JP6820299B2 - Programs, information processing equipment, and methods - Google Patents

Programs, information processing equipment, and methods Download PDF

Info

Publication number
JP6820299B2
JP6820299B2 JP2018164972A JP2018164972A JP6820299B2 JP 6820299 B2 JP6820299 B2 JP 6820299B2 JP 2018164972 A JP2018164972 A JP 2018164972A JP 2018164972 A JP2018164972 A JP 2018164972A JP 6820299 B2 JP6820299 B2 JP 6820299B2
Authority
JP
Japan
Prior art keywords
avatar
user
field
view
hmd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018164972A
Other languages
Japanese (ja)
Other versions
JP2020038468A (en
Inventor
一晃 澤木
一晃 澤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colopl Inc
Original Assignee
Colopl Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colopl Inc filed Critical Colopl Inc
Priority to JP2018164972A priority Critical patent/JP6820299B2/en
Publication of JP2020038468A publication Critical patent/JP2020038468A/en
Application granted granted Critical
Publication of JP6820299B2 publication Critical patent/JP6820299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)
  • User Interface Of Digital Computer (AREA)

Description

本発明は、プログラム、情報処理装置、および方法に関する。 The present invention relates to programs, information processing devices, and methods.

特許文献1に、仮想空間に第2カメラおよび鏡オブジェクトを配置し、さらに、第2カメラの視野にプレイヤキャラタクが配置されている場合には、鏡オブジェクトにプレイヤキャラクタの外観を移り込み画像として表示するHMDシステムが開示されている。 In Patent Document 1, when the second camera and the mirror object are arranged in the virtual space and the player character is arranged in the field of view of the second camera, the appearance of the player character is transferred to the mirror object as an image. The HMD system to be displayed is disclosed.

特許6220937号公報Japanese Patent No. 6220937

従来の技術には、仮想空間におけるユーザの視認性を低下させることなく、ユーザに有益な情報をユーザに提供できる余地がある。 In the conventional technique, there is room for providing useful information to the user without deteriorating the visibility of the user in the virtual space.

本開示の一態様は、仮想空間におけるユーザの視認性を低下させることなく、ユーザに有益な情報をユーザに提供することを目的とする。 One aspect of the present disclosure is to provide a user with useful information to the user without deteriorating the visibility of the user in the virtual space.

本発明の一態様によれば、プロセッサを備えたコンピュータによって実行されるプログラムが提供される。プログラムは、プロセッサに、第1ユーザに関連付けられる第1アバターと第2ユーザに関連付けられる第2アバターとを含む、仮想空間を定義するステップと、第1ヘッドマウントデバイスが関連付けられた第1ユーザの頭部の動きに応じて、第1アバターからの第1視界を制御するステップと、第1視界内では視覚化され、第2アバターからの第2視界内では視覚化されない、透過設定された第1オブジェクトを、第1視界内に配置するステップと、第1オブジェクトに、第1情報を表示するステップと、第1視界に対応する第1視界画像を第1ヘッドマウントデバイスに表示するステップと、を実行させる。 According to one aspect of the invention, a program executed by a computer with a processor is provided. The program configures the processor with a step of defining a virtual space that includes a first avatar associated with the first user and a second avatar associated with the second user, and a first user associated with the first headmount device. A step of controlling the first visual field from the first avatar according to the movement of the head, and a transparent setting that is visualized in the first visual field but not in the second visual field from the second avatar. A step of arranging one object in the first field of view, a step of displaying the first information in the first object, and a step of displaying a first field of view image corresponding to the first field of view on the first head mount device. To execute.

本開示の一態様によれば、仮想空間におけるユーザの視認性を低下させることなく、ユーザに有益な情報をユーザに提供できる。 According to one aspect of the present disclosure, information useful to the user can be provided to the user without deteriorating the visibility of the user in the virtual space.

ある実施の形態に従うHMDシステムの構成の概略を表す図である。It is a figure which shows the outline of the structure of the HMD system according to a certain embodiment. ある実施の形態に従うコンピュータのハードウェア構成の一例を表すブロック図である。It is a block diagram which shows an example of the hardware composition of the computer according to a certain embodiment. ある実施の形態に従うHMDに設定されるuvw視野座標系を概念的に表す図である。It is a figure that conceptually represents the uvw field coordinate system set in the HMD according to a certain embodiment. ある実施の形態に従う仮想空間を表現する一態様を概念的に表す図である。It is a figure which conceptually represents one aspect which expresses a virtual space according to a certain embodiment. ある実施の形態に従うHMDを装着するユーザの頭部を上から表した図である。It is a figure which showed the head of the user who wears an HMD according to a certain embodiment from the top. 仮想空間において視界領域をX方向から見たYZ断面を表す図である。It is a figure which shows the YZ cross section which looked at the visual field area from the X direction in the virtual space. 仮想空間において視界領域をY方向から見たXZ断面を表す図である。It is a figure which shows the XZ cross section which looked at the view area from the Y direction in a virtual space. ある実施の形態に従うコントローラの概略構成を表す図である。It is a figure which shows the schematic structure of the controller according to a certain embodiment. ある実施の形態に従うユーザの右手に対して規定されるヨー、ロール、ピッチの各方向の一例を示す図である。It is a figure which shows an example of each direction of yaw, roll, and pitch defined for the right hand of the user according to a certain embodiment. ある実施の形態に従うサーバのハードウェア構成の一例を表すブロック図である。It is a block diagram which shows an example of the hardware configuration of the server according to a certain embodiment. ある実施の形態に従うコンピュータをモジュール構成として表わすブロック図である。It is a block diagram which shows the computer according to a certain embodiment as a module structure. ある実施の形態に従うHMDセットにおいて実行される処理の一部を表すシーケンスチャートである。FIG. 5 is a sequence chart representing a portion of the processing performed in an HMD set according to an embodiment. ネットワークにおいて、各HMDがユーザに仮想空間を提供する状況を表す模式図である。It is a schematic diagram which shows the situation that each HMD provides a virtual space to a user in a network. 図12(A)におけるユーザ5Aの視界画像を示す図である。It is a figure which shows the field of view image of the user 5A in FIG. 12A. ある実施の形態に従うHMDシステムにおいて実行する処理を示すシーケンス図である。It is a sequence diagram which shows the process to perform in the HMD system according to a certain embodiment. ある実施の形態に従うコンピュータのモジュールの詳細構成を表わすブロック図である。It is a block diagram which shows the detailed structure of the module of the computer according to a certain embodiment. ある実施の形態に従う仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image according to a certain embodiment. ある実施の形態に従う仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image according to a certain embodiment. ある実施の形態に従うHMDシステムにおいて実行される処理の一例を示すシーケンス図である。It is a sequence diagram which shows an example of the process executed in the HMD system which follows a certain embodiment. ある実施の形態に従う寸法データの取得方法を説明するための図である。It is a figure for demonstrating the acquisition method of the dimension data according to a certain embodiment. ある実施の形態に従う位置情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the position information according to a certain embodiment. ある実施の形態に従う寸法データのデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the dimension data according to a certain embodiment. ある実施の形態に従う寸法データを取得するための処理を表すフローチャートである。It is a flowchart which shows the process for acquiring the dimension data according to a certain embodiment. ある実施の形態に従う回転方向のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the rotation direction according to a certain embodiment. ある実施の形態に従うHMDセットにおいて実行される処理の一部を表すシーケンスチャートである。FIG. 5 is a sequence chart representing a portion of the processing performed in an HMD set according to an embodiment. ある実施の形態に仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image in a certain embodiment. ある実施の形態に係る仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image which concerns on a certain embodiment. ある実施形態に係るユーザの姿勢の一例を表す図である。It is a figure which shows an example of the posture of the user which concerns on a certain embodiment. ある実施の形態に従う仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image according to a certain embodiment. ある実施の形態に従う仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image according to a certain embodiment. ある実施の形態に従う仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image according to a certain embodiment. ある実施の形態に従う仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image according to a certain embodiment. ある実施の形態に従う仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image according to a certain embodiment. ある実施の形態に従う仮想空間および視界画像を示す図である。It is a figure which shows the virtual space and the field of view image according to a certain embodiment.

〔実施形態1〕
以下、この技術的思想の実施の形態について図面を参照しながら詳細に説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。本開示において示される1以上の実施形態において、各実施形態が含む要素を互いに組み合わせることができ、かつ、当該組み合わせられた結果物も本開示が示す実施形態の一部をなすものとする。
[Embodiment 1]
Hereinafter, embodiments of this technical idea will be described in detail with reference to the drawings. In the following description, the same parts are designated by the same reference numerals. Their names and functions are the same. Therefore, the detailed description of them will not be repeated. In one or more embodiments shown in the present disclosure, the elements included in each embodiment may be combined with each other, and the combined result shall also form part of the embodiments shown in the present disclosure.

[HMDシステムの構成]
図1を参照して、HMD(Head-Mounted Device)システム100の構成について説明する。図1は、本実施の形態に従うHMDシステム100の構成の概略を表す図である。HMDシステム100は、家庭用のシステムとしてあるいは業務用のシステムとして提供される。
[HMD system configuration]
The configuration of the HMD (Head-Mounted Device) system 100 will be described with reference to FIG. FIG. 1 is a diagram showing an outline of the configuration of the HMD system 100 according to the present embodiment. The HMD system 100 is provided as a home system or a business system.

HMDシステム100は、サーバ600と、HMDセット110A,110B,110C,110Dと、外部機器700と、ネットワーク2とを含む。HMDセット110A,110B,110C,110Dの各々は、ネットワーク2を介してサーバ600や外部機器700と通信可能に構成される。以下、HMDセット110A,110B,110C,110Dを総称して、HMDセット110とも言う。HMDシステム100を構成するHMDセット110の数は、4つに限られず、3つ以下でも、5つ以上でもよい。HMDセット110は、HMD120と、コンピュータ200と、HMDセンサ410と、ディスプレイ430と、コントローラ300とを備える。HMD120は、モニタ130と、注視センサ140と、第1カメラ150と、第2カメラ160と、マイク170と、スピーカ180とを含む。コントローラ300は、モーションセンサ420を含み得る。 The HMD system 100 includes a server 600, HMD sets 110A, 110B, 110C, 110D, an external device 700, and a network 2. Each of the HMD sets 110A, 110B, 110C, and 110D is configured to be able to communicate with the server 600 and the external device 700 via the network 2. Hereinafter, the HMD set 110A, 110B, 110C, 110D are collectively referred to as the HMD set 110. The number of HMD sets 110 constituting the HMD system 100 is not limited to four, and may be three or less or five or more. The HMD set 110 includes an HMD 120, a computer 200, an HMD sensor 410, a display 430, and a controller 300. The HMD 120 includes a monitor 130, a gaze sensor 140, a first camera 150, a second camera 160, a microphone 170, and a speaker 180. The controller 300 may include a motion sensor 420.

ある局面において、コンピュータ200は、インターネットその他のネットワーク2に接続可能であり、ネットワーク2に接続されているサーバ600その他のコンピュータと通信可能である。その他のコンピュータとしては、例えば、他のHMDセット110のコンピュータや外部機器700が挙げられる。別の局面において、HMD120は、HMDセンサ410の代わりに、センサ190を含み得る。 In some aspects, the computer 200 can connect to the Internet or other network 2 and communicate with the server 600 or other computer connected to the network 2. Examples of other computers include computers of other HMD sets 110 and external devices 700. In another aspect, the HMD 120 may include a sensor 190 instead of the HMD sensor 410.

HMD120は、ユーザ5の頭部に装着され、動作中に仮想空間をユーザ5に提供し得る。より具体的には、HMD120は、右目用の画像および左目用の画像をモニタ130にそれぞれ表示する。ユーザ5の各目がそれぞれの画像を視認すると、ユーザ5は、両目の視差に基づき当該画像を3次元画像として認識し得る。HMD120は、モニタを備える所謂ヘッドマウントディスプレイと、スマートフォンその他のモニタを有する端末を装着可能なヘッドマウント機器のいずれをも含み得る。 The HMD 120 may be worn on the user 5's head and provide virtual space to the user 5 during operation. More specifically, the HMD 120 displays an image for the right eye and an image for the left eye on the monitor 130, respectively. When each eye of the user 5 visually recognizes the respective image, the user 5 can recognize the image as a three-dimensional image based on the parallax of both eyes. The HMD 120 may include either a so-called head-mounted display including a monitor and a head-mounted device capable of mounting a smartphone or other terminal having a monitor.

モニタ130は、例えば、非透過型の表示装置として実現される。ある局面において、モニタ130は、ユーザ5の両目の前方に位置するようにHMD120の本体に配置されている。したがって、ユーザ5は、モニタ130に表示される3次元画像を視認すると、仮想空間に没入することができる。ある局面において、仮想空間は、例えば、背景、ユーザ5が操作可能なオブジェクト、ユーザ5が選択可能なメニューの画像を含む。ある局面において、モニタ130は、所謂スマートフォンその他の情報表示端末が備える液晶モニタまたは有機EL(Electro Luminescence)モニタとして実現され得る。 The monitor 130 is realized as, for example, a non-transparent display device. In one aspect, the monitor 130 is arranged in the body of the HMD 120 so as to be located in front of both eyes of the user 5. Therefore, the user 5 can immerse himself in the virtual space when he / she visually recognizes the three-dimensional image displayed on the monitor 130. In one aspect, the virtual space includes, for example, a background, an object that the user 5 can manipulate, and an image of a menu that the user 5 can select. In a certain aspect, the monitor 130 can be realized as a liquid crystal monitor or an organic EL (Electro Luminescence) monitor included in a so-called smartphone or other information display terminal.

別の局面において、モニタ130は、透過型の表示装置として実現され得る。この場合、HMD120は、図1に示されるようにユーザ5の目を覆う密閉型ではなく、メガネ型のような開放型であり得る。透過型のモニタ130は、その透過率を調整することにより、一時的に非透過型の表示装置として構成可能であってもよい。モニタ130は、仮想空間を構成する画像の一部と、現実空間とを同時に表示する構成を含んでいてもよい。例えば、モニタ130は、HMD120に搭載されたカメラで撮影した現実空間の画像を表示してもよいし、一部の透過率を高く設定することにより現実空間を視認可能にしてもよい。 In another aspect, the monitor 130 can be realized as a transmissive display device. In this case, the HMD 120 may be an open type such as a glasses type instead of a closed type that covers the eyes of the user 5 as shown in FIG. The transmissive monitor 130 may be temporarily configured as a non-transparent display device by adjusting its transmittance. The monitor 130 may include a configuration that simultaneously displays a part of the image constituting the virtual space and the real space. For example, the monitor 130 may display an image of the real space taken by the camera mounted on the HMD 120, or may make the real space visible by setting a part of the transmittance to be high.

ある局面において、モニタ130は、右目用の画像を表示するためのサブモニタと、左目用の画像を表示するためのサブモニタとを含み得る。別の局面において、モニタ130は、右目用の画像と左目用の画像とを一体として表示する構成であってもよい。この場合、モニタ130は、高速シャッタを含む。高速シャッタは、画像がいずれか一方の目にのみ認識されるように、右目用の画像と左目用の画像とを交互に表示可能に作動する。 In some aspects, the monitor 130 may include a sub-monitor for displaying an image for the right eye and a sub-monitor for displaying an image for the left eye. In another aspect, the monitor 130 may be configured to display the image for the right eye and the image for the left eye as a unit. In this case, the monitor 130 includes a high speed shutter. The high-speed shutter operates so that the image for the right eye and the image for the left eye can be alternately displayed so that the image is recognized by only one of the eyes.

ある局面において、HMD120は、図示せぬ複数の光源を含む。各光源は例えば、赤外線を発するLED(Light Emitting Diode)により実現される。HMDセンサ410は、HMD120の動きを検出するためのポジショントラッキング機能を有する。より具体的には、HMDセンサ410は、HMD120が発する複数の赤外線を読み取り、現実空間内におけるHMD120の位置および傾きを検出する。 In one aspect, the HMD 120 includes a plurality of light sources (not shown). Each light source is realized by, for example, an LED (Light Emitting Diode) that emits infrared rays. The HMD sensor 410 has a position tracking function for detecting the movement of the HMD 120. More specifically, the HMD sensor 410 reads a plurality of infrared rays emitted by the HMD 120 and detects the position and inclination of the HMD 120 in the real space.

別の局面において、HMDセンサ410は、カメラにより実現されてもよい。この場合、HMDセンサ410は、カメラから出力されるHMD120の画像情報を用いて、画像解析処理を実行することにより、HMD120の位置および傾きを検出することができる。 In another aspect, the HMD sensor 410 may be implemented by a camera. In this case, the HMD sensor 410 can detect the position and tilt of the HMD 120 by executing the image analysis process using the image information of the HMD 120 output from the camera.

別の局面において、HMD120は、位置検出器として、HMDセンサ410の代わりに、あるいはHMDセンサ410に加えてセンサ190を備えてもよい。HMD120は、センサ190を用いて、HMD120自身の位置および傾きを検出し得る。例えば、センサ190が角速度センサ、地磁気センサ、あるいは加速度センサである場合、HMD120は、HMDセンサ410の代わりに、これらの各センサのいずれかを用いて、自身の位置および傾きを検出し得る。一例として、センサ190が角速度センサである場合、角速度センサは、現実空間におけるHMD120の3軸周りの角速度を経時的に検出する。HMD120は、各角速度に基づいて、HMD120の3軸周りの角度の時間的変化を算出し、さらに、角度の時間的変化に基づいて、HMD120の傾きを算出する。 In another aspect, the HMD 120 may include a sensor 190 as a position detector in place of the HMD sensor 410 or in addition to the HMD sensor 410. The HMD 120 can use the sensor 190 to detect the position and tilt of the HMD 120 itself. For example, if the sensor 190 is an angular velocity sensor, a geomagnetic sensor, or an accelerometer, the HMD 120 may use any of these sensors instead of the HMD sensor 410 to detect its position and tilt. As an example, when the sensor 190 is an angular velocity sensor, the angular velocity sensor detects the angular velocity around the three axes of the HMD 120 in real space over time. The HMD 120 calculates the temporal change of the angle around the three axes of the HMD 120 based on each angular velocity, and further calculates the inclination of the HMD 120 based on the temporal change of the angle.

注視センサ140は、ユーザ5の右目および左目の視線が向けられる方向を検出する。つまり、注視センサ140は、ユーザ5の視線を検出する。視線の方向の検出は、例えば、公知のアイトラッキング機能によって実現される。注視センサ140は、当該アイトラッキング機能を有するセンサにより実現される。ある局面において、注視センサ140は、右目用のセンサおよび左目用のセンサを含むことが好ましい。注視センサ140は、例えば、ユーザ5の右目および左目に赤外線を照射するとともに、照射光に対する角膜および虹彩からの反射光を受けることにより各眼球の回転角を検出するセンサであってもよい。注視センサ140は、検出した各回転角に基づいて、ユーザ5の視線を検知することができる。 The gaze sensor 140 detects the directions in which the eyes of the user 5's right eye and left eye are directed. That is, the gaze sensor 140 detects the line of sight of the user 5. The detection of the direction of the line of sight is realized by, for example, a known eye tracking function. The gaze sensor 140 is realized by a sensor having the eye tracking function. In certain aspects, the gaze sensor 140 preferably includes a sensor for the right eye and a sensor for the left eye. The gaze sensor 140 may be, for example, a sensor that detects the angle of rotation of each eyeball by irradiating the right eye and the left eye of the user 5 with infrared rays and receiving the reflected light from the cornea and the iris with respect to the irradiation light. The gaze sensor 140 can detect the line of sight of the user 5 based on each of the detected rotation angles.

第1カメラ150は、ユーザ5の顔の下部を撮影する。より具体的には、第1カメラ150は、ユーザ5の鼻および口などを撮影する。第2カメラ160は、ユーザ5の目および眉などを撮影する。HMD120のユーザ5側の筐体をHMD120の内側、HMD120のユーザ5とは逆側の筐体をHMD120の外側と定義する。ある局面において、第1カメラ150は、HMD120の外側に配置され、第2カメラ160は、HMD120の内側に配置され得る。第1カメラ150および第2カメラ160が生成した画像は、コンピュータ200に入力される。別の局面において、第1カメラ150と第2カメラ160とを1台のカメラとして実現し、この1台のカメラでユーザ5の顔を撮影するようにしてもよい。 The first camera 150 captures the lower part of the user 5's face. More specifically, the first camera 150 captures the nose and mouth of the user 5. The second camera 160 captures the eyes, eyebrows, and the like of the user 5. The housing on the user 5 side of the HMD 120 is defined as the inside of the HMD 120, and the housing on the side opposite to the user 5 of the HMD 120 is defined as the outside of the HMD 120. In some aspects, the first camera 150 may be located outside the HMD 120 and the second camera 160 may be located inside the HMD 120. The images generated by the first camera 150 and the second camera 160 are input to the computer 200. In another aspect, the first camera 150 and the second camera 160 may be realized as one camera, and the face of the user 5 may be photographed by the one camera.

マイク170は、ユーザ5の発話を音声信号(電気信号)に変換してコンピュータ200に出力する。スピーカ180は、音声信号を音声に変換してユーザ5に出力する。別の局面において、HMD120は、スピーカ180に替えてイヤホンを含み得る。 The microphone 170 converts the utterance of the user 5 into a voice signal (electric signal) and outputs it to the computer 200. The speaker 180 converts the voice signal into voice and outputs it to the user 5. In another aspect, the HMD 120 may include earphones instead of the speaker 180.

コントローラ300は、有線または無線によりコンピュータ200に接続されている。コントローラ300は、ユーザ5からコンピュータ200への命令の入力を受け付ける。ある局面において、コントローラ300は、ユーザ5によって把持可能に構成される。別の局面において、コントローラ300は、ユーザ5の身体あるいは衣類の一部に装着可能に構成される。さらに別の局面において、コントローラ300は、コンピュータ200から送信される信号に基づいて、振動、音、光のうちの少なくともいずれかを出力するように構成されてもよい。さらに別の局面において、コントローラ300は、ユーザ5から、仮想空間に配置されるオブジェクトの位置や動きを制御するための操作を受け付ける。 The controller 300 is connected to the computer 200 by wire or wirelessly. The controller 300 receives an instruction input from the user 5 to the computer 200. In one aspect, the controller 300 is configured to be grippable by the user 5. In another aspect, the controller 300 is configured to be wearable on a body or part of clothing of the user 5. In yet another aspect, the controller 300 may be configured to output at least one of vibration, sound, and light based on a signal transmitted from the computer 200. In yet another aspect, the controller 300 receives from the user 5 an operation for controlling the position and movement of the object arranged in the virtual space.

ある局面において、コントローラ300は、複数の光源を含む。各光源は例えば、赤外線を発するLEDにより実現される。HMDセンサ410は、ポジショントラッキング機能を有する。この場合、HMDセンサ410は、コントローラ300が発する複数の赤外線を読み取り、現実空間内におけるコントローラ300の位置および傾きを検出する。別の局面において、HMDセンサ410は、カメラにより実現されてもよい。この場合、HMDセンサ410は、カメラから出力されるコントローラ300の画像情報を用いて、画像解析処理を実行することにより、コントローラ300の位置および傾きを検出することができる。 In one aspect, the controller 300 includes a plurality of light sources. Each light source is realized, for example, by an LED that emits infrared rays. The HMD sensor 410 has a position tracking function. In this case, the HMD sensor 410 reads a plurality of infrared rays emitted by the controller 300 and detects the position and inclination of the controller 300 in the real space. In another aspect, the HMD sensor 410 may be implemented by a camera. In this case, the HMD sensor 410 can detect the position and tilt of the controller 300 by executing the image analysis process using the image information of the controller 300 output from the camera.

モーションセンサ420は、ある局面において、ユーザ5の手に取り付けられて、ユーザ5の手の動きを検出する。例えば、モーションセンサ420は、手の回転速度、回転数等を検出する。検出された信号は、コンピュータ200に送られる。モーションセンサ420は、例えば、コントローラ300に設けられている。ある局面において、モーションセンサ420は、例えば、ユーザ5に把持可能に構成されたコントローラ300に設けられている。別の局面において、現実空間における安全のため、コントローラ300は、手袋型のようにユーザ5の手に装着されることにより容易に飛んで行かないものに装着される。さらに別の局面において、ユーザ5に装着されないセンサがユーザ5の手の動きを検出してもよい。例えば、ユーザ5を撮影するカメラの信号が、ユーザ5の動作を表わす信号として、コンピュータ200に入力されてもよい。モーションセンサ420とコンピュータ200とは、一例として、無線により互いに接続される。無線の場合、通信形態は特に限られず、例えば、Bluetooth(登録商標)その他の公知の通信手法が用いられる。 In a certain aspect, the motion sensor 420 is attached to the user 5's hand and detects the movement of the user 5's hand. For example, the motion sensor 420 detects the rotation speed, rotation speed, and the like of the hand. The detected signal is sent to the computer 200. The motion sensor 420 is provided in the controller 300, for example. In one aspect, the motion sensor 420 is provided, for example, in a controller 300 configured to be grippable by the user 5. In another aspect, for safety in real space, the controller 300 is attached to something that does not easily fly by being attached to the user 5's hand, such as a glove type. In yet another aspect, a sensor not attached to the user 5 may detect the movement of the user 5's hand. For example, the signal of the camera that shoots the user 5 may be input to the computer 200 as a signal indicating the operation of the user 5. As an example, the motion sensor 420 and the computer 200 are wirelessly connected to each other. In the case of wireless communication, the communication mode is not particularly limited, and for example, Bluetooth (registered trademark) or other known communication method is used.

ディスプレイ430は、モニタ130に表示されている画像と同様の画像を表示する。これにより、HMD120を装着しているユーザ5以外のユーザにも当該ユーザ5と同様の画像を視聴させることができる。ディスプレイ430に表示される画像は、3次元画像である必要はなく、右目用の画像や左目用の画像であってもよい。ディスプレイ430としては、例えば、液晶ディスプレイや有機ELモニタなどが挙げられる。 The display 430 displays an image similar to the image displayed on the monitor 130. As a result, users other than the user 5 who wears the HMD 120 can also view the same image as the user 5. The image displayed on the display 430 does not have to be a three-dimensional image, and may be an image for the right eye or an image for the left eye. Examples of the display 430 include a liquid crystal display and an organic EL monitor.

サーバ600は、コンピュータ200にプログラムを送信し得る。別の局面において、サーバ600は、他のユーザによって使用されるHMD120に仮想現実を提供するための他のコンピュータ200と通信し得る。例えば、アミューズメント施設において、複数のユーザが参加型のゲームを行なう場合、各コンピュータ200は、各ユーザの動作に基づく信号をサーバ600を介して他のコンピュータ200と通信して、同じ仮想空間において複数のユーザが共通のゲームを楽しむことを可能にする。各コンピュータ200は、各ユーザの動作に基づく信号をサーバ600を介さずに他のコンピュータ200と通信するようにしてもよい。 The server 600 may send the program to the computer 200. In another aspect, the server 600 may communicate with another computer 200 to provide virtual reality to the HMD 120 used by another user. For example, when a plurality of users play a participatory game in an amusement facility, each computer 200 communicates a signal based on the operation of each user with another computer 200 via a server 600, and a plurality of users are used in the same virtual space. Allows users to enjoy a common game. Each computer 200 may communicate a signal based on the operation of each user with another computer 200 without going through the server 600.

外部機器700は、コンピュータ200と通信可能な機器であればどのような機器であってもよい。外部機器700は、例えば、ネットワーク2を介してコンピュータ200と通信可能な機器であってもよいし、近距離無線通信や有線接続によりコンピュータ200と直接通信可能な機器であってもよい。外部機器700としては、例えば、スマートデバイス、PC(Personal Computer)、及びコンピュータ200の周辺機器などが挙げられるが、これらに限定されるものではない。 The external device 700 may be any device as long as it can communicate with the computer 200. The external device 700 may be, for example, a device capable of communicating with the computer 200 via the network 2, or a device capable of directly communicating with the computer 200 by short-range wireless communication or a wired connection. Examples of the external device 700 include, but are not limited to, smart devices, PCs (Personal Computers), and peripheral devices of the computer 200.

[コンピュータのハードウェア構成]
図2を参照して、本実施の形態に係るコンピュータ200について説明する。図2は、本実施の形態に従うコンピュータ200のハードウェア構成の一例を表すブロック図である。コンピュータ200は、主たる構成要素として、プロセッサ210と、メモリ220と、ストレージ230と、入出力インターフェイス240と、通信インターフェイス250とを備える。各構成要素は、それぞれ、バス260に接続されている。
[Computer hardware configuration]
The computer 200 according to the present embodiment will be described with reference to FIG. FIG. 2 is a block diagram showing an example of the hardware configuration of the computer 200 according to the present embodiment. The computer 200 includes a processor 210, a memory 220, a storage 230, an input / output interface 240, and a communication interface 250 as main components. Each component is connected to bus 260, respectively.

