JP6817918B2 - Sound insulation floor structure construction method, design method and building sound insulation floor structure - Google Patents

Sound insulation floor structure construction method, design method and building sound insulation floor structure Download PDF

Info

Publication number
JP6817918B2
JP6817918B2 JP2017175667A JP2017175667A JP6817918B2 JP 6817918 B2 JP6817918 B2 JP 6817918B2 JP 2017175667 A JP2017175667 A JP 2017175667A JP 2017175667 A JP2017175667 A JP 2017175667A JP 6817918 B2 JP6817918 B2 JP 6817918B2
Authority
JP
Japan
Prior art keywords
floor
small split
sound insulation
floor board
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017175667A
Other languages
Japanese (ja)
Other versions
JP2019052435A (en
Inventor
小田 康弘
康弘 小田
勝夫 井上
勝夫 井上
謙治 内藤
謙治 内藤
山崎 浩
浩 山崎
村瀬 安信
安信 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
JSP Corp
Penta Ocean Construction Co Ltd
Original Assignee
Inoac Corp
JSP Corp
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp, JSP Corp, Penta Ocean Construction Co Ltd filed Critical Inoac Corp
Priority to JP2017175667A priority Critical patent/JP6817918B2/en
Publication of JP2019052435A publication Critical patent/JP2019052435A/en
Application granted granted Critical
Publication of JP6817918B2 publication Critical patent/JP6817918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Floor Finish (AREA)

Description

本発明は、建物の床スラブの上部に防振支承を介して浮床層を配置する遮音界床構造の構築方法、設計方法および建物の遮音界床構造に関する。 The present invention relates to a method for constructing a sound insulation floor structure in which a floating floor layer is arranged on an upper part of a floor slab of a building via a vibration-proof bearing, a design method, and a sound insulation floor structure of a building.

従来、建物の界床の遮音性向上のために、乾式二重床工法、直床工法などが集合住宅で使用されているが、床衝撃音の遮断性能が十分でなく、分譲される新築マンションにおいても、上階の入居者による生活音や歩行音で苦情が生じている。たとえば、平成25年度の国土交通省による「マンション総合調査」では、アンケート先の管理組合の回答において、全2324棟のうち34.3%の797棟ものマンションで「生活音」のトラブルがあったのとの結果が報告されている。これは平成20年度の調査では37.1%なので、若干の改善はあるものの、依然として高い率での生活音苦情があり、マンションにおける界床の遮音性向上は社会的課題の一つとなっている。 Conventionally, in order to improve the sound insulation of the boundary floor of a building, the dry double floor construction method, the straight floor construction method, etc. have been used in apartment houses, but the floor impact sound insulation performance is not sufficient, and new condominiums are sold. Even in the above, complaints have been made about the sounds of living and walking by the residents on the upper floors. For example, in the "Comprehensive Survey of Condominiums" by the Ministry of Land, Infrastructure, Transport and Tourism in 2013, according to the response from the management association of the questionnaire, 34.3% of the total 2324 buildings, 797 condominiums, had problems with "living sounds". The result of is reported. This is 37.1% in the 2008 survey, so although there is some improvement, there are still high rates of complaints about living noise, and improving the sound insulation of the floor in condominiums is one of the social issues.

特許文献1は、天井スラブの下方に天井板を取り付ける二重天井構造において、天井スラブと天井板との間の空気層の厚みを100mm以下とし、天井板の面密度を1.28〜2.4kg/m2とし、この天井板の板厚を20mm〜25mmとした遮音二重天井構造を提案する(請求項1)。 Patent Document 1 describes in a double ceiling structure in which a ceiling plate is attached below a ceiling slab, the thickness of the air layer between the ceiling slab and the ceiling plate is 100 mm or less, and the surface density of the ceiling plate is 1.28 to 2. We propose a sound-insulating double ceiling structure in which the ceiling plate is 4 kg / m 2 and the thickness of the ceiling plate is 20 mm to 25 mm (claim 1).

