradiance E of the visible light V received by the receiving device 2 and the illuminance. As shown in FIG. 3, regardless of the difference in the light source intensity I of the transmitting device 1, the irradiance E of the visible light V received by the receiving device 2 and the illuminance have a linear relationship. Therefore, when determining the irradiance E of the visible light V received by the receiving device 2, it is also possible to measure the illuminance of the visible light V received by the receiving device 2 and convert the measured illuminance to the irradiance E. can. The illuminance of the visible light V received by the receiving device 2 can be measured using an illuminance meter or the like.

事前試験を行うときの送信装置1の照射位置から受信装置2の受光位置までの離間距離Lは事前試験を行う環境条件に応じて適宜設定できるが、離間距離Lが過度に短い場合には、受信装置2が受光する可視光Vの放射照度Eや照度が非常に高くなるため、放射照度Eや照度を精度よく計測することが難しい。また、事前試験で設定する離間距離Lは、受信装置2が受光する可視光Vの放射照度Eまたは照度を計測できる範囲内であればよいので、離間距離Lを過度に長く設定する必要はない。そのため、事前試験における送信装置1の照射位置から受信装置2の受光位置までの離間距離Lは、例えば、1m以上10m以下の範囲内で設定するとよい。 The separation distance L from the irradiation position of the transmitting device 1 to the light receiving position of the receiving device 2 when performing the preliminary test can be set as appropriate depending on the environmental conditions in which the preliminary test is performed, but if the separation distance L is too short, Since the irradiance E and illuminance of the visible light V received by the receiving device 2 are extremely high, it is difficult to accurately measure the irradiance E and illuminance. Furthermore, the separation distance L set in the preliminary test only needs to be within the range that can measure the irradiance E or illuminance of the visible light V received by the receiving device 2, so there is no need to set the separation distance L excessively long. . Therefore, the separation distance L from the irradiation position of the transmitting device 1 to the light receiving position of the receiving device 2 in the preliminary test is preferably set within a range of 1 m or more and 10 m or less, for example.

事前試験工程では、次に、事前試験における環境条件下の透過率cと、送信装置1の照射位置から受信装置2の受光位置までの離間距離Lと、受信装置2が受光する可視光Vの放射照度Eとを下記(1)式に代入することで、送信装置1の光源強度Iを算出する。(1)式は、光の減衰に関する逆2乗の法則に基づいた公知の理論式である。
E=I・c/L …(1)
In the preliminary test process, next, the transmittance c under the environmental conditions in the preliminary test, the separation distance L from the irradiation position of the transmitter 1 to the light receiving position of the receiver 2, and the amount of visible light V received by the receiver 2 are determined. By substituting the irradiance E into the following equation (1), the light source intensity I of the transmitter 1 is calculated. Equation (1) is a known theoretical equation based on the inverse square law regarding light attenuation.
E=I・c L /L 2 …(1)

図4は、送信装置1および受信装置2の機種は同じであるが、送信装置1に異なる送信レンズ3を取り付けて送信装置1の光源強度Iを異ならせた2つのパターン(A、B)について、それぞれ異なる環境条件下で可視光通信を行った場合の、受信装置2が受光した可視光Vの照度と、送信装置1と受信装置2との間で行われる通信速度(Mbps)との関係をグラフ化したデータである。図4に示すように、送信装置1や受信装置2の仕様が異なると、所望の通信速度に対応する受信装置2が受光する可視光Vの照度や放射照度Eも異なる。 FIG. 4 shows two patterns (A, B) in which the transmitting device 1 and the receiving device 2 are of the same model, but different transmitting lenses 3 are attached to the transmitting device 1, and the light source intensity I of the transmitting device 1 is made different. , the relationship between the illuminance of the visible light V received by the receiving device 2 and the communication speed (Mbps) performed between the transmitting device 1 and the receiving device 2 when visible light communication is performed under different environmental conditions. This is graphed data. As shown in FIG. 4, when the specifications of the transmitting device 1 and the receiving device 2 differ, the illuminance and irradiance E of visible light V received by the receiving device 2 corresponding to the desired communication speed also differ.

そのため、放射照度把握工程では、対象環境条件下で使用する送信装置1および受信装置2について、送信装置1と受信装置2との間で可視光通信を行うときの所望の通信速度に対応する受信装置2が受光する可視光Vの放射照度Eを把握する。 Therefore, in the irradiance understanding process, for the transmitting device 1 and receiving device 2 used under the target environmental conditions, reception corresponding to the desired communication speed when performing visible light communication between the transmitting device 1 and the receiving device 2 is performed. The irradiance E of the visible light V received by the device 2 is determined.

