JP6818575B2 - Overlay welding method for plated steel sheets - Google Patents

Overlay welding method for plated steel sheets Download PDF

Info

Publication number
JP6818575B2
JP6818575B2 JP2017019176A JP2017019176A JP6818575B2 JP 6818575 B2 JP6818575 B2 JP 6818575B2 JP 2017019176 A JP2017019176 A JP 2017019176A JP 2017019176 A JP2017019176 A JP 2017019176A JP 6818575 B2 JP6818575 B2 JP 6818575B2
Authority
JP
Japan
Prior art keywords
steel plate
shield gas
gap
welding
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017019176A
Other languages
Japanese (ja)
Other versions
JP2018126741A (en
JP2018126741A5 (en
Inventor
拓明 村上
拓明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017019176A priority Critical patent/JP6818575B2/en
Publication of JP2018126741A publication Critical patent/JP2018126741A/en
Publication of JP2018126741A5 publication Critical patent/JP2018126741A5/ja
Application granted granted Critical
Publication of JP6818575B2 publication Critical patent/JP6818575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Description

この発明は、重ね合わされたメッキ鋼板相互を非接触溶接によって接合するメッキ鋼板の重ね溶接方法に関するものである。 The present invention relates to a method for laminating and welding plated steel sheets by joining the laminated plated steel sheets to each other by non-contact welding.

レーザ溶接においてブローホール等の溶接欠陥を抑制する方法として、亜鉛メッキ鋼板同士または亜鉛メッキ鋼板と他の金属との重ね部に有機物の薄いインサート材を介在させて隙間を設け、レーザ溶接するようにしたものがある(例えば、特許文献1参照)。 As a method of suppressing welding defects such as blow holes in laser welding, a gap is provided between galvanized steel sheets or the overlapped portion between galvanized steel sheets and other metals so that a gap is provided and laser welding is performed. (See, for example, Patent Document 1).

特開平6−7978号公報(第2〜3頁、図1)Japanese Unexamined Patent Publication No. 6-7978 (pages 2 to 3, FIG. 1)

従来のレーザ溶接等の非接触溶接によるメッキ鋼板の重ね溶接においては、シールドガスが溶接面表面にのみ吹き付けられ、ブローホール等の溶接欠陥を抑制する為に設けられていた重ね合わせた鋼板間の隙間にまでシールドガスが行きわたるものではなかったため、鋼板間の隙間部分の溶接部位に焼けや錆が発生するという問題点があった。 In lap welding of plated steel sheets by non-contact welding such as conventional laser welding, shield gas is sprayed only on the surface of the welded surface, and between the lapped steel sheets provided to suppress welding defects such as blow holes. Since the shield gas did not spread to the gaps, there was a problem that burns and rusts were generated at the welded portions in the gaps between the steel plates.

この発明は、上記のような問題点を解決するためになされたものであり、重ね合わされた鋼板間の隙間部分の溶接部位に対しても焼けや錆が発生することのない高品質な溶接を実現することができる非接触溶接によるメッキ鋼板の重ね溶接方法を得ることを目的としている。 The present invention has been made to solve the above-mentioned problems, and provides high-quality welding in which no burning or rust is generated even on the welded portion of the gap between the overlapped steel plates. The purpose is to obtain a method of lap welding of plated steel sheets by non-contact welding that can be realized.

この発明に係るメッキ鋼板の重ね溶接方法は、隙間を介して重合された第一鋼板と第二鋼板との対向面の少なくとも一方にメッキ被膜が設けられたワークを非接触溶接する重ね溶接方法であって、前記隙間にシールドガスを送り込むためのシールドガス送給部を、前記第一鋼板と前記第二鋼板との少なくとも一方に予め形成し、前記第一鋼板と前記第二鋼板との間に、前記シールドガス送給部から送給されたシールドガスが前記隙間における溶接予定箇所を包含する領域に充満されるように該シールドガスの流路を規制すると共に、前記流路の下流側に、流入された前記シールドガスを外部に排出するガス排出部を形成するシール部材を設け、前記シールドガス送給部は、前記第一鋼板または前記第二鋼板を前記隙間が広がるように湾曲させて形成されたトンネル状部からなり、前記シールドガス送給部から前記隙間にシールドガスを流入させながら、前記溶接予定箇所を溶接するものである。 The lap welding method for plated steel sheets according to the present invention is a lap welding method in which a workpiece having a plating film provided on at least one of the facing surfaces of the first steel plate and the second steel plate laminated through a gap is non-contact welded. Therefore, a shield gas feeding unit for feeding the shield gas into the gap is formed in advance on at least one of the first steel plate and the second steel plate, and between the first steel plate and the second steel plate. The flow path of the shield gas is regulated so that the shield gas supplied from the shield gas supply unit fills the area including the planned welding portion in the gap, and on the downstream side of the flow path, A seal member is provided to form a gas discharge portion for discharging the inflowed shield gas to the outside, and the shield gas supply portion is formed by bending the first steel plate or the second steel plate so as to widen the gap. The welded portion is formed of a tunnel-shaped portion, and the planned welding portion is welded while the shield gas is allowed to flow from the shield gas supply portion into the gap.

この発明によれば、重ね合わされる第一鋼板と第二鋼板の隙間に送り込まれたシールドガスが溶接予定箇所に充満された状態で通流されることで、溶接時にメッキ層から蒸発した例えば亜鉛などのメッキ金属を含む気体状物質(本書では便宜上それを「メッキ蒸気」という)は通流しているシールドガスによって溶融個所から隙間部分に直ちに逃がされるので、メッキ蒸気と溶融金属との反応が抑制されてブローホールなどの欠陥が抑えられ、焼けや錆などの発生も抑制された高品質な溶接を得ることができる。 According to the present invention, the shield gas sent into the gap between the first steel plate and the second steel plate to be superposed is passed through in a state of being filled in the planned welding location, so that for example, zinc evaporated from the plating layer during welding. The gaseous substance containing the plating metal (referred to as "plating steam" in this document for convenience) is immediately released from the molten location to the gap by the flowing shield gas, so that the reaction between the plating vapor and the molten metal is suppressed. It is possible to obtain high-quality welding in which defects such as blow holes are suppressed and the occurrence of burning and rust is also suppressed.

本発明の実施の形態1に係るメッキ鋼板の重ね溶接方法の要部を概念的に説明するための斜視図である。It is a perspective view for conceptually explaining the main part of the lap welding method of the plated steel sheet which concerns on Embodiment 1 of this invention. 図1の変形例になる第二鋼板にトンネル状部を設けた例を示す斜視図である。It is a perspective view which shows the example which provided the tunnel-shaped part in the 2nd steel plate which becomes the modification of FIG. 図1の他の変形例になる第一鋼板と第二鋼板の双方にトンネル状部を設けた例を示す斜視図である。It is a perspective view which shows the example which provided the tunnel-shaped part on both the 1st steel plate and the 2nd steel plate which are the other modified examples of FIG. 本発明の実施の形態1に係るメッキ鋼板の重ね溶接方法の実施例における被溶接材の重ね合わせ部分とシール部材の配置を示す斜視図である。It is a perspective view which shows the arrangement of the overlap part of the material to be welded and the seal member in the Example of the layer welding method of the plated steel sheet which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るメッキ鋼板の重ね溶接方法における被溶接材の重ね合わせ部分とシール部材の配置を概念的に示す図であり、(a)は前面側、(b)は側面側、(c)は背面側である。It is a figure which conceptually shows the arrangement | arrangement of the overlap part of the material to be welded and the seal member in the layer welding method of the plated steel sheet which concerns on Embodiment 2 of this invention, (a) is a front side, (b) is a side surface side. , (C) is the back side. 図5の変形例になる被溶接材の重ね合わせ部分とシール部材の配置を概念的に示す図であり、(a)は前面側、(b)は側面側、(c)は背面側である。It is a figure which conceptually shows the superposition part of the material to be welded and the arrangement of a seal member which becomes a modification of FIG. 5, (a) is a front side, (b) is a side surface side, (c) is a back side. ..