特許第4736437号公報Japanese Patent No. 4736437

集合住宅における床衝撃音の対策には従来から、ロックウールの上にコンクリート製の浮床床板を設置する「湿式浮床工法」が実践されてきた。しかし、日本建築学会編「建物の床衝撃音防止設計」(2009、技報堂出版)にあるように、集合住宅では耐荷重の制限から浮き床のコンクリート厚を十分に厚くすることができないために、防振系の基本固有振動数が高くなり、重量衝撃音でLr数の決定周波数帯域となることが多い63Hz帯域の音を十分に低減できない場合がある、とされている。このように厚さが十分に厚くない場合には、重量衝撃音に対する湿式浮床構造の遮音効果は不充分であるため、浮床構造についてさらなる改善が求められている。 As a countermeasure against floor impact noise in apartment houses, the "wet floating floor construction method" in which concrete floating floor boards are installed on rock wool has been practiced. However, as described in "Building Floor Impact Sound Prevention Design" (2009, Gihodo Publishing) edited by the Japan Society for Architecture, the concrete thickness of the floating floor cannot be made sufficiently thick due to the load capacity limitation in apartment buildings. It is said that the basic natural frequency of the anti-vibration system becomes high, and it may not be possible to sufficiently reduce the sound in the 63 Hz band, which is often the frequency band for determining the Lr number due to heavy impact sound. When the thickness is not sufficiently thick as described above, the sound insulation effect of the wet floating floor structure against the heavy impact sound is insufficient, and further improvement of the floating floor structure is required.

特許文献1は、二重天井構造において天井スラブと天井板との間の空気層の厚み、および、天井板の面密度・板厚を最適化することで、階上の低音域における重量衝撃音(63Hz帯域近傍)に対する遮音性能を向上させているが、建物の床スラブの上部に浮床を配置する構造ではない。 Patent Document 1 describes heavy impact sound in the bass range upstairs by optimizing the thickness of the air layer between the ceiling slab and the ceiling plate in the double ceiling structure, and the surface density and plate thickness of the ceiling plate. Although the sound insulation performance for (near the 63Hz band) has been improved, it is not a structure in which a floating floor is placed above the floor slab of the building.

本発明は、上述のような従来技術の問題に鑑み、建物の床スラブの上部に浮床層を配置した構造により界床での遮音性向上を図る場合に重量衝撃音に対する界床遮音性能を確実に確保可能な遮音界床構造の構築方法、設計方法および建物の遮音界床構造を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention ensures the boundary floor sound insulation performance against heavy impact sound when the sound insulation property on the boundary floor is improved by the structure in which the floating floor layer is arranged on the upper part of the floor slab of the building. It is an object of the present invention to provide a method for constructing a sound insulation floor structure, a design method, and a sound insulation floor structure for a building.

上記目的を達成するための遮音界床構造の構築方法は、建物の床スラブの上部に防振支承を介して浮床層を配置することで重量床衝撃音に対する界床の遮音性向上を図るための遮音界床構造の構築方法であって、前記浮床層を構成する床板を小割形状にして複数枚の小割床板から構成し、前記浮床層として前記複数枚の小割床板を隣接して密に配置し前記小割床板の固有振動数fが以下の式(1)、前記小割床板の密度ρが1500〜2500kg/m3、前記小割床板の厚さh,縦長さa,横長さbがh≧0.05m,a≦1.5m,b≦1.5mをそれぞれ満たすように前記小割床板の寸法・密度・曲げ剛性を決定し、前記決定された寸法・密度・曲げ剛性を有する小割床板を設置することを特徴とする。
ただし、前記小割床板の縦長さ、横長さ、厚さの各寸法をa、b、h(m)とし、前記床板の材質のヤング率をE(N/m2)、密度をρ(kg/m3)とすると、前記小割床板の固有振動数(最小値)は以下の式(2)で与えられる。

Figure 0006817918
The method of constructing the sound insulation boundary floor structure to achieve the above purpose is to improve the sound insulation of the boundary floor against heavy floor impact noise by arranging a floating floor layer on the upper part of the floor slab of the building via a vibration isolation support. In the method for constructing the sound insulation boundary floor structure, the floor plates constituting the floating floor layer are formed into small split shapes and composed of a plurality of small split floor boards, and the plurality of small split floor boards are adjacent to each other as the floating floor layer. densely arranged, the natural frequency f of the following formula small split floorboard (1), the density ρ is 1500~2500kg / m 3 small split floor, the thickness h of the small split floor, vertical length a, The dimensions, density, and bending rigidity of the small split floor board are determined so that the lateral length b satisfies h ≧ 0.05 m, a ≦ 1.5 m, and b ≦ 1.5 m, respectively, and the small split floor board has the determined dimensions, density, and bending rigidity. It is characterized by installing small split floor boards.
However, the vertical length, horizontal length, and thickness of the small split floor board are set to a, b, and h (m), the Young's modulus of the material of the floor board is E (N / m 2 ), and the density is ρ (kg). If / m 3 ), the natural frequency (minimum value) of the small split floor plate is given by the following equation (2).
Figure 0006817918