放射照度把握工程では、送信装置1と受信装置2とを互いに離間して配置し、送信装置1と受信装置2との通信速度の設定を、通信可能距離を推定する所望の通信速度に設定する。そして、送信装置1と受信装置2との間で可視光通信を行い、その際に受信装置2が受光する可視光Vの放射照度Eを把握する。放射照度把握工程を行うときの送信装置1の照射位置から受信装置2の受光位置までの離間距離Lは、放射照度把握工程を行う環境条件に応じて適宜設定できる。 In the irradiance understanding step, the transmitting device 1 and the receiving device 2 are placed apart from each other, and the communication speed between the transmitting device 1 and the receiving device 2 is set to a desired communication speed for estimating the communicable distance. . Then, visible light communication is performed between the transmitting device 1 and the receiving device 2, and the irradiance E of the visible light V received by the receiving device 2 at that time is grasped. The separation distance L from the irradiation position of the transmitting device 1 to the light receiving position of the receiving device 2 when performing the irradiance determining step can be appropriately set according to the environmental conditions in which the irradiance determining step is performed.

図4に示すように、同じ仕様の送信装置1および受信装置2を使用する場合には、可視光通信を行う環境条件が異なっても、受信装置2が受光する可視光Vの照度と通信速度との関係は概ね変わらない。それ故、放射照度把握工程も事前試験工程と同様に、対象環境条件下で行う必要はなく、室内などで行うことができる。 As shown in FIG. 4, when using a transmitter 1 and a receiver 2 with the same specifications, even if the environmental conditions for visible light communication are different, the illuminance of the visible light V received by the receiver 2 and the communication speed The relationship with Japan remains largely unchanged. Therefore, like the preliminary test process, the irradiance understanding process does not need to be performed under the target environmental conditions, and can be performed indoors or the like.

このように、事前試験工程を行うことで、対象環境条件下で使用する送信装置1の光源強度Iを把握でき、放射照度把握工程を行うことで、所望の通信速度に対応する受信装置2が受光する可視光Vの放射照度Eを把握できる。 In this way, by performing the preliminary test process, it is possible to understand the light source intensity I of the transmitting device 1 used under the target environmental conditions, and by performing the irradiance determining process, the receiving device 2 that corresponds to the desired communication speed can be determined. The irradiance E of the received visible light V can be grasped.

透過率把握工程では、現場環境試験を行う。現場環境試験は、通信可能距離を推定する対象環境条件下、または、対象環境条件を再現した環境条件下において、互いに離間して配置した送信装置1から受信装置2に可視光Vを照射し、その際に受信装置2が受光する可視光Vの放射照度Eを把握する。即ち、現場環境試験は実際に対象環境条件下の現場で行うこともできるし、現場以外の対象環境条件を再現した室内や屋外で行うこともできる。 In the transmittance understanding process, on-site environmental tests are conducted. In the on-site environmental test, visible light V is irradiated from the transmitting devices 1 placed apart from each other to the receiving device 2 under the target environmental conditions for estimating the communicable distance or under the environmental conditions that reproduce the target environmental conditions. At this time, the irradiance E of the visible light V received by the receiving device 2 is determined. That is, the on-site environmental test can be conducted at the actual site under the target environmental conditions, or it can be conducted indoors or outdoors where the target environmental conditions other than the site are reproduced.

例えば、この実施形態のように、対象環境条件が海洋の水中である場合には、水槽や照明機器などを使用して、対象環境条件の水質(塩分濃度や濁り具合など)や明るさ(外来光の照度など)に近い環境条件を再現する。現場環境試験を行う前準備として、対象環境条件の水を採取し、対象環境条件の照度を計測しておけば、室内や屋外において対象環境条件を精度よく再現することが可能である。現場環境試験で使用する水槽には、送信装置1と受信装置2との離間距離Lを把握しやすいように目印や目盛りなどを設けておくとよい。 For example, if the target environmental condition is underwater in the ocean, as in this embodiment, an aquarium, lighting equipment, etc. can be used to adjust the water quality (salt concentration, turbidity, etc.) and brightness (external water) of the target environmental condition. Reproduce environmental conditions close to (e.g., light illuminance). As a preparation before conducting an on-site environmental test, by collecting water under the target environmental conditions and measuring the illuminance under the target environmental conditions, it is possible to accurately reproduce the target environmental conditions indoors or outdoors. It is preferable that the water tank used in the field environment test be provided with marks, scales, etc. so that the separation distance L between the transmitting device 1 and the receiving device 2 can be easily understood.