プロセッサ210は、コンピュータ200に与えられる信号に基づいて、あるいは、予め定められた条件が成立したことに基づいて、メモリ220またはストレージ230に格納されているプログラムに含まれる一連の命令を実行する。ある局面において、プロセッサ210は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、MPU(Micro Processor Unit)、FPGA(Field-Programmable Gate Array)その他のデバイスとして実現される。 The processor 210 executes a series of instructions included in the program stored in the memory 220 or the storage 230 based on the signal given to the computer 200 or the condition that a predetermined condition is satisfied. In a certain aspect, the processor 210 is realized as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an MPU (Micro Processor Unit), an FPGA (Field-Programmable Gate Array) or other device.

メモリ220は、プログラムおよびデータを一時的に保存する。プログラムは、例えば、ストレージ230からロードされる。データは、コンピュータ200に入力されたデータと、プロセッサ210によって生成されたデータとを含む。ある局面において、メモリ220は、RAM(Random Access Memory)その他の揮発メモリとして実現される。 The memory 220 temporarily stores programs and data. The program is loaded from storage 230, for example. The data includes data input to the computer 200 and data generated by the processor 210. In one aspect, the memory 220 is realized as a RAM (Random Access Memory) or other volatile memory.

ストレージ230は、プログラムおよびデータを永続的に保持する。ストレージ230は、例えば、ROM(Read-Only Memory)、ハードディスク装置、フラッシュメモリ、その他の不揮発記憶装置として実現される。ストレージ230に格納されるプログラムは、HMDシステム100において仮想空間を提供するためのプログラム、シミュレーションプログラム、ゲームプログラム、ユーザ認証プログラム、他のコンピュータ200との通信を実現するためのプログラムを含む。ストレージ230に格納されるデータは、仮想空間を規定するためのデータおよびオブジェクト等を含む。 The storage 230 permanently holds programs and data. The storage 230 is realized as, for example, a ROM (Read-Only Memory), a hard disk device, a flash memory, or other non-volatile storage device. The program stored in the storage 230 includes a program for providing a virtual space in the HMD system 100, a simulation program, a game program, a user authentication program, and a program for realizing communication with another computer 200. The data stored in the storage 230 includes data, objects, and the like for defining the virtual space.

別の局面において、ストレージ230は、メモリカードのように着脱可能な記憶装置として実現されてもよい。さらに別の局面において、コンピュータ200に内蔵されたストレージ230の代わりに、外部の記憶装置に保存されているプログラムおよびデータを使用する構成が使用されてもよい。このような構成によれば、例えば、アミューズメント施設のように複数のHMDシステム100が使用される場面において、プログラムやデータの更新を一括して行なうことが可能になる。 In another aspect, the storage 230 may be realized as a removable storage device such as a memory card. In yet another aspect, a configuration may be used that uses programs and data stored in an external storage device instead of the storage 230 built into the computer 200. According to such a configuration, for example, in a scene where a plurality of HMD systems 100 are used such as an amusement facility, it is possible to update programs and data at once.

入出力インターフェイス240は、HMD120、HMDセンサ410、モーションセンサ420およびディスプレイ430との間で信号を通信する。HMD120に含まれるモニタ130,注視センサ140,第1カメラ150,第2カメラ160,マイク170およびスピーカ180は、HMD120の入出力インターフェイス240を介してコンピュータ200との通信を行ない得る。ある局面において、入出力インターフェイス240は、USB(Universal Serial Bus)、DVI(Digital Visual Interface)、HDMI(登録商標)(High-Definition Multimedia Interface)その他の端子を用いて実現される。入出力インターフェイス240は上述のものに限られない。 The input / output interface 240 communicates signals with the HMD 120, the HMD sensor 410, the motion sensor 420, and the display 430. The monitor 130, the gaze sensor 140, the first camera 150, the second camera 160, the microphone 170, and the speaker 180 included in the HMD 120 can communicate with the computer 200 via the input / output interface 240 of the HMD 120. In some aspects, the input / output interface 240 is implemented using USB (Universal Serial Bus), DVI (Digital Visual Interface), HDMI® (High-Definition Multimedia Interface) and other terminals. The input / output interface 240 is not limited to the above.

ある局面において、入出力インターフェイス240は、さらに、コントローラ300と通信し得る。例えば、入出力インターフェイス240は、コントローラ300およびモーションセンサ420から出力された信号の入力を受ける。別の局面において、入出力インターフェイス240は、プロセッサ210から出力された命令を、コントローラ300に送る。当該命令は、振動、音声出力、発光等をコントローラ300に指示する。コントローラ300は、当該命令を受信すると、その命令に応じて、振動、音声出力または発光のいずれかを実行する。 In some aspects, the input / output interface 240 may further communicate with the controller 300. For example, the input / output interface 240 receives input of signals output from the controller 300 and the motion sensor 420. In another aspect, the input / output interface 240 sends an instruction output from the processor 210 to the controller 300. The command instructs the controller 300 to vibrate, output voice, emit light, and the like. Upon receiving the command, the controller 300 executes either vibration, voice output, or light emission in response to the command.

通信インターフェイス250は、ネットワーク2に接続されて、ネットワーク2に接続されている他のコンピュータ(例えば、サーバ600)と通信する。ある局面において、通信インターフェイス250は、例えば、LAN(Local Area Network)その他の有線通信インターフェイス、あるいは、WiFi(Wireless Fidelity)、Bluetooth(登録商標)、NFC(Near Field Communication)その他の無線通信インターフェイスとして実現される。通信インターフェイス250は上述のものに限られない。 The communication interface 250 is connected to the network 2 and communicates with another computer (for example, the server 600) connected to the network 2. In a certain aspect, the communication interface 250 is realized as, for example, a LAN (Local Area Network) or other wired communication interface, or a WiFi (Wireless Fidelity), Bluetooth (registered trademark), NFC (Near Field Communication) or other wireless communication interface. Will be done. The communication interface 250 is not limited to the above.

ある局面において、プロセッサ210は、ストレージ230にアクセスし、ストレージ230に格納されている1つ以上のプログラムをメモリ220にロードし、当該プログラムに含まれる一連の命令を実行する。当該1つ以上のプログラムは、コンピュータ200のオペレーティングシステム、仮想空間を提供するためのアプリケーションプログラム、仮想空間で実行可能なゲームソフトウェア等を含み得る。プロセッサ210は、入出力インターフェイス240を介して、仮想空間を提供するための信号をHMD120に送る。HMD120は、その信号に基づいてモニタ130に映像を表示する。 In one aspect, the processor 210 accesses the storage 230, loads one or more programs stored in the storage 230 into the memory 220, and executes a series of instructions contained in the program. The one or more programs may include an operating system of a computer 200, an application program for providing a virtual space, game software that can be executed in the virtual space, and the like. The processor 210 sends a signal to the HMD 120 to provide virtual space via the input / output interface 240. The HMD 120 displays an image on the monitor 130 based on the signal.

図2に示される例では、コンピュータ200は、HMD120の外部に設けられる構成が示されているが、別の局面において、コンピュータ200は、HMD120に内蔵されてもよい。一例として、モニタ130を含む携帯型の情報通信端末(例えば、スマートフォン)がコンピュータ200として機能してもよい。 In the example shown in FIG. 2, the computer 200 is configured to be provided outside the HMD 120, but in another aspect, the computer 200 may be built in the HMD 120. As an example, a portable information communication terminal (for example, a smartphone) including a monitor 130 may function as a computer 200.

コンピュータ200は、複数のHMD120に共通して用いられる構成であってもよい。このような構成によれば、例えば、複数のユーザに同一の仮想空間を提供することもできるので、各ユーザは同一の仮想空間で他のユーザと同一のアプリケーションを楽しむことができる。 The computer 200 may have a configuration commonly used for a plurality of HMD 120s. According to such a configuration, for example, the same virtual space can be provided to a plurality of users, so that each user can enjoy the same application as other users in the same virtual space.

ある実施の形態において、HMDシステム100では、現実空間における座標系である実座標系が予め設定されている。実座標系は、現実空間における鉛直方向、鉛直方向に直交する水平方向、並びに、鉛直方向および水平方向の双方に直交する前後方向にそれぞれ平行な、3つの基準方向(軸)を有する。実座標系における水平方向、鉛直方向(上下方向)、および前後方向は、それぞれ、x軸、y軸、z軸と規定される。より具体的には、実座標系において、x軸は現実空間の水平方向に平行である。y軸は、現実空間の鉛直方向に平行である。z軸は現実空間の前後方向に平行である。 In a certain embodiment, in the HMD system 100, a real coordinate system, which is a coordinate system in the real space, is preset. The real coordinate system has three reference directions (axises) that are parallel to the vertical direction in the real space, the horizontal direction orthogonal to the vertical direction, and the front-back direction orthogonal to both the vertical direction and the horizontal direction. The horizontal direction, vertical direction (vertical direction), and front-back direction in the real coordinate system are defined as x-axis, y-axis, and z-axis, respectively. More specifically, in the real coordinate system, the x-axis is parallel to the horizontal direction in real space. The y-axis is parallel to the vertical direction in real space. The z-axis is parallel to the front-back direction of the real space.

ある局面において、HMDセンサ410は、赤外線センサを含む。赤外線センサが、HMD120の各光源から発せられた赤外線をそれぞれ検出すると、HMD120の存在を検出する。HMDセンサ410は、さらに、各点の値(実座標系における各座標値)に基づいて、HMD120を装着したユーザ5の動きに応じた、現実空間内におけるHMD120の位置および傾き(向き)を検出する。より詳しくは、HMDセンサ410は、経時的に検出された各値を用いて、HMD120の位置および傾きの時間的変化を検出できる。 In some aspects, the HMD sensor 410 includes an infrared sensor. When the infrared sensor detects infrared rays emitted from each light source of the HMD 120, the presence of the HMD 120 is detected. The HMD sensor 410 further detects the position and inclination (orientation) of the HMD 120 in the real space according to the movement of the user 5 wearing the HMD 120 based on the value of each point (each coordinate value in the real coordinate system). To do. More specifically, the HMD sensor 410 can detect a temporal change in the position and inclination of the HMD 120 by using each value detected over time.

HMDセンサ410によって検出されたHMD120の各傾きは、実座標系におけるHMD120の3軸周りの各傾きに相当する。HMDセンサ410は、実座標系におけるHMD120の傾きに基づき、uvw視野座標系をHMD120に設定する。HMD120に設定されるuvw視野座標系は、HMD120を装着したユーザ5が仮想空間において物体を見る際の視点座標系に対応する。 Each inclination of the HMD 120 detected by the HMD sensor 410 corresponds to each inclination of the HMD 120 around three axes in the real coordinate system. The HMD sensor 410 sets the uvw field coordinate system to the HMD 120 based on the inclination of the HMD 120 in the real coordinate system. The uvw field-of-view coordinate system set in the HMD 120 corresponds to the viewpoint coordinate system when the user 5 wearing the HMD 120 sees an object in the virtual space.

[uvw視野座標系]
図3を参照して、uvw視野座標系について説明する。図3は、ある実施の形態に従うHMD120に設定されるuvw視野座標系を概念的に表す図である。HMDセンサ410は、HMD120の起動時に、実座標系におけるHMD120の位置および傾きを検出する。プロセッサ210は、検出された値に基づいて、uvw視野座標系をHMD120に設定する。
[Uvw field coordinate system]
The uvw field coordinate system will be described with reference to FIG. FIG. 3 is a diagram conceptually representing the uvw field coordinate system set in the HMD 120 according to an embodiment. The HMD sensor 410 detects the position and tilt of the HMD 120 in the real coordinate system when the HMD 120 is activated. The processor 210 sets the uvw field coordinate system to the HMD 120 based on the detected values.

図3に示されるように、HMD120は、HMD120を装着したユーザ5の頭部を中心(原点)とした3次元のuvw視野座標系を設定する。より具体的には、HMD120は、実座標系を規定する水平方向、鉛直方向、および前後方向(x軸、y軸、z軸)を、実座標系内においてHMD120の各軸周りの傾きだけ各軸周りにそれぞれ傾けることによって新たに得られる3つの方向を、HMD120におけるuvw視野座標系のピッチ軸(u軸)、ヨー軸(v軸)、およびロール軸(w軸)として設定する。 As shown in FIG. 3, the HMD 120 sets a three-dimensional uvw visual field coordinate system centered (origin) on the head of the user 5 wearing the HMD 120. More specifically, the HMD 120 defines the real coordinate system in the horizontal direction, the vertical direction, and the front-back direction (x-axis, y-axis, z-axis) by the inclination of each axis of the HMD 120 in the real coordinate system. The three directions newly obtained by tilting each around the axis are set as the pitch axis (u axis), the yaw axis (v axis), and the roll axis (w axis) of the uvw field coordinate system in the HMD 120.

ある局面において、HMD120を装着したユーザ5が直立し、かつ、正面を視認している場合、プロセッサ210は、実座標系に平行なuvw視野座標系をHMD120に設定する。この場合、実座標系における水平方向(x軸)、鉛直方向(y軸)、および前後方向(z軸)は、HMD120におけるuvw視野座標系のピッチ軸(u軸)、ヨー軸(v軸)、およびロール軸(w軸)に一致する。 In a certain aspect, when the user 5 wearing the HMD 120 is upright and visually recognizing the front surface, the processor 210 sets the uvw field coordinate system parallel to the real coordinate system to the HMD 120. In this case, the horizontal direction (x-axis), vertical direction (y-axis), and front-back direction (z-axis) in the real coordinate system are the pitch axis (u-axis) and yaw-axis (v-axis) of the uvw field coordinate system in the HMD 120. , And the roll axis (w axis).

uvw視野座標系がHMD120に設定された後、HMDセンサ410は、HMD120の動きに基づいて、設定されたuvw視野座標系におけるHMD120の傾きを検出できる。この場合、HMDセンサ410は、HMD120の傾きとして、uvw視野座標系におけるHMD120のピッチ角(θu)、ヨー角(θv)、およびロール角(θw)をそれぞれ検出する。ピッチ角(θu)は、uvw視野座標系におけるピッチ軸周りのHMD120の傾き角度を表す。ヨー角(θv)は、uvw視野座標系におけるヨー軸周りのHMD120の傾き角度を表す。ロール角(θw)は、uvw視野座標系におけるロール軸周りのHMD120の傾き角度を表す。 After the uvw field coordinate system is set to the HMD 120, the HMD sensor 410 can detect the tilt of the HMD 120 in the set uvw field coordinate system based on the movement of the HMD 120. In this case, the HMD sensor 410 detects the pitch angle (θu), yaw angle (θv), and roll angle (θw) of the HMD 120 in the uvw visual field coordinate system as the inclination of the HMD 120, respectively. The pitch angle (θu) represents the tilt angle of the HMD 120 around the pitch axis in the uvw field coordinate system. The yaw angle (θv) represents the tilt angle of the HMD 120 around the yaw axis in the uvw visual field coordinate system. The roll angle (θw) represents the tilt angle of the HMD 120 around the roll axis in the uvw field coordinate system.

HMDセンサ410は、検出されたHMD120の傾きに基づいて、HMD120が動いた後のHMD120におけるuvw視野座標系を、HMD120に設定する。HMD120と、HMD120のuvw視野座標系との関係は、HMD120の位置および傾きに関わらず、常に一定である。HMD120の位置および傾きが変わると、当該位置および傾きの変化に連動して、実座標系におけるHMD120のuvw視野座標系の位置および傾きが変化する。 The HMD sensor 410 sets the uvw field coordinate system in the HMD 120 after the HMD 120 has moved to the HMD 120 based on the detected inclination of the HMD 120. The relationship between the HMD 120 and the uvw field coordinate system of the HMD 120 is always constant regardless of the position and tilt of the HMD 120. When the position and inclination of the HMD 120 change, the position and inclination of the uvw visual field coordinate system of the HMD 120 in the real coordinate system change in conjunction with the change of the position and inclination.

ある局面において、HMDセンサ410は、赤外線センサからの出力に基づいて取得される赤外線の光強度および複数の点間の相対的な位置関係(例えば、各点間の距離など)に基づいて、HMD120の現実空間内における位置を、HMDセンサ410に対する相対位置として特定してもよい。プロセッサ210は、特定された相対位置に基づいて、現実空間内(実座標系)におけるHMD120のuvw視野座標系の原点を決定してもよい。 In one aspect, the HMD sensor 410 is based on the infrared light intensity obtained based on the output from the infrared sensor and the relative positional relationship between the points (eg, the distance between the points). The position of the above in the real space may be specified as a relative position with respect to the HMD sensor 410. The processor 210 may determine the origin of the uvw visual field coordinate system of the HMD 120 in real space (real coordinate system) based on the identified relative position.

[仮想空間]
図4を参照して、仮想空間についてさらに説明する。図4は、ある実施の形態に従う仮想空間11を表現する一態様を概念的に表す図である。仮想空間11は、中心12の360度方向の全体を覆う全天球状の構造を有する。図4では、説明を複雑にしないために、仮想空間11のうちの上半分の天球が例示されている。仮想空間11では各メッシュが規定される。各メッシュの位置は、仮想空間11に規定されるグローバル座標系であるXYZ座標系における座標値として予め規定されている。コンピュータ200は、仮想空間11に展開可能なパノラマ画像13(静止画、動画等)を構成する各部分画像を、仮想空間11において対応する各メッシュにそれぞれ対応付ける。
[Virtual space]
The virtual space will be further described with reference to FIG. FIG. 4 is a diagram conceptually representing one aspect of expressing the virtual space 11 according to a certain embodiment. The virtual space 11 has an all-sky spherical structure that covers the entire center 12 in the 360-degree direction. In FIG. 4, the celestial sphere in the upper half of the virtual space 11 is illustrated so as not to complicate the explanation. Each mesh is defined in the virtual space 11. The position of each mesh is predetermined as a coordinate value in the XYZ coordinate system, which is a global coordinate system defined in the virtual space 11. The computer 200 associates each partial image constituting the panoramic image 13 (still image, moving image, etc.) expandable in the virtual space 11 with each corresponding mesh in the virtual space 11.

ある局面において、仮想空間11では、中心12を原点とするXYZ座標系が規定される。XYZ座標系は、例えば、実座標系に平行である。XYZ座標系における水平方向、鉛直方向(上下方向)、および前後方向は、それぞれX軸、Y軸、Z軸として規定される。したがって、XYZ座標系のX軸(水平方向)が実座標系のx軸と平行であり、XYZ座標系のY軸(鉛直方向)が実座標系のy軸と平行であり、XYZ座標系のZ軸(前後方向)が実座標系のz軸と平行である。 In a certain aspect, the virtual space 11 defines an XYZ coordinate system with the center 12 as the origin. The XYZ coordinate system is, for example, parallel to the real coordinate system. The horizontal direction, vertical direction (vertical direction), and front-back direction in the XYZ coordinate system are defined as the X-axis, the Y-axis, and the Z-axis, respectively. Therefore, the X-axis (horizontal direction) of the XYZ coordinate system is parallel to the x-axis of the real coordinate system, the Y-axis (vertical direction) of the XYZ coordinate system is parallel to the y-axis of the real coordinate system, and the XYZ coordinate system The Z-axis (front-back direction) is parallel to the z-axis of the real coordinate system.

HMD120の起動時、すなわちHMD120の初期状態において、仮想カメラ14が、仮想空間11の中心12に配置される。ある局面において、プロセッサ210は、仮想カメラ14が撮影する画像をHMD120のモニタ130に表示する。仮想カメラ14は、現実空間におけるHMD120の動きに連動して、仮想空間11を同様に移動する。これにより、現実空間におけるHMD120の位置および傾きの変化が、仮想空間11において同様に再現され得る。 At the time of starting the HMD 120, that is, in the initial state of the HMD 120, the virtual camera 14 is arranged at the center 12 of the virtual space 11. In one aspect, the processor 210 displays an image captured by the virtual camera 14 on the monitor 130 of the HMD 120. The virtual camera 14 moves in the virtual space 11 in the same manner in conjunction with the movement of the HMD 120 in the real space. As a result, changes in the position and inclination of the HMD 120 in the real space can be similarly reproduced in the virtual space 11.

仮想カメラ14には、HMD120の場合と同様に、uvw視野座標系が規定される。仮想空間11における仮想カメラ14のuvw視野座標系は、現実空間(実座標系)におけるHMD120のuvw視野座標系に連動するように規定されている。したがって、HMD120の傾きが変化すると、それに応じて、仮想カメラ14の傾きも変化する。仮想カメラ14は、HMD120を装着したユーザ5の現実空間における移動に連動して、仮想空間11において移動することもできる。 As in the case of the HMD 120, the virtual camera 14 is defined with an uvw field-of-view coordinate system. The uvw field-of-view coordinate system of the virtual camera 14 in the virtual space 11 is defined to be linked to the uvw field-of-view coordinate system of the HMD 120 in the real space (real coordinate system). Therefore, when the inclination of the HMD 120 changes, the inclination of the virtual camera 14 also changes accordingly. The virtual camera 14 can also move in the virtual space 11 in conjunction with the movement of the user 5 wearing the HMD 120 in the real space.

コンピュータ200のプロセッサ210は、仮想カメラ14の位置と傾き(基準視線16)とに基づいて、仮想空間11における視界領域15を規定する。視界領域15は、仮想空間11のうち、HMD120を装着したユーザ5が視認する領域に対応する。つまり、仮想カメラ14の位置は、仮想空間11におけるユーザ5の視点と言える。 The processor 210 of the computer 200 defines the field of view 15 in the virtual space 11 based on the position and tilt (reference line of sight 16) of the virtual camera 14. The visual field area 15 corresponds to an area in the virtual space 11 that is visually recognized by the user 5 wearing the HMD 120. That is, the position of the virtual camera 14 can be said to be the viewpoint of the user 5 in the virtual space 11.

注視センサ140によって検出されるユーザ5の視線は、ユーザ5が物体を視認する際の視点座標系における方向である。HMD120のuvw視野座標系は、ユーザ5がモニタ130を視認する際の視点座標系に等しい。仮想カメラ14のuvw視野座標系は、HMD120のuvw視野座標系に連動している。したがって、ある局面に従うHMDシステム100は、注視センサ140によって検出されたユーザ5の視線を、仮想カメラ14のuvw視野座標系におけるユーザ5の視線とみなすことができる。 The line of sight of the user 5 detected by the gaze sensor 140 is a direction in the viewpoint coordinate system when the user 5 visually recognizes an object. The uvw field-of-view coordinate system of the HMD 120 is equal to the viewpoint coordinate system when the user 5 visually recognizes the monitor 130. The uvw field-of-view coordinate system of the virtual camera 14 is linked to the uvw field-of-view coordinate system of the HMD 120. Therefore, the HMD system 100 according to a certain aspect can consider the line of sight of the user 5 detected by the gaze sensor 140 as the line of sight of the user 5 in the uvw field of view coordinate system of the virtual camera 14.

[ユーザの視線]
図5を参照して、ユーザ5の視線の決定について説明する。図5は、ある実施の形態に従うHMD120を装着するユーザ5の頭部を上から表した図である。
[User's line of sight]
The determination of the line of sight of the user 5 will be described with reference to FIG. FIG. 5 is a top view of the head of the user 5 who wears the HMD 120 according to a certain embodiment.

ある局面において、注視センサ140は、ユーザ5の右目および左目の各視線を検出する。ある局面において、ユーザ5が近くを見ている場合、注視センサ140は、視線R1およびL1を検出する。別の局面において、ユーザ5が遠くを見ている場合、注視センサ140は、視線R2およびL2を検出する。この場合、ロール軸wに対して視線R2およびL2が成す角度は、ロール軸wに対して視線R1およびL1が成す角度よりも小さい。注視センサ140は、検出結果をコンピュータ200に送信する。 In one aspect, the gaze sensor 140 detects each line of sight of the user 5's right and left eyes. In a certain aspect, when the user 5 is looking near, the gaze sensor 140 detects the lines of sight R1 and L1. In another aspect, when the user 5 is looking far away, the gaze sensor 140 detects the lines of sight R2 and L2. In this case, the angle formed by the lines of sight R2 and L2 with respect to the roll axis w is smaller than the angle formed by the lines of sight R1 and L1 with respect to the roll axis w. The gaze sensor 140 transmits the detection result to the computer 200.

コンピュータ200が、視線の検出結果として、視線R1およびL1の検出値を注視センサ140から受信した場合には、その検出値に基づいて、視線R1およびL1の交点である注視点N1を特定する。一方、コンピュータ200は、視線R2およびL2の検出値を注視センサ140から受信した場合には、視線R2およびL2の交点を注視点として特定する。コンピュータ200は、特定した注視点N1の位置に基づき、ユーザ5の視線N0を特定する。コンピュータ200は、例えば、ユーザ5の右目Rと左目Lとを結ぶ直線の中点と、注視点N1とを通る直線の延びる方向を、視線N0として検出する。視線N0は、ユーザ5が両目により実際に視線を向けている方向である。視線N0は、視界領域15に対してユーザ5が実際に視線を向けている方向に相当する。 When the computer 200 receives the detection values of the lines of sight R1 and L1 from the gaze sensor 140 as the detection result of the line of sight, the computer 200 identifies the gaze point N1 which is the intersection of the lines of sight R1 and L1 based on the detected values. On the other hand, when the computer 200 receives the detected values of the lines of sight R2 and L2 from the gaze sensor 140, the computer 200 identifies the intersection of the lines of sight R2 and L2 as the gaze point. The computer 200 identifies the line of sight N0 of the user 5 based on the position of the specified gazing point N1. The computer 200 detects, for example, the extending direction of the straight line passing through the midpoint of the straight line connecting the right eye R and the left eye L of the user 5 and the gazing point N1 as the line of sight N0. The line of sight N0 is the direction in which the user 5 actually directs the line of sight with both eyes. The line of sight N0 corresponds to the direction in which the user 5 actually directs the line of sight with respect to the field of view area 15.

別の局面において、HMDシステム100は、テレビジョン放送受信チューナを備えてもよい。このような構成によれば、HMDシステム100は、仮想空間11においてテレビ番組を表示することができる。 In another aspect, the HMD system 100 may include a television broadcast receiving tuner. According to such a configuration, the HMD system 100 can display a television program in the virtual space 11.

さらに別の局面において、HMDシステム100は、インターネットに接続するための通信回路、あるいは、電話回線に接続するための通話機能を備えていてもよい。 In yet another aspect, the HMD system 100 may include a communication circuit for connecting to the Internet or a telephone function for connecting to a telephone line.

[視界領域]
図6および図7を参照して、視界領域15について説明する。図6は、仮想空間11において視界領域15をX方向から見たYZ断面を表す図である。図7は、仮想空間11において視界領域15をY方向から見たXZ断面を表す図である。
[Visibility area]
The field of view region 15 will be described with reference to FIGS. 6 and 7. FIG. 6 is a diagram showing a YZ cross section of the field of view region 15 viewed from the X direction in the virtual space 11. FIG. 7 is a diagram showing an XZ cross section of the field of view region 15 viewed from the Y direction in the virtual space 11.

図6に示されるように、YZ断面における視界領域15は、領域18を含む。領域18は、仮想カメラ14の位置と基準視線16と仮想空間11のYZ断面とによって定義される。プロセッサ210は、仮想空間における基準視線16を中心として極角αを含む範囲を、領域18として規定する。 As shown in FIG. 6, the field of view region 15 in the YZ cross section includes the region 18. The region 18 is defined by the position of the virtual camera 14, the reference line of sight 16, and the YZ cross section of the virtual space 11. The processor 210 defines a range including the polar angle α centered on the reference line of sight 16 in the virtual space as a region 18.

図7に示されるように、XZ断面における視界領域15は、領域19を含む。領域19は、仮想カメラ14の位置と基準視線16と仮想空間11のXZ断面とによって定義される。プロセッサ210は、仮想空間11における基準視線16を中心とした方位角βを含む範囲を、領域19として規定する。極角αおよびβは、仮想カメラ14の位置と仮想カメラ14の傾き(向き)とに応じて定まる。 As shown in FIG. 7, the field of view region 15 in the XZ cross section includes the region 19. The region 19 is defined by the position of the virtual camera 14, the reference line of sight 16, and the XZ cross section of the virtual space 11. The processor 210 defines a range including the azimuth angle β centered on the reference line of sight 16 in the virtual space 11 as a region 19. The polar angles α and β are determined according to the position of the virtual camera 14 and the inclination (orientation) of the virtual camera 14.

ある局面において、HMDシステム100は、コンピュータ200からの信号に基づいて、視界画像17をモニタ130に表示させることにより、ユーザ5に仮想空間11における視界を提供する。視界画像17は、パノラマ画像13のうち視界領域15に対応する部分に相当する画像である。ユーザ5が、頭部に装着したHMD120を動かすと、その動きに連動して仮想カメラ14も動く。その結果、仮想空間11における視界領域15の位置が変化する。これにより、モニタ130に表示される視界画像17は、パノラマ画像13のうち、仮想空間11においてユーザ5が向いた方向の視界領域15に重畳する画像に更新される。ユーザ5は、仮想空間11における所望の方向を視認することができる。 In one aspect, the HMD system 100 provides the user 5 with a field of view in the virtual space 11 by displaying the field of view image 17 on the monitor 130 based on the signal from the computer 200. The visual field image 17 is an image corresponding to a portion of the panoramic image 13 corresponding to the visual field region 15. When the user 5 moves the HMD 120 attached to the head, the virtual camera 14 also moves in conjunction with the movement. As a result, the position of the visual field region 15 in the virtual space 11 changes. As a result, the field-of-view image 17 displayed on the monitor 130 is updated to an image of the panoramic image 13 superimposed on the field-of-view area 15 in the direction in which the user 5 faces in the virtual space 11. The user 5 can visually recognize a desired direction in the virtual space 11.