この遮音界床構造の構築方法によれば、建物の床スラブの上部に浮床層を配置した構造により界床での遮音性向上を図る場合に浮床層を構成する小割床板の固有振動数fを63Hz帯域よりも高周波側にすることができ、重量衝撃音に対する界床遮音性能を確実に確保することができる。 According to the method for constructing the sound insulation boundary floor structure, the natural frequency f of the small split floor plate constituting the floating floor layer when the sound insulation on the boundary floor is improved by the structure in which the floating floor layer is arranged on the floor slab of the building. Can be set to a higher frequency side than the 63 Hz band, and the floor sound insulation performance against heavy impact noise can be reliably ensured.

上記遮音界床構造の構築方法において、前記小割床板の寸法・材質を次の式(3)を満たすように決定することで、小割床板の固有振動数fを125Hz帯域よりも高周波側にすることができる。

Figure 0006817918
In the method for constructing the sound insulation boundary floor structure, the natural frequency f of the small split floor board is set to a higher frequency side than the 125 Hz band by determining the dimensions and materials of the small split floor board so as to satisfy the following equation (3). can do.
Figure 0006817918

また、前記小割床板を合成床板または中空床板から構成する場合、日本建築学会編「建物の床衝撃音防止設計」(2009、技報堂出版)にあるように、前記合成床板または前記中空床板の等価厚さheを次の式(4)から求め、式(2)においてhに前記求めたheを代入し、ヤング率E、密度ρを前記合成床板または前記中空床板の値を使用して得られる前記固有振動数fが式(1)を満たすようにすればよい。

Figure 0006817918
ただし、
m:面密度(kg/m2)、E:ヤング率(N/m2)、I:断面2次モーメント(m4) When the small split floor board is composed of a synthetic floor board or a hollow floor board, the equivalent of the synthetic floor board or the hollow floor board is described in "Building Floor Impact Noise Prevention Design" (2009, Gihodo Publishing) edited by the Japan Society for Architecture. The thickness he is obtained from the following formula (4), the obtained he is substituted for h in the formula (2), and the Young ratio E and the density ρ are obtained by using the values of the synthetic floor board or the hollow floor board. The natural frequency f may satisfy the equation (1).
Figure 0006817918
However,
m: Area density (kg / m 2 ), E: Young's modulus (N / m 2 ), I: Moment of inertia of area (m 4 )

また、前記小割床板を合成床板または中空床板から構成する場合、次の式(3)を満たすように前記合成床板または前記中空床板の寸法・面密度・ヤング率・断面2次モーメントを決めることで、小割床板の固有振動数fを125Hz帯域よりも高周波側にすることができる。

Figure 0006817918
When the small split floor board is composed of a synthetic floor board or a hollow floor board, the dimensions, surface density, Young's modulus, and moment of inertia of area of the synthetic floor board or the hollow floor board are determined so as to satisfy the following formula (3). Therefore, the natural frequency f of the small split floor board can be set to a higher frequency side than the 125 Hz band.
Figure 0006817918

また前記隣接する小割床板が互いに分離したままの状態で振動するように前記浮床層が構築されるようにすることが重量衝撃音に対する界床遮音性能を確保する上で好ましい。
Further , it is preferable to construct the floating floor layer so that the adjacent small split floor plates vibrate while being separated from each other in order to secure the boundary floor sound insulation performance against heavy impact sound.

また、前記浮床層の上部に乾式二重床を形成することで、浮床と乾式二重床とによる遮音界床構造を構成できる。 Further, by forming the dry double floor on the upper part of the floating floor layer, a sound insulation boundary floor structure can be constructed by the floating floor and the dry double floor.

また、前記浮床層の上部に直床仕様の床仕上げを形成することで、浮床と直張りフローリングとによる遮音界床構造を構成できる。 Further, by forming a floor finish having a straight floor specification on the upper part of the floating floor layer, a sound insulation boundary floor structure can be constructed by the floating floor and the direct flooring.