現場環境試験を行うときの送信装置1の照射位置から受信装置2の受光位置までの離間距離Lは対象環境条件に応じて適宜設定できるが、離間距離Lが過度に短い場合には、受信装置2が受光する可視光Vの放射照度Eや照度が非常に高くなるため、放射照度Eや照度を精度よく計測することが難しい。また、現場環境試験で設定する離間距離Lは、受信装置2が受光する可視光Vの放射照度Eまたは照度を計測できる範囲内であればよいので、離間距離Lを過度に長く設定する必要はない。そのため、現場環境試験における送信装置1の照射位置から受信装置2の受光位置までの離間距離Lは例えば、1m以上10m以下の範囲内で設定するとよい。 The separation distance L from the irradiation position of the transmitter 1 to the light reception position of the receiver 2 when performing field environmental tests can be set as appropriate depending on the target environmental conditions, but if the separation distance L is too short, the receiver Since the irradiance E and illuminance of the visible light V received by the device 2 become extremely high, it is difficult to accurately measure the irradiance E and illuminance. In addition, the separation distance L set in the field environment test only needs to be within the range that can measure the irradiance E or illuminance of the visible light V received by the receiving device 2, so there is no need to set the separation distance L excessively long. do not have. Therefore, the separation distance L from the irradiation position of the transmitting device 1 to the light receiving position of the receiving device 2 in the field environment test is preferably set within a range of 1 m or more and 10 m or less, for example.

次に、現場環境試験における送信装置1の照射位置から受信装置2の受光位置までの離間距離Lおよび受信装置2が受光した可視光Vの放射照度Eと、事前試験工程で予め算出しておいた送信装置1の光源強度Iとを上述した(1)式に代入することで、対象環境条件下における可視光Vの透過率cを算出する。以上により、透過率把握工程が完了する。 Next, the distance L from the irradiation position of the transmitting device 1 to the light receiving position of the receiving device 2 in the on-site environmental test and the irradiance E of the visible light V received by the receiving device 2 are calculated in advance in the pre-test process. By substituting the light source intensity I of the transmitting device 1 into the above-mentioned equation (1), the transmittance c of visible light V under the target environmental condition is calculated. With the above steps, the transmittance grasping process is completed.

次いで、透過率把握工程で算出した対象環境条件下における可視光Vの透過率cと、事前試験工程で算出した送信装置1の光源強度Iと、放射照度把握工程で把握した所望の通信速度に対応する受信装置2の放射照度Eとを(1)式に代入することで、対象環境条件下における所望の通信速度での通信可能距離Lを推定する。 Next, the transmittance c of visible light V under the target environmental conditions calculated in the transmittance understanding process, the light source intensity I of the transmitting device 1 calculated in the preliminary test process, and the desired communication speed calculated in the irradiance understanding process are calculated. By substituting the irradiance E of the corresponding receiving device 2 into equation (1), the communicable distance L at the desired communication speed under the target environmental condition is estimated.

このように、本発明では、事前試験工程を行っておけば、透過率把握工程では、対象環境条件下、または、対象環境条件下を再現した環境条件下において現場環境試験を行い、現場環境試験における送信装置1の照射位置から受信装置2の受光位置までの離間距離Lおよび受信装置2が受光した可視光の放射照度Eと、事前試験工程で予め算出した送信装置1の光源強度Iとを、(1)式に代入するだけで、対象環境条件下における可視光Vの透過率cを簡易に算出できる。そして、透過率把握工程で算出した対象環境条件下における可視光Vの透過率cと、事前試験工程で算出した送信装置1の光源強度Iと、放射照度把握工程で把握した所望の通信速度に対応する受信装置2の放射照度Eとを(1)式に代入するだけで、対象環境条件下における所望の通信速度での通信可能距離Lを簡便に推定できる。 In this way, in the present invention, if the preliminary test process is performed, the on-site environmental test is performed under the target environmental conditions or under the environmental conditions that reproduce the target environmental conditions, and the on-site environmental test is performed in the transmittance understanding process. The distance L from the irradiation position of the transmitting device 1 to the light receiving position of the receiving device 2, the irradiance E of the visible light received by the receiving device 2, and the light source intensity I of the transmitting device 1 calculated in advance in the preliminary test process. , (1), the transmittance c of visible light V under the target environmental conditions can be easily calculated. Then, the transmittance c of visible light V under the target environmental conditions calculated in the transmittance understanding process, the light source intensity I of the transmitter 1 calculated in the preliminary test process, and the desired communication speed calculated in the irradiance understanding process are determined. By simply substituting the irradiance E of the corresponding receiving device 2 into equation (1), the communicable distance L at a desired communication speed under the target environmental condition can be easily estimated.