実施の形態1.
図1は本発明の実施の形態1に係るメッキ鋼板の重ね溶接方法の要部を概念的に説明するための斜視図、図2は図1の変形例になる第二鋼板にトンネル状部を設けた例を示す斜視図、図3は図1の他の変形例になる第一鋼板と第二鋼板の双方にトンネル状部を設けた例を示す斜視図である。図において、メッキ蒸気を逃がすための所定寸法の隙間Sを介して重ね合わされた被溶接材(ワーク)である第一鋼板1と第二鋼板2の一方、ここでは第一鋼板1の所定部には、前述の隙間Sにシールドガスを送り込むためのシールドガス送給部を構成するトンネル状部5がプレス加工等によって予め形成されている。トンネル状部5は第二鋼板2との間に形成された隙間Sを広げるように第一鋼板1の所定部を断面半円形状に湾曲させ、かつ、ここではトンネルの延在方向がレーザ溶接ヘッド7から出射されたレーザビーム8による溶接方向Dに直交する方向に伸びるように形設されている。
Embodiment 1.
FIG. 1 is a perspective view for conceptually explaining a main part of a method for laminating and welding a plated steel sheet according to a first embodiment of the present invention, and FIG. 2 shows a tunnel-shaped portion in a second steel sheet which is a modification of FIG. A perspective view showing an example of the provision, FIG. 3 is a perspective view showing an example in which a tunnel-shaped portion is provided on both the first steel plate and the second steel plate, which are other modifications of FIG. 1. In the figure, one of the first steel plate 1 and the second steel plate 2, which are the materials (workpieces) to be welded, which are superposed via a gap S of a predetermined size for allowing the plating vapor to escape, in this case, a predetermined portion of the first steel plate 1. In the above-mentioned gap S, a tunnel-shaped portion 5 constituting a shield gas feeding portion for feeding the shield gas is formed in advance by press working or the like. In the tunnel-shaped portion 5, a predetermined portion of the first steel plate 1 is curved into a semicircular cross section so as to widen the gap S formed between the tunnel-shaped portion 5 and the second steel plate 2, and here, the extending direction of the tunnel is laser welding. It is shaped so as to extend in a direction orthogonal to the welding direction D by the laser beam 8 emitted from the head 7.

重ね合わされた第一鋼板1と第二鋼板2の図における前部側と後部側に設置されたシール部材3としての、ここではブロック状の前板3Aと後板3Bは、シールドガス送給部としてのトンネル状部5から送給されたシールドガスが隙間Sにおける溶接予定箇所Cを包含する領域に充満されるように該シールドガスの流路を規制すると共に、その流路の下流側端部に、流入されたシールドガスを、溶接時に発生したメッキ蒸気等を含む溶接由来のガスと共に外部に排出するガス排出部6を形成する機能を有するものである。なお、ガス排出部6の内、図の左側部をガス排出部6a、右側部をガス排出部6bとする。 In the figure of the first steel plate 1 and the second steel plate 2 which are overlapped, the block-shaped front plate 3A and the rear plate 3B as the sealing members 3 installed on the front side and the rear side are shield gas feeding portions. The flow path of the shield gas is regulated so that the shield gas supplied from the tunnel-shaped portion 5 is filled in the region including the planned welding portion C in the gap S, and the downstream end portion of the flow path. In addition, it has a function of forming a gas discharge unit 6 that discharges the inflowed shield gas to the outside together with the welding-derived gas including the plating vapor generated during welding. Of the gas discharge units 6, the left side portion in the figure is referred to as a gas discharge portion 6a, and the right portion is referred to as a gas discharge portion 6b.

前板3Aは第一鋼板1及び第二鋼板2の双方の図における前端面に沿って密着され、その前板3Aにおけるトンネル状部5に対向する位置には、シールドガスをトンネル状部5を経て隙間Sに送給するための貫通孔からなるシールドガス送給口5aが設けられている。一方、後板3Bは重合された第一鋼板1と第二鋼板2双方の図における後側の端面に沿って密着されて隙間Sの後側部を塞いでいる。シールドガスはシールドガス送給口5aから矢印Aの方向に送給されて、トンネル状部5を経て隙間Sに送り込まれ、ガス排出部6(6a、6b)から矢印B1、B2の方向に流出される。 The front plate 3A is in close contact with the front end surface of both the first steel plate 1 and the second steel plate 2 along the front end surface, and the shield gas is applied to the tunnel-shaped portion 5 at a position facing the tunnel-shaped portion 5 in the front plate 3A. A shield gas supply port 5a formed of a through hole for feeding to the gap S is provided. On the other hand, the rear plate 3B is brought into close contact with each other along the rear end surface in the drawings of both the polymerized first steel plate 1 and the second steel plate 2 to close the rear side portion of the gap S. Shielding gas is fed from the shielding gas feed port 5a in the direction of arrow A, fed to the gap S via the tunnel-like portion 5, it flows out from the gas outlet 6 (6a, 6b) in the direction of arrow B1, B2 Will be done.

次に、シールドガス送給部を構成する被溶接材に設けられるトンネル状部5について詳しく説明する。
シールドガス送給部となるトンネル状部5の設置は第一鋼板1側に限らず、図2の変形例のように第二鋼板2に設けてもよい。また、図3の他の変形例のように第一鋼板1と第二鋼板2の両方にシールドガス流入口となるトンネル状部5を設けてもよい。なおその場合、図1と同様にトンネル状部5の流入口の形状に合わせて、前板3Aに長円状のシールドガス送給口5aを設けるものとする。
Next, the tunnel-shaped portion 5 provided in the material to be welded constituting the shield gas feeding portion will be described in detail.
The tunnel-shaped portion 5 serving as the shield gas feeding portion is not limited to the first steel plate 1 side, and may be provided on the second steel plate 2 as in the modified example of FIG. Further, as in the other modification of FIG. 3, both the first steel plate 1 and the second steel plate 2 may be provided with a tunnel-shaped portion 5 serving as a shield gas inflow port. Note that case, according to the shape of the inlet of similarly tunnel-shaped portion 5 and FIG. 1, it is assumed that providing an oval-shaped shielding gas feed port 5a to the front plate 3A.

また、溶接部位や溶接長によっては、シールドガスが鋼板間のメッキ蒸気逃がし用の隙間Sに均一に充満させることが困難な場合が想定される。その場合は必要に応じて、複数本のシールドガス流入口であるトンネル状部5を設けてガスを流入させてもよい。この場合においても、トンネル状部5のシールドガス流入口の位置や形状に合わせて、例えば前板3Aにシールドガス送給口を設け、更に必要に応じて隣り合うトンネル状部相互の中間部分にガス排出部を設けることで隙間S内の溶接予定箇所Cを含む全体をシールドガスで満たすことができる。
なお、溶接時の注意点として、第一鋼板1や第二鋼板2に設けられたトンネル状部5に関しては、シールドガスの隙間Sへの流入が、溶接によってせき止められてしまうことがないように、溶接方向がトンネルの方向に対して図1のように直交する場合は、トンネル状部5を避けて溶接することが必要である。
Further, depending on the welded portion and the weld length, it is assumed that it is difficult for the shield gas to uniformly fill the gap S for releasing the plating vapor between the steel plates. In that case, if necessary, a plurality of tunnel-shaped portions 5 which are shield gas inlets may be provided to allow gas to flow in. In this case, according to the position and shape of the shielding gas inlet of the tunnel-like portion 5, for example, provided a shielding gas feed opening in the front plate 3A, the tunnel-like portion intermediate section of the cross-adjacent if necessary By providing the gas discharge portion, the entire portion including the planned welding portion C in the gap S can be filled with the shield gas.
As a precaution during welding, with respect to the tunnel-shaped portion 5 provided in the first steel plate 1 and the second steel plate 2, the inflow of the shield gas into the gap S is not dammed by welding. When the welding direction is orthogonal to the tunnel direction as shown in FIG. 1, it is necessary to avoid the tunnel-shaped portion 5 for welding.