上記目的を達成するための建物の遮音界床構造は、建物の床スラブの上部に防振支承を介して浮床層を配置することで重量床衝撃音に対する界床の遮音性向上を図るための遮音界床構造であって、前記浮床層を構成する床板が小割形状にされて複数枚の小割床板から構成され、前記浮床層として前記複数枚の小割床板が隣接して密に配置され、
前記小割床板の固有振動数fが以下の式(1)、前記小割床板の密度ρが1500〜2500kg/m 3 、前記小割床板の厚さh,縦長さa,横長さbがh≧0.05m,a≦1.5m,b≦1.5mをそれぞれ満たすように前記小割床板の寸法・密度・曲げ剛性が決定され、前記決定された寸法・密度・曲げ剛性を有する小割床板が設置されたことを特徴とする
ただし、前記小割床板の縦長さ、横長さ、厚さの各寸法をa、b、h(m)とし、前記床板の材質のヤング率をE(N/m 2 )、密度をρ(kg/m 3 )とすると、前記小割床板の固有振動数(最小値)は以下の式(2)で与えられる

Figure 0006817918

The sound insulation boundary floor structure of the building to achieve the above purpose is to improve the sound insulation of the boundary floor against heavy floor impact noise by arranging a floating floor layer on the upper part of the floor slab of the building via a vibration isolation support. In the sound insulation boundary floor structure, the floor boards constituting the floating floor layer are formed into small splits and are composed of a plurality of small split floor boards, and the plurality of small split floor boards are closely arranged adjacent to each other as the floating floor layer. Being done
The natural frequency f of the small split floor board is the following equation (1), the density ρ of the small split floor board is 1500 to 2500 kg / m 3 , and the thickness h, the vertical length a, and the horizontal length b of the small split floor board are h. The dimensions, density, and flexural rigidity of the small split floor board are determined so as to satisfy ≧ 0.05 m, a ≦ 1.5 m, and b ≦ 1.5 m, respectively, and the small split floor board having the determined dimensions, density, and flexural rigidity is installed. It is characterized by being done .
However, the vertical length, horizontal length, and thickness of the small split floor board are set to a, b, and h (m), the Young's modulus of the material of the floor board is E (N / m 2 ), and the density is ρ (kg). If / m 3 ), the natural frequency (minimum value) of the small split floor plate is given by the following equation (2) .
Figure 0006817918

この遮音界床構造によれば、建物の床スラブの上部に浮床層を配置した構造により界床での遮音性向上を図る場合に浮床層を構成する小割床板の固有振動数fを63Hz帯域よりも高周波側にすることができ、重量衝撃音に対する界床遮音性能を確実に確保することができる。 According to this sound insulation boundary floor structure, the natural frequency f of the small split floor plate constituting the floating floor layer is set to the 63 Hz band when the sound insulation property on the boundary floor is improved by arranging the floating floor layer on the floor slab of the building. It can be set to a higher frequency side than that, and the boundary floor sound insulation performance against heavy impact sound can be surely secured.

上記目的を達成するための遮音界床構造の設計方法は、建物の床スラブの上部に防振支承を介して浮床層を配置することで重量衝撃音に対する界床遮音性向上を図るための遮音界床構造の設計方法であって、前記浮床層を構成する床板を小割形状にし、その小割床板の固有振動数fが以下の式(1)、前記小割床板の密度ρが1500〜2500kg/m 3 、前記小割床板の厚さh,縦長さa,横長さbがh≧0.05m,a≦1.5m,b≦1.5mをそれぞれ満たすように前記小割床板の寸法・密度・曲げ剛性を決定することを特徴とする。
ただし、前記小割床板の縦長さ、横長さ、厚さの各寸法をa、b、h(m)とし、前記床板の材質のヤング率をE(N/m2)、密度をρ(kg/m3)とすると、前記小割床板の固有振動数(最小値)は以下の式(2)で与えられる。

Figure 0006817918


Design method for sound insulation field floor structure for achieving the above object, in order to sound insulating properties improve Sakaiyuka for heavy floor impact sound by arranging floating floor layer through the anti-vibration bearing on the top of the building floor slab In the method for designing the sound insulation boundary floor structure, the floor plate constituting the floating floor layer is formed into a small split shape, and the natural frequency f of the small split floor plate is the following equation (1) , and the density ρ of the small split floor plate is The dimensions of the small split floor board so that 1500 to 2500 kg / m 3 , the thickness h, the vertical length a, and the horizontal length b of the small split floor board satisfy h ≧ 0.05 m, a ≦ 1.5 m, and b ≦ 1.5 m, respectively. It is characterized by determining the density and bending rigidity.
However, the vertical length, horizontal length, and thickness of the small split floor board are set to a, b, and h (m), the Young's modulus of the material of the floor board is E (N / m 2 ), and the density is ρ (kg). If / m 3 ), the natural frequency (minimum value) of the small split floor plate is given by the following equation (2).
Figure 0006817918