このように、仮想カメラ14の傾きは仮想空間11におけるユーザ5の視線(基準視線16)に相当し、仮想カメラ14が配置される位置は、仮想空間11におけるユーザ5の視点に相当する。したがって、仮想カメラ14の位置または傾きを変更することにより、モニタ130に表示される画像が更新され、ユーザ5の視界が移動される。 As described above, the inclination of the virtual camera 14 corresponds to the line of sight (reference line of sight 16) of the user 5 in the virtual space 11, and the position where the virtual camera 14 is arranged corresponds to the viewpoint of the user 5 in the virtual space 11. Therefore, by changing the position or tilt of the virtual camera 14, the image displayed on the monitor 130 is updated and the field of view of the user 5 is moved.

ユーザ5は、HMD120を装着している間、現実世界を視認することなく、仮想空間11に展開されるパノラマ画像13のみを視認できる。そのため、HMDシステム100は、仮想空間11への高い没入感覚をユーザ5に与えることができる。 While wearing the HMD 120, the user 5 can visually recognize only the panoramic image 13 developed in the virtual space 11 without visually recognizing the real world. Therefore, the HMD system 100 can give the user 5 a high sense of immersion in the virtual space 11.

ある局面において、プロセッサ210は、HMD120を装着したユーザ5の現実空間における移動に連動して、仮想空間11において仮想カメラ14を移動し得る。この場合、プロセッサ210は、仮想空間11における仮想カメラ14の位置および傾きに基づいて、HMD120のモニタ130に投影される画像領域(視界領域15)を特定する。 In a certain aspect, the processor 210 may move the virtual camera 14 in the virtual space 11 in conjunction with the movement of the user 5 wearing the HMD 120 in the real space. In this case, the processor 210 identifies an image region (field of view region 15) projected onto the monitor 130 of the HMD 120 based on the position and tilt of the virtual camera 14 in the virtual space 11.

ある局面において、仮想カメラ14は、2つの仮想カメラ、すなわち、右目用の画像を提供するための仮想カメラと、左目用の画像を提供するための仮想カメラとを含み得る。ユーザ5が3次元の仮想空間11を認識できるように、適切な視差が、2つの仮想カメラに設定される。別の局面において、仮想カメラ14を1つの仮想カメラにより実現してもよい。この場合、1つの仮想カメラにより得られた画像から、右目用の画像と左目用の画像とを生成するようにしてもよい。本実施の形態においては、仮想カメラ14が2つの仮想カメラを含み、2つの仮想カメラのロール軸が合成されることによって生成されるロール軸(w)がHMD120のロール軸(w)に適合されるように構成されているものとして、本開示に係る技術思想を例示する。 In some aspects, the virtual camera 14 may include two virtual cameras, a virtual camera for providing an image for the right eye and a virtual camera for providing an image for the left eye. Appropriate parallax is set for the two virtual cameras so that the user 5 can recognize the three-dimensional virtual space 11. In another aspect, the virtual camera 14 may be realized by one virtual camera. In this case, an image for the right eye and an image for the left eye may be generated from the image obtained by one virtual camera. In the present embodiment, the virtual camera 14 includes two virtual cameras, and the roll axis (w) generated by synthesizing the roll axes of the two virtual cameras is adapted to the roll axis (w) of the HMD 120. The technical idea of the present disclosure is illustrated as being configured as such.

[コントローラ]
図8を参照して、コントローラ300の一例について説明する。図8は、ある実施の形態に従うコントローラ300の概略構成を表す図である。
[controller]
An example of the controller 300 will be described with reference to FIG. FIG. 8 is a diagram showing a schematic configuration of a controller 300 according to an embodiment.

図8に示されるように、ある局面において、コントローラ300は、右コントローラ300Rと図示せぬ左コントローラとを含み得る。右コントローラ300Rは、ユーザ5の右手で操作される。左コントローラは、ユーザ5の左手で操作される。ある局面において、右コントローラ300Rと左コントローラとは、別個の装置として対称に構成される。したがって、ユーザ5は、右コントローラ300Rを把持した右手と、左コントローラを把持した左手とをそれぞれ自由に動かすことができる。別の局面において、コントローラ300は両手の操作を受け付ける一体型のコントローラであってもよい。以下、右コントローラ300Rについて説明する。 As shown in FIG. 8, in some aspects, the controller 300 may include a right controller 300R and a left controller (not shown). The right controller 300R is operated by the right hand of the user 5. The left controller is operated by the left hand of the user 5. In a certain aspect, the right controller 300R and the left controller are symmetrically configured as separate devices. Therefore, the user 5 can freely move the right hand holding the right controller 300R and the left hand holding the left controller. In another aspect, the controller 300 may be an integrated controller that accepts operations of both hands. Hereinafter, the right controller 300R will be described.

右コントローラ300Rは、グリップ310と、フレーム320と、天面330とを備える。グリップ310は、ユーザ5の右手によって把持されるように構成されている。たとえば、グリップ310は、ユーザ5の右手の掌と3本の指(中指、薬指、小指)とによって保持され得る。 The right controller 300R includes a grip 310, a frame 320, and a top surface 330. The grip 310 is configured to be gripped by the right hand of the user 5. For example, the grip 310 may be held by the palm of the user 5's right hand and three fingers (middle finger, ring finger, little finger).

グリップ310は、ボタン340,350と、モーションセンサ420とを含む。ボタン340は、グリップ310の側面に配置され、右手の中指による操作を受け付ける。ボタン350は、グリップ310の前面に配置され、右手の人差し指による操作を受け付ける。ある局面において、ボタン340,350は、トリガー式のボタンとして構成される。モーションセンサ420は、グリップ310の筐体に内蔵されている。ユーザ5の動作がカメラその他の装置によってユーザ5の周りから検出可能である場合には、グリップ310は、モーションセンサ420を備えなくてもよい。 The grip 310 includes buttons 340, 350 and a motion sensor 420. The button 340 is arranged on the side surface of the grip 310 and accepts an operation by the middle finger of the right hand. The button 350 is arranged in front of the grip 310 and accepts an operation by the index finger of the right hand. In one aspect, the buttons 340,350 are configured as trigger-type buttons. The motion sensor 420 is built in the housing of the grip 310. If the movement of the user 5 can be detected from around the user 5 by a camera or other device, the grip 310 may not include the motion sensor 420.

フレーム320は、その円周方向に沿って配置された複数の赤外線LED360を含む。赤外線LED360は、コントローラ300を使用するプログラムの実行中に、当該プログラムの進行に合わせて赤外線を発光する。赤外線LED360から発せられた赤外線は、右コントローラ300Rと左コントローラとの各位置や姿勢(傾き、向き)を検出するために使用され得る。図8に示される例では、二列に配置された赤外線LED360が示されているが、配列の数は図8に示されるものに限られない。一列あるいは3列以上の配列が使用されてもよい。 The frame 320 includes a plurality of infrared LEDs 360 arranged along its circumferential direction. The infrared LED 360 emits infrared rays as the program progresses while the program using the controller 300 is being executed. The infrared rays emitted from the infrared LED 360 can be used to detect each position and orientation (tilt, orientation) of the right controller 300R and the left controller. In the example shown in FIG. 8, infrared LEDs 360 arranged in two rows are shown, but the number of arrays is not limited to that shown in FIG. An array with one or more columns may be used.

天面330は、ボタン370,380と、アナログスティック390とを備える。ボタン370,380は、プッシュ式ボタンとして構成される。ボタン370,380は、ユーザ5の右手の親指による操作を受け付ける。アナログスティック390は、ある局面において、初期位置(ニュートラルの位置)から360度任意の方向への操作を受け付ける。当該操作は、たとえば、仮想空間11に配置されるオブジェクトを移動するための操作を含む。 The top surface 330 includes buttons 370, 380 and an analog stick 390. The buttons 370 and 380 are configured as push buttons. Buttons 370 and 380 accept operations by the thumb of the user 5's right hand. The analog stick 390 accepts an operation in any direction 360 degrees from the initial position (neutral position) in a certain aspect. The operation includes, for example, an operation for moving an object arranged in the virtual space 11.

ある局面において、右コントローラ300Rおよび左コントローラは、赤外線LED360その他の部材を駆動するための電池を含む。電池は、充電式、ボタン型、乾電池型などを含むが、これらに限定されない。別の局面において、右コントローラ300Rと左コントローラは、たとえば、コンピュータ200のUSBインターフェースに接続され得る。この場合、右コントローラ300Rおよび左コントローラは、電池を必要としない。 In one aspect, the right controller 300R and the left controller include a battery for driving the infrared LED 360 and other components. Batteries include, but are not limited to, rechargeable, button type, dry cell type and the like. In another aspect, the right controller 300R and the left controller may be connected to, for example, the USB interface of the computer 200. In this case, the right controller 300R and the left controller do not require batteries.

図8の状態(A)および状態(B)に示されるように、例えば、ユーザ5の右手に対して、ヨー、ロール、ピッチの各方向が規定される。ユーザ5が親指と人差し指とを伸ばした場合に、親指の伸びる方向がヨー方向、人差し指の伸びる方向がロール方向、ヨー方向の軸およびロール方向の軸によって規定される平面に垂直な方向がピッチ方向として規定される。 As shown in the states (A) and (B) of FIG. 8, for example, the yaw, roll, and pitch directions are defined with respect to the right hand of the user 5. When the user 5 extends the thumb and the index finger, the direction in which the thumb extends is the yaw direction, the direction in which the index finger extends is the roll direction, and the direction perpendicular to the plane defined by the yaw direction axis and the roll direction axis is the pitch direction. Is defined as.

[サーバのハードウェア構成]
図9を参照して、本実施の形態に係るサーバ600について説明する。図9は、ある実施の形態に従うサーバ600のハードウェア構成の一例を表すブロック図である。サーバ600は、主たる構成要素として、プロセッサ610と、メモリ620と、ストレージ630と、入出力インターフェイス640と、通信インターフェイス650とを備える。各構成要素は、それぞれ、バス660に接続されている。
[Server hardware configuration]
The server 600 according to the present embodiment will be described with reference to FIG. FIG. 9 is a block diagram showing an example of the hardware configuration of the server 600 according to a certain embodiment. The server 600 includes a processor 610, a memory 620, a storage 630, an input / output interface 640, and a communication interface 650 as main components. Each component is connected to bus 660, respectively.

プロセッサ610は、サーバ600に与えられる信号に基づいて、あるいは、予め定められた条件が成立したことに基づいて、メモリ620またはストレージ630に格納されているプログラムに含まれる一連の命令を実行する。ある局面において、プロセッサ610は、CPU、GPU、MPU、FPGAその他のデバイスとして実現される。 The processor 610 executes a series of instructions included in the program stored in the memory 620 or the storage 630 based on the signal given to the server 600 or the condition that a predetermined condition is satisfied. In some aspects, the processor 610 is implemented as a CPU, GPU, MPU, FPGA or other device.

メモリ620は、プログラムおよびデータを一時的に保存する。プログラムは、例えば、ストレージ630からロードされる。データは、サーバ600に入力されたデータと、プロセッサ610によって生成されたデータとを含む。ある局面において、メモリ620は、RAMその他の揮発メモリとして実現される。 Memory 620 temporarily stores programs and data. The program is loaded from storage 630, for example. The data includes data input to the server 600 and data generated by the processor 610. In one aspect, the memory 620 is realized as a RAM or other volatile memory.

ストレージ630は、プログラムおよびデータを永続的に保持する。ストレージ630は、例えば、ROM、ハードディスク装置、フラッシュメモリ、その他の不揮発記憶装置として実現される。ストレージ630に格納されるプログラムは、HMDシステム100において仮想空間を提供するためのプログラム、シミュレーションプログラム、ゲームプログラム、ユーザ認証プログラム、コンピュータ200との通信を実現するためのプログラムを含んでもよい。ストレージ630に格納されるデータは、仮想空間を規定するためのデータおよびオブジェクト等を含んでもよい。 Storage 630 permanently holds programs and data. The storage 630 is realized as, for example, a ROM, a hard disk device, a flash memory, or other non-volatile storage device. The program stored in the storage 630 may include a program for providing a virtual space in the HMD system 100, a simulation program, a game program, a user authentication program, and a program for realizing communication with the computer 200. The data stored in the storage 630 may include data, objects, and the like for defining the virtual space.

別の局面において、ストレージ630は、メモリカードのように着脱可能な記憶装置として実現されてもよい。さらに別の局面において、サーバ600に内蔵されたストレージ630の代わりに、外部の記憶装置に保存されているプログラムおよびデータを使用する構成が使用されてもよい。このような構成によれば、例えば、アミューズメント施設のように複数のHMDシステム100が使用される場面において、プログラムやデータの更新を一括して行なうことが可能になる。 In another aspect, the storage 630 may be realized as a removable storage device such as a memory card. In yet another aspect, a configuration using programs and data stored in an external storage device may be used instead of the storage 630 built into the server 600. According to such a configuration, for example, in a scene where a plurality of HMD systems 100 are used such as an amusement facility, it is possible to update programs and data at once.

入出力インターフェイス640は、入出力機器との間で信号を通信する。ある局面において、入出力インターフェイス640は、USB、DVI、HDMIその他の端子を用いて実現される。入出力インターフェイス640は上述のものに限られない。 The input / output interface 640 communicates a signal with the input / output device. In some aspects, the input / output interface 640 is implemented using USB, DVI, HDMI and other terminals. The input / output interface 640 is not limited to the above.

通信インターフェイス650は、ネットワーク2に接続されて、ネットワーク2に接続されているコンピュータ200と通信する。ある局面において、通信インターフェイス650は、例えば、LANその他の有線通信インターフェイス、あるいは、WiFi、Bluetooth、NFCその他の無線通信インターフェイスとして実現される。通信インターフェイス650は上述のものに限られない。 The communication interface 650 is connected to the network 2 and communicates with the computer 200 connected to the network 2. In some aspects, the communication interface 650 is implemented as, for example, a LAN or other wired communication interface, or a WiFi, Bluetooth, NFC or other wireless communication interface. The communication interface 650 is not limited to the above.

ある局面において、プロセッサ610は、ストレージ630にアクセスし、ストレージ630に格納されている1つ以上のプログラムをメモリ620にロードし、当該プログラムに含まれる一連の命令を実行する。当該1つ以上のプログラムは、サーバ600のオペレーティングシステム、仮想空間を提供するためのアプリケーションプログラム、仮想空間で実行可能なゲームソフトウェア等を含み得る。プロセッサ610は、入出力インターフェイス640を介して、仮想空間を提供するための信号をコンピュータ200に送ってもよい。 In one aspect, the processor 610 accesses the storage 630, loads one or more programs stored in the storage 630 into the memory 620, and executes a series of instructions contained in the program. The one or more programs may include an operating system for the server 600, an application program for providing the virtual space, game software that can be executed in the virtual space, and the like. The processor 610 may send a signal to the computer 200 to provide virtual space via the input / output interface 640.

[HMDの制御装置]
図10を参照して、HMD120の制御装置について説明する。ある実施の形態において、制御装置は周知の構成を有するコンピュータ200によって実現される。図10は、ある実施の形態に従うコンピュータ200をモジュール構成として表わすブロック図である。
[HMD control device]
The control device of the HMD 120 will be described with reference to FIG. In certain embodiments, the control device is implemented by a computer 200 having a well-known configuration. FIG. 10 is a block diagram showing a computer 200 according to an embodiment as a module configuration.

図10に示されるように、コンピュータ200は、コントロールモジュール510と、レンダリングモジュール520と、メモリモジュール530と、通信制御モジュール540とを備える。ある局面において、コントロールモジュール510とレンダリングモジュール520とは、プロセッサ210によって実現される。別の局面において、複数のプロセッサ210がコントロールモジュール510とレンダリングモジュール520として作動してもよい。メモリモジュール530は、メモリ220またはストレージ230によって実現される。通信制御モジュール540は、通信インターフェイス250によって実現される。 As shown in FIG. 10, the computer 200 includes a control module 510, a rendering module 520, a memory module 530, and a communication control module 540. In some aspects, the control module 510 and the rendering module 520 are implemented by the processor 210. In another aspect, the plurality of processors 210 may operate as the control module 510 and the rendering module 520. The memory module 530 is realized by the memory 220 or the storage 230. The communication control module 540 is realized by the communication interface 250.

コントロールモジュール510は、ユーザ5に提供される仮想空間11を制御する。コントロールモジュール510は、仮想空間11を表す仮想空間データを用いて、HMDシステム100における仮想空間11を規定する。仮想空間データは、例えば、メモリモジュール530に記憶されている。コントロールモジュール510が、仮想空間データを生成したり、サーバ600などから仮想空間データを取得するようにしたりしてもよい。 The control module 510 controls the virtual space 11 provided to the user 5. The control module 510 defines the virtual space 11 in the HMD system 100 by using the virtual space data representing the virtual space 11. The virtual space data is stored in, for example, the memory module 530. The control module 510 may generate virtual space data or acquire virtual space data from a server 600 or the like.

コントロールモジュール510は、オブジェクトを表すオブジェクトデータを用いて、仮想空間11にオブジェクトを配置する。オブジェクトデータは、例えば、メモリモジュール530に記憶されている。コントロールモジュール510が、オブジェクトデータを生成したり、サーバ600などからオブジェクトデータを取得するようにしたりしてもよい。オブジェクトは、例えば、ユーザ5の分身であるアバターオブジェクト、キャラクタオブジェクト、コントローラ300によって操作される仮想手などの操作オブジェクト、ゲームのストーリーの進行に従って配置される森、山その他を含む風景、街並み、動物等を含み得る。 The control module 510 arranges an object in the virtual space 11 by using the object data representing the object. The object data is stored in, for example, the memory module 530. The control module 510 may generate object data or acquire object data from a server 600 or the like. The objects are, for example, an avatar object that is the alter ego of the user 5, a character object, an operation object such as a virtual hand operated by the controller 300, a landscape including forests, mountains, etc. arranged as the story of the game progresses, a cityscape, and animals. Etc. may be included.

コントロールモジュール510は、ネットワーク2を介して接続される他のコンピュータ200のユーザ5のアバターオブジェクトを仮想空間11に配置する。ある局面において、コントロールモジュール510は、ユーザ5のアバターオブジェクトを仮想空間11に配置する。ある局面において、コントロールモジュール510は、ユーザ5を含む画像に基づいて、ユーザ5を模したアバターオブジェクトを仮想空間11に配置する。別の局面において、コントロールモジュール510は、複数種類のアバターオブジェクト(例えば、動物を模したオブジェクトや、デフォルメされた人のオブジェクト)の中からユーザ5による選択を受け付けたアバターオブジェクトを仮想空間11に配置する。 The control module 510 arranges the avatar object of the user 5 of another computer 200 connected via the network 2 in the virtual space 11. In one aspect, the control module 510 places the user 5's avatar object in the virtual space 11. In a certain aspect, the control module 510 arranges an avatar object imitating the user 5 in the virtual space 11 based on the image including the user 5. In another aspect, the control module 510 arranges in the virtual space 11 an avatar object that has been selected by the user 5 from among a plurality of types of avatar objects (for example, an object imitating an animal or a deformed human object). To do.

コントロールモジュール510は、HMDセンサ410の出力に基づいてHMD120の傾きを特定する。別の局面において、コントロールモジュール510は、モーションセンサとして機能するセンサ190の出力に基づいてHMD120の傾きを特定する。コントロールモジュール510は、第1カメラ150および第2カメラ160が生成するユーザ5の顔の画像から、ユーザ5の顔を構成する器官(例えば、口,目,眉)を検出する。コントロールモジュール510は、検出した各器官の動き(形状)を検出する。 The control module 510 identifies the inclination of the HMD 120 based on the output of the HMD sensor 410. In another aspect, the control module 510 identifies the tilt of the HMD 120 based on the output of the sensor 190, which functions as a motion sensor. The control module 510 detects organs (for example, mouth, eyes, eyebrows) constituting the face of the user 5 from the images of the face of the user 5 generated by the first camera 150 and the second camera 160. The control module 510 detects the movement (shape) of each detected organ.

コントロールモジュール510は、注視センサ140からの信号に基づいて、ユーザ5の仮想空間11における視線を検出する。コントロールモジュール510は、検出したユーザ5の視線と仮想空間11の天球とが交わる視点位置(XYZ座標系における座標値)を検出する。より具体的には、コントロールモジュール510は、uvw座標系で規定されるユーザ5の視線と、仮想カメラ14の位置および傾きとに基づいて、視点位置を検出する。コントロールモジュール510は、検出した視点位置をサーバ600に送信する。別の局面において、コントロールモジュール510は、ユーザ5の視線を表す視線情報をサーバ600に送信するように構成されてもよい。係る場合、サーバ600が受信した視線情報に基づいて視点位置を算出し得る。 The control module 510 detects the line of sight of the user 5 in the virtual space 11 based on the signal from the gaze sensor 140. The control module 510 detects the viewpoint position (coordinate value in the XYZ coordinate system) at which the detected line of sight of the user 5 and the celestial sphere in the virtual space 11 intersect. More specifically, the control module 510 detects the viewpoint position based on the line of sight of the user 5 defined by the uvw coordinate system and the position and inclination of the virtual camera 14. The control module 510 transmits the detected viewpoint position to the server 600. In another aspect, the control module 510 may be configured to transmit gaze information representing the gaze of the user 5 to the server 600. In such a case, the viewpoint position can be calculated based on the line-of-sight information received by the server 600.

コントロールモジュール510は、HMDセンサ410が検出するHMD120の動きをアバターオブジェクトに反映する。例えば、コントロールモジュール510は、HMD120が傾いたことを検知して、アバターオブジェクトを傾けて配置する。コントロールモジュール510は、検出した顔器官の動作を、仮想空間11に配置されるアバターオブジェクトの顔に反映させる。コントロールモジュール510は、サーバ600から他のユーザ5の視線情報を受信し、当該他のユーザ5のアバターオブジェクトの視線に反映させる。ある局面において、コントロールモジュール510は、コントローラ300の動きをアバターオブジェクトや操作オブジェクトに反映する。この場合、コントローラ300は、コントローラ300の動きを検知するためのモーションセンサ、加速度センサ、または複数の発光素子(例えば、赤外線LED)などを備える。 The control module 510 reflects the movement of the HMD 120 detected by the HMD sensor 410 on the avatar object. For example, the control module 510 detects that the HMD 120 is tilted and tilts and arranges the avatar object. The control module 510 reflects the detected movement of the facial organ on the face of the avatar object arranged in the virtual space 11. The control module 510 receives the line-of-sight information of the other user 5 from the server 600 and reflects it in the line-of-sight of the avatar object of the other user 5. In a certain aspect, the control module 510 reflects the movement of the controller 300 on the avatar object and the operation object. In this case, the controller 300 includes a motion sensor, an acceleration sensor, a plurality of light emitting elements (for example, infrared LEDs), and the like for detecting the movement of the controller 300.

コントロールモジュール510は、仮想空間11においてユーザ5の操作を受け付けるための操作オブジェクトを仮想空間11に配置する。ユーザ5は、操作オブジェクトを操作することにより、例えば、仮想空間11に配置されるオブジェクトを操作する。ある局面において、操作オブジェクトは、例えば、ユーザ5の手に相当する仮想手である手オブジェクト等を含み得る。ある局面において、コントロールモジュール510は、モーションセンサ420の出力に基づいて現実空間におけるユーザ5の手の動きに連動するように仮想空間11において手オブジェクトを動かす。ある局面において、操作オブジェクトは、アバターオブジェクトの手の部分に相当し得る。 The control module 510 arranges an operation object for receiving the operation of the user 5 in the virtual space 11 in the virtual space 11. By operating the operation object, the user 5 operates, for example, an object arranged in the virtual space 11. In a certain aspect, the operation object may include, for example, a hand object which is a virtual hand corresponding to the hand of the user 5. In a certain aspect, the control module 510 moves the hand object in the virtual space 11 so as to be linked to the movement of the user 5's hand in the real space based on the output of the motion sensor 420. In some aspects, the manipulation object can correspond to the hand portion of the avatar object.

コントロールモジュール510は、仮想空間11に配置されるオブジェクトのそれぞれが、他のオブジェクトと衝突した場合に、当該衝突を検出する。コントロールモジュール510は、例えば、あるオブジェクトのコリジョンエリアと、別のオブジェクトのコリジョンエリアとが触れたタイミングを検出することができ、当該検出がされたときに、予め定められた処理を行なう。コントロールモジュール510は、オブジェクトとオブジェクトとが触れている状態から離れたタイミングを検出することができ、当該検出がされたときに、予め定められた処理を行なう。コントロールモジュール510は、オブジェクトとオブジェクトとが触れている状態であることを検出することができる。例えば、コントロールモジュール510は、操作オブジェクトと、他のオブジェクトとが触れたときに、これら操作オブジェクトと他のオブジェクトとが触れたことを検出して、予め定められた処理を行なう。 When each of the objects arranged in the virtual space 11 collides with another object, the control module 510 detects the collision. The control module 510 can detect, for example, the timing at which the collision area of one object and the collision area of another object touch each other, and when the detection is made, a predetermined process is performed. The control module 510 can detect the timing when the object and the object are separated from the touching state, and when the detection is made, a predetermined process is performed. The control module 510 can detect that the object is in contact with the object. For example, when the operation object touches another object, the control module 510 detects that the operation object touches the other object, and performs a predetermined process.

ある局面において、コントロールモジュール510は、HMD120のモニタ130における画像表示を制御する。例えば、コントロールモジュール510は、仮想空間11に仮想カメラ14を配置する。コントロールモジュール510は、仮想空間11における仮想カメラ14の位置と、仮想カメラ14の傾き(向き)を制御する。コントロールモジュール510は、HMD120を装着したユーザ5の頭部の傾きと、仮想カメラ14の位置に応じて、視界領域15を規定する。レンダリングモジュール520は、決定された視界領域15に基づいて、モニタ130に表示される視界画像17を生成する。レンダリングモジュール520により生成された視界画像17は、通信制御モジュール540によってHMD120に出力される。 In one aspect, the control module 510 controls the image display on the monitor 130 of the HMD 120. For example, the control module 510 arranges the virtual camera 14 in the virtual space 11. The control module 510 controls the position of the virtual camera 14 in the virtual space 11 and the inclination (orientation) of the virtual camera 14. The control module 510 defines the field of view 15 according to the inclination of the head of the user 5 wearing the HMD 120 and the position of the virtual camera 14. The rendering module 520 generates a field of view image 17 to be displayed on the monitor 130 based on the determined field of view area 15. The field of view image 17 generated by the rendering module 520 is output to the HMD 120 by the communication control module 540.

コントロールモジュール510は、HMD120から、ユーザ5のマイク170を用いた発話を検出すると、当該発話に対応する音声データの送信対象のコンピュータ200を特定する。音声データは、コントロールモジュール510によって特定されたコンピュータ200に送信される。コントロールモジュール510は、ネットワーク2を介して他のユーザのコンピュータ200から音声データを受信すると、当該音声データに対応する音声(発話)をスピーカ180から出力する。 When the control module 510 detects an utterance using the microphone 170 of the user 5 from the HMD 120, the control module 510 identifies the computer 200 to which the voice data to be transmitted corresponding to the utterance is transmitted. The voice data is transmitted to the computer 200 identified by the control module 510. When the control module 510 receives voice data from another user's computer 200 via the network 2, the control module 510 outputs the voice (utterance) corresponding to the voice data from the speaker 180.

メモリモジュール530は、コンピュータ200が仮想空間11をユーザ5に提供するために使用されるデータを保持している。ある局面において、メモリモジュール530は、空間情報と、オブジェクト情報と、ユーザ情報とを保持している。 The memory module 530 holds data used by the computer 200 to provide the virtual space 11 to the user 5. In a certain aspect, the memory module 530 holds spatial information, object information, and user information.

空間情報は、仮想空間11を提供するために規定された1つ以上のテンプレートを保持している。 Spatial information holds one or more templates defined to provide the virtual space 11.

オブジェクト情報は、仮想空間11を構成する複数のパノラマ画像13、仮想空間11にオブジェクトを配置するためのオブジェクトデータを含む。パノラマ画像13は、静止画像および動画像を含み得る。パノラマ画像13は、非現実空間の画像と現実空間の画像とを含み得る。非現実空間の画像としては、例えば、コンピュータグラフィックスで生成された画像が挙げられる。 The object information includes a plurality of panoramic images 13 constituting the virtual space 11 and object data for arranging the objects in the virtual space 11. The panoramic image 13 may include a still image and a moving image. The panoramic image 13 may include an image in the unreal space and an image in the real space. Examples of images in unreal space include images generated by computer graphics.