事前試験工程と放射照度把握工程は対象環境条件下で行う必要はなく、室内などで簡易に行える。透過率把握工程の現場環境試験では、送信装置1の照射位置から受信装置2の受光位置までの離間距離Lを数メートル程度に設定すればよく、送信装置1から受信装置2へ可視光Vを照射する作業も1回行えばよい。即ち、対象環境条件下において、送信装置1と受信装置2とを数十メートル~数百メートル程度離間させる必要はなく、送信装置1と受信装置2との離間距離Lを変えて可視光Vを照射する作業を何度も繰り返し行う必要がない。そのため、現場環境試験も、少ない作業工数で速やかに完了することができる。また、(1)式は簡易な数式であり、通信可能距離Lを算出するための計算量も少ないため、現場においても関数電卓などの簡素な計算機で容易に通信可能距離Lを算出できる。それ故、本発明は非常に利便性が高い。 The preliminary testing process and the irradiance understanding process do not need to be performed under the target environmental conditions, and can be easily performed indoors. In the field environment test of the transmittance understanding process, the distance L from the irradiation position of the transmitter 1 to the light receiving position of the receiver 2 may be set to about several meters, and the visible light V is transmitted from the transmitter 1 to the receiver 2. The irradiation work only needs to be done once. That is, under the target environmental conditions, it is not necessary to separate the transmitting device 1 and the receiving device 2 by several tens of meters to several hundred meters, and it is possible to change the distance L between the transmitting device 1 and the receiving device 2 to transmit the visible light V. There is no need to repeat the irradiation process over and over again. Therefore, on-site environmental tests can be completed quickly with fewer man-hours. Furthermore, since equation (1) is a simple formula and the amount of calculation required to calculate the communicable distance L is small, the communicable distance L can be easily calculated in the field using a simple calculator such as a scientific calculator. Therefore, the present invention is very convenient.

この実施形態のように、対象環境条件が海洋などの水中である場合には、対象環境条件下を再現した環境条件下において現場環境試験を行えば、対象環境条件下において送信装置1から受信装置2へ可視光Vを照射する作業を行う必要がなく、対象環境条件下では水を採取する作業や照度を計測する作業を行うだけでよい。それ故、対象環境条件下を再現した環境条件下において現場環境試験を行う構成にすると、対象環境条件下で現場環境試験を行う場合に比して、対象環境条件における作業時間の短縮や作業者の軽労化を図るにはより有利である。 As in this embodiment, when the target environmental condition is underwater such as the ocean, if an on-site environmental test is performed under environmental conditions that reproduce the target environmental condition, it is possible to connect the transmitter 1 to the receiver under the target environmental condition. There is no need to perform the work of irradiating the visible light V to the object 2, and it is only necessary to perform the work of collecting water and measuring the illuminance under the target environmental conditions. Therefore, if the on-site environmental test is conducted under environmental conditions that reproduce the target environmental conditions, compared to the case where the on-site environmental test is conducted under the target environmental conditions, the work time under the target environmental conditions can be reduced and the worker This is more advantageous for reducing labor costs.

前述したように、透過率把握工程の現場環境試験では、送信装置1から受信装置2へ可視光Vを照射する作業を1回行えばよいが、送信装置1の照射位置から受信装置2の受光位置までの離間距離Lを変えて可視光Vを照射する作業を複数回行うと、対象環境条件下における可視光Vの透過率cをより精度よく把握することができ、通信可能距離Lの推定精度を高めるには有利になる。 As mentioned above, in the on-site environment test in the transmittance understanding process, it is only necessary to irradiate the visible light V from the transmitter 1 to the receiver 2 once, but from the irradiation position of the transmitter 1 to the receiver 2 By performing the task of irradiating visible light V multiple times while changing the separation distance L to the position, the transmittance c of visible light V under the target environmental conditions can be grasped more accurately, and the communicable distance L can be estimated. This is useful for increasing accuracy.