次に、第一鋼板1について詳しく説明する。
被溶接材となる第一鋼板1は、いわゆるメッキ鋼板であり、鉄などから成る鋼板母材の表面に亜鉛(又は亜鉛を主体とする合金)から成る薄膜を被覆したものである。
ここでシールドガス流入用のトンネル状部5を図1のように第一鋼板1側に加工する場合について説明する。第一鋼板1に対して予め決められた溶接工程上適切な所定部には、第二鋼板2と重ね合わせる際に第二鋼板2に対向される面と反対側に円弧状に突出するようにトンネル状部5が形成される。このトンネル状部5は、例えば、凸型金具等でプレス加工することにより第一鋼板1の一部に簡単に形成することができる。
Next, the first steel plate 1 will be described in detail.
The first steel sheet 1 to be welded is a so-called plated steel sheet, which is obtained by coating the surface of a steel sheet base material made of iron or the like with a thin film made of zinc (or an alloy mainly composed of zinc).
Here, a case where the tunnel-shaped portion 5 for inflowing the shield gas is processed on the first steel plate 1 side as shown in FIG. 1 will be described. A predetermined portion suitable for the welding process determined in advance with respect to the first steel plate 1 so as to project in an arc shape on the side opposite to the surface facing the second steel plate 2 when superposed on the second steel plate 2. The tunnel-shaped portion 5 is formed. The tunnel-shaped portion 5 can be easily formed on a part of the first steel plate 1 by, for example, pressing with a convex metal fitting or the like.

次に、第二鋼板2について詳しく説明する。
被溶接材となる第二鋼板2も、いわゆるメッキ鋼板であり、鉄などから成る鋼板母材の表面に亜鉛(又は亜鉛を主体とする合金)から成る薄膜を被覆したものである。
ここでは、図2のように第二鋼板2側にシールドガス送給口を加工する場合について説明をする。第二鋼板2の一部には、第一鋼板1と重ね合わせる際に第一鋼板1に対向される面とは反対側に突出したトンネル状部5が形成される。このトンネル状部5も第一鋼板1の場合と同様に、例えば凸型金型等でプレス加工することにより簡単に形成することができる。
Next, the second steel plate 2 will be described in detail.
The second steel sheet 2 to be welded is also a so-called plated steel sheet, in which the surface of a steel plate base material made of iron or the like is coated with a thin film made of zinc (or an alloy mainly composed of zinc).
Here it will be an explanation when processing shielding gas feed port to the second steel plate 2 side as shown in FIG. A tunnel-shaped portion 5 is formed in a part of the second steel plate 2 so as to project on the side opposite to the surface facing the first steel plate 1 when it is overlapped with the first steel plate 1. The tunnel-shaped portion 5 can also be easily formed by press working with, for example, a convex die, as in the case of the first steel plate 1.

次に、シール部材3を構成する前板3Aについて詳しく説明する。
前板3Aは、被溶接材である第一鋼板1と第二鋼板2の隙間部分に流入させたシールドガスが第一鋼板1と第二鋼板2の溶接方向Dに平行な側端部から重ね合わせ部の外側に流出する方向を制限し、第一鋼板1と第二鋼板2の隙間Sにおける溶接予定箇所Cを包含する領域部分にシールドガスが均一に充満された空間を形成させるために設置される。そのため、シール部材3は、溶接時の輻射熱や伝導熱によって変質したり周囲に害を与えることの無い材料を用いることが好ましく、例えば、フッ素ゴムやシリコンゴムなどの耐熱性ゴム材等を用い、あるいは鋼板、ステンレス鋼板等の金属材、セラミックス材などの硬質材料の表面にゴム弾性を有する耐熱性ゴム材等を設けたものなどを好適に用いることができる。
Next, the front plate 3A constituting the seal member 3 will be described in detail.
In the front plate 3A, the shield gas flowing into the gap between the first steel plate 1 and the second steel plate 2 which are the materials to be welded is overlapped from the side end portion parallel to the welding direction D of the first steel plate 1 and the second steel plate 2. Installed to limit the direction of outflow to the outside of the mating portion and to form a space uniformly filled with shield gas in the region portion including the planned welding portion C in the gap S between the first steel plate 1 and the second steel plate 2. Will be done. Therefore, it is preferable to use a material for the sealing member 3 that does not deteriorate or damage the surroundings due to radiant heat or conduction heat during welding. For example, a heat-resistant rubber material such as fluororubber or silicon rubber is used. Alternatively, a metal material such as a steel plate or a stainless steel plate, or a hard material such as a ceramic material provided with a heat-resistant rubber material having rubber elasticity on the surface thereof can be preferably used.

前板3A部分にシールドガス送給口5aを設ける場合は、第一鋼板1や第二鋼板2に形成されたトンネル状部5の断面半円状の穴位置と一致するように穴加工を施す。また、本実施の形態1ではシールドガス送給口5aは円形状であるが、第一鋼板1や第二鋼板2のトンネル状部5にシールドガスを流入することが可能であれば、形状はこれに限定されるものではなく、例えば四角形等の穴でも差し支えない。また、後板3B側にシールドガス送給口5aを設けた場合、前板3A側にシールドガス送給口5aを設けなくてもよい。
また、前板3Aと、第一鋼板1と第二鋼板2の溶接方向Dに平行な手前側の側端面との当接部分からシールドガスが流失すると、第一鋼板1と第二鋼板2の隙間S部分に均一にシールドガスを充満できなくなる可能性があるため、第一鋼板1と第二鋼板2の溶接方向Dに平行な側端面に隙間なく密着させる必要がある。
When the shield gas supply port 5a is provided in the front plate 3A portion, a hole is formed so as to match the hole position of the tunnel-shaped portion 5 formed in the first steel plate 1 and the second steel plate 2 in a semicircular cross section. .. Further, in the first embodiment, the shield gas supply port 5a has a circular shape, but if the shield gas can flow into the tunnel-shaped portion 5 of the first steel plate 1 and the second steel plate 2, the shape may be changed. The hole is not limited to this, and a hole such as a quadrangle may be used. Further, when the shield gas supply port 5a is provided on the rear plate 3B side, it is not necessary to provide the shield gas supply port 5a on the front plate 3A side.
Further, when the shield gas flows out from the contact portion between the front plate 3A and the side end surface on the front side parallel to the welding direction D of the first steel plate 1 and the second steel plate 2, the first steel plate 1 and the second steel plate 2 Since there is a possibility that the gap S portion cannot be uniformly filled with the shield gas, it is necessary to bring the first steel plate 1 and the second steel plate 2 into close contact with the side end faces parallel to the welding direction D without any gap.

次に、シール部材3を構成する後板3Bについて詳しく説明する。
後板3Bも被溶接材である第一鋼板1と第二鋼板2の隙間S部分に流入させたシールドガスが、第一鋼板1と第二鋼板2の溶接方向Dに平行な図の奥側の側端面から重ね合わせ部の外側に流出するのを規制し、第一鋼板1と第二鋼板2の隙間Sにおける溶接予定箇所Cを包含する領域部分にシールドガスが均一に充満された空間を形成させるために設置される。後板3B部分にシールドガス送給口5aを設ける場合は、第一鋼板1や第二鋼板2に形成されたトンネル状部5の穴位置と一致するように前板3Aと同様の穴加工を施す。なお、前板3A側にシールドガス送給口5aを設けた場合、後板3B側にシールドガス送給口5aを設けなくてもよい。
Next, the rear plate 3B constituting the seal member 3 will be described in detail.
The shield gas that has flowed into the gap S between the first steel plate 1 and the second steel plate 2, which is also the rear plate 3B, is the back side of the figure parallel to the welding direction D of the first steel plate 1 and the second steel plate 2. The area including the planned welding point C in the gap S between the first steel plate 1 and the second steel plate 2 is uniformly filled with the shield gas by restricting the outflow from the side end surface of the steel plate to the outside of the overlapped portion. Installed to form. When the shield gas supply port 5a is provided in the rear plate 3B portion, the same hole processing as in the front plate 3A is performed so as to match the hole position of the tunnel-shaped portion 5 formed in the first steel plate 1 and the second steel plate 2. Give. When the shield gas supply port 5a is provided on the front plate 3A side, it is not necessary to provide the shield gas supply port 5a on the rear plate 3B side.