この遮音界床構造の設計方法によれば、建物の床スラブの上部に浮床層を配置した構造により界床での遮音性向上を図る場合に浮床層を構成する小割床板の固有振動数fを63Hz帯域よりも高周波側にすることができ、重量衝撃音に対する界床遮音性能を確実に確保することができる。 According to the design method of this sound insulation boundary floor structure, the natural frequency f of the small split floor board constituting the floating floor layer when the sound insulation property on the boundary floor is improved by the structure in which the floating floor layer is arranged on the floor slab of the building. Can be set to a higher frequency side than the 63 Hz band, and the floor sound insulation performance against heavy impact noise can be reliably ensured.

本発明の遮音界床構造の構築方法、設計方法および建物の遮音界床構造によれば、建物の床スラブの上部に浮床層を配置した構造により界床での遮音性を図る場合に重量衝撃音に対する界床遮音性能を確実に確保することができる。 According to the method for constructing the sound insulation boundary floor structure, the design method, and the sound insulation boundary floor structure of the building of the present invention, a heavy impact is achieved when sound insulation is achieved on the boundary floor by a structure in which a floating floor layer is arranged above the floor slab of the building. The boundary floor sound insulation performance against sound can be reliably ensured.

本実施形態による第1の遮音界床構造の要部を示す断面図である。It is sectional drawing which shows the main part of the 1st sound insulation boundary floor structure by this Embodiment. 本実施形態による第2の遮音界床構造の要部を示す断面図である。It is sectional drawing which shows the main part of the 2nd sound insulation boundary floor structure by this Embodiment. 本実施形態の小割床板を構成する板の縦横長さ、高さa,b,h、m、nを所定範囲内で適宜設定して板の固有振動数fを式(5)により計算した計算例を表形式で示す図である。The natural frequency f of the plate was calculated by the equation (5) by appropriately setting the vertical and horizontal lengths, heights a, b, h, m, and n of the plates constituting the small split floor plate of the present embodiment within a predetermined range. It is a figure which shows the calculation example in tabular form. 実際に3m×4m×0.08mの板を所定の支持状態で振動させたときのアクセレランス(加速度/力)の波形を示す図である。It is a figure which shows the waveform of acceleration (acceleration / force) when a plate of 3m × 4m × 0.08m is actually vibrated in a predetermined support state. 3m×4m×0.08m板を浮床層とした場合と、0.9m×1m×0.08m板を浮床層とした場合、JIS A 1418-2:2000に基づくバングマシンによる重量衝撃源での下室の音圧レベルの実験測定結果を示す表とグラフである。When a 3m x 4m x 0.08m board is used as a floating floor layer and when a 0.9m x 1m x 0.08m board is used as a floating floor layer, the lower chamber is subjected to a heavy impact source by a bang machine based on JIS A 1418-2: 2000. It is a table and a graph which show the experimental measurement result of a sound pressure level.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による第1の遮音界床構造の要部を示す断面図である。図2は同じく第2の遮音界床構造の要部を示す断面図である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a main part of the first sound insulation floor structure according to the present embodiment. FIG. 2 is a cross-sectional view showing a main part of the second sound insulation floor structure.

図1のように、第1の遮音界床構造11は、建物のRC(鉄筋コンクリート)床スラブ10の上方に複数の防振材12を介して浮床層13を配置し、さらに、浮床層13の上に複数の支持脚14を配置し、支持脚14の上にパーティクルボード15、フローリング16を配置したもので、浮床と乾式二重床とによる遮音界床構造である。 As shown in FIG. 1, in the first sound insulation boundary floor structure 11, the floating floor layer 13 is arranged above the RC (reinforced concrete) floor slab 10 of the building via a plurality of anti-vibration materials 12, and further, the floating floor layer 13 A plurality of support legs 14 are arranged on the support legs 14, and a particle board 15 and a flooring 16 are arranged on the support legs 14, and the sound insulation boundary floor structure is composed of a floating floor and a dry double floor.