照度を計測する照度計などの計測機器は、太陽光などの外来光の影響を比較的受けやすい。それ故、対象環境条件が水深の浅い水中や濃霧中などの外来光の影響が大きい環境条件である場合には、受信装置2が受光した可視光Vの放射照度Eを直接計測すると、放射照度Eを精度よく把握するには有利になる。一方で、放射照度Eを直接計測するパワーメータなどの精密な計測機器に比べて照度を計測する照度計などの計測機器は比較的安価であり、照度は放射照度Eよりも比較的簡易に計測できる。それ故、対象環境条件が水深の深い水中などの外来光の影響が小さい環境条件である場合には、受信装置2が受光する可視光Vの照度を計測し、その計測した照度を放射照度Eに換算するとよい。 Measuring devices such as illuminance meters that measure illuminance are relatively susceptible to external light such as sunlight. Therefore, when the target environmental condition is one in which the influence of external light is large, such as in shallow water or in dense fog, when the irradiance E of the visible light V received by the receiving device 2 is directly measured, the irradiance This is advantageous for accurately grasping E. On the other hand, measuring instruments such as illumination meters that measure illuminance are relatively inexpensive compared to precise measuring instruments such as power meters that directly measure irradiance E, and illuminance can be measured relatively easily than irradiance E. can. Therefore, when the target environmental condition is an environment where the influence of external light is small, such as deep water, the illuminance of the visible light V received by the receiving device 2 is measured, and the measured illuminance is converted into the irradiance E. It is best to convert it to .

本発明は、送信レンズ3と受信レンズ4を兼ね備えた可視光通信装置どうしの間で可視光通信を行う場合にも適用することができる。その場合には、送信側の可視光通信装置が送信装置1となり、受信側の可視光通信装置が受信装置2となる。既述した実施形態では、送信装置1の照射位置を送信レンズ3の先端とし、受信装置2の受光位置を受信レンズ4の先端としたが、送信装置1の照射位置と受信装置2の受光位置は、送信装置1と受信装置2の仕様に応じて適宜設定できる。 The present invention can also be applied to the case where visible light communication is performed between visible light communication devices having both a transmitting lens 3 and a receiving lens 4. In that case, the visible light communication device on the transmitting side becomes the transmitting device 1, and the visible light communication device on the receiving side becomes the receiving device 2. In the embodiment described above, the irradiation position of the transmitting device 1 is the tip of the transmitting lens 3, and the light receiving position of the receiving device 2 is the tip of the receiving lens 4. However, the irradiating position of the transmitting device 1 and the light receiving position of the receiving device 2 can be set as appropriate according to the specifications of the transmitting device 1 and receiving device 2.

上記で例示した実施形態では、事前試験工程、放射照度把握工程、透過率把握工程の順で実施する場合を例示したが、透過率把握工程の前に事前試験工程を行う条件を満たしていれば、事前試験工程、放射照度把握工程および透過率把握工程を実施する順は特に限定されない。即ち、例えば、放射照度把握工程、事前試験工程、透過率把握工程の順で実施することもできるし、事前試験工程、透過率把握工程、放射照度把握工程の順で実施することもできる。また、例えば、事前試験工程および放射照度把握工程を並行して行うこともできるし、放射照度把握工程および透過率把握工程を並行して行うこともできる。また、放射照度把握工程は、透過率把握工程と同様に、対象環境条件を再現した環境条件下や対象環境条件下で行うこともできる。 In the embodiment illustrated above, the pre-test process, the irradiance understanding process, and the transmittance understanding process are carried out in this order, but if the conditions for performing the pre-test process before the transmittance understanding process are met, , the pre-test step, the irradiance understanding step, and the transmittance understanding step are not particularly limited in the order of implementation. That is, for example, the irradiance grasping step, the preliminary test step, and the transmittance grasping step can be carried out in this order, or the pretesting step, the transmittance grasping step, and the irradiance grasping step can be carried out in this order. Further, for example, the preliminary test step and the irradiance understanding step can be performed in parallel, and the irradiance understanding step and the transmittance understanding step can also be performed in parallel. Further, the irradiance understanding step, like the transmittance understanding step, can also be performed under environmental conditions that reproduce the target environmental conditions or under target environmental conditions.