ユーザ情報は、ユーザ5を識別するユーザIDを保持する。ユーザIDは、例えば、ユーザが使用するコンピュータ200に設定されるIP(Internet Protocol)アドレスまたはMAC(Media Access Control)アドレスであり得る。別の局面において、ユーザIDはユーザによって設定され得る。ユーザ情報は、HMDシステム100の制御装置としてコンピュータ200を機能させるためのプログラム等を含む。 The user information holds a user ID that identifies the user 5. The user ID may be, for example, an IP (Internet Protocol) address or a MAC (Media Access Control) address set in the computer 200 used by the user. In another aspect, the user ID may be set by the user. The user information includes a program for operating the computer 200 as a control device of the HMD system 100 and the like.

メモリモジュール530に格納されているデータおよびプログラムは、HMD120のユーザ5によって入力される。あるいは、プロセッサ210が、当該コンテンツを提供する事業者が運営するコンピュータ(例えば、サーバ600)からプログラムあるいはデータをダウンロードして、ダウンロードされたプログラムあるいはデータをメモリモジュール530に格納する。 The data and programs stored in the memory module 530 are input by the user 5 of the HMD 120. Alternatively, the processor 210 downloads a program or data from a computer (for example, a server 600) operated by a business operator that provides the content, and stores the downloaded program or data in the memory module 530.

通信制御モジュール540は、ネットワーク2を介して、サーバ600その他の情報通信装置と通信し得る。 The communication control module 540 may communicate with the server 600 and other information communication devices via the network 2.

ある局面において、コントロールモジュール510及びレンダリングモジュール520は、例えば、ユニティテクノロジーズ社によって提供されるUnity(登録商標)を用いて実現され得る。別の局面において、コントロールモジュール510及びレンダリングモジュール520は、各処理を実現する回路素子の組み合わせとしても実現され得る。 In certain aspects, the control module 510 and the rendering module 520 may be implemented using, for example, Unity® provided by Unity Technologies. In another aspect, the control module 510 and the rendering module 520 can also be realized as a combination of circuit elements that realize each process.

コンピュータ200における処理は、ハードウェアと、プロセッサ210により実行されるソフトウェアとによって実現される。このようなソフトウェアは、ハードディスクその他のメモリモジュール530に予め格納されている場合がある。ソフトウェアは、CD−ROMその他のコンピュータ読み取り可能な不揮発性のデータ記録媒体に格納されて、プログラム製品として流通している場合もある。あるいは、当該ソフトウェアは、インターネットその他のネットワークに接続されている情報提供事業者によってダウンロード可能なプログラム製品として提供される場合もある。このようなソフトウェアは、光ディスク駆動装置その他のデータ読取装置によってデータ記録媒体から読み取られて、あるいは、通信制御モジュール540を介してサーバ600その他のコンピュータからダウンロードされた後、記憶モジュールに一旦格納される。そのソフトウェアは、プロセッサ210によって記憶モジュールから読み出され、実行可能なプログラムの形式でRAMに格納される。プロセッサ210は、そのプログラムを実行する。 The processing in the computer 200 is realized by the hardware and the software executed by the processor 210. Such software may be pre-stored in a hard disk or other memory module 530. The software may be stored on a CD-ROM or other computer-readable non-volatile data recording medium and distributed as a program product. Alternatively, the software may be provided as a downloadable program product by an information provider connected to the Internet or other networks. Such software is read from a data recording medium by an optical disk drive or other data reader, or downloaded from a server 600 or other computer via a communication control module 540, and then temporarily stored in a storage module. .. The software is read from the storage module by the processor 210 and stored in RAM in the form of an executable program. The processor 210 executes the program.

[HMDシステムの制御構造]
図11を参照して、HMDセット110の制御構造について説明する。図11は、ある実施の形態に従うHMDセット110において実行される処理の一部を表すシーケンスチャートである。
[Control structure of HMD system]
The control structure of the HMD set 110 will be described with reference to FIG. FIG. 11 is a sequence chart showing a part of the processing performed in the HMD set 110 according to an embodiment.

図11に示されるように、ステップS1110において、コンピュータ200のプロセッサ210は、コントロールモジュール510として、仮想空間データを特定し、仮想空間11を定義する。 As shown in FIG. 11, in step S1110, the processor 210 of the computer 200 identifies the virtual space data as the control module 510 and defines the virtual space 11.

ステップS1120において、プロセッサ210は、仮想カメラ14を初期化する。たとえば、プロセッサ210は、メモリのワーク領域において、仮想カメラ14を仮想空間11において予め規定された中心12に配置し、仮想カメラ14の視線をユーザ5が向いている方向に向ける。 In step S1120, the processor 210 initializes the virtual camera 14. For example, the processor 210 arranges the virtual camera 14 at a predetermined center 12 in the virtual space 11 in the work area of the memory, and directs the line of sight of the virtual camera 14 in the direction in which the user 5 is facing.

ステップS1130において、プロセッサ210は、レンダリングモジュール520として、初期の視界画像を表示するための視界画像データを生成する。生成された視界画像データは、通信制御モジュール540によってHMD120に出力される。 In step S1130, the processor 210, as the rendering module 520, generates the field of view image data for displaying the initial field of view image. The generated field of view image data is output to the HMD 120 by the communication control module 540.

ステップS1132において、HMD120のモニタ130は、コンピュータ200から受信した視界画像データに基づいて、視界画像を表示する。HMD120を装着したユーザ5は、視界画像を視認すると仮想空間11を認識し得る。 In step S1132, the monitor 130 of the HMD 120 displays the field of view image based on the field of view image data received from the computer 200. The user 5 wearing the HMD 120 can recognize the virtual space 11 when he / she visually recognizes the field of view image.

ステップS1134において、HMDセンサ410は、HMD120から発信される複数の赤外線光に基づいて、HMD120の位置と傾きを検知する。検知結果は、動き検知データとして、コンピュータ200に出力される。 In step S1134, the HMD sensor 410 detects the position and tilt of the HMD 120 based on the plurality of infrared rays emitted from the HMD 120. The detection result is output to the computer 200 as motion detection data.

ステップS1140において、プロセッサ210は、HMD120の動き検知データに含まれる位置と傾きとに基づいて、HMD120を装着したユーザ5の視界方向を特定する。 In step S1140, the processor 210 identifies the viewing direction of the user 5 wearing the HMD 120 based on the position and inclination included in the motion detection data of the HMD 120.

ステップS1150において、プロセッサ210は、アプリケーションプログラムを実行し、アプリケーションプログラムに含まれる命令に基づいて、仮想空間11にオブジェクトを配置する。 In step S1150, the processor 210 executes the application program and arranges the object in the virtual space 11 based on the instruction included in the application program.

ステップS1160において、コントローラ300は、モーションセンサ420から出力される信号に基づいて、ユーザ5の操作を検出し、その検出された操作を表す検出データをコンピュータ200に出力する。別の局面において、ユーザ5によるコントローラ300の操作は、ユーザ5の周囲に配置されたカメラからの画像に基づいて検出されてもよい。 In step S1160, the controller 300 detects the operation of the user 5 based on the signal output from the motion sensor 420, and outputs the detection data representing the detected operation to the computer 200. In another aspect, the operation of the controller 300 by the user 5 may be detected based on an image from a camera arranged around the user 5.

ステップS1170において、プロセッサ210は、コントローラ300から取得した検出データに基づいて、ユーザ5によるコントローラ300の操作を検出する。 In step S1170, the processor 210 detects the operation of the controller 300 by the user 5 based on the detection data acquired from the controller 300.

ステップS1180において、プロセッサ210は、ユーザ5によるコントローラ300の操作に基づく視界画像データを生成する。生成された視界画像データは、通信制御モジュール540によってHMD120に出力される。 In step S1180, the processor 210 generates visual field image data based on the operation of the controller 300 by the user 5. The generated field of view image data is output to the HMD 120 by the communication control module 540.

ステップS1190において、HMD120は、受信した視界画像データに基づいて視界画像を更新し、更新後の視界画像をモニタ130に表示する。 In step S1190, the HMD 120 updates the field of view image based on the received field of view image data, and displays the updated field of view image on the monitor 130.

[アバターオブジェクト]
図12(A)、(B)を参照して、本実施の形態に従うアバターオブジェクトについて説明する。以下、HMDセット110A,110Bの各ユーザ5のアバターオブジェクトを説明する図である。以下、HMDセット110Aのユーザをユーザ5A、HMDセット110Bのユーザをユーザ5B、HMDセット110Cのユーザをユーザ5C、HMDセット110Dのユーザをユーザ5Dと表す。HMDセット110Aに関する各構成要素の参照符号にAが付され、HMDセット110Bに関する各構成要素の参照符号にBが付され、HMDセット110Cに関する各構成要素の参照符号にCが付され、HMDセット110Dに関する各構成要素の参照符号にDが付される。例えば、HMD120Aは、HMDセット110Aに含まれる。
[Avatar Object]
An avatar object according to the present embodiment will be described with reference to FIGS. 12A and 12B. Hereinafter, it is a figure explaining the avatar object of each user 5 of the HMD set 110A, 110B. Hereinafter, the user of the HMD set 110A is referred to as a user 5A, the user of the HMD set 110B is referred to as a user 5B, the user of the HMD set 110C is referred to as a user 5C, and the user of the HMD set 110D is referred to as a user 5D. A is added to the reference code of each component related to the HMD set 110A, B is added to the reference code of each component related to the HMD set 110B, and C is added to the reference code of each component related to the HMD set 110C. A D is added to the reference code of each component with respect to 110D. For example, the HMD 120A is included in the HMD set 110A.

図12(A)は、ネットワーク2において、各HMD120がユーザ5に仮想空間11を提供する状況を表す模式図である。コンピュータ200A〜200Dは、HMD120A〜120Dを介して、ユーザ5A〜5Dに、仮想空間11A〜11Dをそれぞれ提供する。図12(A)に示される例において、仮想空間11Aおよび仮想空間11Bは同じデータによって構成されている。換言すれば、コンピュータ200Aとコンピュータ200Bとは同じ仮想空間を共有していることになる。仮想空間11Aおよび仮想空間11Bには、ユーザ5Aのアバターオブジェクト6Aと、ユーザ5Bのアバターオブジェクト6Bとが存在する。仮想空間11Aにおけるアバターオブジェクト6Aおよび仮想空間11Bにおけるアバターオブジェクト6BがそれぞれHMD120を装着しているが、これは説明を分かりやすくするためのものであって、実際にはこれらのオブジェクトはHMD120を装着していない。 FIG. 12A is a schematic diagram showing a situation in which each HMD 120 provides the virtual space 11 to the user 5 in the network 2. The computers 200A to 200D provide the virtual spaces 11A to 11D to the users 5A to 5D via the HMDs 120A to 120D, respectively. In the example shown in FIG. 12A, the virtual space 11A and the virtual space 11B are composed of the same data. In other words, the computer 200A and the computer 200B share the same virtual space. In the virtual space 11A and the virtual space 11B, the avatar object 6A of the user 5A and the avatar object 6B of the user 5B exist. The avatar object 6A in the virtual space 11A and the avatar object 6B in the virtual space 11B are each equipped with the HMD 120, but this is for the sake of clarity, and in reality, these objects are equipped with the HMD 120. Not.

ある局面において、プロセッサ210Aは、ユーザ5Aの視界画像17Aを撮影する仮想カメラ14Aを、アバターオブジェクト6Aの目の位置に配置し得る。 In one aspect, the processor 210A may place a virtual camera 14A that captures the field of view image 17A of the user 5A at the eye position of the avatar object 6A.

図12(B)は、図12(A)におけるユーザ5Aの視界画像17Aを示す図である。視界画像17Aは、HMD120Aのモニタ130Aに表示される画像である。この視界画像17Aは、仮想カメラ14Aにより生成された画像である。視界画像17Aには、ユーザ5Bのアバターオブジェクト6Bが表示されている。特に図示はしていないが、ユーザ5Bの視界画像にも同様に、ユーザ5Aのアバターオブジェクト6Aが表示されている。 FIG. 12B is a diagram showing a field of view image 17A of the user 5A in FIG. 12A. The field of view image 17A is an image displayed on the monitor 130A of the HMD 120A. The field of view image 17A is an image generated by the virtual camera 14A. The avatar object 6B of the user 5B is displayed in the field of view image 17A. Although not particularly shown, the avatar object 6A of the user 5A is also displayed in the field of view image of the user 5B.

図12(B)の状態において、ユーザ5Aは仮想空間11Aを介してユーザ5Bと対話による通信(コミュニケーション)を図ることができる。より具体的には、マイク170Aにより取得されたユーザ5Aの音声は、サーバ600を介してユーザ5BのHMD120Bに送信され、HMD120Bに設けられたスピーカ180Bから出力される。ユーザ5Bの音声は、サーバ600を介してユーザ5AのHMD120Aに送信され、HMD120Aに設けられたスピーカ180Aから出力される。 In the state of FIG. 12B, the user 5A can communicate with the user 5B through the virtual space 11A by dialogue. More specifically, the voice of the user 5A acquired by the microphone 170A is transmitted to the HMD 120B of the user 5B via the server 600, and is output from the speaker 180B provided in the HMD 120B. The voice of the user 5B is transmitted to the HMD 120A of the user 5A via the server 600, and is output from the speaker 180A provided in the HMD 120A.

ユーザ5Bの動作(HMD120Bの動作およびコントローラ300Bの動作)は、プロセッサ210Aにより仮想空間11Aに配置されるアバターオブジェクト6Bに反映される。これにより、ユーザ5Aは、ユーザ5Bの動作を、アバターオブジェクト6Bを通じて認識できる。 The operation of the user 5B (the operation of the HMD 120B and the operation of the controller 300B) is reflected in the avatar object 6B arranged in the virtual space 11A by the processor 210A. As a result, the user 5A can recognize the operation of the user 5B through the avatar object 6B.

図13は、本実施の形態に従うHMDシステム100において実行される処理の一部を表すシーケンスチャートである。図13においては、HMDセット110Dを図示していないが、HMDセット110Dについても、HMDセット110A、110B、110Cと同様に動作する。以下の説明でも、HMDセット110Aに関する各構成要素の参照符号にAが付され、HMDセット110Bに関する各構成要素の参照符号にBが付され、HMDセット110Cに関する各構成要素の参照符号にCが付され、HMDセット110Dに関する各構成要素の参照符号にDが付されるものとする。 FIG. 13 is a sequence chart showing a part of the processing executed in the HMD system 100 according to the present embodiment. Although the HMD set 110D is not shown in FIG. 13, the HMD set 110D operates in the same manner as the HMD sets 110A, 110B, and 110C. Also in the following description, A is added to the reference code of each component related to the HMD set 110A, B is added to the reference code of each component related to the HMD set 110B, and C is added to the reference code of each component related to the HMD set 110C. It shall be attached and D shall be attached to the reference code of each component with respect to the HMD set 110D.

ステップS1310Aにおいて、HMDセット110Aにおけるプロセッサ210Aは、仮想空間11Aにおけるアバターオブジェクト6Aの動作を決定するためのアバター情報を取得する。このアバター情報は、例えば、動き情報、フェイストラッキングデータ、および音声データ等のアバターに関する情報を含む。動き情報は、HMD120Aの位置および傾きの時間的変化を示す情報や、モーションセンサ420A等により検出されたユーザ5Aの手の動きを示す情報などを含む。フェイストラッキングデータは、ユーザ5Aの顔の各パーツの位置および大きさを特定するデータが挙げられる。フェイストラッキングデータは、ユーザ5Aの顔を構成する各器官の動きを示すデータや視線データが挙げられる。音声データは、HMD120Aのマイク170Aによって取得されたユーザ5Aの音声を示すデータが挙げられる。アバター情報には、アバターオブジェクト6A、あるいはアバターオブジェクト6Aに関連付けられるユーザ5Aを特定する情報や、アバターオブジェクト6Aが存在する仮想空間11Aを特定する情報等が含まれてもよい。アバターオブジェクト6Aやユーザ5Aを特定する情報としては、ユーザIDが挙げられる。アバターオブジェクト6Aが存在する仮想空間11Aを特定する情報としては、ルームIDが挙げられる。プロセッサ210Aは、上述のように取得されたアバター情報を、ネットワーク2を介してサーバ600に送信する。 In step S1310A, the processor 210A in the HMD set 110A acquires the avatar information for determining the operation of the avatar object 6A in the virtual space 11A. This avatar information includes information about the avatar such as motion information, face tracking data, and voice data. The motion information includes information indicating a temporal change in the position and inclination of the HMD 120A, information indicating the hand motion of the user 5A detected by the motion sensor 420A or the like, and the like. The face tracking data includes data for specifying the position and size of each part of the face of the user 5A. Examples of the face tracking data include data indicating the movement of each organ constituting the face of the user 5A and line-of-sight data. Examples of the voice data include data indicating the voice of the user 5A acquired by the microphone 170A of the HMD 120A. The avatar information may include information that identifies the avatar object 6A or the user 5A associated with the avatar object 6A, information that identifies the virtual space 11A in which the avatar object 6A exists, and the like. Information that identifies the avatar object 6A and the user 5A includes a user ID. Information that identifies the virtual space 11A in which the avatar object 6A exists includes a room ID. The processor 210A transmits the avatar information acquired as described above to the server 600 via the network 2.

ステップS1310Bにおいて、HMDセット110Bにおけるプロセッサ210Bは、ステップS1310Aにおける処理と同様に、仮想空間11Bにおけるアバターオブジェクト6Bの動作を決定するためのアバター情報を取得し、サーバ600に送信する。同様に、ステップS1310Cにおいて、HMDセット110Cにおけるプロセッサ210Cは、仮想空間11Cにおけるアバターオブジェクト6Cの動作を決定するためのアバター情報を取得し、サーバ600に送信する。 In step S1310B, the processor 210B in the HMD set 110B acquires the avatar information for determining the operation of the avatar object 6B in the virtual space 11B and transmits it to the server 600, as in the process in step S1310A. Similarly, in step S1310C, the processor 210C in the HMD set 110C acquires the avatar information for determining the operation of the avatar object 6C in the virtual space 11C and transmits it to the server 600.

ステップS1320において、サーバ600は、HMDセット110A、HMDセット110B、およびHMDセット110Cのそれぞれから受信したプレイヤ情報を一旦記憶する。サーバ600は、各アバター情報に含まれるユーザIDおよびルームID等に基づいて、共通の仮想空間11に関連付けられた全ユーザ(この例では、ユーザ5A〜5C)のアバター情報を統合する。そして、サーバ600は、予め定められたタイミングで、統合したアバター情報を当該仮想空間11に関連付けられた全ユーザに送信する。これにより、同期処理が実行される。このような同期処理により、HMDセット110A、HMDセット110B、およびHMDセット110Cは、互いのアバター情報をほぼ同じタイミングで共有することができる。 In step S1320, the server 600 temporarily stores the player information received from each of the HMD set 110A, the HMD set 110B, and the HMD set 110C. The server 600 integrates the avatar information of all users (users 5A to 5C in this example) associated with the common virtual space 11 based on the user ID, room ID, and the like included in each avatar information. Then, the server 600 transmits the integrated avatar information to all the users associated with the virtual space 11 at a predetermined timing. As a result, the synchronization process is executed. By such a synchronization process, the HMD set 110A, the HMD set 110B, and the HMD set 110C can share each other's avatar information at substantially the same timing.

続いて、サーバ600から各HMDセット110A〜110Cに送信されたアバター情報に基づいて、各HMDセット110A〜110Cは、ステップS1330A〜S1330Cの処理を実行する。ステップS1330Aの処理は、図11におけるステップS1180の処理に相当する。 Subsequently, each HMD set 110A to 110C executes the process of steps S1330A to S1330C based on the avatar information transmitted from the server 600 to each HMD set 110A to 110C. The process of step S1330A corresponds to the process of step S1180 in FIG.

ステップS1330Aにおいて、HMDセット110Aにおけるプロセッサ210Aは、仮想空間11Aにおける他のユーザ5B,5Cのアバターオブジェクト6B、アバターオブジェクト6Cの情報を更新する。具体的には、プロセッサ210Aは、HMDセット110Bから送信されたアバター情報に含まれる動き情報に基づいて、仮想空間11におけるアバターオブジェクト6Bの位置および向き等を更新する。例えば、プロセッサ210Aは、メモリモジュール530に格納されたオブジェクト情報に含まれるアバターオブジェクト6Bの情報(位置および向き等)を更新する。同様に、プロセッサ210Aは、HMDセット110Cから送信されたアバター情報に含まれる動き情報に基づいて、仮想空間11におけるアバターオブジェクト6Cの情報(位置および向き等)を更新する。 In step S1330A, the processor 210A in the HMD set 110A updates the information of the avatar object 6B and the avatar object 6C of the other users 5B and 5C in the virtual space 11A. Specifically, the processor 210A updates the position and orientation of the avatar object 6B in the virtual space 11 based on the motion information included in the avatar information transmitted from the HMD set 110B. For example, the processor 210A updates the information (position, orientation, etc.) of the avatar object 6B included in the object information stored in the memory module 530. Similarly, the processor 210A updates the information (position, orientation, etc.) of the avatar object 6C in the virtual space 11 based on the motion information included in the avatar information transmitted from the HMD set 110C.

ステップS1330Bにおいて、HMDセット110Bにおけるプロセッサ210Bは、ステップS1330Aにおける処理と同様に、仮想空間11Bにおけるユーザ5A,5Cのアバターオブジェクト6A,6Cの情報を更新する。同様に、ステップS1330Cにおいて、HMDセット110Cにおけるプロセッサ210Cは、仮想空間11Cにおけるユーザ5A,5Bのアバターオブジェクト6A,6Bの情報を更新する。 In step S1330B, the processor 210B in the HMD set 110B updates the information of the avatar objects 6A, 6C of the users 5A, 5C in the virtual space 11B, as in the process in step S1330A. Similarly, in step S1330C, the processor 210C in the HMD set 110C updates the information of the avatar objects 6A, 6B of the users 5A, 5B in the virtual space 11C.

[モジュールの詳細構成]
図14を参照して、コンピュータ200のモジュール構成の詳細について説明する。図14は、ある実施の形態に従うコンピュータ200のモジュールの詳細構成を表わすブロック図である。図14に示されるように、コントロールモジュール510は、仮想オブジェクト生成モジュール1421、仮想カメラ制御モジュール1422、操作オブジェクト制御モジュール1423、アバターオブジェクト制御モジュール1424、動き検出モジュール1425、衝突検出モジュール1426、および仮想オブジェクト制御モジュール1427を備えている。
[Detailed configuration of module]
The details of the module configuration of the computer 200 will be described with reference to FIG. FIG. 14 is a block diagram showing a detailed configuration of a module of the computer 200 according to an embodiment. As shown in FIG. 14, the control module 510 includes a virtual object generation module 1421, a virtual camera control module 1422, an operation object control module 1423, an avatar object control module 1424, a motion detection module 1425, a collision detection module 1426, and a virtual object. It includes a control module 1427.

仮想オブジェクト生成モジュール1421は、各種の仮想オブジェクトを仮想空間11に生成する。ある局面において、仮想オブジェクトは、例えば、ゲームのストーリーの進行に従って配置される森、山その他を含む風景、動物等を含み得る。ある局面において、仮想オブジェクトは、アバターオブジェクト、操作オブジェクト、およびステージオブジェクト、UI(User Interface)オブジェクトを含み得る。 The virtual object generation module 1421 generates various virtual objects in the virtual space 11. In some aspects, the virtual object may include, for example, landscapes, animals, etc., including forests, mountains, etc. that are arranged as the story of the game progresses. In some aspects, virtual objects can include avatar objects, operation objects, and stage objects, UI (User Interface) objects.

仮想カメラ制御モジュール1422は、仮想空間11における仮想カメラ14の挙動を制御する。仮想カメラ制御モジュール1422は、例えば、仮想空間11における仮想カメラ14の配置位置と、仮想カメラ14の向き(傾き)とを制御する。 The virtual camera control module 1422 controls the behavior of the virtual camera 14 in the virtual space 11. The virtual camera control module 1422 controls, for example, the arrangement position of the virtual camera 14 in the virtual space 11 and the orientation (tilt) of the virtual camera 14.

操作オブジェクト制御モジュール1423は、仮想空間11においてユーザ5の操作を受け付けるための操作オブジェクトを制御する。ユーザ5は、操作オブジェクトを操作することによって、例えば、仮想空間11に配置される仮想オブジェクトを操作する。ある局面において、操作オブジェクトは、例えば、HMD120を装着したユーザ5の手に相当する手オブジェクト(仮想手)等を含み得る。ある局面において、操作オブジェクトは、後述するアバターオブジェクトの手の部分に相当し得る。 The operation object control module 1423 controls an operation object for receiving the operation of the user 5 in the virtual space 11. By manipulating the operation object, the user 5 operates, for example, a virtual object arranged in the virtual space 11. In a certain aspect, the operation object may include, for example, a hand object (virtual hand) corresponding to the hand of the user 5 wearing the HMD 120. In some aspects, the manipulation object may correspond to the hand portion of the avatar object described below.

アバターオブジェクト制御モジュール1424は、HMDセンサ410が検出するHMD120の動きをアバターオブジェクトに反映する。例えば、アバターオブジェクト制御モジュール1424は、HMD120が傾いたことを検知して、アバターオブジェクトを傾けて配置するためのデータを生成する。ある局面において、アバターオブジェクト制御モジュール1424は、コントローラ300の動きをアバターオブジェクトに反映する。この場合、コントローラ300は、コントローラ300の動きを検知するためのモーションセンサ、加速度センサ、または複数の発光素子(例えば、赤外線LED)などを備える。アバターオブジェクト制御モジュール1424は、動き検出モジュール1425が検出した顔器官の動作を、仮想空間11に配置されるアバターオブジェクトの顔に反映させる。つまり、アバターオブジェクト制御モジュール1424は、ユーザ5の顔の動作をアバターオブジェクトに反映する。 The avatar object control module 1424 reflects the movement of the HMD 120 detected by the HMD sensor 410 on the avatar object. For example, the avatar object control module 1424 detects that the HMD 120 is tilted and generates data for tilting and arranging the avatar object. In a certain aspect, the avatar object control module 1424 reflects the movement of the controller 300 on the avatar object. In this case, the controller 300 includes a motion sensor, an acceleration sensor, a plurality of light emitting elements (for example, infrared LEDs), and the like for detecting the movement of the controller 300. The avatar object control module 1424 reflects the movement of the facial organ detected by the motion detection module 1425 on the face of the avatar object arranged in the virtual space 11. That is, the avatar object control module 1424 reflects the movement of the face of the user 5 on the avatar object.

動き検出モジュール1425は、ユーザ5の動きを検出する。動き検出モジュール1425は、例えば、コントローラ300の出力に応じて、ユーザ5の手の動きを検出する。動き検出モジュール1425は、例えば、ユーザ5の身体に装着されるモーションセンサの出力に応じて、ユーザ5の身体の動きを検出する。動き検出モジュール1425は、ユーザ5の顔器官の動作を検出することもできる。 The motion detection module 1425 detects the motion of the user 5. The motion detection module 1425 detects the motion of the user 5's hand, for example, in response to the output of the controller 300. The motion detection module 1425 detects the movement of the user 5's body according to the output of the motion sensor attached to the user's body, for example. The motion detection module 1425 can also detect the motion of the facial organs of the user 5.

衝突検出モジュール1426は、仮想空間11に配置される仮想オブジェクトのそれぞれが、他の仮想オブジェクトと衝突した場合に、当該衝突を検出する。衝突検出モジュール1426は、例えば、ある仮想オブジェクトと、別の仮想オブジェクトとが触れたタイミングを検出することができる。衝突検出モジュール1426は、ある仮想オブジェクトと他の仮想オブジェクトとが触れている状態から離れたタイミングを検出することができる。衝突検出モジュール1426は、ある仮想オブジェクトと他の仮想オブジェクトとが触れている状態であることを検出することもできる。衝突検出モジュール1426は、例えば、操作オブジェクトと、他の仮想オブジェクトとが触れたときに、これら操作オブジェクトと他のオブジェクトとが触れたことを検出する。衝突検出モジュール1426は、これらの検出結果に基づいて、予め定められた処理を実行する。 The collision detection module 1426 detects a collision when each of the virtual objects arranged in the virtual space 11 collides with another virtual object. The collision detection module 1426 can detect, for example, the timing at which one virtual object and another virtual object touch each other. The collision detection module 1426 can detect the timing when a certain virtual object and another virtual object are separated from the touching state. The collision detection module 1426 can also detect that a virtual object is in contact with another virtual object. The collision detection module 1426 detects, for example, that when an operation object touches another virtual object, the operation object and the other object touch each other. The collision detection module 1426 executes predetermined processing based on these detection results.

仮想オブジェクト制御モジュール1427は、仮想空間11において、アバターオブジェクトを除く仮想オブジェクトの挙動を制御する。一例として、仮想オブジェクト制御モジュール1427は、仮想オブジェクトを変形させる。別の例として、仮想オブジェクト制御モジュール1427は、仮想オブジェクトの配置位置を変更する。別の例として、仮想オブジェクト制御モジュール1427は、仮想オブジェクトを移動させる。 The virtual object control module 1427 controls the behavior of virtual objects other than the avatar object in the virtual space 11. As an example, the virtual object control module 1427 transforms a virtual object. As another example, the virtual object control module 1427 changes the placement position of the virtual object. As another example, the virtual object control module 1427 moves a virtual object.