また、後板3Bと、重合された第一鋼板1と第二鋼板2の後部側の側端面との当接部分密着性については、前述の前板3Aの側と同様の構造とすることが必要である。
なお、レーザの種類やレーザ溶接装置の構成などは特に限定されるものではなく、例えば当業者において従来から周知のレーザ溶接装置または既存の各種レーザ溶接装置から溶接対象に応じて適宜選択して利用することができる。なお、レーザ溶接ヘッド7は加工部分を大気から保護するために、溶接時にレーザビーム8の周りに、前述のシールドガス送給口5aから送り込むシールドガスと同様の不活性ガスを低圧で送給するものなどを好適に用いることができる。
Further, the contact portion adhesion between the rear plate 3B and the side end surface of the polymerized first steel plate 1 and the second steel plate 2 on the rear side may have the same structure as that of the front plate 3A described above. is necessary.
The type of laser and the configuration of the laser welding device are not particularly limited. For example, a laser welding device known to those skilled in the art or various existing laser welding devices can be appropriately selected and used according to the welding target. can do. In order to protect the processed portion from the atmosphere, the laser welding head 7 supplies an inert gas similar to the shield gas sent from the shield gas supply port 5a described above around the laser beam 8 at a low pressure during welding. Those can be preferably used.

また、シールドガスとして好適に用いることができるガス種としては、不活性ガスであるHe、Ar、N、及びCOからなる群より選択される1種類または2種類以上が用いられる。He、Ar、N、及びCOガスは、何れも工業的に生産されるガスであり、入手も容易なので、本発明の汎用性を高めることができる。
また、溶接対象は、亜鉛メッキ鋼板に限定されず、母材の鋼板、メッキ金属ともに他の材料であっても同様の作用効果が得られる。
Further, as the gas type that can be suitably used as the shield gas, one type or two or more types selected from the group consisting of the inert gases He, Ar, N 2 and CO 2 are used. He, Ar, N 2 , and CO 2 gases are all industrially produced gases and are easily available, so that the versatility of the present invention can be enhanced.
Further, the welding target is not limited to the galvanized steel sheet, and the same effect can be obtained even if the base steel sheet and the plated metal are other materials.

次に、本実施の形態1に係る溶接方法について説明する。
被溶接材である第一鋼板1と第二鋼板2は、従来の溶接方法と同様にメッキ蒸気逃がし用の隙間Sが設けられた状態で重ねられる。なお、第一鋼板1または第二鋼板2には、図1〜図3に例示するように、隙間Sにシールドガスを送り込むためのシールドガス送給部を構成する断面半円状のトンネル状部5を、プレス成形等によって予め加工しておく。
Next, the welding method according to the first embodiment will be described.
The first steel plate 1 and the second steel plate 2, which are the materials to be welded, are stacked in a state where a gap S for releasing plating vapor is provided as in the conventional welding method. As illustrated in FIGS. 1 to 3, the first steel plate 1 or the second steel plate 2 has a tunnel-shaped portion having a semicircular cross section, which constitutes a shield gas feeding portion for feeding the shield gas into the gap S. 5 is processed in advance by press molding or the like.

次に、シールドガス送給口5aから第一鋼板1に設けられたトンネル状部5(流入側)に図1の矢印Aで示すように送り込まれたシールドガスが、重合された第一鋼板1と第二鋼板2との隙間Sに流入した後に、隙間Sの端部のガス排出部6(6a、6b)から矢印B1、B2の方向に排出されるように、シールドガスの流路を規制する為に、ここでは図1に示すように、ブロック状の前板3Aと後板3Bを被溶接材である第一鋼板1と第二鋼板2の溶接方向に平行な端面に密着させて垂直に配置する。 Next, the shield gas fed from the shield gas supply port 5a to the tunnel-shaped portion 5 (inflow side) provided on the first steel plate 1 as shown by the arrow A in FIG. 1 is superposed on the first steel plate 1. After flowing into the gap S between the second steel plate 2 and the second steel plate 2, the flow path of the shield gas is regulated so that the gas discharge portions 6 (6a, 6b) at the ends of the gap S are discharged in the directions of arrows B1 and B2. Therefore, as shown in FIG. 1, the block-shaped front plate 3A and the rear plate 3B are brought into close contact with the end faces parallel to the welding direction of the first steel plate 1 and the second steel plate 2 to be welded and are vertical. Place in.

その後、図示省略しているシールドガスの配管からシールドガス送給口5aにシールドガスを送り込むことにより、送り込まれたシールドガスはトンネル状部5を経て第一鋼板1と第二鋼板2の隙間S部分に流入され、溶接予定箇所Cの溶接方向Dに沿ってガス排出部6の方向に通流され、ガス排出部6から外部に放出される過程で隙間S内に当初存在した空気などのガスがシールドガスで置換され、隙間S内の空間はシールドガスで均一に充満される。そして、更にシールドガスの送給を継続させつつ、所定のプログラムに従ってレーザ溶接ヘッド7からレーザビーム8を照射し、重ね溶接を行う。なお、第一鋼板1に設けられたトンネル状部5に対して直交する溶接方向Dの方向に溶接する場合、そのトンネル状部5は避けて重ね溶接をする。 After that, by sending the shield gas from the shield gas pipe (not shown) to the shield gas supply port 5a, the sent shield gas passes through the tunnel-shaped portion 5 and the gap S between the first steel plate 1 and the second steel plate 2 is passed. Gas such as air that initially existed in the gap S in the process of flowing into the portion, flowing in the direction of the gas discharge portion 6 along the welding direction D of the planned welding portion C, and being discharged to the outside from the gas discharge portion 6. Is replaced with the shield gas, and the space in the gap S is uniformly filled with the shield gas. Then, while continuing the supply of the shield gas, the laser beam 8 is irradiated from the laser welding head 7 according to a predetermined program to perform lap welding. When welding is performed in the welding direction D orthogonal to the tunnel-shaped portion 5 provided on the first steel plate 1, the tunnel-shaped portion 5 is avoided and lap welding is performed.

上記のように、レーザビーム8をトンネル状部5近傍の溶接予定箇所Cに沿って照射することで、その照射部分における第一鋼板1と第二鋼板2とが溶融して相互に合体されて第一鋼板1と第二鋼板2とが溶接される。前述の溶融時には、母材である鋼板部分のほか、その表面に被覆されている、母材よりも融点の低い亜鉛などのメッキ膜も当然ながら溶融、気化して亜鉛を含むメッキ蒸気が発生する。発生したメッキ蒸気ないしはメッキ蒸気由来の気体は、トンネル状部5から流入されたシールドガスで満たされた隙間S内における母材の溶融部分から遠ざかる方向に直ちに隙間Sの他の部分に移動され、常時通流されるシールドガスの流れに乗ってガス排出部6の方向に移動され外部に排出されることで、例えば溶融池の母材金属との反応が緩和され、高品質な溶接面が形成される。 As described above, by irradiating the laser beam 8 along the planned welding portion C near the tunnel-shaped portion 5, the first steel plate 1 and the second steel plate 2 in the irradiated portion are melted and coalesced with each other. The first steel plate 1 and the second steel plate 2 are welded. At the time of melting as described above, in addition to the steel plate portion which is the base material, the plating film such as zinc having a melting point lower than that of the base material naturally melts and vaporizes to generate plating vapor containing zinc. .. The generated plating steam or the gas derived from the plating steam is immediately moved to another part of the gap S in the direction away from the molten portion of the base metal in the gap S filled with the shield gas flowing in from the tunnel-shaped portion 5. By moving in the direction of the gas discharge section 6 along with the constantly flowing shield gas flow and discharging to the outside, for example, the reaction with the base metal of the molten pool is alleviated and a high-quality welded surface is formed. To.