防振材12は、振動低減のための所定高さの矩方体の小片で、たとえば、ダンピング効果により振動を低減する発泡ウレタンエラストマーからなる。このような防振材として、たとえば、株式会社イノアックコーポレーションから販売されているセルダンパー(登録商標)を用いることができる。 The vibration isolator 12 is a small piece of a rectangular body having a predetermined height for reducing vibration, and is made of, for example, a urethane foam elastomer that reduces vibration by a damping effect. As such an anti-vibration material, for example, a cell damper (registered trademark) sold by Inoac Corporation can be used.

支持脚14は、浮床層13の表面に載る防振ゴム14aと、高さ調整の可能な支持ボルト14bと、矩形状平板の受け材14cと、を有する。受け部材14cの上にパーティクルボード15が載る。 The support leg 14 has a vibration-proof rubber 14a mounted on the surface of the floating floor layer 13, a height-adjustable support bolt 14b, and a rectangular flat plate receiving material 14c. The particle board 15 is placed on the receiving member 14c.

浮床層13は、床板を小割にした小割形状を有し、矩形状の平板である複数枚の小割床板13a,13b,13c,・・・から構成される。小割床板13a,13b,13cは、配置されて完全に分離したままの状態で浮床層13を構成する。 The floating floor layer 13 has a subdivided shape obtained by subdividing the floor plate, and is composed of a plurality of subdivided floor plates 13a, 13b, 13c, ..., Which are rectangular flat plates. The small split floor plates 13a, 13b, and 13c form the floating floor layer 13 in a state where they are arranged and completely separated.

小割床板13〜13cは、均質単板のコンクリートから構成されるが、これに限定されず、中空床板や合成床板から構成されてもよい。中空床板の例としては、縦方向に数個の中空孔を有し、PC鋼線によってプレストレスを与えられたコンクリートパネルがあり、かかるコンクリートパネルの具体例として、株式会社スパンクリートコーポレーションから販売されているスパンクリート(登録商標)がある。また、合成床板の例としては、上記スパンクリート(登録商標)の上面にコッタを設定し、上部を場所打ちコンクリートとする合成床板がある。 The small split floor boards 13 to 13c are made of homogeneous single-plate concrete, but are not limited to this, and may be made of hollow floor boards or synthetic floor boards. An example of a hollow floor board is a concrete panel having several hollow holes in the vertical direction and prestressed by PC steel wire. As a specific example of such a concrete panel, it is sold by SPANCRETE CORPORATION. There is Spancrete®. Further, as an example of the synthetic floor board, there is a synthetic floor board in which a cotter is set on the upper surface of the Spancrete (registered trademark) and the upper part is cast-in-place concrete.

図2のように、第2の遮音界床構造21は、建物のRC床スラブ10の上方に多数の防振材12を介して浮床層13を配置し、浮床層13の上に樹脂発泡体や不織布等からなるクッション層22,鋸溝加工された突板張り合板23を配置したもので、図1と同様の浮床と直張りフローリングとによる遮音界床構造である。浮床層13は、図1と同様の構成で、床板を小割にした小割形状を有し、矩形状の平板である複数枚の小割床板13a,13b,13c,・・・から構成される。小割床板13a,13b,13cは、配置されて完全に分離したままの状態で浮床層13を構成する。 As shown in FIG. 2, in the second sound insulation boundary floor structure 21, the floating floor layer 13 is arranged above the RC floor slab 10 of the building via a large number of anti-vibration materials 12, and the resin foam is placed on the floating floor layer 13. A cushion layer 22 made of non-woven fabric or a non-woven fabric, and a sawn-grooved slab-covered plywood 23 are arranged, and the sound-insulating boundary floor structure is provided by a floating floor and a direct-covered flooring as in FIG. The floating floor layer 13 has the same configuration as that of FIG. 1, has a subdivided shape obtained by subdividing the floor plate, and is composed of a plurality of subdivided floor plates 13a, 13b, 13c, ..., Which are rectangular flat plates. To. The small split floor plates 13a, 13b, and 13c form the floating floor layer 13 in a state where they are arranged and completely separated.

本実施形態では、図1,図2の遮音界床構造11,21における浮床層13を、完全に分離した小割形状の小割床板から構成することで、浮床層13に生じる曲げ振動を一定周波数以上になるように制御している。これにより、重量衝撃音に対する界床遮音性能を確実に確保することができる。 In the present embodiment, the floating floor layer 13 in the sound insulation boundary floor structures 11 and 21 of FIGS. 1 and 2 is composed of completely separated small split floor plates, so that the bending vibration generated in the floating floor layer 13 is constant. It is controlled so that it exceeds the frequency. As a result, the boundary floor sound insulation performance against heavy impact noise can be reliably ensured.