1 送信装置
2 受信装置
3 送信レンズ
4 受信レンズ
5 防水ケース
V 可視光
L (送信装置の照射位置から受信装置の受光位置までの)離間距離
1 Transmitting device 2 Receiving device 3 Transmitting lens 4 Receiving lens 5 Waterproof case V Visible light L Distance (from the irradiation position of the transmitting device to the light receiving position of the receiving device)

Claims (5)

対象環境条件下において送信装置と受信装置との間で可視光通信を行うときの所望の通信速度での通信可能距離の推定方法であって、
前記送信装置が照射する可視光の透過率cを予め把握している環境条件下で、互いに離間して配置した前記送信装置から前記受信装置に前記可視光を照射する事前試験を行い、その事前試験における環境条件下の透過率cと、前記送信装置の照射位置から前記受信装置の受光位置までの離間距離Lと、前記受信装置が受光する可視光の放射照度Eとを、下記(1)式に代入して前記送信装置の光源強度Iを算出する事前試験工程と、
E=I・c/L …(1)
前記送信装置と前記受信装置との間で可視光通信を行うときの前記所望の通信速度に対応する前記受信装置が受光する前記可視光の放射照度Eを把握する放射照度把握工程と、
前記対象環境条件下、または、前記対象環境条件を再現した環境条件下において、互いに離間して配置した前記送信装置から前記受信装置に前記可視光を照射する現場環境試験を行い、前記現場環境試験での前記送信装置の照射位置から前記受信装置の受光位置までの離間距離Lおよび前記受信装置が受光する前記可視光の放射照度Eと、前記事前試験工程で予め算出した前記送信装置の光源強度Iとを、前記(1)式に代入して、前記対象環境条件下における前記可視光の透過率cを算出する透過率把握工程とを行い、
前記透過率把握工程で算出した前記対象環境条件下における前記可視光の透過率cと、前記事前試験工程で算出した前記送信装置の光源強度Iと、前記放射照度把握工程で把握した前記所望の通信速度に対応する前記受信装置が受光する前記可視光の放射照度Eとを、前記(1)式に代入することで前記通信可能距離Lを推定することを特徴する可視光通信における通信可能距離の推定方法。
A method for estimating a communicable distance at a desired communication speed when performing visible light communication between a transmitting device and a receiving device under target environmental conditions, the method comprising:
Under environmental conditions in which the transmittance c of the visible light emitted by the transmitting devices is known in advance, a preliminary test is conducted in which the transmitting devices arranged at a distance from each other irradiate the receiving device with the visible light; The transmittance c under the environmental conditions in the test, the separation distance L from the irradiation position of the transmitting device to the light receiving position of the receiving device, and the irradiance E of visible light received by the receiving device are determined by the following (1). a preliminary test step of calculating the light source intensity I of the transmitting device by substituting it into a formula;
E=I・c L /L 2 …(1)
an irradiance determining step of determining the irradiance E of the visible light received by the receiving device corresponding to the desired communication speed when performing visible light communication between the transmitting device and the receiving device;
Conducting an on-site environmental test in which the visible light is irradiated from the transmitting devices spaced apart from each other to the receiving device under the target environmental conditions or under environmental conditions reproducing the target environmental conditions, and performing the on-site environmental test. The separation distance L from the irradiation position of the transmitting device to the light receiving position of the receiving device, the irradiance E of the visible light received by the receiving device, and the light source of the transmitting device calculated in advance in the preliminary test step. and a transmittance understanding step of calculating the transmittance c of the visible light under the target environmental conditions by substituting the intensity I into the equation (1),
The transmittance c of the visible light under the target environmental conditions calculated in the transmittance understanding step, the light source intensity I of the transmitting device calculated in the preliminary test step, and the desired desired value ascertained in the irradiance understanding step. The communicable distance L is estimated by substituting the irradiance E of the visible light received by the receiving device corresponding to the communication speed into the equation (1). How to estimate distance.
前記受信装置が受光する前記可視光の照度を計測し、その計測した前記照度を前記放射照度Eに換算する請求項1に記載の可視光通信における通信可能距離の推定方法。 2. The method for estimating a communicable distance in visible light communication according to claim 1, wherein the illuminance of the visible light received by the receiving device is measured, and the measured illuminance is converted into the irradiance E. 前記受信装置が受光する前記可視光の前記放射照度Eを直接計測する請求項1に記載の可視光通信における通信可能距離の推定方法。 The method for estimating a communicable distance in visible light communication according to claim 1, wherein the irradiance E of the visible light received by the receiving device is directly measured. 前記対象環境条件が水中であり、前記事前試験を大気中で行う請求項1~3のいずれかに記載の可視光通信における通信可能距離の推定方法。 The method for estimating a communicable distance in visible light communication according to any one of claims 1 to 3, wherein the target environmental condition is underwater, and the preliminary test is performed in the atmosphere. 前記現場環境試験での前記送信装置の照射位置から前記受信装置の受光位置までの前記離間距離Lを1m以上10m以下の範囲内で設定する請求項1~4のいずれかに記載の可視光通信における通信可能距離の推定方法。 Visible light communication according to any one of claims 1 to 4, wherein the separation distance L from the irradiation position of the transmitting device to the light receiving position of the receiving device in the field environment test is set within a range of 1 m or more and 10 m or less. A method for estimating the communicable distance.
JP2020081538A 2019-12-04 2020-05-01 Method for estimating communication distance in visible light communication Active JP7398335B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019219305 2019-12-04
JP2019219305 2019-12-04