なお、図示省略しているレーザ溶接装置におけるレーザ溶接ヘッド7からのレーザビーム8は、重合された第一鋼板1と第二鋼板2の表面上に設定された溶接予定箇所C上の任意の起点から終点までの、直線や曲線、断続部分などを含む任意形状の経路に沿って被溶接材上を、予め設定されプログラムされた所定の速度で相対的に移動させつつ、連続的あるいは断続的に照射される。なお、レーザ溶接の際に、被溶接材の側を固定して、レーザビーム側を移動させ、あるいはその逆に構成してもよいことは勿論である。 The laser beam 8 from the laser welding head 7 in the laser welding apparatus (not shown) is an arbitrary starting point on the planned welding point C set on the surfaces of the laminated first steel plate 1 and second steel plate 2. Continuously or intermittently while moving relatively on the material to be welded at a predetermined preset and programmed speed along an arbitrary shape path including a straight line, a curved line, and an intermittent portion from the to the end point. Be irradiated. Of course, at the time of laser welding, the side of the material to be welded may be fixed, the laser beam side may be moved, or vice versa.

次に、図4の具体例を参照して更に詳細に説明する。なお、図4は本発明の実施の形態1に係るメッキ鋼板の重ね溶接方法の実施例における被溶接材の重ね合わせ部分とシール部材3の配置を示す斜視図である。図において、重ね合わせ溶接の溶接対象は、第一鋼板1の方が第二鋼板2よりもサイズが小さい場合の実施例である。トンネル状部5は第一鋼板1に形成され、溶接予定箇所Cはここではトンネル状部5の延在方向と平行に設定されている。なお、隙間Sは第一鋼板1における第二鋼板2との対向面に塑性加工による所定高さ寸法の突起(図示省略)を間隔をあけて複数設け、その複数の突起先端を相手側の対向面に当接させることで形成されている。 Next, it will be described in more detail with reference to the specific example of FIG. Note that FIG. 4 is a perspective view showing the arrangement of the overlapped portion of the material to be welded and the seal member 3 in the embodiment of the method of lap welding the plated steel sheet according to the first embodiment of the present invention. In the figure, the welding target of superposition welding is an example in which the size of the first steel plate 1 is smaller than that of the second steel plate 2. The tunnel-shaped portion 5 is formed on the first steel plate 1, and the planned welding portion C is set here parallel to the extending direction of the tunnel-shaped portion 5. In the gap S, a plurality of protrusions (not shown) having a predetermined height dimension by plastic working are provided on the surface of the first steel plate 1 facing the second steel plate 2 at intervals, and the tips of the plurality of protrusions face each other on the mating side. It is formed by contacting the surface.

なお、隙間Sの寸法は例えば0.05〜0.5mm程度の範囲で適宜に決めることができるが、その寸法、及び第一鋼板1、第二鋼板2の厚さは何れも特に限定されるものではない。また、隙間Sを突起によって形成する代わりに、厚さが所望する隙間のサイズと同一のシート、フィルム、テープ等の薄葉材や板材、スペーサ等を対向面相互の間にシール材(図示省略)として介装することで形成しても良い。また、トンネル状部5の半円形状部分の直径は約5〜10mm程度の範囲で形成されるが、そのサイズは特に限定されるものではない。 The size of the gap S can be appropriately determined in the range of, for example, about 0.05 to 0.5 mm, but the size and the thickness of the first steel plate 1 and the second steel plate 2 are all particularly limited. It's not a thing. Further, instead of forming the gap S by protrusions, a sheet, film, tape or other thin leaf material, plate material, spacer or the like having the same thickness as the desired gap size is placed between the facing surfaces as a sealing material (not shown). It may be formed by interposing as. The diameter of the semicircular portion of the tunnel-shaped portion 5 is formed in the range of about 5 to 10 mm, but the size is not particularly limited.

前板3Aは第二鋼板2の上面における第一鋼板1の前端面に密着させて載置され、後板3Bは同じく第二鋼板2の上面における第一鋼板1の後端面に密着させて載置される。また、前板3Aに設けるシールドガス送給口5aには、図示省略しているシールドガスの貯留タンクからパイプやホースなどを介して供給されるガス管との接続を容易にするために、予め接続用のパイプあるいはジョイント等を溶接や接着材によって取り付けておいても良い。前板3Aと後板3Bの設置によって、シールドガスが矢印Aで示すようにトンネル状部5を経て隙間S内に送り込まれ、第二鋼板2の上面における第一鋼板1の左右端部に形成されたガス排出部6(6a、6b)から矢印B1、B2で示すように排出されるような流路が形成される。なお、図では右側のガス排出部6bのみ符号で図示している。 The front plate 3A is placed in close contact with the front end surface of the first steel plate 1 on the upper surface of the second steel plate 2, and the rear plate 3B is placed in close contact with the rear end surface of the first steel plate 1 on the upper surface of the second steel plate 2 as well. Placed. Further, the shield gas supply port 5a provided on the front plate 3A is previously connected to a gas pipe supplied from a shield gas storage tank (not shown) via a pipe, a hose, or the like. Connection pipes or joints may be attached by welding or adhesive. By installing the front plate 3A and the rear plate 3B, the shield gas is sent into the gap S through the tunnel-shaped portion 5 as shown by the arrow A, and is formed at the left and right ends of the first steel plate 1 on the upper surface of the second steel plate 2. A flow path is formed so as to be discharged from the gas discharge unit 6 (6a, 6b) as shown by arrows B1 and B2. In the figure, only the gas discharge portion 6b on the right side is indicated by a reference numeral.

なお、用いるレーザ溶接装置は、レーザ発振器、各種ミラー、集光レンズ等を含む光学系、レーザ溶接ヘッド7を目的の任意の位置に移動する溶接ヘッド駆動装置、被溶接材の形状や溶接位置・状態などを監視する画像認識処理装置、温度センサ等の各種センサ類、及び適切な加工プログラムや各種データが保存され、画像認識処理装置の認識結果等に基づいてレーザ発振器や溶接ヘッド駆動装置などを制御する制御装置などを備えた当業者において周知ないしは既知のものから適宜選択して利用できる。 Incidentally, the laser welding apparatus used, a laser oscillator, various mirrors, an optical system including a condenser lens and the like, the welding head driving device for moving the laser welding heads 7 at any desired position, shape and welding positions of the workpieces・ Image recognition processing equipment that monitors the status, various sensors such as temperature sensors, appropriate processing programs and various data are saved, and laser oscillators, welding head drive equipment, etc. are stored based on the recognition results of the image recognition processing equipment. It can be appropriately selected and used from those known or known by those skilled in the art equipped with a control device for controlling the above.

また、第一鋼板1と第二鋼板2は双方共に亜鉛メッキ鋼板である必要はなく、何れか一方のみが亜鉛メッキ鋼板の場合でも同様の作用効果が得られる。例えば、一方が亜鉛メッキ鋼板で、他方がメッキ膜のない鋼板、あるいは母材が他の金属からなる板材であっても差し支えない。さらに、亜鉛メッキ鋼板は、鋼板の片面にのみ亜鉛メッキが施されたものであっても差し支えない。但し、その片面にのみ亜鉛メッキが施された鋼板を両面にメッキ膜の施されていない鋼板と重ね合わせ溶接する場合は、メッキが施されている面を相手側に対向させて重ね合わせ溶接することで本発明の効果が得られる。 Further, both the first steel plate 1 and the second steel plate 2 do not have to be galvanized steel plates, and the same effect can be obtained even when only one of them is a galvanized steel plate. For example, one may be a galvanized steel sheet and the other may be a steel sheet without a plating film, or a sheet metal whose base material is made of another metal. Further, the galvanized steel sheet may be galvanized on only one side of the steel sheet. However, when a steel plate with galvanized only on one side is overlaid and welded with a steel plate without a plating film on both sides, the plated side is opposed to the other side and overlaid and welded. As a result, the effect of the present invention can be obtained.