一般に、周辺単純支持の長方形板の固有振動数は次の式(5)で与えられる。

Figure 0006817918
ここで、板の縦横長さ・厚さをa、b、h(m)とし、板の材質の曲げ剛性をD(均質単板ではD=EI、ヤング率をE(N/m2)、単位幅当たりの断面2次モーメントI=h3/12(m3))、密度をρ(kg/m3)とし、m、nはそれぞれ板の長さa,b方向での半波数を示す。 In general, the natural frequency of a rectangular plate with simple peripheral support is given by the following equation (5).
Figure 0006817918
Here, the vertical and horizontal lengths and thicknesses of the plates are a, b, and h (m), the bending rigidity of the plate material is D (D = EI for a homogeneous single plate, and Young's modulus is E (N / m 2 )). second moment I = h 3/12 per unit width (m 3)), and the density ρ (kg / m 3), shown m, length a of the n each plate, a half wave number in the direction b ..

図3に、板の縦横長さa,bの値を1.0〜4.0mの範囲内で種々に組み合わせ、hを0.05,0.08,0.12mとした場合、m、n=1〜4の範囲で固有振動数fを式(5)により計算した計算例を示す。なお、図3の計算例に用いたヤング率E(N/m2)と密度ρ(kg/m3)は、次のとおりである。
E=2.4×1010 N/m2
ρ=2400 kg/m3
In FIG. 3, when the values of the vertical and horizontal lengths a and b of the plates are variously combined within the range of 1.0 to 4.0 m and h is 0.05, 0.08, 0.12 m, they are unique in the range of m, n = 1 to 4. A calculation example in which the frequency f is calculated by the equation (5) is shown. The Young's modulus E (N / m 2 ) and the density ρ (kg / m 3 ) used in the calculation example of FIG. 3 are as follows.
E = 2.4 × 10 10 N / m 2
ρ = 2400 kg / m 3

長方形板の支持条件が様々であるときに、周辺単純支持の場合も振動モードとはならないが、その計算値を参考に、固有振動数を推定し、指標とすることは可能である。 When the support conditions of the rectangular plate are various, the vibration mode is not set even in the case of simple peripheral support, but it is possible to estimate the natural frequency and use it as an index with reference to the calculated value.

たとえば、図3のa=3,b=2(3m×2mの板)の計算結果をみると、各種m、nの組み合わせにおいて、床衝撃音遮断性能測定時の63Hz帯域(44.2〜88.4Hz)、125Hz帯域(88.4〜176.8Hz)の振動成分が多く含まれていることが分かる。 For example, looking at the calculation results of a = 3, b = 2 (3m x 2m plate) in FIG. 3, the 63Hz band (44.2 to 88.4Hz) at the time of measuring the floor impact sound blocking performance in various combinations of m and n. , It can be seen that a large amount of vibration components in the 125 Hz band (88.4 to 176.8 Hz) are contained.

重量衝撃音遮蔽性能試験(JIS A 1418-2:2000)における対象周波数帯域は、オクターブ分割で、中心周波数63Hzから同500Hzとなっており、実際の建物の床板では63Hz帯域の値で遮断性能が決まることが多く、次に、125Hz帯域である。250Hz帯域と500Hz帯域は、床の仕上構造により緩和されることが多い。 The target frequency band in the heavy impact sound shielding performance test (JIS A 1418-2: 2000) is divided into octaves, and the center frequency is from 63Hz to 500Hz, and the actual building floorboard has a blocking performance at the value of the 63Hz band. Often determined, then the 125Hz band. The 250 Hz and 500 Hz bands are often relaxed by the floor finish structure.

図4は、実際に3m×4m×0.08mの板を所定の支持状態で振動させたときのアクセレランス(加速度/力)の波形を示す図である。図5は、3m×4m×0.08m板を浮床層とした場合と、0.9m×1m×0.08m板を浮床層とした場合、JIS A 1418-2:2000に基づくバングマシンによる重量衝撃源での下室の音圧レベルの実験測定結果を示す表とグラフである。なお、図5に示す素面とは、実験棟の屋根スラブの構造体である。 FIG. 4 is a diagram showing a waveform of acceleration (acceleration / force) when a plate of 3 m × 4 m × 0.08 m is actually vibrated in a predetermined support state. Fig. 5 shows the heavy impact source by the bang machine based on JIS A 1418-2: 2000 when the 3m x 4m x 0.08m board is used as the floating floor layer and when the 0.9m x 1m x 0.08m board is used as the floating floor layer. It is a table and a graph which show the experimental measurement result of the sound pressure level of the lower chamber. The bare surface shown in FIG. 5 is the structure of the roof slab of the experimental building.