[視聴者の仮想空間]
図15は、ある実施の形態に従う仮想空間11Aおよび視界画像1517Aを示す図である。図15(A)では、ユーザ5A(第1ユーザ)に仮想体験を提供するための仮想空間11Aに、アバターオブジェクト6A〜6D、仮想カメラ14A、およびステージオブジェクト1532が少なくとも配置される。ユーザ5Aは、頭部にHMD120Aを装着している。ユーザ5Aは、ユーザ5Aの身体の右側の一部を構成する右手(第1部位)で右コントローラ300RAを把持し、ユーザ5Aの身体の左側の一部を構成する左手(第2部位)で左コントローラ300LAを把持している。アバターオブジェクト6A(第1アバター)は、仮想右手1531RAおよび仮想左手1531LAを含む。仮想右手1531RAは操作オブジェクトの一種であり、ユーザ5Aの右手の動きに応じて仮想空間11Aにおいて動くことができる。仮想左手1531LAは操作オブジェクトの一種であり、ユーザ5Aの左手の動きに応じて仮想空間11Aにおいて動くことができる。
[Viewer's virtual space]
FIG. 15 is a diagram showing a virtual space 11A and a field of view image 1517A according to an embodiment. In FIG. 15A, at least the avatar objects 6A to 6D, the virtual cameras 14A, and the stage object 1532 are arranged in the virtual space 11A for providing the virtual experience to the user 5A (first user). User 5A wears the HMD120A on his head. The user 5A holds the right controller 300RA with the right hand (first part) that forms a part of the right side of the body of the user 5A, and the left hand (second part) that forms a part of the left side of the body of the user 5A. It holds the controller 300LA. The avatar object 6A (first avatar) includes a virtual right hand 1531RA and a virtual left hand 1531LA. The virtual right hand 1531RA is a kind of operation object, and can move in the virtual space 11A according to the movement of the right hand of the user 5A. The virtual left hand 1531LA is a kind of operation object, and can move in the virtual space 11A according to the movement of the left hand of the user 5A.

図15(A)に示す仮想空間11Aは、コンピュータ200Aにおいてライブコンテンツが再生されることによって、構築される。仮想空間11Aにおいて、アバターオブジェクト6Bは、ライブの演者としてパフォーマンスを実行し、アバターオブジェクト6Aを含む他のアバターオブジェクトは、ライブの視聴者としてパフォーマンスを視聴する。仮想空間11Aにおいて、アバターオブジェクト6A〜6Dは、それぞれ、ユーザ5A〜5Dに個別に関連付けられている。 The virtual space 11A shown in FIG. 15A is constructed by playing live content on the computer 200A. In the virtual space 11A, the avatar object 6B performs the performance as a live performer, and the other avatar objects including the avatar object 6A view the performance as a live viewer. In the virtual space 11A, the avatar objects 6A-6D are individually associated with the users 5A-5D, respectively.

仮想空間11Aにおいて、アバターオブジェクト6B(第2アバター)は、ステージオブジェクト1532上に配置される。ステージオブジェクト1532は、現実のライブ会場におけるステージを模した外観を有している。アバターオブジェクト6A、6C、および6Dは、いずれも、ステージオブジェクト1532の手前に配置される。仮想空間11Aにおいて、アバターオブジェクト6Bは、ユーザ5B(第2ユーザ)の動きに応じて動くことによって、ライブのパフォーマンスを実行する。仮想空間11Aにおいて、アバターオブジェクト6Aは、アバターオブジェクト6Bによるパフォーマンスを視聴する。このとき、ユーザ5Cに提供される仮想空間11Cにおいて、アバターオブジェクト6Cは、アバターオブジェクト6Bによって実行されたパフォーマンスを視聴する。同様に、ユーザ5Dに提供される仮想空間11Dにおいて、アバターオブジェクト6Dは、アバターオブジェクト6Bによって実行されたパフォーマンスを視聴する。したがって、ユーザ5Bが演者であり、かつ、ユーザ5A、5C、および5Dが視聴者であるとも言える。 In the virtual space 11A, the avatar object 6B (second avatar) is placed on the stage object 1532. The stage object 1532 has an appearance that imitates a stage in a real live venue. The avatar objects 6A, 6C, and 6D are all arranged in front of the stage object 1532. In the virtual space 11A, the avatar object 6B performs a live performance by moving in response to the movement of the user 5B (second user). In the virtual space 11A, the avatar object 6A watches the performance by the avatar object 6B. At this time, in the virtual space 11C provided to the user 5C, the avatar object 6C views the performance executed by the avatar object 6B. Similarly, in the virtual space 11D provided to the user 5D, the avatar object 6D views the performance performed by the avatar object 6B. Therefore, it can be said that user 5B is a performer and users 5A, 5C, and 5D are viewers.

図15(A)において、仮想カメラ14Aは、アバターオブジェクト6Aの頭部に配置される。仮想カメラ14Aは、仮想カメラ14Aの位置および向きに応じた視界領域15Aを規定する。仮想カメラ14Aは、視界領域15Aに対応する視界画像1517Aを生成して、図15(B)に示すようにHMD120Aに表示させる。ユーザ5Aは、視界画像1517Aを視認することによって、アバターオブジェクト6Aの視点で仮想空間の一部を視認する。これにより、ユーザ5Aは、あたかもユーザ5A自身がアバターオブジェクト6Aであるかのような仮想体験を、得ることができる。視界画像1517Aには、パフォーマンスを実行するアバターオブジェクト6Bが含まれる。したがって、ユーザ5Aは、アバターオブジェクト6Bによるパフォーマンスを、アバターオブジェクト6Aの視点で視聴することができる。 In FIG. 15A, the virtual camera 14A is placed on the head of the avatar object 6A. The virtual camera 14A defines a field of view area 15A according to the position and orientation of the virtual camera 14A. The virtual camera 14A generates a field of view image 1517A corresponding to the field of view area 15A and displays it on the HMD 120A as shown in FIG. 15 (B). The user 5A visually recognizes a part of the virtual space from the viewpoint of the avatar object 6A by visually recognizing the field of view image 1517A. As a result, the user 5A can obtain a virtual experience as if the user 5A itself is the avatar object 6A. The field of view image 1517A includes an avatar object 6B that performs the performance. Therefore, the user 5A can view the performance by the avatar object 6B from the viewpoint of the avatar object 6A.

仮想空間11Aには、異なる複数のアバターオブジェクト6Bが配置されることもできる。ある局面では、複数のアバターオブジェクト6Bにそれぞれ異なるユーザ5が関連付けられる。別の局面では、複数のアバターオブジェクト6Bに同一のユーザ5Bが関連付けられる。 A plurality of different avatar objects 6B may be arranged in the virtual space 11A. In one aspect, different users 5 are associated with the plurality of avatar objects 6B. In another aspect, the same user 5B is associated with the plurality of avatar objects 6B.

[演者の仮想空間]
図16は、ある実施の形態に従う仮想空間11Bおよび視界画像1617Bを示す図である。図16(A)では、ユーザ5Bに仮想体験を提供するための仮想空間11Bに、アバターオブジェクト6A〜6D、仮想カメラ14B、およびステージオブジェクト1532が少なくとも配置される。ユーザ5Bは、頭部にHMD120B(第1ヘッドマウントデバイス)を装着している。ユーザ5Bは、ユーザ5Bの身体の右側の一部を構成する右手(第1部位)で右コントローラ300RBを把持し、ユーザ5Bの身体の左側の一部を構成する左手(第2部位)で左コントローラ300LBを把持している。
[Performer's virtual space]
FIG. 16 is a diagram showing a virtual space 11B and a field of view image 1617B according to an embodiment. In FIG. 16A, at least the avatar objects 6A to 6D, the virtual cameras 14B, and the stage object 1532 are arranged in the virtual space 11B for providing the virtual experience to the user 5B. User 5B wears the HMD120B (first head mount device) on his head. The user 5B holds the right controller 300RB with the right hand (first part) that forms a part of the right side of the body of the user 5B, and left with the left hand (second part) that forms a part of the left side of the body of the user 5B. It holds the controller 300LB.

HMD120Bは、モーションセンサとして機能するセンサ190を備える。右コントローラ300RBおよび左コントローラ300LBは、モーションセンサ420を備える。ユーザ5Bは、さらに、モーションセンサ1641〜1643を装着している。モーションセンサ1641は、ベルト1644によってユーザ5Bの腰部に装着されている。モーションセンサ1642は、ユーザ5Bの右足の甲に装着されている。モーションセンサ1643は、ユーザ5Bのユーザ5Bの左足の甲に装着されている。モーションセンサ1641〜1643は、有線または無線によってコンピュータ200Bに接続されている。 The HMD 120B includes a sensor 190 that functions as a motion sensor. The right controller 300RB and the left controller 300LB include a motion sensor 420. User 5B is further equipped with motion sensors 1641 to 1643. The motion sensor 1641 is attached to the waist of the user 5B by a belt 1644. The motion sensor 1642 is attached to the instep of the right foot of the user 5B. The motion sensor 1643 is attached to the instep of the left foot of the user 5B of the user 5B. The motion sensors 1641 to 1643 are connected to the computer 200B by wire or wirelessly.

ある局面において、ユーザ5Bに装着されるモーションセンサは、ベースステーション(図示しない)から照射される信号(例えば赤外線レーザ)の到達時間と角度とを検出する。コンピュータ200Bのプロセッサ210B(以下、単にプロセッサ210B)は、モーションセンサの検出結果に基づいて、ベースステーションに対するモーションセンサの位置を検出する。プロセッサ210Bは、さらに、ベースステーションに対するモーションセンサの位置を、所定点(例えば頭部に装着されたセンサ190の位置)を基準として規格化してもよい。 In one aspect, the motion sensor mounted on the user 5B detects the arrival time and angle of a signal (eg, an infrared laser) emitted from a base station (not shown). The processor 210B of the computer 200B (hereinafter, simply the processor 210B) detects the position of the motion sensor with respect to the base station based on the detection result of the motion sensor. The processor 210B may further standardize the position of the motion sensor with respect to the base station with respect to a predetermined point (for example, the position of the sensor 190 mounted on the head).

アバターオブジェクト6Bは、仮想右手1531RBおよび仮想左手1531LBを含む。仮想右手1531RBは操作オブジェクトの一種であり、ユーザ5Bの右手の動きに応じて仮想空間11Bにおいて動くことができる。仮想左手1531LAは操作オブジェクトの一種であり、ユーザ5Bの左手の動きに応じて仮想空間11Bにおいて動くことができる。 The avatar object 6B includes a virtual right hand 1531RB and a virtual left hand 1531LB. The virtual right hand 1531RB is a kind of operation object, and can move in the virtual space 11B according to the movement of the user 5B's right hand. The virtual left hand 1531LA is a kind of operation object, and can move in the virtual space 11B according to the movement of the left hand of the user 5B.

図16(A)に示す仮想空間11Bは、コンピュータ200Bにおいてライブコンテンツが再生されることによって、構築される。仮想空間11Aおよび11Bは、サーバ600の制御に応じて互いに同期している。ユーザ5Bは、アバターオブジェクト6Bにパフォーマンスを実行させるために、自身の身体を動かす。コンピュータ200Bは、ユーザ5Bに装着される各種のモーションセンサの出力に基づいて、ユーザ5Bの動きを検出する。仮想空間11Bにおいて、アバターオブジェクト6Bは、特定されたユーザ5Bの動きに応じて、現実空間におけるユーザ5Bの動きが反映されたパフォーマンスを実行する。仮想空間11Bにおいて、アバターオブジェクト6A、6C、および6Dは、アバターオブジェクト6Bによるパフォーマンスを視聴する。仮想空間11Bにおいてアバターオブジェクト6Bがユーザ5Bに動きに応じたパフォーマンスを実行すると、それに同期して、仮想空間11A、11C、および11Dにおいてもアバターオブジェクト6Bが同じパフォーマンスを実行する。このように、ユーザ5Bは、アバターオブジェクト6Bによるライブを、ユーザ5A、5C、および5Dにそれぞれ配信する配信者としての役割を有する。 The virtual space 11B shown in FIG. 16A is constructed by playing live content on the computer 200B. The virtual spaces 11A and 11B are synchronized with each other under the control of the server 600. User 5B moves his body to cause the avatar object 6B to perform a performance. The computer 200B detects the movement of the user 5B based on the outputs of various motion sensors mounted on the user 5B. In the virtual space 11B, the avatar object 6B executes a performance that reflects the movement of the user 5B in the real space according to the movement of the specified user 5B. In the virtual space 11B, the avatar objects 6A, 6C, and 6D watch the performance by the avatar object 6B. When the avatar object 6B performs the movement-based performance of the user 5B in the virtual space 11B, the avatar object 6B also performs the same performance in the virtual spaces 11A, 11C, and 11D in synchronization with the performance. In this way, the user 5B has a role as a distributor who distributes the live performance by the avatar object 6B to the users 5A, 5C, and 5D, respectively.

図16(A)において、仮想カメラ14Bは、アバターオブジェクト6Bの頭部に配置される。仮想カメラ14Bは、仮想カメラ14Bの位置および向きに応じた視界領域15Bを規定する。仮想カメラ14Bは、視界領域15Bに対応する視界画像1617Bを生成して、図16(B)に示すようにHMD120Bに表示させる。ユーザ5Bは、視界画像1617Bを視認することによって、アバターオブジェクト6Bの視点で仮想空間の一部を視認する。これにより、ユーザ5Bは、あたかもユーザ5B自身がアバターオブジェクト6Bであるかのような仮想体験を、得ることができる。視界画像1617Bには、パフォーマンスを視聴するアバターオブジェクト6A、6C、および6Dが含まれる。したがって、ユーザ5Bは、アバターオブジェクト6Bによるパフォーマンスを視聴するアバターオブジェクト6A、6C、および6Dの様子を、アバターオブジェクト6Bの視点で把握することができる。 In FIG. 16A, the virtual camera 14B is placed on the head of the avatar object 6B. The virtual camera 14B defines a field of view area 15B according to the position and orientation of the virtual camera 14B. The virtual camera 14B generates a field of view image 1617B corresponding to the field of view area 15B and displays it on the HMD 120B as shown in FIG. 16 (B). The user 5B visually recognizes a part of the virtual space from the viewpoint of the avatar object 6B by visually recognizing the field of view image 1617B. As a result, the user 5B can obtain a virtual experience as if the user 5B itself is the avatar object 6B. The field of view image 1617B includes avatar objects 6A, 6C, and 6D for viewing the performance. Therefore, the user 5B can grasp the state of the avatar objects 6A, 6C, and 6D for viewing the performance by the avatar object 6B from the viewpoint of the avatar object 6B.

[ライブ配信フロー]
図17は、HMDシステム100において実行される処理の一例を示すシーケンス図である。以下では、仮想空間11Bにおいて行われるアバターオブジェクト6Bのライブを、コンピュータ200Bからコンピュータ200Aに対して配信するための一連の処理を説明する。コンピュータ200Cおよび200Dに対しても、同様の一連の処理に基づいてアバターオブジェクト6Bのライブが配信される。
[Live distribution flow]
FIG. 17 is a sequence diagram showing an example of processing executed in the HMD system 100. Hereinafter, a series of processes for delivering the live of the avatar object 6B performed in the virtual space 11B from the computer 200B to the computer 200A will be described. The live of the avatar object 6B is also delivered to the computers 200C and 200D based on the same series of processing.

ステップS1701において、プロセッサ210Bは、ユーザ5Bに装着されたモーションセンサから、ユーザ5Bの頭部、腰部、両手、および両足の位置を検出する。以下、各モーションセンサによって検出されるユーザ5Bの部位の位置を「位置情報」とも言う。ステップS1702において、プロセッサ210Bは、ユーザ5Bの現在の位置情報と、予め取得されたユーザ5Bの寸法データとに基づいて、ユーザ5Bの関節の回転方向を算出する。寸法データは、ユーザ5Bの身体の寸法を表すデータである。寸法データおよび回転方向については後述する。現在の位置情報を検出することおよび回転方向を算出すること、ユーザ5Bの動きを検出することと同義である。 In step S1701, the processor 210B detects the positions of the user 5B's head, lumbar region, both hands, and both feet from the motion sensor mounted on the user 5B. Hereinafter, the position of the portion of the user 5B detected by each motion sensor is also referred to as "position information". In step S1702, the processor 210B calculates the rotation direction of the joint of the user 5B based on the current position information of the user 5B and the dimension data of the user 5B acquired in advance. The dimensional data is data representing the body dimensions of the user 5B. The dimensional data and the rotation direction will be described later. It is synonymous with detecting the current position information, calculating the rotation direction, and detecting the movement of the user 5B.

ステップS1703において、プロセッサ210Bは、現在の位置情報および回転方向に基づいて、仮想空間11Bに配置されるアバターオブジェクト6Bを動かす。プロセッサ210Bは、例えば、右肩の回転方向に基づいて、アバターオブジェクト6Bの右上腕部を動かす。プロセッサ210Bはさらに、現在の位置情報(例えば現在の腰部の位置情報)に基づいて、アバターオブジェクト6Bの仮想空間11Bにおける位置を動かす。これにより、プロセッサ210Bは、現実空間のユーザ5Bの動きが仮想空間のアバターオブジェクト6Bに反映させる。言い換えれば、プロセッサ210Bは、アバターオブジェクト6Bに、ユーザ5Bの動きに応じたパフォーマンスを実行させる。 In step S1703, the processor 210B moves the avatar object 6B arranged in the virtual space 11B based on the current position information and the rotation direction. The processor 210B moves the upper right arm of the avatar object 6B, for example, based on the direction of rotation of the right shoulder. The processor 210B further moves the position of the avatar object 6B in the virtual space 11B based on the current position information (for example, the current position information of the lumbar region). As a result, the processor 210B reflects the movement of the user 5B in the real space on the avatar object 6B in the virtual space. In other words, the processor 210B causes the avatar object 6B to perform performance according to the movement of the user 5B.

ユーザ5Bの動きをアバターオブジェクト6Bに反映させるための処理は、上述した位置情報および回転方向に応じた処理に限定されない。プロセッサ210Bは、例えば、回転方向を算出することなく、ユーザ5Bの動きに応じてアバターオブジェクト6Bを動かすこともできる。プロセッサ210Bは、例えば、ユーザ5Bの身体を構成する各部位の位置に対応するように、ユーザ5Bの各部位に対応するアバターオブジェクト6Bの各部位オブジェクトの位置を制御するようにしてもよい。 The process for reflecting the movement of the user 5B on the avatar object 6B is not limited to the above-mentioned process according to the position information and the rotation direction. For example, the processor 210B can move the avatar object 6B according to the movement of the user 5B without calculating the rotation direction. The processor 210B may control the position of each part object of the avatar object 6B corresponding to each part of the user 5B so as to correspond to the position of each part constituting the body of the user 5B, for example.

ステップS1704において、プロセッサ210Bは、パフォーマンスを実行した際のアバターオブジェクト6Bの動きを表す動き情報を生成し、この動き情報を含むアバターオブジェクト6Bのアバター情報をサーバ600に送信する。 In step S1704, the processor 210B generates motion information representing the motion of the avatar object 6B when the performance is executed, and transmits the avatar information of the avatar object 6B including the motion information to the server 600.

ステップS1710において、コンピュータ200Aのプロセッサ210A(以下、単にプロセッサ210A)は、アバターオブジェクト6Aのアバター情報をサーバに送信する。ステップS1720において、サーバ600は、仮想空間11Aおよび11Bを同期するための同期処理を実行する。詳細には、サーバ600は、コンピュータ200Bから受信したアバターオブジェクト6Bのアバター情報を、コンピュータ200Aに送信する。サーバ600は、さらに、コンピュータ200Aから受信したアバターオブジェクト6Aのアバター情報を、コンピュータ200Bに送信する。 In step S1710, the processor 210A of the computer 200A (hereinafter, simply the processor 210A) transmits the avatar information of the avatar object 6A to the server. In step S1720, the server 600 executes a synchronization process for synchronizing the virtual spaces 11A and 11B. Specifically, the server 600 transmits the avatar information of the avatar object 6B received from the computer 200B to the computer 200A. The server 600 further transmits the avatar information of the avatar object 6A received from the computer 200A to the computer 200B.

ステップS1705において、プロセッサ210Bは、サーバ600から送信されたアバターオブジェクト6Aのアバター情報を受信する。ステップS1706において、プロセッサ210Bは、受信したアバター情報に基づいて、仮想空間11Bにおいてアバターオブジェクトを制御する。これにより、仮想空間11Aにおけるアバターオブジェクト6Aの挙動が、仮想空間11Bにおけるアバターオブジェクト6Aに反映される。言い換えれば、アバターオブジェクト6Aの挙動が、仮想空間11Aおよび11Bにおいて同期される。例えば、仮想空間11Aにおいてアバターオブジェクト6Aが移動した場合、仮想空間11Bにおいてもアバターオブジェクト6Aは同様に移動する。 In step S1705, the processor 210B receives the avatar information of the avatar object 6A transmitted from the server 600. In step S1706, the processor 210B controls the avatar object in the virtual space 11B based on the received avatar information. As a result, the behavior of the avatar object 6A in the virtual space 11A is reflected in the avatar object 6A in the virtual space 11B. In other words, the behavior of the avatar object 6A is synchronized in the virtual spaces 11A and 11B. For example, when the avatar object 6A moves in the virtual space 11A, the avatar object 6A also moves in the virtual space 11B.

ステップS1711において、プロセッサ210Aは、サーバ600から送信されたアバターオブジェクト6Bのアバター情報を受信する。ステップS1712において、プロセッサ210Aは、受信したアバター情報に含まれる動き情報に基づいて、アバターオブジェクト6Bを動かす。これにより、プロセッサ210Bは、現実空間のユーザ5Bの動きを、仮想空間11Aに配置されるアバターオブジェクト6Bに反映させる。言い換えれば、プロセッサ210Aは、仮想空間11Aにおいて、アバターオブジェクト6Bにユーザ5Bの動きに応じたパフォーマンスを実行させる。これにより、仮想空間11Bにおけるアバターオブジェクト6Bの挙動が、仮想空間11Aにおけるアバターオブジェクト6Bに反映される。言い換えれば、アバターオブジェクト6Bの挙動が、仮想空間11Aおよび11Bにおいて同期される。例えば、仮想空間11Bにおいてアバターオブジェクト6Bが第1パフォーマンスを実行した場合、仮想空間11Aにおいてもアバターオブジェクト6Bは同様に第1パフォーマンスを実行する。このようにして、仮想空間11Bにおけるアバターオブジェクト6Bのライブが、仮想空間11Aに配信される。 In step S1711, the processor 210A receives the avatar information of the avatar object 6B transmitted from the server 600. In step S1712, the processor 210A moves the avatar object 6B based on the motion information included in the received avatar information. As a result, the processor 210B reflects the movement of the user 5B in the real space on the avatar object 6B arranged in the virtual space 11A. In other words, the processor 210A causes the avatar object 6B to perform the performance according to the movement of the user 5B in the virtual space 11A. As a result, the behavior of the avatar object 6B in the virtual space 11B is reflected in the avatar object 6B in the virtual space 11A. In other words, the behavior of the avatar object 6B is synchronized in the virtual spaces 11A and 11B. For example, when the avatar object 6B executes the first performance in the virtual space 11B, the avatar object 6B also executes the first performance in the virtual space 11A. In this way, the live of the avatar object 6B in the virtual space 11B is delivered to the virtual space 11A.

図示しないが、プロセッサ210Bは、ユーザ5Bが発した音声を、マイク170Bを用いて録音する。プロセッサ210Bは、ユーザ5Bの音声を表す音声データを生成し、サーバ600に送信する。サーバ600は、受信したユーザ5Bの音声データを、同期処理によってコンピュータ200Aに送信する。プロセッサ210Aは、受信したユーザ5Bの音声データが表す音声を、スピーカ180Aに出力する。これらの一連の処理の結果、ユーザ5Aは、ライブ中にユーザ5Bが発した音声を、リアルタイムに聴取することができる。 Although not shown, the processor 210B records the voice emitted by the user 5B using the microphone 170B. The processor 210B generates voice data representing the voice of the user 5B and transmits it to the server 600. The server 600 transmits the received voice data of the user 5B to the computer 200A by synchronous processing. The processor 210A outputs the voice represented by the received voice data of the user 5B to the speaker 180A. As a result of these series of processes, the user 5A can listen to the voice emitted by the user 5B during the live in real time.

[寸法データの取得]
図18は、寸法データの取得方法を説明するための図である。図18(A)は、ユーザ5Bが、正面を向き、両手を水平に広げ、起立している状態を表す。以下、図18(A)に示される状態を第1姿勢とも言う。図18(B)は、ユーザ5Bが、正面を向き、両手を太もも側面に下ろし、起立している状態を表す。以下、図18(B)に示される状態を第2姿勢とも言う。
[Acquisition of dimension data]
FIG. 18 is a diagram for explaining a method of acquiring dimensional data. FIG. 18A shows a state in which the user 5B faces the front, spreads both hands horizontally, and stands up. Hereinafter, the state shown in FIG. 18A is also referred to as a first posture. FIG. 18B shows a state in which the user 5B is standing with his hands facing the front and his hands down on the side of his thighs. Hereinafter, the state shown in FIG. 18B is also referred to as a second posture.

ある局面において、プロセッサ210Bは、ユーザ5Bに対し第1姿勢および第2姿勢をとるように促す。一例として、プロセッサ210Bは、第1姿勢および第2姿勢のキャラクタをモニタ130Bに表示し、同様の姿勢をとる旨のメッセージを表示する。他の例として、プロセッサ210Bは、第1姿勢および第2姿勢をとる旨の音声をスピーカ180Bから出力してもよい。 In one aspect, the processor 210B urges the user 5B to take the first and second postures. As an example, the processor 210B displays the characters in the first posture and the second posture on the monitor 130B, and displays a message to the effect that they take the same posture. As another example, the processor 210B may output the sound to take the first posture and the second posture from the speaker 180B.

プロセッサ210Bは、2つの姿勢(第1姿勢と第2姿勢)のそれぞれにおいて、ユーザ5Bに装着されたモーションセンサの出力に基づいてユーザ5Bの頭部、腰部、両手、両足の位置情報を取得する。これら位置情報は、図19に示されるように実座標系(x、y、z)における位置として取得され得る。 The processor 210B acquires the position information of the user 5B's head, waist, both hands, and both feet based on the output of the motion sensor mounted on the user 5B in each of the two postures (first posture and second posture). .. These position information can be acquired as positions in the real coordinate system (x, y, z) as shown in FIG.

プロセッサ210Bは、2つの姿勢に対応する位置情報からユーザ5Bの寸法データを算出する。ある実施形態において、プロセッサ210Bは、図20に示されるように、ユーザ5Bの身長、肩幅、腕の長さ、足の長さ、頭部から肩までの高さを寸法データとして算出する。プロセッサ210Bは、第2姿勢における両手の間隔を肩幅として算出し得る。プロセッサ210Bは、第1姿勢における両手の間隔から肩幅を差し引いた値の半分を腕の長さとして算出し得る。プロセッサ210Bは、足の高さから頭部の高さまでの距離を身長として算出し得る。プロセッサ210Bは、足の高さから腰部の高さまでの距離を足の長さとして算出し得る。プロセッサ210Bは、第1姿勢における手の高さから頭部までの高さを、頭部から肩までの高さとして算出し得る。 The processor 210B calculates the dimensional data of the user 5B from the position information corresponding to the two postures. In one embodiment, the processor 210B calculates the height, shoulder width, arm length, foot length, and head-to-shoulder height of the user 5B as dimensional data, as shown in FIG. The processor 210B can calculate the distance between both hands in the second posture as the shoulder width. The processor 210B can calculate the arm length as half of the value obtained by subtracting the shoulder width from the distance between both hands in the first posture. The processor 210B can calculate the distance from the height of the foot to the height of the head as the height. The processor 210B can calculate the distance from the height of the foot to the height of the lumbar region as the length of the foot. The processor 210B can calculate the height from the height of the hand to the head in the first posture as the height from the head to the shoulder.

図21は、寸法データを取得するための処理を表すフローチャートである。ステップS2110において、プロセッサ210Bは、仮想空間11Bに仮想カメラ14Bを配置する。プロセッサ210Bはさらに、仮想カメラ14Bの撮影範囲に対応する視界画像17Bをモニタ130Bに出力する。 FIG. 21 is a flowchart showing a process for acquiring dimensional data. In step S2110, the processor 210B arranges the virtual camera 14B in the virtual space 11B. The processor 210B further outputs a field of view image 17B corresponding to the shooting range of the virtual camera 14B to the monitor 130B.

ステップS2120において、プロセッサ210Bは、ユーザ5Bに第1姿勢になるように指示する。例えば、プロセッサ210Bは、当該指示が記されたオブジェクトを仮想空間11Bに配置することでステップS2120の処理を実現する。ステップS2130において、プロセッサ210Bは、第1姿勢に対応する位置情報を取得する。 In step S2120, the processor 210B instructs the user 5B to take the first posture. For example, the processor 210B realizes the process of step S2120 by arranging the object in which the instruction is written in the virtual space 11B. In step S2130, the processor 210B acquires the position information corresponding to the first posture.