また、重ね合わせる鋼板の枚数は3枚以上であっても良く、そのようなケースで、重ね合わせる鋼板相互の間にそれぞれ隙間を形成し、各隙間にシールドガスを送給する必要がある場合には、例えばトンネル状部5に位置させた3枚以上の鋼板の内、重合方向の両端を除く鋼板にスリット状の貫通穴を設ける等の手法によって、容易に各隙間にシールドガスを送給することができる。また、重合枚数が3枚の場合は、図3に示す第一鋼板1及び第二鋼板2の双方にトンネル状部5を形成する手法を用い、その両者の間に3枚目の鋼板を重合させることによって、第一鋼板の側の隙間と第二鋼板の側の隙間の双方にシールドガスを送給することもできる。 Further, the number of steel plates to be stacked may be three or more, and in such a case, when it is necessary to form gaps between the steel plates to be stacked and to supply shield gas to each gap. Easily supplies shield gas to each gap by, for example, providing a slit-shaped through hole in a steel plate excluding both ends in the polymerization direction among three or more steel plates located in the tunnel-shaped portion 5. be able to. When the number of sheets to be polymerized is 3, a method of forming a tunnel-shaped portion 5 on both the first steel plate 1 and the second steel plate 2 shown in FIG. 3 is used, and a third steel plate is polymerized between the two. By doing so, the shield gas can be supplied to both the gap on the side of the first steel plate and the gap on the side of the second steel plate.

上記のように、実施の形態1によれば、シールドガス送給部から第一鋼板1と第二鋼板2との間の隙間Sに送り込まれたシールドガスが、溶接予定箇所Cを包含する隙間Sに充満されてガス排出部6の方向に通流された状態でレーザ溶接するようにしたことで、シールドガスをレーザビームが照射される溶接面表面だけでなく、対向された鋼板間の隙間S部分の全体に行きわたらすことができるので、鋼板相互の対向面にメッキ膜を有する場合における鋼板間の隙間S部分の溶接部についても、低融点・低沸点の例えば亜鉛メッキ層から蒸発したメッキ金属を含むメッキ蒸気と溶融金属との反応が緩和され、ブローホールなどの欠陥が抑制され、錆や焼けの発生も抑制された高品質な溶接を実現できる。 As described above, according to the first embodiment, the shield gas sent from the shield gas feeding unit into the gap S between the first steel plate 1 and the second steel plate 2 includes the gap C including the planned welding portion C. By performing laser welding in a state of being filled with S and flowing in the direction of the gas discharge portion 6, the shield gas is applied not only to the surface of the welded surface to which the laser beam is irradiated, but also to the gap between the opposing steel plates. Since it can be spread over the entire S portion, the welded portion of the gap S portion between the steel plates when the plating films are provided on the facing surfaces of the steel plates also evaporates from, for example, a zinc plating layer having a low melting point and a low boiling point. It is possible to realize high-quality welding in which the reaction between the plated steam containing the plated metal and the molten metal is alleviated, defects such as blow holes are suppressed, and the occurrence of rust and burning is also suppressed.

また、シールドガス送給部は、第一鋼板1または第二鋼板2を、双方の隙間Sが広がるように湾曲させたトンネル状部5によって形成したので、シールドガス送給部の成形工程が簡素であり簡単に実施できる。
また、トンネル状部5は、第一鋼板1または第二鋼板2の図における前後方向の板幅の略全長に亘って形成したので、隙間Sの全体に確実にシールドガスを送給できる。
また、溶接方向Dに対して、トンネル状部5は直交する方向に伸びるように形成したことで、溶接の起点部分から終点部分まで隙間S内の溶接空間を常時シールドガスで充満させることができる。
Further, since the shield gas feeding section is formed by forming the first steel plate 1 or the second steel plate 2 by a tunnel-shaped portion 5 curved so as to widen the gap S between the two, the forming process of the shield gas feeding section is simplified. It is easy to carry out.
Further, since the tunnel-shaped portion 5 is formed over substantially the entire length of the plate width in the front-rear direction in the drawing of the first steel plate 1 or the second steel plate 2, the shield gas can be reliably supplied to the entire gap S.
Further, since the tunnel-shaped portion 5 is formed so as to extend in a direction orthogonal to the welding direction D, the welding space in the gap S from the starting point portion to the ending point portion of the welding can be constantly filled with the shield gas. ..

実施の形態2.
図5は本発明の実施の形態2に係るメッキ鋼板の重ね溶接方法における被溶接材の重ね合わせ部分とシール部材の配置を概念的に示す図であり、(a)は前面側、(b)は側面側、(c)は背面側である。図6は図5の変形例になる被溶接材の重ね合わせ部分とシール部材の配置を概念的に示す図であり、(a)は前面側、(b)は側面側、(c)は背面側である。なお、この実施の形態2は図4に示すシール部材3としてのブロック状の前板3Aと後板3Bの有する機能、即ち、トンネル状部5から送給されたシールドガスが隙間Sにおける溶接予定箇所Cを包含する領域に充満されるように該シールドガスの流路を規制すると共に、その流路の下流側端部に、流入されたシールドガスを外部に排出するガス排出部6(6a、6b)を形成する機能を、前面シール材3Cと後面シール材3Dからなる、実施の形態1とは形状等の異なるシール部材31によって構成するようにしたものである。
Embodiment 2.
5A and 5B are views conceptually showing the arrangement of the overlapped portion of the material to be welded and the sealing member in the method of lap welding the plated steel sheet according to the second embodiment of the present invention, in which FIG. 5A is the front side and FIG. Is the side surface side, and (c) is the back surface side. 6A and 6B are views conceptually showing the arrangement of the overlapped portion of the material to be welded and the sealing member, which is a modification of FIG. 5, in which FIG. 6A is the front side, FIG. 6B is the side surface, and FIG. 6C is the back surface. On the side. In the second embodiment, the functions of the block-shaped front plate 3A and the rear plate 3B as the sealing member 3 shown in FIG. 4, that is, the shield gas supplied from the tunnel-shaped portion 5 is scheduled to be welded in the gap S. The gas discharge unit 6 (6a, 6a,) which regulates the flow path of the shield gas so as to fill the area including the portion C and discharges the shield gas flowing into the downstream end of the flow path to the outside. The function of forming 6b) is configured by a sealing member 31 having a front sealing material 3C and a rear sealing material 3D, which are different in shape from the first embodiment.

図において、前面シール材3Cは、隙間Sと実質的に同一の厚みを有する長方形状のテープ材からなり、隙間Sを介して重合されるように配設される第一鋼板1と第二鋼板2との対向面における第一鋼板1の前端部内側に沿って介装されている。後面シール材3Dは前面シール材3Cと実質的に同一の厚みと長さを有するテープ材の中央部分に、トンネル状部5の内周面を気密に塞ぎ得る半円状の後面閉塞部3sが一体的に形成された部材からなり、第一鋼板1と第二鋼板2との対向面における第一鋼板1の後端部内側に沿って介装されている。なお、図6の変形例に示すように、トンネル状部5Aを、その後部側が閉塞されている形状とした場合には、後面閉塞部3sの形成が不要となるので、後面シール材3Dをより容易に形成、設置することが可能となる。 In the figure, the front sealing material 3C is made of a rectangular tape material having substantially the same thickness as the gap S, and is arranged so as to be polymerized through the gap S. It is interposed along the inside of the front end portion of the first steel plate 1 on the surface facing the 2. The rear sealing material 3D has a semicircular rear closing portion 3s that can airtightly close the inner peripheral surface of the tunnel-shaped portion 5 in the central portion of the tape material having substantially the same thickness and length as the front sealing material 3C. It is composed of integrally formed members, and is interposed along the inside of the rear end portion of the first steel plate 1 on the facing surface between the first steel plate 1 and the second steel plate 2. As shown in the modified example of FIG. 6, when the tunnel-shaped portion 5A has a shape in which the rear portion side is closed, the formation of the rear surface closing portion 3s becomes unnecessary, so that the rear surface sealing material 3D is used. It can be easily formed and installed.