Publications (2)

Publication Number Publication Date
JP2021093708A JP2021093708A (en) 2021-06-17
JP7398335B2 true JP7398335B2 (en) 2023-12-14

Family

ID=76310887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020081538A Active JP7398335B2 (en) 2019-12-04 2020-05-01 Method for estimating communication distance in visible light communication

Country Status (1)

Country Link
JP (1) JP7398335B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252858B2 (en) 2014-04-25 2017-12-27 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2017228889A (en) 2016-06-21 2017-12-28 株式会社島津製作所 Underwater communication device and underwater radiation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252858A (en) * 1992-12-30 1994-09-09 Canon Inc Infrared ray spacial communications equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252858B2 (en) 2014-04-25 2017-12-27 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2017228889A (en) 2016-06-21 2017-12-28 株式会社島津製作所 Underwater communication device and underwater radiation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
澤 隆雄, 外2名,水中可視光通信,電子情報通信学会誌 ,日本,一般社団法人電子情報通信学会,2018年01月01日,第101巻 第1号,pp. 52 - 58,ISSN 0913-5693

Also Published As

Publication number Publication date
JP2021093708A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
CN106960204B (en) Remote sensing method for estimating phytoplankton size fraction structure of offshore water body
CN105303030B (en) A kind of MODIS remote sensing estimation method of eutrophic lake algae Gauss vertical characteristics structural parameters
CN102928390B (en) On-line detection device for chlorophyll concentration in water body based on two detectors
CN102938672B (en) Laboratory simulation method of atmospheric influence on wireless laser communication
KR100875963B1 (en) Content measuring apparatus and measuring method
CN201628805U (en) Calibration system for atmospheric visibility meter
JP7398335B2 (en) Method for estimating communication distance in visible light communication
CN105043721B (en) The extinction ratio measurement system and measuring method of optical module transmitting terminal
CN218158329U (en) Atmospheric aerosol laser radar calibration instrument
CN102967567A (en) Online monitoring instrument for water quality by colorimetry
Rosenkrantz et al. Optimum LED wavelength for underwater optical wireless communication at turbid water
Schima et al. Mobile monitoring—open-source based optical sensor system for service-oriented turbidity and dissolved organic matter monitoring
Gutierrez et al. Leakage detection using low-cost, wireless sensor networks
CN103398946B (en) A kind of color of liquid with reference transmission method pick-up unit
CN105158124A (en) Bubble image in-situ collection device
Voznesenskii et al. A fiber-optic fluorometer for measuring phytoplankton photosynthesis parameters
CN104596991B (en) A kind of turbidity detection means
CN112505008A (en) Marine nutrient salt multi-component monitoring system and working method thereof
Sasano et al. Development of boat-based fluorescence imaging lidar for coral monitoring
CN205003050U (en) Bubble image normal position collection system
Uz Building Intuition for In-Water Optics and Ocean Color Remote Sensing: Spectrophotometer Activity with littleBits™
Eren et al. Characterization of optical communication in a leader-follower unmanned underwater vehicle formation
RU2817043C1 (en) Method and device for measuring distribution of spectral solar illumination in photic layer of water bodies
KR102538583B1 (en) Biomimetic flow measurement system
Puntsri et al. Underwater environment sensors with visible light communication systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231204

R150 Certificate of patent or registration of utility model

Ref document number: 7398335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150