ステップS2140において、プロセッサ210Bは、ユーザ5Bに第2姿勢になるように指示する。ステップS2150において、プロセッサ210Bは、第2姿勢に対応する位置情報を取得する。 In step S2140, the processor 210B instructs the user 5B to take the second posture. In step S2150, the processor 210B acquires the position information corresponding to the second posture.

ステップS2160において、プロセッサ210Bは、第1姿勢に対応する位置情報と第2姿勢に対応する位置情報とから、ユーザ5Bの寸法データを算出する。プロセッサ210Bは、寸法データをストレージ230Bに格納する。 In step S2160, the processor 210B calculates the dimensional data of the user 5B from the position information corresponding to the first posture and the position information corresponding to the second posture. The processor 210B stores the dimensional data in the storage 230B.

以上のように、ユーザ5Bは、2つの姿勢をとるだけで、自身の寸法をコンピュータ200Bに容易に入力できる。なお、他の局面において、ユーザ5Bは、自身の寸法をキーボード等の入力デバイスを用いてコンピュータ200Bに入力してもよい。 As described above, the user 5B can easily input his / her own dimensions into the computer 200B only by taking two postures. In another aspect, the user 5B may input his / her own dimensions into the computer 200B using an input device such as a keyboard.

[関節の回転方向]
ある実施形態において、プロセッサ210Bは、ユーザ5Bに装着された6つのモーションセンサの出力(位置情報)と、寸法データとに基づいて、ユーザ5Bの関節の回転方向を推定する。一例として、プロセッサ210Bは、頭部の位置情報と、肩幅と、頭部から肩までの高さとに基づいて、肩の位置を推定する。プロセッサ210Bは、肩の位置と手の位置情報とから、肘の位置を推定する。この推定は、逆運動学(Inverse Kinematics)を利用した公知のアプリケーションにより実行され得る。
[Direction of joint rotation]
In one embodiment, the processor 210B estimates the rotation direction of the joint of the user 5B based on the output (position information) of the six motion sensors mounted on the user 5B and the dimensional data. As an example, the processor 210B estimates the shoulder position based on the head position information, the shoulder width, and the height from the head to the shoulder. The processor 210B estimates the position of the elbow from the position of the shoulder and the position information of the hand. This estimation can be performed by a known application utilizing Inverse Kinematics.

ある実施形態において、プロセッサ210Bは、6つのモーションセンサから、ユーザ5Bの首(頭部)、腰、両手首、および両足首の関節の傾き(回転方向)を取得する。加えて、プロセッサ210Bは、逆運動学に基づいて、両肩、両肘、両股(足のつけ根)、両膝の関節の回転方向を推定する。図22に示されるように、プロセッサ210Bは、各関節の回転方向をuvw視野座標系で取得または推定する。 In one embodiment, the processor 210B acquires the inclination (direction of rotation) of the joints of the user 5B's neck (head), waist, both wrists, and both ankles from six motion sensors. In addition, the processor 210B estimates the direction of rotation of the joints of both shoulders, elbows, crotch (base of foot), and knees based on inverse kinematics. As shown in FIG. 22, the processor 210B acquires or estimates the rotation direction of each joint in the uvw field coordinate system.

なお、回転方向が位置情報と寸法データとに基づいて算出される場合、プロセッサ210Bは、ユーザ5Bが正面を向いていないとき(つまり、頭部と腰部とが異なる方向を向いているとき)の肩の位置等を正確に推定できない。そこで、他の実施形態において、コンピュータ200Bは、モーションセンサによって検出されるユーザ5Bの部位の傾きをさらに考慮して関節の回転方向を推定してもよい。例えば、コンピュータ200Bは、頭部の位置情報と、頭部の傾きと、腰部の傾きと、肩幅と、頭部から肩までの高さとに基づいて、肩の位置を推定する。当該構成によれば、コンピュータ200Bは、関節の回転方向の精度を向上し得る。 When the rotation direction is calculated based on the position information and the dimensional data, the processor 210B uses the processor 210B when the user 5B is not facing the front (that is, when the head and the waist are facing different directions). The position of the shoulder cannot be estimated accurately. Therefore, in another embodiment, the computer 200B may estimate the rotation direction of the joint by further considering the inclination of the portion of the user 5B detected by the motion sensor. For example, the computer 200B estimates the position of the shoulder based on the position information of the head, the inclination of the head, the inclination of the lumbar region, the shoulder width, and the height from the head to the shoulder. According to this configuration, the computer 200B can improve the accuracy of the joint rotation direction.

[ライブ進行処理フロー]
図23は、ある実施の形態に従うHMDセット110Bにおいて実行される処理の一部を表すシーケンスチャートである。図24は、ある実施の形態に仮想空間2411Bおよび視界画像2417Bを示す図である。本実施形態では、少なくともHMDセット110Bが、アバターオブジェクト6Bのライブを進行させるための一連の処理を実行する。
[Live progress processing flow]
FIG. 23 is a sequence chart showing a part of the processing performed in the HMD set 110B according to an embodiment. FIG. 24 is a diagram showing a virtual space 2411B and a field of view image 2417B in a certain embodiment. In the present embodiment, at least the HMD set 110B executes a series of processes for advancing the live performance of the avatar object 6B.

ステップS2301において、プロセッサ210Bは、図24(A)に示すような仮想空間2411Bを定義する。当該処理は、図11のステップS1110の処理に相当する。具体的には、プロセッサ210Bは、仮想空間データを特定することによって、仮想空間データによって表される仮想空間2411Bを定義する。図24(A)では、仮想空間2411Bは、アバターオブジェクト6A〜6Dを含む。仮想空間2411Bは、アバターオブジェクト6Bのライブをアバターオブジェクト6A等が視聴する仮想空間である。言い換えれば、仮想空間2411Bは、アバターオブジェクト6Bによるパフォーマンスが行われる仮想空間2411Bである。 In step S2301, processor 210B defines virtual space 2411B as shown in FIG. 24 (A). This process corresponds to the process of step S1110 in FIG. Specifically, the processor 210B defines the virtual space 2411B represented by the virtual space data by specifying the virtual space data. In FIG. 24A, the virtual space 2411B includes the avatar objects 6A-6D. The virtual space 2411B is a virtual space in which the avatar object 6A and the like view the live performance of the avatar object 6B. In other words, the virtual space 2411B is the virtual space 2411B where the performance by the avatar object 6B is performed.

ステップS2302において、プロセッサ210Bは、仮想オブジェクト生成モジュール1421として、ステージオブジェクト1532を生成し、仮想空間2411Bに配置する。ステージオブジェクト1532は、その上でアバターオブジェクト6Bがパフォーマンスを実行するための仮想オブジェクトの一種である。ステップ2303において、プロセッサ210Bは、仮想オブジェクト生成モジュール1421として、ユーザ5B(第1ユーザ)に関連付けられるアバターオブジェクト6B(第1アバター)を生成し、仮想空間2411Bに配置する。図24(A)では、アバターオブジェクト6Bは、ステージオブジェクト1532上に配置される。図示しないが、プロセッサ210Bは、任意のタイミングで、アバターオブジェクト6Bのアバター情報を生成し、かつサーバ600に送信する。ステップS2304において、プロセッサ210Bは、仮想カメラ14Bを生成し、仮想空間2411Bに配置する。 In step S2302, the processor 210B generates the stage object 1532 as the virtual object generation module 1421 and arranges it in the virtual space 2411B. The stage object 1532 is a kind of virtual object on which the avatar object 6B performs a performance. In step 2303, the processor 210B generates the avatar object 6B (first avatar) associated with the user 5B (first user) as the virtual object generation module 1421, and arranges it in the virtual space 2411B. In FIG. 24A, the avatar object 6B is placed on the stage object 1532. Although not shown, the processor 210B generates the avatar information of the avatar object 6B and transmits it to the server 600 at an arbitrary timing. In step S2304, the processor 210B creates a virtual camera 14B and arranges it in the virtual space 2411B.

ステップS2305において、プロセッサ210Bは、アバターオブジェクト6A、6C、および6Dの各アバター情報を、サーバ600から受信する。ステップS2306において、プロセッサ210Bは、仮想オブジェクト生成モジュール1421として、受信した各アバター情報に基づいて、ユーザ5A(第2ユーザ)、5C、および5Dにそれぞれ関連付けられるアバターオブジェクト6A(第2アバター)、6C、および6Dを、仮想空間2411Bに配置する。プロセッサ210Bは、さらに、他のアバターオブジェクト6のアバター情報も受信し、かつ他のアバターオブジェクト6も仮想空間2411Bに配置する。仮想空間2411Bには、他のアバターオブジェクト6が多数配置されているが、図24等では、説明の便宜のため、その図示を省略する。以降、特に必要がない限り、他のアバターオブジェクト6には言及しない。 In step S2305, the processor 210B receives the avatar information of the avatar objects 6A, 6C, and 6D from the server 600. In step S2306, the processor 210B, as the virtual object generation module 1421, avatar objects 6A (second avatar), 6C associated with users 5A (second user), 5C, and 5D, respectively, based on the received avatar information. , And 6D are placed in the virtual space 2411B. The processor 210B also receives the avatar information of the other avatar object 6, and also arranges the other avatar object 6 in the virtual space 2411B. A large number of other avatar objects 6 are arranged in the virtual space 2411B, but the illustration is omitted in FIG. 24 and the like for convenience of explanation. Hereinafter, unless otherwise specified, other avatar objects 6 will not be mentioned.

ステップ2307において、プロセッサ210Bは、仮想オブジェクト生成モジュール1421として、透過設定された鏡面体オブジェクト2441(第1オブジェクト)を生成し、アバターオブジェクト6Bからの視界領域15B(第1視界)内に配置する。鏡面体オブジェクト2441は、仮想空間2411Bにおける視界領域15B内で視覚化される。図24(A)では、鏡面体オブジェクト2441が配置される位置は、アバターオブジェクト6Bと対向する位置である。アバターオブジェクト6Bから見ると、鏡面体オブジェクト2441はアバターオブジェクト6Aに重畳している。言い換えれば、鏡面体オブジェクト2441は、仮想空間2411Bにおいてアバターオブジェクト6Aとアバターオブジェクト6Bとの間に配置される。 In step 2307, the processor 210B generates a transparently set mirror surface object 2441 (first object) as the virtual object generation module 1421, and arranges it in the field of view area 15B (first field of view) from the avatar object 6B. The mirror object 2441 is visualized within the field of view 15B in the virtual space 2411B. In FIG. 24A, the position where the mirror object 2441 is arranged is the position facing the avatar object 6B. Seen from the avatar object 6B, the mirror object 2441 is superimposed on the avatar object 6A. In other words, the mirror object 2441 is arranged between the avatar object 6A and the avatar object 6B in the virtual space 2411B.

鏡面体オブジェクト2441は、テキストおよび画像(静止画、動画)などの各種の情報を表示可能な表示面を有する。プロセッサ210Bは、鏡面体オブジェクト2441の表示面をアバターオブジェクト6Bに向けた状態で、鏡面体オブジェクト2441を仮想空間2411Bに配置する。鏡面体オブジェクト2441の透過度は、ユーザ5Bが鏡面体オブジェクト2441の背後をユーザ5Bが視認可能である鏡面体オブジェクト2441の状態を示す任意の値を取り得る。鏡面体オブジェクト2441が完全に透明な場合の鏡面体オブジェクト2441の透過度を100(最高値)とし、鏡面体オブジェクト2441が完全に不透明な場合の鏡面体オブジェクト2441の透過度を0(最低値)とすると、鏡面体オブジェクト2441の透過度は0を上回りかつ100以下のいずれかの値を取る。プロセッサ210Bは、例えば、ライブの進行中に、鏡面体オブジェクト2441の透過度の値を同一値に維持することができる。 The mirror surface object 2441 has a display surface capable of displaying various information such as text and images (still images, moving images). The processor 210B arranges the mirror object 2441 in the virtual space 2411B with the display surface of the mirror object 2441 facing the avatar object 6B. The transparency of the mirror object 2441 can be any value indicating the state of the mirror object 2441 in which the user 5B can see behind the mirror object 2441. The transmittance of the mirror object 2441 when the mirror object 2441 is completely transparent is 100 (maximum value), and the transmittance of the mirror object 2441 when the mirror object 2441 is completely opaque is 0 (minimum value). Then, the transparency of the mirror surface object 2441 takes any value of more than 0 and 100 or less. Processor 210B can, for example, keep the transparency values of the mirror object 2441 at the same value during the live.

ステップS2308において、プロセッサ210Bは、仮想オブジェクト生成モジュール1421として、仮想カメラ2442(仮想視点)を生成し、鏡面体オブジェクト2441に関連付けて配置する。仮想カメラ2442は、アバターオブジェクト6Bの少なくとも一部を撮影することによって、アバターオブジェクト6Bの少なくとも一部を示すアバター画像2444を生成する仮想カメラである。図24(A)では、仮想カメラ2442は、仮想カメラ2442の撮影方向をアバターオブジェクト6Bに向けた状態で、鏡面体オブジェクト2441上に配置される。仮想カメラ2442は、鏡面体オブジェクト2441に関連付けられた状態で、鏡面体オブジェクト2441と異なる位置に配置されてもよい。 In step S2308, the processor 210B generates a virtual camera 2442 (virtual viewpoint) as a virtual object generation module 1421 and arranges it in association with the mirror surface object 2441. The virtual camera 2442 is a virtual camera that generates an avatar image 2444 showing at least a part of the avatar object 6B by photographing at least a part of the avatar object 6B. In FIG. 24A, the virtual camera 2442 is arranged on the mirror object 2441 with the shooting direction of the virtual camera 2442 facing the avatar object 6B. The virtual camera 2442 may be arranged at a different position from the mirror object 2441 in a state associated with the mirror object 2441.

プロセッサ210Bは、仮想カメラ2442の撮影方向に基づいて、仮想カメラ2442からの視界領域2443(第3視界)を規定する。視界領域2443は、仮想カメラ2442による撮影範囲に相当する。プロセッサ210Bは、アバターオブジェクト6Bの少なくとも一部が視界領域2443内に含まれるように、視界領域2443を制御する。図24(A)では、アバターオブジェクト6Bの全部が、視界領域2443内に含まれる。仮想カメラ2442は、ユーザBによって視認されない仮想カメラである。プロセッサ210Bは、仮想カメラ14Bが仮想カメラ2442によって撮影されないことを、仮想カメラ14Bに設定する。プロセッサ210Bは、さらに、仮想カメラ2442が仮想カメラ14Bによって撮影されないことを、仮想カメラ2442に設定する。 The processor 210B defines a field of view area 2443 (third field of view) from the virtual camera 2442 based on the shooting direction of the virtual camera 2442. The field of view area 2443 corresponds to the shooting range of the virtual camera 2442. The processor 210B controls the field of view area 2443 so that at least a part of the avatar object 6B is included in the field of view area 2443. In FIG. 24 (A), the entire avatar object 6B is included in the field of view area 2443. The virtual camera 2442 is a virtual camera that is not visually recognized by the user B. The processor 210B sets the virtual camera 14B that the virtual camera 14B is not photographed by the virtual camera 2442. Processor 210B further sets the virtual camera 2442 that the virtual camera 2442 is not photographed by the virtual camera 14B.

ステップS2309において、プロセッサ210Bは、仮想カメラ制御モジュール1422として、仮想カメラ2442を用いてアバターオブジェクト6Bを撮影することによって、アバターオブジェクト6Bの現在の前面を表すアバター画像2444を、リアルタイムに生成する。アバター画像2444は、仮想カメラ2442からの視界領域2443に対応する視界画像(第2視界画像)である。仮想空間2411Bにおいて仮想カメラ2442の視界領域2443に仮想カメラ14Bが配置されているが、仮想カメラ14Bには仮想カメラ2442による撮影不可が設定されているので、アバター画像2444には仮想カメラ14Bの像が含まれない。言い換えれば、プロセッサ210Bは、仮想空間2411Bにおける仮想カメラ2442の視界領域2443をレンダリングする際、仮想カメラ14Bをレンダリングの対象から外す。 In step S2309, the processor 210B, as the virtual camera control module 1422, captures the avatar object 6B using the virtual camera 2442 to generate an avatar image 2444 representing the current front surface of the avatar object 6B in real time. The avatar image 2444 is a field of view image (second field of view image) corresponding to the field of view area 2443 from the virtual camera 2442. In the virtual space 2411B, the virtual camera 14B is arranged in the field of view area 2443 of the virtual camera 2442, but since the virtual camera 14B is set not to be photographed by the virtual camera 2442, the avatar image 2444 is an image of the virtual camera 14B. Is not included. In other words, the processor 210B excludes the virtual camera 14B from the rendering target when rendering the field of view area 2443 of the virtual camera 2442 in the virtual space 2411B.

プロセッサ210Bは、生成したアバター画像2444に、所定の透過度を設定する。アバター画像2444の透過度は、例えば、鏡面体オブジェクト2441の透過度と同一である。アバター画像2444の透過度は、鏡面体オブジェクト2441の透過度と異なっていても良い。ステップS2310において、プロセッサ210Bは、仮想オブジェクト制御モジュール1427として、透過設定されたアバター画像2444を、鏡面体オブジェクト2441にリアルタイムに表示する。プロセッサ210Bは、例えば、アバター画像2444を左右反転させた状態で鏡面体オブジェクト2441に表示する。これにより、アバターオブジェクト6Bの鏡像が、鏡面体オブジェクト2441にリアルタイムに映し出される。その結果、鏡面体オブジェクト2441は、アバターオブジェクト6Bの現在の正面を映し出す仮想的な鏡として機能する。 The processor 210B sets a predetermined transparency to the generated avatar image 2444. The transparency of the avatar image 2444 is, for example, the same as the transparency of the mirror object 2441. The transparency of the avatar image 2444 may be different from the transparency of the mirror object 2441. In step S2310, the processor 210B displays the transparently set avatar image 2444 on the mirror object 2441 in real time as the virtual object control module 1427. The processor 210B displays, for example, the avatar image 2444 on the mirror surface object 2441 in a horizontally inverted state. As a result, the mirror image of the avatar object 6B is projected on the mirror surface object 2441 in real time. As a result, the mirror object 2441 functions as a virtual mirror that reflects the current front of the avatar object 6B.

ステップS2311において、プロセッサ210Bは、仮想カメラ制御モジュール1422として、HMD120Bが関連付けられたユーザ5Bの頭部の動きに応じて、アバターオブジェクト6Bからの視界領域15Bを制御する。詳細には、プロセッサ210Bは、HMD120Bの動きに応じて仮想空間2411Bにおける仮想カメラ14Bの位置および傾きを決定し、決定された仮想カメラ14Bの位置および傾きに応じて、視界領域15Bを制御する。当該処理は、図11のステップS1140の処理の一部に相当する。仮想カメラ14Bがアバターオブジェクト6Bと同一の位置に配置されるので、仮想カメラ14Bの位置は、アバターオブジェクト6Bの位置と同義である。さらに、仮想カメラ14Bからの視界は、アバターオブジェクト6Bからの視界と同義である。 In step S2311, as a virtual camera control module 1422, the processor 210B controls the field of view 15B from the avatar object 6B in response to the movement of the head of the user 5B associated with the HMD 120B. Specifically, the processor 210B determines the position and tilt of the virtual camera 14B in the virtual space 2411B according to the movement of the HMD 120B, and controls the field of view region 15B according to the determined position and tilt of the virtual camera 14B. This process corresponds to a part of the process of step S1140 in FIG. Since the virtual camera 14B is arranged at the same position as the avatar object 6B, the position of the virtual camera 14B is synonymous with the position of the avatar object 6B. Further, the field of view from the virtual camera 14B is synonymous with the field of view from the avatar object 6B.

ステップS2312において、プロセッサ210Bは、視界画像2417Bをモニタ130Bに表示する。具体的には、プロセッサ210Bは、HMD120Bの動き(すなわち仮想カメラ14Bの位置および傾き)と、仮想空間2411Bを定義する仮想空間データと、に基づいて、視界領域15Bに対応する視界画像2417Bを定義する。視界画像2417を定義することは、視界画像2417Bを生成することと同義である。プロセッサ210Bは、さらに、HMD120Bのモニタ130Bに視界画像2417Bを出力することによって、視界画像2417BをHMD120Bに表示させる。当該処理は、図11のステップS1180およびS1190の処理に相当する。 In step S2312, the processor 210B displays the field of view image 2417B on the monitor 130B. Specifically, the processor 210B defines the field of view image 2417B corresponding to the field of view area 15B based on the movement of the HMD 120B (that is, the position and tilt of the virtual camera 14B) and the virtual space data that defines the virtual space 2411B. To do. Defining the field of view image 2417 is synonymous with generating the field of view image 2417B. The processor 210B further outputs the field of view image 2417B to the monitor 130B of the HMD 120B to display the field of view image 2417B on the HMD 120B. The process corresponds to the process of steps S1180 and S1190 of FIG.

プロセッサ210Bは、例えば、図24(A)に示す仮想空間2411Bに対応する視界画像2417Bを、図24(B)に示すようにモニタ130Bに表示する。ユーザ5Bは、視界画像2417Bを視認することによって、アバターオブジェクト6Cおよび6Dが、アバターオブジェクト6Bのパフォーマンスを視聴していることを認識する。ユーザ5Bは、さらに、鏡面体オブジェクト2441に表示されるアバター画像2444を視認することによって、アバターオブジェクト6Bの現在の姿をリアルタイムに確認することができる。これにより、ユーザ5Bは、ユーザ5Bの動きがアバターオブジェクト6Bに正しく反映されているか否かを、ライブ中に容易に把握することができる。ユーザ5Bは、さらに、鏡面体オブジェクト2441の背後に配置されるアバターオブジェクト6Aの様子を、透過設定された鏡面体オブジェクト2441およびアバター画像2444越しに視認することもできる。したがって、ユーザ5Bは、アバターオブジェクト6Aもアバターオブジェクト6Bのパフォーマンスを視聴していることを認識できる。このように、ユーザ5Bは、仮想空間2411Bにおける視界領域15B内の全体を認識しつつ、アバターオブジェクト6Bの現在の姿を正確に把握することができる。 For example, the processor 210B displays the field of view image 2417B corresponding to the virtual space 2411B shown in FIG. 24 (A) on the monitor 130B as shown in FIG. 24 (B). By visually recognizing the field of view image 2417B, the user 5B recognizes that the avatar objects 6C and 6D are viewing the performance of the avatar object 6B. The user 5B can further confirm the current appearance of the avatar object 6B in real time by visually recognizing the avatar image 2444 displayed on the mirror object 2441. As a result, the user 5B can easily grasp whether or not the movement of the user 5B is correctly reflected in the avatar object 6B during the live performance. The user 5B can also visually recognize the appearance of the avatar object 6A arranged behind the mirror surface object 2441 through the transparent mirror surface object 2441 and the avatar image 2444. Therefore, the user 5B can recognize that the avatar object 6A is also viewing the performance of the avatar object 6B. In this way, the user 5B can accurately grasp the current appearance of the avatar object 6B while recognizing the entire view area 15B in the virtual space 2411B.

(視聴者の仮想空間2411A)
図25は、ある実施の形態に係る仮想空間2411Aおよび視界画像2517Aを示す図である。プロセッサ210Aは、ユーザ5Aに仮想体験を提供するための仮想空間2411Aを、図25(A)に示すように定義する。仮想空間2411Aは、仮想空間2411Bと基本的に同期される仮想空間である。仮想空間2411Aは、仮想空間2411Bと同様に、アバターオブジェクト6Bによるパフォーマンスが行われる仮想空間でもある。プロセッサ210Aは、仮想カメラ14A、アバターオブジェクト6A、およびステージオブジェクト1532を、それぞれ仮想空間2411Aに配置する。プロセッサ210Aは、アバターオブジェクト6B〜6Dの各アバター情報をサーバ600から受信し、これらのアバター情報に基づいて、アバターオブジェクト6B〜6Dを仮想空間2411Bに配置する。仮想空間2411Aにおいてアバターオブジェクト6A〜6Dが配置される各位置は、仮想空間2411Bにおける各位置と同一である。
(Viewer's virtual space 2411A)
FIG. 25 is a diagram showing a virtual space 2411A and a field of view image 2517A according to an embodiment. Processor 210A defines a virtual space 2411A for providing a virtual experience to user 5A, as shown in FIG. 25 (A). The virtual space 2411A is a virtual space that is basically synchronized with the virtual space 2411B. Like the virtual space 2411B, the virtual space 2411A is also a virtual space where the performance by the avatar object 6B is performed. The processor 210A arranges the virtual camera 14A, the avatar object 6A, and the stage object 1532 in the virtual space 2411A, respectively. The processor 210A receives each avatar information of the avatar objects 6B to 6D from the server 600, and arranges the avatar objects 6B to 6D in the virtual space 2411B based on the avatar information. The positions where the avatar objects 6A to 6D are arranged in the virtual space 2411A are the same as the positions in the virtual space 2411B.

仮想空間2411Bの一部は、仮想空間2411Aと同期されない。詳細には、プロセッサ210Aは、鏡面体オブジェクト2441および仮想カメラ2442を、仮想空間2411Aに配置しない。したがって、仮想空間2411Aは、仮想空間2411Bと異なり、鏡面体オブジェクト2441、仮想カメラ2442、およびアバター画像2444を、いずれもその内部に含まない。このように、鏡面体オブジェクト2441は、仮想空間2411Aにおいて、アバターオブジェクト6Aからの視界領域15A(第2視界)内では視覚化されないオブジェクトである。 A part of the virtual space 2411B is not synchronized with the virtual space 2411A. Specifically, processor 210A does not place the mirror object 2441 and virtual camera 2442 in virtual space 2411A. Therefore, unlike the virtual space 2411B, the virtual space 2411A does not include the mirror surface object 2441, the virtual camera 2442, and the avatar image 2444 inside. As described above, the mirror surface object 2441 is an object that is not visualized in the field of view area 15A (second field of view) from the avatar object 6A in the virtual space 2411A.

プロセッサ210Aは、例えば、図25(A)に示す仮想空間2411Aに対応する視界画像2517Aを、図25(B)に示すようにモニタ130Aに表示する。ユーザ5Aは、視界画像2517Aを視認することによって、アバターオブジェクト6Bのパフォーマンスを視認する。仮想空間2411Aに鏡面体オブジェクト2441が配置されないので、視界画像2517Aは、鏡面体オブジェクト2441およびアバター画像2444を含まない。したがって、ユーザ5Bは、視界画像2517Aを視認したとしても、鏡面体オブジェクト2441およびアバター画像2444を視認することがない。このように、鏡面体オブジェクト2441は、ユーザ5Bは視認できるが、ユーザ5Aは視認できない仮想オブジェクトである。また、アバター画像2444は、ユーザ5Bは視認できるが、ユーザ5Aは視認できない情報である。 For example, the processor 210A displays the field of view image 2517A corresponding to the virtual space 2411A shown in FIG. 25A on the monitor 130A as shown in FIG. 25B. The user 5A visually recognizes the performance of the avatar object 6B by visually recognizing the field of view image 2517A. Since the mirror object 2441 is not arranged in the virtual space 2411A, the field of view image 2517A does not include the mirror object 2441 and the avatar image 2444. Therefore, even if the user 5B visually recognizes the field of view image 2517A, he or she does not visually recognize the mirror surface object 2441 and the avatar image 2444. As described above, the mirror surface object 2441 is a virtual object that can be visually recognized by the user 5B but not by the user 5A. Further, the avatar image 2444 is information that can be visually recognized by the user 5B but not by the user 5A.

ユーザ5Aは、アバターオブジェクト6Bのパフォーマンス中に、鏡面体オブジェクト2441およびアバター画像2444を視認することがないので、アバターオブジェクト6Bのパフォーマンスに対して違和感を覚えることがない。これにより、ユーザ5Aは、アバターオブジェクト6Aのパフォーマンスにより集中したり、パフォーマンスをより楽しんだりするができる。特に、ユーザ5Aは、ライブ中にユーザ5Bがアバター画像2444を確認している事実を知ることがないので、ライブ中に興ざめすることもない。 Since the user 5A does not visually recognize the mirror object 2441 and the avatar image 2444 during the performance of the avatar object 6B, the user 5A does not feel any discomfort with the performance of the avatar object 6B. This allows the user 5A to focus more on the performance of the avatar object 6A and enjoy the performance more. In particular, since the user 5A does not know the fact that the user 5B confirms the avatar image 2444 during the live, the user 5A does not get excited during the live.