前面シール材3C及び後面シール材3Dの材料としては、シール部材31が隙間Sを形成する手段を兼ねるように構成する場合は、レーザ溶接時の輻射熱や伝導熱によって変質したり周囲に害を与えることの無い例えば、鋼板、ステンレス鋼板、あるいはフッ素ゴムやシリコンゴムなどの耐熱性ゴム材等、一般的に使用されている耐熱性の材料を単独であるいは複数の素材を組み合わせて用いることができる。なお、隙間Sを形成する手段とは別に設ける場合は、例えば、前述の耐熱性ゴム材などのゴム弾性を有する材料、フッ素樹脂材などの可撓性を有する材料などによって形成された、シート、フィルム、テープ等の薄葉材あるいはペースト状充填材など可塑性を有する材料などを好適に用いることができる。 When the sealing member 31 is configured to also serve as a means for forming the gap S as the material of the front sealing material 3C and the rear sealing material 3D, it is altered by radiant heat or conduction heat during laser welding or causes damage to the surroundings. For example, commonly used heat-resistant materials such as steel plates, stainless steel plates, and heat-resistant rubber materials such as fluororubber and silicon rubber can be used alone or in combination of a plurality of materials. When provided separately from the means for forming the gap S, for example, a sheet formed of a material having rubber elasticity such as the above-mentioned heat-resistant rubber material, a flexible material such as a fluororesin material, or the like. A thin leaf material such as a film or tape or a plastic material such as a paste-like filler can be preferably used.

また、前面シール材3Cと後面シール材3Dは、第一鋼板1と第二鋼板2の重ね溶接の完了後、そのまま残しておくこともできるが、残した場合に支障がある場合には取外しを容易にするために、前面シール材3Cあるいは後面シール材3Dの一部を第一鋼板1と第二鋼板2との重ね合わせ部の外側に突出させ、その突出部分に取外しの係合部分となる爪や舌片などを一体的に形成しておくことで、取外し工程を容易にできる。その他の構成は実施の形態1と同様である。 Further, the front sealing material 3C and the rear sealing material 3D can be left as they are after the lap welding of the first steel plate 1 and the second steel plate 2 is completed, but if there is a problem if they are left, they should be removed. In order to facilitate, a part of the front sealing material 3C or the rear sealing material 3D is projected to the outside of the overlapping portion of the first steel plate 1 and the second steel plate 2, and the protruding portion serves as a detachable engaging portion. By integrally forming the nails and tongue pieces, the removal process can be facilitated. Other configurations are the same as those in the first embodiment.

前記のように形成された被溶接材は、実施の形態1と同様にシールドガス送給口5aからシールドガス、例えばArとNの混合ガスをトンネル状部5またはトンネル状部5Aに送り込み、溶接予定箇所Cを包含する隙間Sを経てガス排出部6(6a、6b)から排出させることで隙間S内の溶接空間をシールドガスで充満させた後、シールドガスの送給を続けながら図1のレーザ溶接ヘッド7からレーザビーム8を溶接予定箇所Cに沿って照射することで重ね溶接が行われる。レーザビームの熱によって亜鉛メッキ膜から発生したメッキ蒸気は、トンネル状部5(またはトンネル状部5A)から流入されたシールドガスのガス排出部6方向への流れによって、隙間S内における母材の溶融部分からガス排出部6の方向に移動され、例えば溶融池の母材金属との反応が緩和され、高品質な溶接面が形成される。 The material to be welded formed as described above sends a shield gas, for example, a mixed gas of Ar and N 2 from the shield gas supply port 5a to the tunnel-shaped portion 5 or the tunnel-shaped portion 5A as in the first embodiment. After filling the welding space in the gap S with the shield gas by discharging the gas from the gas discharge portions 6 (6a, 6b) through the gap S including the planned welding portion C, FIG. 1 while continuing to supply the shield gas. Overlay welding is performed by irradiating the laser beam 8 from the laser welding head 7 of the above along the planned welding location C. The plating steam generated from the galvanized film by the heat of the laser beam is caused by the flow of the shield gas flowing from the tunnel-shaped portion 5 (or the tunnel-shaped portion 5A) in the gas discharge portion 6 direction of the base metal in the gap S. It is moved from the molten portion toward the gas discharge portion 6, for example, the reaction with the base metal of the molten pool is relaxed, and a high-quality welded surface is formed.

上記のように、実施の形態2によれば、実施の形態1と同様の効果に加えて、シールドガス送給部から送給されたシールドガスが隙間Sにおける溶接予定箇所Cを包含する領域に充満されるように該シールドガスの流路を規制すると共に、前記流路の下流側端部に、流入されたシールドガスを外部に排出するガス排出部6を形成するシール部材31を、前面シール材3Cと後面シール材3Dによって構成したので、シール部材31の設置が容易となる。また、第一鋼板1と第二鋼板2の隙間Sの形成手段をシール部材31が兼ねるように構成した場合には、隙間Sを形成するための押し型やプレス工程を省くことができるので、加工コストを削減することできるなどの効果が得られる。また、図6の変形例のように、トンネル状部5Aをその後部側を閉塞した形状にした場合には、後面閉塞部3sの形成が不要となり、後面シール材3Dをより容易に形成、設置することが可能となる。 As described above, according to the second embodiment, in addition to the same effect as that of the first embodiment, the shield gas supplied from the shield gas supply unit covers the region including the planned welding portion C in the gap S. A front seal is provided with a seal member 31 that regulates the flow path of the shield gas so as to be filled and forms a gas discharge portion 6 that discharges the inflowing shield gas to the outside at the downstream end portion of the flow path. Since it is composed of the material 3C and the rear surface sealing material 3D, the sealing member 31 can be easily installed. Further, when the sealing member 31 is configured to form the means for forming the gap S between the first steel plate 1 and the second steel plate 2, the stamping die and the pressing process for forming the gap S can be omitted. Effects such as reduction of processing cost can be obtained. Further, when the tunnel-shaped portion 5A has a shape in which the rear portion side is closed as in the modified example of FIG. 6, the formation of the rear surface closing portion 3s becomes unnecessary, and the rear surface sealing material 3D is more easily formed and installed. It becomes possible to do.

上記のように、本発明に係るメッキ鋼板の溶接方法によれば、溶接時に発生するメッキ蒸気を好適に除去してブローホールやスパッタ等溶接欠損の発生が抑制され、さらに第一鋼板1と第二鋼板2の隙間S部分の溶接部位に関しても焼けや錆の発生を防止でき、より高精度な溶接が可能となるので、例えば、自動車車体の構造部材や建築物の資材などに利用される亜鉛メッキ鋼板等の表面処理鋼板の溶接に幅広く適用することが可能である。 As described above, according to the method for welding a plated steel sheet according to the present invention, the plating vapor generated during welding is suitably removed to suppress the occurrence of welding defects such as blow holes and spatter, and the first steel sheet 1 and the first steel sheet 1 and the first. (2) Burning and rust can be prevented from occurring at the welded portion of the gap S portion of the steel plate 2, and more accurate welding is possible. Therefore, for example, zinc used for structural members of automobile bodies and materials for buildings. It can be widely applied to welding surface-treated steel sheets such as plated steel sheets.

なお、本発明は、その発明の範囲内において、実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。例えば、実施の形態ではレーザビームによって溶接する例を示したが、これに限定されるものではなく、例えば電子ビーム溶接など、他の非接触溶接の場合でも同様の作用効果が得られる。また、メッキ鋼板は亜鉛メッキに限定されるものではない。 In the present invention, the embodiments can be freely combined, and the embodiments can be appropriately modified or omitted within the scope of the invention. For example, in the embodiment, an example of welding by a laser beam is shown, but the present invention is not limited to this, and the same effect can be obtained in the case of other non-contact welding such as electron beam welding. Further, the plated steel sheet is not limited to galvanizing.

1 第一鋼板、2 第二鋼板、3 シール部材、3A 前板、3B 後板、
31 シール部材、3C 前面シール材、3D 後面シール材、3s 後面閉塞部、
5、5A トンネル状部、5a シールドガス送給口、6 ガス排出部、6a ガス排出部、6b ガス排出部、7 レーザ溶接ヘッド、8 レーザビーム、C 溶接予定箇所、D 溶接方向、S 隙間。




1 1st steel plate, 2nd steel plate, 3 sealing member, 3A front plate, 3B rear plate,
31 Sealing member, 3C Front sealing material, 3D Rear sealing material, 3s Rear closing part,
5, 5A tunnel-shaped part, 5a shield gas supply port, 6 gas discharge part, 6a gas discharge part, 6b gas discharge part, 7 laser welding head, 8 laser beam, C planned welding location, D welding direction, S gap.




Claims (5)

隙間を介して重合された第一鋼板と第二鋼板との対向面の少なくとも一方にメッキ被膜が設けられたワークを非接触溶接する重ね溶接方法であって、
前記隙間にシールドガスを送り込むためのシールドガス送給部を、前記第一鋼板と前記第二鋼板との少なくとも一方に予め形成し、
前記第一鋼板と前記第二鋼板との間に、前記シールドガス送給部から送給されたシールドガスが前記隙間における溶接予定箇所を包含する領域に充満されるように該シールドガスの流路を規制すると共に、前記流路の下流側に、流入された前記シールドガスを外部に排出するガス排出部を形成するシール部材を設け、
前記シールドガス送給部は、前記第一鋼板または前記第二鋼板を前記隙間が広がるように湾曲させて形成されたトンネル状部からなり、
前記シールドガス送給部から前記隙間にシールドガスを流入させながら、前記溶接予定箇所を溶接することを特徴とするメッキ鋼板の重ね溶接方法。
It is a lap welding method in which a workpiece having a plating film provided on at least one of the facing surfaces of the first steel plate and the second steel plate polymerized through a gap is non-contact welded.
A shield gas supply unit for feeding the shield gas into the gap is formed in advance on at least one of the first steel plate and the second steel plate.
A flow path of the shield gas between the first steel plate and the second steel plate so that the shield gas supplied from the shield gas supply unit fills the area including the planned welding portion in the gap. A seal member is provided on the downstream side of the flow path to form a gas discharge portion for discharging the inflowed shield gas to the outside.
The shield gas feeding portion includes a tunnel-shaped portion formed by bending the first steel plate or the second steel plate so as to widen the gap.
A method for lap welding a plated steel sheet, which comprises welding a planned welding portion while flowing a shield gas from the shield gas feeding portion into the gap.
前記トンネル状部は、前記第一鋼板または前記第二鋼板における前後方向の板幅の全長に亘って形成したことを特徴とする請求項1に記載のメッキ鋼板の重ね溶接方法。 The tunnel-like portion, said first steel plate or lap welding method of plating steel sheet serial placement in claim 1, characterized in that formed over the entire length of the longitudinal direction of the plate width of the second steel plate. 前記トンネル状部は、前記板幅の方向の一端部側が閉塞されていることを特徴とする請求項2に記載のメッキ鋼板の重ね溶接方法。 The tunnel-like portion, lap welding method of plating steel sheet placing serial to claim 2 having one end side in the direction of the plate width, characterized in that it is closed. 溶接方向に対して、前記トンネル状部は直交する方向に伸びるように形成したことを特徴とする請求項1から請求項3までの何れか1項に記載のメッキ鋼板の重ね溶接方法。 Against the welding direction, the tunnel-like portion is lap welding method of plating steel sheet according to any one of until claim 1 or we claim 3, characterized in that it has formed to extend in orthogonal directions. 前記シール部材は、重合された前記第一鋼板と前記第二鋼板との対向面に挟み込むように介装されて、前記隙間の形成を担っていることを特徴とする請求項1から請求項4までの何れか1項に記載のメッキ鋼板の重ね溶接方法。 Claims 1 to 4 are characterized in that the sealing member is interposed so as to be sandwiched between the laminated first steel plate and the second steel plate, and is responsible for forming the gap. lap welding method of plating steel sheet according to any one of until.
JP2017019176A 2017-02-06 2017-02-06 Overlay welding method for plated steel sheets Active JP6818575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017019176A JP6818575B2 (en) 2017-02-06 2017-02-06 Overlay welding method for plated steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019176A JP6818575B2 (en) 2017-02-06 2017-02-06 Overlay welding method for plated steel sheets

Publications (3)

Publication Number Publication Date
JP2018126741A JP2018126741A (en) 2018-08-16
JP2018126741A5 JP2018126741A5 (en) 2019-11-14
JP6818575B2 true JP6818575B2 (en) 2021-01-20

Family

ID=63172583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019176A Active JP6818575B2 (en) 2017-02-06 2017-02-06 Overlay welding method for plated steel sheets

Country Status (1)

Country Link
JP (1) JP6818575B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334725B2 (en) * 2000-03-30 2009-09-30 富士重工業株式会社 Laminated laser welding structure of plated steel sheets
US6932879B2 (en) * 2002-08-13 2005-08-23 Edison Welding Institute Method of weldbonding
JP2007275982A (en) * 2006-04-12 2007-10-25 Nissan Motor Co Ltd Laser welding method and clearance straightening device in base metal for laser welding
US9770790B2 (en) * 2015-07-30 2017-09-26 Ford Global Technologies, Llc Metal sheet laser welding clamp
KR101755464B1 (en) * 2015-07-31 2017-07-07 현대자동차 주식회사 Roof panel press jig for roof laser brazing system

Also Published As

Publication number Publication date
JP2018126741A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP4209326B2 (en) Method and apparatus for overlap welding two coated metal sheets with high energy density beams
US11607747B2 (en) Method of laser beam localized-coating
US5183992A (en) Laser welding method
WO2013001934A1 (en) Hybrid welding method for t-joint using laser beam welding and arc welding
WO2004002670A1 (en) Material for welding and weld product
MX2012015278A (en) Laser-based lap welding of sheet metal components using laser induced protuberances to control gap.
EP3117951B1 (en) Laser welding method
JP6302314B2 (en) Welding process, welding system, and welded article
WO2018142994A1 (en) Junction structure
JP6031370B2 (en) Brazing apparatus and brazing method
JP6818575B2 (en) Overlay welding method for plated steel sheets
US10421153B2 (en) Laser welding method and laser welding device
JP2011161452A (en) Laser beam welding method and laser beam welding apparatus
JP5177745B2 (en) Laminated laser welding method of plated steel sheet and lap laser welding structure of plated steel sheet
JP6202257B2 (en) Narrow groove welding equipment
JP2018126741A5 (en)
JP2006167676A (en) Method and apparatus for applying sealing material to brazed/joined part
JP5107883B2 (en) Sliding metal for electrogas arc welding
JP4740601B2 (en) Drum can filling welding method
JP2021059772A (en) Manufacturing method of laminate molded product and laminate molded product
JP4552647B2 (en) Laser brazing machine
JP6842401B2 (en) Manufacturing method of laminated model
JP2009050914A (en) Welding method
JP6730523B2 (en) Spatter scattering prevention device and flash butt welding machine equipped with the spatter scattering prevention device
JP2009255180A (en) Lap laser welding structure of plated steel sheet

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R151 Written notification of patent or utility model registration

Ref document number: 6818575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151