図26は、ある実施形態に係るユーザ5Bの姿勢の一例を表す図である。図27は、ある実施の形態に従う仮想空間2411Bおよび視界画像2717Bを示す図である。ライブの開始後、ユーザ5Bは、例えば図26に示す姿勢を取るように自身の身体を動かす。図26に示す姿勢は、第1パフォーマンスに対応する姿勢である。プロセッサ210Bは、図26に示す姿勢を取るためのユーザ5Bの身体の動きに基づいて、図27(A)に示すように、アバターオブジェクト6Bに第1パフォーマンスを実行させる。プロセッサ210Bは、仮想カメラ2442を用いてアバターオブジェクト6Bを撮影することによって、第1パフォーマンスを実行中のアバターオブジェクト6Bの現在の前面を表すアバター画像2744を、リアルタイムに生成する。プロセッサ210Bは、生成したアバター画像2744に所定の透過度を設定すると共に、透過設定されたアバター画像2744を、左右反転させた状態で鏡面体オブジェクト2441にリアルタイムに表示する。 FIG. 26 is a diagram showing an example of the posture of the user 5B according to a certain embodiment. FIG. 27 is a diagram showing a virtual space 2411B and a field of view image 2717B according to an embodiment. After the start of the live, the user 5B moves his / her body to take the posture shown in FIG. 26, for example. The posture shown in FIG. 26 is a posture corresponding to the first performance. The processor 210B causes the avatar object 6B to perform the first performance as shown in FIG. 27 (A) based on the body movement of the user 5B to take the posture shown in FIG. The processor 210B captures the avatar object 6B using the virtual camera 2442 to generate an avatar image 2744 representing the current front surface of the avatar object 6B performing the first performance in real time. The processor 210B sets a predetermined transparency to the generated avatar image 2744, and displays the transparent avatar image 2744 on the mirror object 2441 in real time in a left-right inverted state.

プロセッサ210Bは、例えば、図27(A)に示す仮想空間2411Bに対応する視界画像2717Bを、図27(B)に示すようにモニタ130Bに表示する。視界画像2717Bは、鏡面体オブジェクト2441およびアバター画像2744を含む。ユーザ5Bは、視界画像2717Bに含まれる鏡面体オブジェクト2441およびアバター画像2744を視認することによって、アバターオブジェクト6Bがユーザ5Bの動きに連動した第1パフォーマンスを正しく実行していることを、確認することができる。ユーザ5Bは、さらに、鏡面体オブジェクト2441の背後に配置されるアバターオブジェクト6Aの様子を、鏡面体オブジェクト2441およびアバター画像2744越しに視認することもできる。このように、ユーザ5Bがどのような動きをしたとしても、アバターオブジェクト6Bの姿を示すアバター画像は、常に透過設定されている。したがって、ユーザ5Bは、仮想空間における鏡面体オブジェクト2441の背後の様子を、ライブ中に常に視認することができる。 For example, the processor 210B displays the field of view image 2717B corresponding to the virtual space 2411B shown in FIG. 27 (A) on the monitor 130B as shown in FIG. 27 (B). The field of view image 2717B includes a mirror object 2441 and an avatar image 2744. By visually recognizing the mirror surface object 2441 and the avatar image 2744 included in the field of view image 2717B, the user 5B confirms that the avatar object 6B correctly executes the first performance linked to the movement of the user 5B. Can be done. The user 5B can also visually recognize the appearance of the avatar object 6A arranged behind the mirror object 2441 through the mirror object 2441 and the avatar image 2744. In this way, no matter what kind of movement the user 5B makes, the avatar image showing the appearance of the avatar object 6B is always set to be transparent. Therefore, the user 5B can always visually recognize the state behind the mirror surface object 2441 in the virtual space during the live performance.

[本実施形態の主要な利点]
以上のように、プロセッサ210Bは、透過設定された鏡面体オブジェクト2441に、透過設定されたアバター画像2744を表示する。これにより、ユーザ5Bは、アバター画像2744を視認することによって、アバターオブジェクト6Bの現在の挙動を容易に把握することができる。ユーザ5Bは、さらに、透過設定された鏡面体オブジェクト2441およびアバター画像2744越しに、仮想空間2411Bにおける鏡面体オブジェクト2441の背後の様子を容易に把握することができる。このように、プロセッサ210Bは、仮想空間2411Bにおけるユーザ5Bの視認性を低下させることなく、ユーザ5Bに有益な情報をユーザ5Bに提供することができる。
[Main advantages of this embodiment]
As described above, the processor 210B displays the transparently set avatar image 2744 on the transparently set mirror surface object 2441. As a result, the user 5B can easily grasp the current behavior of the avatar object 6B by visually recognizing the avatar image 2744. Further, the user 5B can easily grasp the state behind the mirror surface object 2441 in the virtual space 2411B through the mirror surface object 2441 and the avatar image 2744 which are set to be transparent. In this way, the processor 210B can provide the user 5B with useful information to the user 5B without deteriorating the visibility of the user 5B in the virtual space 2411B.

(透過度の制御例)
図28は、ある実施の形態に従う仮想空間2411Bおよび視界画像2817Bを示す図である。図28(A)では、アバターオブジェクト6Bとアバターオブジェクト6Aとの間に、鏡面体オブジェクト2441が配置されている。プロセッサ210Bは、仮想カメラ2442を用いてアバターオブジェクト6Bを撮影することによって、アバターオブジェクト6Bの現在の前面を表すアバター画像2844を、リアルタイムに生成する。プロセッサ210Bは、さらに、アバターオブジェクト6Bとアバターオブジェクト6Aとの位置関係に基づいて、鏡面体オブジェクト2441およびアバター画像2844の透過度を制御する。図28(A)では、アバターオブジェクト6Bとアバターオブジェクト6Aとの距離は、第1閾値以下である。プロセッサ210Bは、アバターオブジェクト6Bとアバターオブジェクト6Aとの距離が第1閾値以下であることに基づいて、鏡面体オブジェクト2441およびアバター画像2844の透過度を、より高くする。詳細には、プロセッサ210Bは、鏡面体オブジェクト2441およびアバター画像2844の透過度を、アバターオブジェクト6Bとアバターオブジェクト6Aとの距離が第1閾値を上回る場合の透過度よりも、高くする。
(Example of transparency control)
FIG. 28 is a diagram showing a virtual space 2411B and a field of view image 2817B according to an embodiment. In FIG. 28A, a mirror object 2441 is arranged between the avatar object 6B and the avatar object 6A. The processor 210B captures the avatar object 6B using the virtual camera 2442 to generate an avatar image 2844 representing the current front surface of the avatar object 6B in real time. The processor 210B further controls the transparency of the mirror object 2441 and the avatar image 2844 based on the positional relationship between the avatar object 6B and the avatar object 6A. In FIG. 28A, the distance between the avatar object 6B and the avatar object 6A is equal to or less than the first threshold value. Processor 210B increases the transparency of the mirror object 2441 and the avatar image 2844 based on the distance between the avatar object 6B and the avatar object 6A being less than or equal to the first threshold. Specifically, the processor 210B makes the transparency of the mirror object 2441 and the avatar image 2844 higher than the transparency when the distance between the avatar object 6B and the avatar object 6A exceeds the first threshold value.

プロセッサ210Bは、例えば、図28(A)に示す仮想空間2411Bに対応する視界画像2817Bを、図28(B)に示すようにモニタ130Bに表示する。ユーザ5Bは、視界画像2817Bを視認した場合、アバターオブジェクト6Bの近くに配置されるアバターオブジェクト6Aの姿を、鏡面体オブジェクト2441およびアバター画像2844越しに、より明瞭に視認することができる。したがって、ユーザ5Bは、アバターオブジェクト6Aの様子を、より正確に把握することができる。 For example, the processor 210B displays the field of view image 2817B corresponding to the virtual space 2411B shown in FIG. 28 (A) on the monitor 130B as shown in FIG. 28 (B). When the user 5B visually recognizes the field of view image 2817B, the figure of the avatar object 6A arranged near the avatar object 6B can be more clearly visually recognized through the mirror object 2441 and the avatar image 2844. Therefore, the user 5B can more accurately grasp the state of the avatar object 6A.

図29は、ある実施の形態に従う仮想空間2411Bおよび視界画像2917Bを示す図である。図29(A)では、アバターオブジェクト6Bとアバターオブジェクト6Aとの間に、鏡面体オブジェクト2441が配置されている。プロセッサ210Bは、仮想カメラ2442を用いてアバターオブジェクト6Bを撮影することによって、アバターオブジェクト6Bの現在の前面を表すアバター画像2944を、リアルタイムに生成する。プロセッサ210Bは、図29(A)に示すアバターオブジェクト6Bとアバターオブジェクト6Aとの位置関係が、図28(A)と異なることに基づいて、鏡面体オブジェクト2441およびアバター画像2944の透過度を、図28(A)と異ならせる。詳細には、図29(A)におけるアバターオブジェクト6Aの位置は、図28(A)におけるアバターオブジェクト6Aの位置に比べて、アバターオブジェクト6Bの位置からより離れている。これにより、アバターオブジェクト6Bとアバターオブジェクト6Aとの距離が、第1閾値を上回っている。プロセッサ210Bは、アバターオブジェクト6Bとアバターオブジェクト6Aとの距離が第1閾値を上回ることに基づいて、鏡面体オブジェクト2441およびアバター画像2844の透過度を、より低くする。詳細には、プロセッサ210Bは、鏡面体オブジェクト2441およびアバター画像2944の透過度を、アバターオブジェクト6Bとアバターオブジェクト6Aとの距離が第1閾値以下である場合の透過度よりも、低くする。 FIG. 29 is a diagram showing a virtual space 2411B and a field of view image 2917B according to an embodiment. In FIG. 29 (A), the mirror object 2441 is arranged between the avatar object 6B and the avatar object 6A. The processor 210B captures the avatar object 6B using the virtual camera 2442 to generate an avatar image 2944 showing the current front surface of the avatar object 6B in real time. Based on the positional relationship between the avatar object 6B and the avatar object 6A shown in FIG. 29 (A) being different from that in FIG. 28 (A), the processor 210B shows the transparency of the mirror object object 2441 and the avatar image 2944. Make it different from 28 (A). Specifically, the position of the avatar object 6A in FIG. 29 (A) is farther from the position of the avatar object 6B than the position of the avatar object 6A in FIG. 28 (A). As a result, the distance between the avatar object 6B and the avatar object 6A exceeds the first threshold value. Processor 210B reduces the transparency of the mirror object 2441 and the avatar image 2844 based on the distance between the avatar object 6B and the avatar object 6A exceeding the first threshold. Specifically, the processor 210B makes the transparency of the mirror object 2441 and the avatar image 2944 lower than the transparency when the distance between the avatar object 6B and the avatar object 6A is equal to or less than the first threshold value.

プロセッサ210Bは、例えば、図29(B)に示す仮想空間2411Bに対応する視界画像2917Bを、図29(B)に示すようにモニタ130Bに表示する。ユーザ5Bは、視界画像2917Bを視認した場合、鏡面体オブジェクト2441に表示されるアバター画像2944を、図28(B)の場合に比べてより明瞭に視認することができる。したがって、ユーザ5Bは、アバターオブジェクト6Bが自身の意図通りに動作しているか否かを、より確実に把握することができる。図29(B)では、ユーザ5Bは、アバターオブジェクト6Aの姿を、図28(B)に比べて視認し辛い。しかし、アバターオブジェクト6Bはアバターオブジェクト6Aの近くにいないため、アバターオブジェクト6Bの挙動がユーザ5Bにとって把握し辛かったとしても、ライブの進行に大きな影響は生じない。 For example, the processor 210B displays the field of view image 2917B corresponding to the virtual space 2411B shown in FIG. 29 (B) on the monitor 130B as shown in FIG. 29 (B). When the user 5B visually recognizes the field of view image 2917B, the user 5B can visually recognize the avatar image 2944 displayed on the mirror surface object 2441 more clearly than in the case of FIG. 28 (B). Therefore, the user 5B can more reliably grasp whether or not the avatar object 6B is operating as intended by itself. In FIG. 29 (B), the user 5B has difficulty in visually recognizing the appearance of the avatar object 6A as compared with FIG. 28 (B). However, since the avatar object 6B is not near the avatar object 6A, even if the behavior of the avatar object 6B is difficult for the user 5B to grasp, the progress of the live is not significantly affected.

(鏡面体オブジェクト2441の位置制御)
図30は、ある実施の形態に従う仮想空間2411Bおよび視界画像3017Bを示す図である。図30(A)では、アバターオブジェクト6Bは、ステージオブジェクト1532上の、アバターオブジェクト6Bから見て右側の端に配置されている。アバターオブジェクト6Aは、仮想空間2411Bにおけるステージオブジェクト1532に近くの位置に、アバターオブジェクト6Bと向き合うようにして配置されている。アバターオブジェクト6Dは、アバターオブジェクト6Aの背後に配置されている。アバターオブジェクト6Cは、アバターオブジェクト6Aおよび6Dから離れた位置に配置されている。図30(A)では、アバターオブジェクト6Bとアバターオブジェクト6Aとの間に、鏡面体オブジェクト2441が配置されている。プロセッサ210Bは、仮想カメラ2442を用いてアバターオブジェクト6Bを撮影することによって、アバターオブジェクト6Bの現在の前面を表すアバター画像2944を、リアルタイムに生成し、鏡面体オブジェクト2441に表示する。
(Position control of mirror object 2441)
FIG. 30 is a diagram showing a virtual space 2411B and a field of view image 3017B according to an embodiment. In FIG. 30 (A), the avatar object 6B is arranged on the stage object 1532 at the right end when viewed from the avatar object 6B. The avatar object 6A is arranged at a position near the stage object 1532 in the virtual space 2411B so as to face the avatar object 6B. The avatar object 6D is located behind the avatar object 6A. The avatar object 6C is arranged at a position away from the avatar objects 6A and 6D. In FIG. 30A, a mirror object 2441 is arranged between the avatar object 6B and the avatar object 6A. By photographing the avatar object 6B using the virtual camera 2442, the processor 210B generates an avatar image 2944 showing the current front surface of the avatar object 6B in real time and displays it on the mirror object object 2441.

プロセッサ210Bは、例えば、図30(A)に示す仮想空間2411Bに対応する視界画像3017Bを、図30(B)に示すようにモニタ130Bに表示する。ユーザ5Bは、視界画像2817Bに含まれるアバター画像3044を視認することによって、アバターオブジェクト6Bの現在の姿を容易に確認する。ユーザ5Bは、さらに、鏡面体オブジェクト2441の背後に配置されるアバターオブジェクト6Aの様子を、鏡面体オブジェクト2441およびアバター画像3044越しに容易に把握することもできる。 For example, the processor 210B displays the field of view image 3017B corresponding to the virtual space 2411B shown in FIG. 30A on the monitor 130B as shown in FIG. 30B. The user 5B can easily confirm the current appearance of the avatar object 6B by visually recognizing the avatar image 3044 included in the field of view image 2817B. User 5B can also easily grasp the state of the avatar object 6A arranged behind the mirror object 2441 through the mirror object 2441 and the avatar image 3044.

図31は、ある実施の形態に従う仮想空間2411Bおよび視界画像3117Bを示す図である。ユーザ5Bは、図30(A)に示すようにアバターオブジェクト6Bが配置される際、アバターオブジェクト6Bをステージオブジェクト1532上の左端まで移動させるための操作を行う。この操作は、例えば、右コントローラ300RBのいずれかのボタンをユーザ5Bが押下することである。プロセッサ210Bは、アバターオブジェクト6Bを移動させるためのユーザ5Bの操作を検出する。プロセッサ210Bは、ユーザ5Bの操作を検出した場合、図30(B)に示すように、アバターオブジェクト6Bを、ステージオブジェクト1532上の左端の位置まで移動させる。プロセッサ210Bは、アバターオブジェクト6Bに連動させて、仮想カメラ14Bも移動させる。これにより、仮想カメラ14Bの位置も、ステージオブジェクト1532上の右端から左端に変化する。 FIG. 31 is a diagram showing a virtual space 2411B and a field of view image 3117B according to an embodiment. When the avatar object 6B is arranged as shown in FIG. 30A, the user 5B performs an operation for moving the avatar object 6B to the left end on the stage object 1532. In this operation, for example, the user 5B presses any button of the right controller 300RB. The processor 210B detects the operation of the user 5B for moving the avatar object 6B. When the processor 210B detects the operation of the user 5B, the processor 210B moves the avatar object 6B to the leftmost position on the stage object 1532 as shown in FIG. 30 (B). The processor 210B also moves the virtual camera 14B in conjunction with the avatar object 6B. As a result, the position of the virtual camera 14B also changes from the right end to the left end on the stage object 1532.

プロセッサ210Bは、アバターオブジェクト6Bおよび仮想カメラ14Bの移動に連動して、視界領域15Bを図30(A)に示す位置から図31(A)に示す位置に動かす。詳細には、プロセッサ210Bは、図31(A)に示すようにアバターオブジェクト6Bおよび仮想カメラ14Bが移動した場合、ユーザ5Bの頭部の姿勢と、仮想空間2411Bにおける移動後の仮想カメラ14Bの位置とに応じて、仮想空間2411Bにおける仮想カメラ14Bからの視界である視界領域15Bを、図31(A)に示すように制御する。 The processor 210B moves the field of view area 15B from the position shown in FIG. 30 (A) to the position shown in FIG. 31 (A) in conjunction with the movement of the avatar object 6B and the virtual camera 14B. Specifically, the processor 210B determines the posture of the head of the user 5B and the position of the virtual camera 14B after the movement in the virtual space 2411B when the avatar object 6B and the virtual camera 14B move as shown in FIG. 31 (A). In response to the above, the field of view area 15B, which is the field of view from the virtual camera 14B in the virtual space 2411B, is controlled as shown in FIG. 31 (A).

プロセッサ210Bは、視界領域15Bの動きに連動して、図31(A)に示すように、鏡面体オブジェクト2441および仮想カメラ2442が視界領域15B内の所定位置に位置するように、鏡面体オブジェクト2441および仮想カメラ2442を移動させる。図31(A)では、所定位置は、アバターオブジェクト6Bに対向する位置である。図30(A)および図31(A)に示すように、視界領域15Bが動く前後で、視界領域15B内の鏡面体オブジェクト2441および仮想カメラ2442の相対的な位置は変わらない。 The processor 210B interlocks with the movement of the field of view area 15B so that the mirror surface object 2441 and the virtual camera 2442 are positioned at predetermined positions in the field of view area 15B as shown in FIG. 31 (A). And move the virtual camera 2442. In FIG. 31 (A), the predetermined position is a position facing the avatar object 6B. As shown in FIGS. 30A and 31A, the relative positions of the mirror object 2441 and the virtual camera 2442 in the field of view 15B do not change before and after the field of view 15B moves.

プロセッサ210Bは、移動後の仮想カメラ2442を用いてアバターオブジェクト6Bを撮影することによって、アバターオブジェクト6Bの前面を表すアバター画像3144を生成する。プロセッサ210Bは、さらに、透過設定されたアバター画像3144を、左右反転させた状態で、移動後の鏡面体オブジェクト2441に表示する。 The processor 210B generates an avatar image 3144 showing the front surface of the avatar object 6B by photographing the avatar object 6B using the virtual camera 2442 after the movement. The processor 210B further displays the transparently set avatar image 3144 on the mirror surface object 2441 after the movement in a left-right inverted state.

プロセッサ210Bは、例えば、図31(B)に示す仮想空間2411Bに対応する視界画像3117Bを、図31(B)に示すようにモニタ130Bに表示する。ユーザ5Bは、視界画像3117Bを視認することによって、仮想空間2411B内の他の箇所を視認する。ユーザ5Bは、さらに、アバターオブジェクト6Bの移動に追随して鏡面体オブジェクト2441が仮想空間2411B内を移動したことを認識する。ユーザ5Bは、さらに、鏡面体オブジェクト2441に表示されるアバター画像3144を視認することによって、現在のアバターオブジェクト6Bの姿を確認する。 For example, the processor 210B displays the field of view image 3117B corresponding to the virtual space 2411B shown in FIG. 31 (B) on the monitor 130B as shown in FIG. 31 (B). The user 5B visually recognizes another part in the virtual space 2411B by visually recognizing the field of view image 3117B. The user 5B further recognizes that the mirror object 2441 has moved in the virtual space 2411B following the movement of the avatar object 6B. The user 5B further confirms the current appearance of the avatar object 6B by visually recognizing the avatar image 3144 displayed on the mirror surface object 2441.

図32は、ある実施の形態に従う仮想空間2411Bおよび視界画像3217Bを示す図である。図32に示す例では、ユーザ5Bは、図30(A)に示すようにアバターオブジェクト6Bが配置された後、自身の左側の真横を向く。これにより、ユーザ5Bの頭部を含めた全身が、左側に90°回転移動する。プロセッサ210Bは、このようなユーザ5Bの動きに連動して、図32(A)に示すように、アバターオブジェクト6Bおよび仮想カメラ14Bを、仮想空間2411Bにおいてアバターオブジェクト6Bの左側に90°回転移動させる。プロセッサ210Bは、ユーザ5Bの頭部の動きに連動して、視界領域15Bを図30(A)に示す位置から図32に示す位置に動かす。詳細には、プロセッサ210Bは、図32(A)に示すようにアバターオブジェクト6Bおよび仮想カメラ14Bが移動した場合、ユーザ5Bの頭部の姿勢と、仮想空間2411Bにおける移動後の仮想カメラ14Bの位置とに応じて、仮想空間2411Bにおける仮想カメラ14Bからの視界である視界領域15Bを、図32(A)に示すように制御する。 FIG. 32 is a diagram showing a virtual space 2411B and a field of view image 3217B according to an embodiment. In the example shown in FIG. 32, the user 5B faces to the left side of himself / herself after the avatar object 6B is arranged as shown in FIG. 30 (A). As a result, the whole body including the head of the user 5B is rotated by 90 ° to the left side. As shown in FIG. 32 (A), the processor 210B rotates the avatar object 6B and the virtual camera 14B 90 ° to the left side of the avatar object 6B in the virtual space 2411B in conjunction with the movement of the user 5B. .. The processor 210B moves the visual field area 15B from the position shown in FIG. 30 (A) to the position shown in FIG. 32 in conjunction with the movement of the head of the user 5B. Specifically, the processor 210B determines the posture of the head of the user 5B and the position of the virtual camera 14B after the movement in the virtual space 2411B when the avatar object 6B and the virtual camera 14B move as shown in FIG. 32 (A). In response to the above, the field of view area 15B, which is the field of view from the virtual camera 14B in the virtual space 2411B, is controlled as shown in FIG. 32 (A).

プロセッサ210Bは、視界領域15Bの動きに連動して、図32(A)に示すように、鏡面体オブジェクト2441および仮想カメラ2442が視界領域15B内の所定位置に位置するように、鏡面体オブジェクト2441および仮想カメラ2442を移動させる。図32(A)では、所定位置は、アバターオブジェクト6Bに対向する位置である。図30(A)および図32(A)に示すように、視界領域15Bが動く前後で、視界領域15B内の鏡面体オブジェクト2441および仮想カメラ2442の相対的な位置は変わらない。 The processor 210B interlocks with the movement of the field of view area 15B so that the mirror surface object 2441 and the virtual camera 2442 are positioned at predetermined positions in the field of view area 15B as shown in FIG. 32 (A). And move the virtual camera 2442. In FIG. 32 (A), the predetermined position is a position facing the avatar object 6B. As shown in FIGS. 30A and 32A, the relative positions of the mirror object 2441 and the virtual camera 2442 in the field of view 15B do not change before and after the field of view 15B moves.

プロセッサ210Bは、移動後の仮想カメラ2442を用いてアバターオブジェクト6Bを撮影することによって、アバターオブジェクト6Bの前面を表すアバター画像3244を生成する。プロセッサ210Bは、さらに、透過設定されたアバター画像3244を、左右反転させた状態で、移動後の鏡面体オブジェクト2441に表示する。 The processor 210B generates an avatar image 3244 showing the front surface of the avatar object 6B by photographing the avatar object 6B using the virtual camera 2442 after the movement. The processor 210B further displays the transparently set avatar image 3244 on the mirror surface object 2441 after movement in a state of being horizontally inverted.

プロセッサ210Bは、例えば、図32(B)に示す仮想空間2411Bに対応する視界画像3217Bを、図32(B)に示すようにモニタ130Bに表示する。ユーザ5Bは、視界画像3217Bを視認することによって、仮想空間2411B内の他の箇所を視認する。ユーザ5Bは、さらに、アバターオブジェクト6Bの向きの変化に追随して鏡面体オブジェクト2441が仮想空間2411B内を移動したことを認識する。ユーザ5Bは、さらに、鏡面体オブジェクト2441に表示されるアバター画像3144を視認することによって、現在のアバターオブジェクト6Bの姿を確認する。 For example, the processor 210B displays the field of view image 3217B corresponding to the virtual space 2411B shown in FIG. 32 (B) on the monitor 130B as shown in FIG. 32 (B). The user 5B visually recognizes another part in the virtual space 2411B by visually recognizing the field of view image 3217B. The user 5B further recognizes that the mirror object 2441 has moved in the virtual space 2411B following a change in the orientation of the avatar object 6B. The user 5B further confirms the current appearance of the avatar object 6B by visually recognizing the avatar image 3144 displayed on the mirror surface object 2441.

図30〜図32に示すように、ユーザ5Bが仮想空間2411B内のいずれの箇所を視認する場合でも、鏡面体オブジェクト2441は常に視界領域15B内の所定位置に位置し続ける。したがって、ユーザ5Bは、鏡面体オブジェクト2441に表示されるアバターオブジェクト6Bの姿を、いつでも容易に視認することができる。 As shown in FIGS. 30 to 32, the mirror surface object 2441 always keeps being positioned at a predetermined position in the visual field area 15B regardless of where the user 5B visually recognizes the virtual space 2411B. Therefore, the user 5B can easily visually recognize the appearance of the avatar object 6B displayed on the mirror object object 2441 at any time.

(変形例)
プロセッサ210Bは、アバターオブジェクト6Bの少なくとも一部を示しかつ透過設定された画像を、鏡面体オブジェクト2441に表示することができる。アバター画像2844を鏡面体オブジェクト2441に表示することは、アバターオブジェクト6Bの少なくとも一部を示しかつ透過設定された画像を鏡面体オブジェクト2441に表示することの一例である。プロセッサ210Bは、他にも、仮想カメラ2442によって撮影された画像から、アバターオブジェクト6Bの一部である例えば上半身を示す画像を抽出し、その画像を鏡面体オブジェクト2441に表示してもよい。
(Modification example)
The processor 210B can display an image showing at least a part of the avatar object 6B and being set to be transparent on the mirror object object 2441. Displaying the avatar image 2844 on the mirror object 2441 is an example of displaying an image showing at least a part of the avatar object 6B and being transparently set on the mirror object 2441. The processor 210B may also extract an image showing, for example, the upper body, which is a part of the avatar object 6B, from the image taken by the virtual camera 2442, and display the image on the mirror object object 2441.

プロセッサ210Bは、アバター画像2844を、必ずしもリアルタイムに鏡面体オブジェクト2441に表示する必要はない。プロセッサ210Bは、例えば、アバター画像2844の生成後、一定時間が経過してから、アバター画像2844を鏡面体オブジェクト2441に表示することもできる。この場合も、ユーザ5Bは、鏡面体オブジェクト2441に表示されるアバター画像2844を通じて、アバターオブジェクト6Bの挙動を正確に把握できる。 The processor 210B does not necessarily have to display the avatar image 2844 on the mirror object 2441 in real time. For example, the processor 210B can display the avatar image 2844 on the mirror object 2441 after a certain period of time has elapsed after the generation of the avatar image 2844. In this case as well, the user 5B can accurately grasp the behavior of the avatar object 6B through the avatar image 2844 displayed on the mirror surface object 2441.

プロセッサ210Bは、アバターオブジェクト6Bの少なくとも一部を示す画像を、左右反転せずに、そのまま鏡面体オブジェクト2441に表示することもできる。この場合も、ユーザ5Bは、鏡面体オブジェクト2441に表示される画像を視認することによって、アバターオブジェクト6Bの姿を容易に確認することができる。 The processor 210B can also display an image showing at least a part of the avatar object 6B on the mirror object 2441 as it is without flipping left and right. Also in this case, the user 5B can easily confirm the appearance of the avatar object 6B by visually recognizing the image displayed on the mirror surface object 2441.

プロセッサ210Bは、任意の第1情報を、鏡面体オブジェクト2441に表示することができる。第1情報は、少なくとも一部が透過設定された情報であり得る。上述したアバター画像2844は、鏡面体オブジェクト2441に表示される、透過設定された第1情報の一例である。第1情報は、背景部分が透明でありかつ文字部分が不透明な文字列などの、透過設定されない情報であってもよい。 The processor 210B can display arbitrary first information on the mirror surface object 2441. The first information may be information that is at least partially transparently set. The above-mentioned avatar image 2844 is an example of the first information set to be transparent displayed on the mirror surface object 2441. The first information may be information that is not set to be transparent, such as a character string in which the background portion is transparent and the character portion is opaque.

第1情報は、アバター画像2844以外の、アバターオブジェクト6Bのライブの進行に関する任意の情報(テキスト、画像)であり得る。第1情報は、例えば、アバターオブジェクト6Bに対する行動内容を指示した情報であり得る。このような第1情報として、例えば、ライブ中のある時点においてアバターオブジェクト6Bが取るべき特定の動作をユーザ5Bに指示した情報が挙げられる。ユーザ5Bは、鏡面体オブジェクト2441に表示された第1情報をライブ中のカンニングペーパーとして参照することによって、ライブ中にアバターオブジェクト6Bに対して如何なる動作を実行させるべきかを、容易に把握することができる。したがって、ユーザ5Bは、アバターオブジェクト6Bのライブを円滑に進行させることができる。ユーザ5Bは、さらに、第1情報を視認する際、仮想空間2411Bにおける鏡面体オブジェクト2441の背後の様子を鏡面体オブジェクト2441越しに視認することができるので、仮想空間2411Bにおけるユーザ5Bの視認性を高めることができる。 The first information may be any information (text, image) regarding the live progress of the avatar object 6B other than the avatar image 2844. The first information may be, for example, information instructing the action content for the avatar object 6B. As such first information, for example, information instructing the user 5B of a specific action to be taken by the avatar object 6B at a certain time during the live can be mentioned. By referring to the first information displayed on the mirror surface object 2441 as a cheat sheet during the live, the user 5B can easily grasp what kind of action should be performed on the avatar object 6B during the live. Can be done. Therefore, the user 5B can smoothly proceed with the live performance of the avatar object 6B. Further, when the user 5B visually recognizes the first information, the state behind the mirror surface object 2441 in the virtual space 2411B can be visually recognized through the mirror surface object 2441, so that the visibility of the user 5B in the virtual space 2411B can be improved. Can be enhanced.

プロセッサ210Bは、ユーザ5Bによる指示に基づいて、視界領域15B内で鏡面体オブジェクト2441を視覚化するか否かを決定することもできる。プロセッサ210Bは、例えば、ユーザ5Bによる第1指示を検出した場合、視覚化許可を鏡面体オブジェクト2441に設定し、ユーザ5Bによる第2指示を検出した場合、視覚化不可を鏡面体オブジェクト2441に設定する。プロセッサ210Bは、鏡面体オブジェクト2441に視覚化許可が設定される場合、鏡面体オブジェクト2441を含む視界画像をHMD120に表示し、鏡面体オブジェクト2441に視覚化不可が設定される場合、鏡面体オブジェクト2441を含まない視界画像をHMD120に表示する。したがって、ユーザ5Bは、ライブ中に第1情報を視認するか否かを、必要に応じて決定することができる。 Processor 210B can also determine whether to visualize the mirror object 2441 within the field of view 15B based on instructions from user 5B. For example, when the processor 210B detects the first instruction by the user 5B, the visualization permission is set to the mirror object 2441, and when the second instruction by the user 5B is detected, the non-visualization is set to the mirror object 2441. To do. The processor 210B displays the field of view image including the mirror object 2441 on the HMD 120 when the visualization permission is set for the mirror object 2441, and the mirror object 2441 when the non-visualization is set for the mirror object 2441. A field of view image that does not include the above is displayed on the HMD 120. Therefore, the user 5B can decide, if necessary, whether or not to visually recognize the first information during the live performance.

〔付記事項〕
本発明の一側面に係る内容を列記すると以下の通りである。
[Additional notes]
The contents relating to one aspect of the present invention are listed below.

(項目1) プログラムを説明した。本開示のある局面によると、プログラムは、プロセッサ(210B)を備えたコンピュータ(200B)によって実行される。プログラムは、プロセッサに、第1ユーザ(ユーザ5B)に関連付けられる第1アバター(アバターオブジェクト6B)と第2ユーザ(ユーザ5)に関連付けられる第2アバター(アバターオブジェクト6A)とを含む、仮想空間(2411B)を定義するステップ(S2301)と、第1ヘッドマウントデバイス(HMD120B)が関連付けられた第1ユーザの頭部の動きに応じて、第1アバターからの第1視界(視界領域15B)を制御するステップ(S2311)と、第1視界内では視覚化され、第2アバターからの第2視界(視界領域15A)内では視覚化されない、透過設定された第1オブジェクト(鏡面体オブジェクト2441)を、第1視界内に配置するステップ(S2307)と、第1オブジェクトに、第1情報(アバター画像2444)を表示するステップ(S2310)と、第1視界に対応する第1視界画像(視界画像2417B)を第1ヘッドマウントデバイスに表示するステップ(S2312)と、を実行させる。 (Item 1) The program was explained. According to certain aspects of the disclosure, the program is executed by a computer (200B) equipped with a processor (210B). The program comprises a virtual space (avatar object 6A) in which the processor includes a first avatar (avatar object 6B) associated with the first user (user 5B) and a second avatar (avatar object 6A) associated with the second user (user 5). The first view (field of view area 15B) from the first avatar is controlled according to the movement of the head of the first user associated with the step (S2301) for defining 2411B) and the first head mount device (HMD120B). Step (S2311) and the first object (mirror surface object 2441) that is transparently set and is visualized in the first field of view but not in the second field of view (field of view area 15A) from the second avatar. A step (S2307) for arranging in the first field of view, a step (S2310) for displaying the first information (avatar image 2444) on the first object, and a first field of view image (field of view image 2417B) corresponding to the first field of view. Is displayed on the first head mount device (S2312), and is executed.

(項目2) (項目1)において、第1視界を制御するステップは、第1ユーザの頭部の動きに連動して、第1視界を動かすことを含み、プログラムは、プロセッサに、第1視界の動きに連動して、第1視界内の所定位置に第1オブジェクトが位置するように第1オブジェクトを移動させるステップをさらに実行させる。 (Item 2) In (Item 1), the step of controlling the first field of view includes moving the first field of view in conjunction with the movement of the head of the first user, and the program informs the processor of the first field of view. In conjunction with the movement of, the step of moving the first object so that the first object is positioned at a predetermined position in the first field of view is further executed.

(項目3) (項目1)または(項目2)において、配置するステップは、第1オブジェクトに関連付けて仮想視点(仮想カメラ2442)を配置することを含み、プログラムは、プロセッサに、第1アバターの少なくとも一部が含まれるように仮想視点からの第3視界(視界領域2443)を制御するステップを実行させ、第1情報は、透過設定された、第3視界に対応する第2視界画像である。 (Item 3) In (Item 1) or (Item 2), the placement step involves placing a virtual field of view (virtual camera 2442) in association with the first object, the program telling the processor of the first avatar. The step of controlling the third field of view (field of view area 2443) from the virtual viewpoint is executed so that at least a part thereof is included, and the first information is the second field of view image corresponding to the third field of view, which is set to be transparent. ..

(項目4) (項目3)において、仮想視点は、第1オブジェクト上に配置され、所定位置は、第1アバターと対向する位置である。 (Item 4) In (Item 3), the virtual viewpoint is arranged on the first object, and the predetermined position is a position facing the first avatar.

(項目5) (項目1)または(項目2)において、第1情報は、第1アバターに対する行動内容を指示した情報である。 (Item 5) In (Item 1) or (Item 2), the first information is information instructing the action content for the first avatar.

(項目6) (項目1)〜(項目5)のいずれかにおいて、プログラムは、プロセッサに、第1ユーザによる指示に基づいて、第1視界内で第1オブジェクトを視覚化するか否かを決定するステップを実行させる。 (Item 6) In any of (Item 1) to (Item 5), the program determines whether or not the processor visualizes the first object in the first field of view based on the instruction by the first user. To perform the steps to be performed.

(項目7) (項目3)または(項目4)において、第1情報を表示するステップにおいて、第2視界画像を第1オブジェクトにリアルタイムに表示する。 (Item 7) In the step of displaying the first information in (Item 3) or (Item 4), the second field of view image is displayed on the first object in real time.

(項目8) (項目1)〜(項目7)のいずれかにおいて、配置するステップにおいて、第1アバターと第2アバターとの間に、第1オブジェクトを配置する。 (Item 8) In any of (Item 1) to (Item 7), the first object is placed between the first avatar and the second avatar in the step of placing.

(項目9) (項目8)において、プログラムは、プロセッサに、第1アバターと第2アバターとの位置関係に基づいて、第1オブジェクトの透過度を制御するステップを実行させる。 (Item 9) In (Item 8), the program causes the processor to execute a step of controlling the transparency of the first object based on the positional relationship between the first avatar and the second avatar.

(項目10) (項目9)において、透過度を制御するステップにおいて、第1アバターと第2アバターとの距離が第1閾値以下である場合、透過度をより高くし、第1アバターと第2アバターとの距離が第1閾値を上回る場合、透過度をより低くする。 (Item 10) In the step of controlling the transmittance in (Item 9), when the distance between the first avatar and the second avatar is equal to or less than the first threshold value, the transparency is increased and the first avatar and the second avatar are second. If the distance to the avatar exceeds the first threshold, the transparency is lowered.

(項目11) 情報処理装置を説明した。本開示のある局面によると、情報処理装置(コンピュータ200B)は、情報処理装置によって実行されるプログラムを記憶する記憶部(ストレージ230B)と、プログラムを実行することにより、情報処理装置の動作を制御する制御部(プロセッサ210B)と、を備えている。制御部は、第1ユーザ(ユーザ5B)に関連付けられる第1アバター(アバターオブジェクト6B)と第2ユーザ(ユーザ5)に関連付けられる第2アバター(アバターオブジェクト6A)とを含む、仮想空間(2411B)を定義し、第1ヘッドマウントデバイス(HMD120B)が関連付けられた第1ユーザの頭部の動きに応じて、第1アバターからの第1視界(視界領域15B)を制御し、第1視界内では視覚化され、第2アバターからの第2視界(視界領域15A)内では視覚化されない、透過設定された第1オブジェクト(鏡面体オブジェクト2441)を、第1視界内に配置し、第1オブジェクトに、第1情報(アバター画像2444)を表示するステップ(S2310)と、第1視界に対応する第1視界画像(視界画像2417B)を第1ヘッドマウントデバイスに表示する。 (Item 11) The information processing device has been described. According to a certain aspect of the present disclosure, the information processing unit (computer 200B) controls the operation of the information processing device by executing the program and the storage unit (storage 230B) that stores the program executed by the information processing unit. A control unit (processor 210B) for processing is provided. The control unit is a virtual space (2411B) including a first avatar (avatar object 6B) associated with the first user (user 5B) and a second avatar (avatar object 6A) associated with the second user (user 5). The first head mount device (HMD120B) controls the first field of view (field of view area 15B) from the first avatar according to the movement of the head of the first user associated with the device, and within the first field of view. A transparently set first object (mirror object 2441), which is visualized and not visualized in the second field of view (field of view area 15A) from the second avatar, is placed in the first field of view and becomes the first object. , The step (S2310) for displaying the first information (avatar image 2444) and the first field of view image (field of view image 2417B) corresponding to the first field of view are displayed on the first head mount device.

(項目12) プログラムを実行する方法を説明した。本開示のある局面によると、方法は、プロセッサを備えたコンピュータによって実行される。方法は、プロセッサが、第1ユーザ(ユーザ5B)に関連付けられる第1アバター(アバターオブジェクト6B)と第2ユーザ(ユーザ5)に関連付けられる第2アバター(アバターオブジェクト6A)とを含む、仮想空間(2411B)を定義するステップ(S2301)と、第1ヘッドマウントデバイス(HMD120B)が関連付けられた第1ユーザの頭部の動きに応じて、第1アバターからの第1視界(視界領域15B)を制御するステップ(S2311)と、第1視界内では視覚化され、第2アバターからの第2視界(視界領域15A)内では視覚化されない、透過設定された第1オブジェクト(鏡面体オブジェクト2441)を、第1視界内に配置するステップ(S2307)と、第1オブジェクトに、第1情報(アバター画像2444)を表示するステップ(S2310)と、第1視界に対応する第1視界画像(視界画像2417B)を第1ヘッドマウントデバイスに表示するステップ(S2312)と、を含む。 (Item 12) The method of executing the program has been described. According to certain aspects of the disclosure, the method is performed by a computer equipped with a processor. The method comprises a virtual space in which the processor includes a first avatar (avatar object 6B) associated with the first user (user 5B) and a second avatar (avatar object 6A) associated with the second user (user 5). The first view (field of view area 15B) from the first avatar is controlled according to the movement of the head of the first user associated with the step (S2301) for defining 2411B) and the first head mount device (HMD120B). Step (S2311) and the first object (mirror surface object 2441) that is transparently set and is visualized in the first field of view but not in the second field of view (field of view area 15A) from the second avatar. A step (S2307) for arranging in the first field of view, a step (S2310) for displaying the first information (avatar image 2444) on the first object, and a first field of view image (field of view image 2417B) corresponding to the first field of view. Is included in the first head mount device (S2312).

上記実施形態においては、HMDによってユーザが没入する仮想空間(VR空間)を例示して説明したが、HMDとして、透過型のHMDを採用してもよい。この場合、透過型のHMDを介してユーザが視認する現実空間に仮想空間を構成する画像の一部を合成した視界画像を出力することにより、拡張現実(AR:Augmented Reality)空間または複合現実(MR:Mixed Reality)空間における仮想体験をユーザに提供してもよい。この場合、操作オブジェクトに代えて、ユーザの手の動きに基づいて、仮想空間内における対象オブジェクトへの作用を生じさせてもよい。具体的には、プロセッサは、現実空間におけるユーザの手の位置の座標情報を特定するとともに、仮想空間内における対象オブジェクトの位置を現実空間における座標情報との関係で定義してもよい。これにより、プロセッサは、現実空間におけるユーザの手と仮想空間における対象オブジェクトとの位置関係を把握し、ユーザの手と対象オブジェクトとの間で上述したコリジョン制御等に対応する処理を実行可能となる。その結果、ユーザの手の動きに基づいて対象オブジェクトに作用を与えることが可能となる。 In the above embodiment, the virtual space (VR space) in which the user is immersed by the HMD has been illustrated and described, but a transparent HMD may be adopted as the HMD. In this case, augmented reality (AR) space or mixed reality (AR) space or mixed reality (AR) space or mixed reality (AR) space or mixed reality (AR) space or mixed reality (AR) space or mixed reality (AR) MR: Mixed Reality) A virtual experience in space may be provided to the user. In this case, instead of the operation object, the action on the target object in the virtual space may be generated based on the movement of the user's hand. Specifically, the processor may specify the coordinate information of the position of the user's hand in the real space, and may define the position of the target object in the virtual space in relation to the coordinate information in the real space. As a result, the processor can grasp the positional relationship between the user's hand in the real space and the target object in the virtual space, and can execute the process corresponding to the collision control and the like described above between the user's hand and the target object. .. As a result, it becomes possible to give an action to the target object based on the movement of the user's hand.

2 ネットワーク、5,5A,5B,5C、5D ユーザ、6,6A,6B,6C,6D アバターオブジェクト、11,11A,11B,11C,11D 仮想空間、12 中心、13 パノラマ画像、14,14A,14B 仮想カメラ、15,15A,15B,15C 視界領域、16 基準視線、17,17A,17B 視界画像、18,19 領域、100 HMDシステム、110,110A,110B,110C,110D HMDセット、120,120A,120B,120C、HMD、130,130A,130B,130C モニタ、140 注視センサ、150 第1カメラ、160 第2カメラ、170,170A,170B マイク、180,180A,180B スピーカ、190 センサ、200,200A,200B コンピュータ、210,210A、210B,210C,210D,610 プロセッサ、220,620 メモリ、230,230A,230B,630 ストレージ、240,640 入出力インターフェイス、250,650 通信インターフェイス、260,660 バス、300,300B コントローラ、300R 右コントローラ、300L 左コントローラ、310 グリップ、320 フレーム、330 天面、340,340,350,370,380 ボタン、360 赤外線LED、390 アナログスティック、410 HMDセンサ、420,420A モーションセンサ、430,430A ディスプレイ、510 コントロールモジュール、520 レンダリングモジュール、530 メモリモジュール、540 通信制御モジュール、600 サーバ、700 外部機器、1421 仮想オブジェクト生成モジュール、1422 仮想カメラ制御モジュール、1423 操作オブジェクト制御モジュール、1424 アバターオブジェクト制御モジュール、1425 動き検出モジュール、1426 衝突検出モジュール、1427 仮想オブジェクト制御モジュール、1517A、1617B、2417、2417B、2517A、2717B、2817B、2917B、3017B、3117B 視界画像、1531LA,1531LB 仮想左手、1531RA,1531RB 仮想右手、1532 ステージオブジェクト、1641,1642,1643 モーションセンサ、1644 ベルト、2411A,2411B 仮想空間、2441 鏡面体オブジェクト、2442 仮想カメラ、2443 視界領域、2444,2744,2844,2944,3044,3144,3244 アバター画像 2 networks, 5,5A, 5B, 5C, 5D users, 6,6A, 6B, 6C, 6D avatar objects, 11,11A, 11B, 11C, 11D virtual space, 12 centers, 13 panoramic images, 14, 14A, 14B Virtual camera, 15,15A, 15B, 15C view area, 16 reference line of sight, 17,17A, 17B view image, 18,19 area, 100 HMD system, 110, 110A, 110B, 110C, 110D HMD set, 120, 120A, 120B, 120C, HMD, 130, 130A, 130B, 130C monitor, 140 gaze sensor, 150 first camera, 160 second camera, 170, 170A, 170B microphone, 180, 180A, 180B speaker, 190 sensor, 200, 200A, 200B computer, 210, 210A, 210B, 210C, 210D, 610 processor, 220, 620 memory, 230, 230A, 230B, 630 storage, 240, 640 input / output interface, 250, 650 communication interface, 260, 660 bus, 300, 300B controller, 300R right controller, 300L left controller, 310 grip, 320 frame, 330 top surface, 340, 340, 350, 370, 380 buttons, 360 infrared LED, 390 analog stick, 410 HMD sensor, 420, 420A motion sensor, 430, 430A display, 510 control module, 520 rendering module, 530 memory module, 540 communication control module, 600 server, 700 external device, 1421 virtual object generation module, 1422 virtual camera control module, 1423 operation object control module, 1424 avatar object Control module, 1425 motion detection module, 1426 collision detection module, 1427 virtual object control module, 1517A, 1617B, 2417, 2417B, 2517A, 2717B, 2817B, 2917B, 3017B, 3117B view image, 1531LA, 1531LB virtual left hand, 1531RA, 1531RB Virtual right hand, 1532 Stage object, 1644,1642,1643 motion sensor, 1644 belt, 2411A, 2411B virtual space, 2441 mirror object, 2442 virtual camera, 2443 field of view, 2444, 2744, 2844, 2944, 3044, 3144, 3244 avatar image

Claims (11)

プロセッサを備えたコンピュータによって実行されるプログラムであって、
前記プログラムは、前記プロセッサに、
第1ユーザに関連付けられる第1アバターと第2ユーザに関連付けられる第2アバターとを含む、仮想空間を定義するステップと、
第1ヘッドマウントデバイスが関連付けられた前記第1ユーザの頭部の動きに応じて、前記第1アバターからの第1視界を制御するステップと、
前記第1視界内では視覚化され、前記第2アバターからの第2視界内では視覚化されない、透過設定された第1オブジェクトを、前記第1視界内に配置するステップと、
前記第1オブジェクトに、透過度を設定された前記第1アバターの画像を表示するステップと、
前記第1視界に対応する第1視界画像を前記第1ヘッドマウントデバイスに表示するステップと、を実行させるための、プログラム。
A program that is run by a computer with a processor
The program is delivered to the processor.
A step of defining a virtual space, including a first avatar associated with the first user and a second avatar associated with the second user.
A step of controlling the first field of view from the first avatar in response to the movement of the head of the first user associated with the first head mount device.
A step of arranging a transparently set first object in the first field of view, which is visualized in the first field of view but not in the second field of view from the second avatar.
A step of displaying an image of the first avatar with transparency set on the first object, and
A program for executing a step of displaying a first field of view image corresponding to the first field of view on the first head mount device.
前記第1視界を制御するステップは、前記第1ユーザの頭部の動きに連動して、前記第1視界を動かすことを含み、
前記プログラムは、前記プロセッサに、
前記第1視界の動きに連動して、前記第1視界内の所定位置に前記第1オブジェクトが位置するように前記第1オブジェクトを移動させるステップをさらに実行させる、請求項1に記載のプログラム。
The step of controlling the first visual field includes moving the first visual field in conjunction with the movement of the head of the first user.
The program is delivered to the processor.
The program according to claim 1, further executing a step of moving the first object so that the first object is positioned at a predetermined position in the first field of view in conjunction with the movement of the first field of view.
前記配置するステップは、前記第1オブジェクトに関連付けて仮想視点を配置することを含み、
前記プログラムは、前記プロセッサに、
前記第1アバターの少なくとも一部が含まれるように前記仮想視点からの第3視界を制御するステップを実行させ、
前記第1アバターの前記画像は、透過設定された、前記第3視界に対応する第2視界画像である、請求項1または2に記載のプログラム。
The placing step comprises placing a virtual viewpoint in association with the first object.
The program is delivered to the processor.
A step of controlling the third field of view from the virtual viewpoint is executed so that at least a part of the first avatar is included.
The program according to claim 1 or 2, wherein the image of the first avatar is a second field-of-view image corresponding to the third field of view, which is set to be transparent.
前記第1アバターの前記画像は、前記第1アバターに対する行動内容を指示した情報である、請求項1または2に記載のプログラム。 The program according to claim 1 or 2, wherein the image of the first avatar is information instructing an action content for the first avatar. 前記プログラムは、前記プロセッサに、前記第1ユーザによる指示に基づいて、前記第1視界内で前記第1オブジェクトを視覚化するか否かを決定するステップを実行させる、請求項1〜のいずれか1項に記載のプログラム。 Any of claims 1 to 4 , wherein the program causes the processor to perform a step of determining whether or not to visualize the first object in the first field of view based on instructions from the first user. The program described in item 1. 前記第1アバターの前記画像を表示するステップにおいて、前記第2視界画像を前記第1オブジェクトにリアルタイムに表示する、請求項3に記載のプログラム。 The program according to claim 3 , wherein in the step of displaying the image of the first avatar, the second field of view image is displayed on the first object in real time. 前記配置するステップにおいて、前記第1アバターと前記第2アバターとの間に、前記第1オブジェクトを配置する、請求項1〜のいずれか1項に記載のプログラム。 The program according to any one of claims 1 to 6 , wherein the first object is placed between the first avatar and the second avatar in the placement step. 前記プログラムは、前記プロセッサに、
前記第1アバターと前記第2アバターとの位置関係に基づいて、前記第1オブジェクトの透過度を制御するステップを実行させる、請求項に記載のプログラム。
The program is delivered to the processor.
The program according to claim 7 , wherein the step of controlling the transparency of the first object is executed based on the positional relationship between the first avatar and the second avatar.
前記第1オブジェクトの前記透過度を制御するステップにおいて、前記第1アバターと前記第2アバターとの距離が第1閾値以下である場合、前記第1オブジェクトの前記透過度をより高くし、前記第1アバターと前記第2アバターとの距離が前記第1閾値を上回る場合、前記第1オブジェクトの前記透過度をより低くする、請求項に記載のプログラム。 In the step of controlling the transparency of the first object, when the distance between the first avatar and the second avatar is equal to or less than the first threshold value, the transparency of the first object is made higher, and the first object is used. The program according to claim 8 , wherein when the distance between the 1 avatar and the 2nd avatar exceeds the 1st threshold value, the transparency of the 1st object is made lower. 情報処理装置であって、
前記情報処理装置は、
前記情報処理装置によって実行されるプログラムを記憶する記憶部と、
前記プログラムを実行することにより、前記情報処理装置の動作を制御する制御部と、を備え、
前記制御部は、
第1ユーザに関連付けられる第1アバターと第2ユーザに関連付けられる第2アバターとを含む、仮想空間を定義し、
第1ヘッドマウントデバイスが関連付けられた前記第1ユーザの頭部の動きに応じて、前記第1アバターからの第1視界を制御し、
前記第1視界内では視覚化され、前記第2アバターからの第2視界内では視覚化されない、透過設定された第1オブジェクトを、前記第1視界内に配置し、
前記第1オブジェクトに、透過度を設定された前記第1アバターの画像を含む第1情報を表示し、
前記第1視界に対応する第1視界画像を前記第1ヘッドマウントデバイスに表示する、情報処理装置。
It is an information processing device
The information processing device
A storage unit that stores a program executed by the information processing device,
A control unit that controls the operation of the information processing apparatus by executing the program is provided.
The control unit
Define a virtual space that includes a first avatar associated with the first user and a second avatar associated with the second user.
The first field of view from the first avatar is controlled according to the movement of the head of the first user associated with the first head mount device.
A transparently set first object that is visualized in the first field of view but not in the second field of view from the second avatar is placed in the first field of view.
The first information including the image of the first avatar whose transparency is set is displayed on the first object.
An information processing device that displays a first field of view image corresponding to the first field of view on the first head-mounted device.
プロセッサを備えたコンピュータがプログラムを実行する方法であって、
前記方法は、前記プロセッサが、
第1ユーザに関連付けられる第1アバターと第2ユーザに関連付けられる第2アバターとを含む、仮想空間を定義するステップと、
第1ヘッドマウントデバイスが関連付けられた前記第1ユーザの頭部の動きに応じて、前記第1アバターからの第1視界を制御するステップと、
前記第1視界内では視覚化され、前記第2アバターからの第2視界内では視覚化されない、透過設定された第1オブジェクトを、前記第1視界内に配置するステップと、
前記第1オブジェクトに、透過度を設定された前記第1アバターの画像を含む第1情報を表示するステップと、
前記第1視界に対応する第1視界画像を前記第1ヘッドマウントデバイスに表示するステップと、を含む、方法。
A way for a computer with a processor to execute a program
In the method, the processor
A step of defining a virtual space, including a first avatar associated with the first user and a second avatar associated with the second user.
A step of controlling the first field of view from the first avatar in response to the movement of the head of the first user associated with the first head mount device.
A step of arranging a transparently set first object in the first field of view, which is visualized in the first field of view but not in the second field of view from the second avatar.
A step of displaying the first information including the image of the first avatar whose transparency is set on the first object, and
A method comprising displaying a first field of view image corresponding to the first field of view on the first head mount device.
JP2018164972A 2018-09-04 2018-09-04 Programs, information processing equipment, and methods Active JP6820299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164972A JP6820299B2 (en) 2018-09-04 2018-09-04 Programs, information processing equipment, and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164972A JP6820299B2 (en) 2018-09-04 2018-09-04 Programs, information processing equipment, and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021000283A Division JP7111848B2 (en) 2021-01-04 2021-01-04 Program, Information Processing Apparatus, and Method

Publications (2)

Publication Number Publication Date
JP2020038468A JP2020038468A (en) 2020-03-12
JP6820299B2 true JP6820299B2 (en) 2021-01-27

Family

ID=69738012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164972A Active JP6820299B2 (en) 2018-09-04 2018-09-04 Programs, information processing equipment, and methods

Country Status (1)

Country Link
JP (1) JP6820299B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11989811B2 (en) 2021-10-29 2024-05-21 Gree, Inc. Information processing system, information processing method, and computer program
JP7333564B2 (en) * 2021-10-29 2023-08-25 グリー株式会社 Information processing system, information processing method and computer program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140368537A1 (en) * 2013-06-18 2014-12-18 Tom G. Salter Shared and private holographic objects
JP6869699B2 (en) * 2016-11-10 2021-05-12 株式会社バンダイナムコエンターテインメント Game system and programs
JP2018106297A (en) * 2016-12-22 2018-07-05 キヤノンマーケティングジャパン株式会社 Mixed reality presentation system, information processing apparatus and control method thereof, and program
JP2017097918A (en) * 2017-02-06 2017-06-01 株式会社コロプラ Image display method and program

Also Published As

Publication number Publication date
JP2020038468A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
US10313481B2 (en) Information processing method and system for executing the information method
US10223064B2 (en) Method for providing virtual space, program and apparatus therefor
US20180196506A1 (en) Information processing method and apparatus, information processing system, and program for executing the information processing method on computer
JP6392911B2 (en) Information processing method, computer, and program for causing computer to execute information processing method
US20180357817A1 (en) Information processing method, program, and computer
JP6290467B1 (en) Information processing method, apparatus, and program causing computer to execute information processing method
JP6514397B1 (en) SYSTEM, PROGRAM, METHOD, AND INFORMATION PROCESSING APPARATUS
JP2018089227A (en) Information processing method, device, and program for implementing that information processing method on computer
JP7488867B2 (en) Programs and Systems
JP7181148B2 (en) System, program, method, and information processing device
JP6470859B1 (en) Program for reflecting user movement on avatar, information processing apparatus for executing the program, and method for distributing video including avatar
US10515481B2 (en) Method for assisting movement in virtual space and system executing the method
US20180374275A1 (en) Information processing method and apparatus, and program for executing the information processing method on computer
US20180299948A1 (en) Method for communicating via virtual space and system for executing the method
US20180329487A1 (en) Information processing method, computer and program
JP2018125003A (en) Information processing method, apparatus, and program for implementing that information processing method in computer
JP2019128721A (en) Program for reflecting user motion on avatar, information processing device for executing the same and method for distributing image containing avatar
JP7043449B2 (en) Programs and methods and information processing equipment run on a computer to provide virtual space through headmount devices.
JP6820299B2 (en) Programs, information processing equipment, and methods
JP2019133309A (en) Program, information processor and information processing method
JP6839046B2 (en) Information processing methods, devices, information processing systems, and programs that allow computers to execute the information processing methods.
JP7192151B2 (en) Program, information processing device, and information processing method
JP2020004060A (en) Program, information processing device, and method
JP2019168962A (en) Program, information processing device, and information processing method
JP2018092635A (en) Information processing method, device, and program for implementing that information processing method on computer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210104

R150 Certificate of patent or registration of utility model

Ref document number: 6820299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250