図4のように、3m×4m×0.08mの板が重量衝撃音遮断性能の対象周波数帯域(31.5Hz帯域、63Hz帯域、125Hz帯域)で固有振動数を持つことが確認できる。このことが重量衝撃音遮断性能に悪影響を与えていることが図5の実験結果からわかる。すなわち、実際にこの3m×4m×0.08m板を浮床層とした場合の重量衝撃源での下室の音圧レベルは、0.9m×1m×0.08m板を浮床層として使用した場合と比べると、図5のように、63Hz帯域で8dBの差を生じ、この分だけ音圧レベルが高く、重量衝撃遮断性能が低いことが実験で確認できた。これは図3の計算例からも伺えるように、0.9m×1m×0.08m板のような小割床板では固有振動数が高周波数域になるので、63Hz帯域での板の曲げ振動による悪影響が避けられた結果である。 As shown in FIG. 4, it can be confirmed that the plate of 3 m × 4 m × 0.08 m has a natural frequency in the target frequency band (31.5 Hz band, 63 Hz band, 125 Hz band) of the heavy impact sound blocking performance. It can be seen from the experimental results of FIG. 5 that this adversely affects the heavy impact sound blocking performance. That is, the sound pressure level of the lower chamber at the weight impact source when the 3 m × 4 m × 0.08 m plate is actually used as the floating floor layer is compared with the case where the 0.9 m × 1 m × 0.08 m plate is used as the floating floor layer. As shown in FIG. 5, it was confirmed in the experiment that a difference of 8 dB was generated in the 63 Hz band, the sound pressure level was high by this amount, and the weight impact blocking performance was low. As can be seen from the calculation example in Fig. 3, the natural frequency of a small split floor board such as a 0.9m x 1m x 0.08m board is in the high frequency range, so the adverse effect of the bending vibration of the board in the 63Hz band is adversely affected. This is an avoided result.

一般に、板厚さを厚くすれば固有振動数は高周波数側にできるが、建築現場での浮床層構築の経済性、構造体への負荷軽減の面から、浮床層は0.08m程度の厚さがコストパフォーマンス上望ましい。 Generally, if the plate thickness is increased, the natural frequency can be set to the high frequency side, but the floating floor layer is about 0.08 m thick from the viewpoint of economic efficiency of building the floating floor layer at the construction site and reducing the load on the structure. Is desirable in terms of cost performance.

図3の板の固有振動数の計算例をみても分かるように、最も小さな固有振動数は、m=n=1の場合であり、この場合の固有振動数fを、63Hz帯域より高周波側にするには、式(1)を満たすように、小割床板の寸法・密度・曲げ剛性を決定すればよい。ただし、小割床板の縦長さ、横長さ、厚さの各寸法をa、b、h(m)とし、床板の材質のヤング率をE(N/m2)、密度をρ(kg/m3)とすると、小割床板の固有振動数(最小値)fは上記式(5)から次の式(2)で与えられる。

Figure 0006817918
As can be seen from the calculation example of the natural frequency of the plate in FIG. 3, the smallest natural frequency is the case of m = n = 1, and the natural frequency f in this case is set to the higher frequency side than the 63 Hz band. To do so, the dimensions, density, and flexural rigidity of the small split floor plate may be determined so as to satisfy the equation (1). However, the vertical, horizontal, and thickness dimensions of the small split floor board are a, b, and h (m), the Young's modulus of the floor board material is E (N / m 2 ), and the density is ρ (kg / m). Assuming 3 ), the natural frequency (minimum value) f of the small split floor plate is given by the following equation (2) from the above equation (5).
Figure 0006817918

また、小割床板の固有振動数fを125Hz帯域よりも高周波側にするには、小割床板の寸法・材質を次の式(3)を満たすように決定する。

Figure 0006817918
Further, in order to set the natural frequency f of the small split floor plate to a higher frequency side than the 125 Hz band, the dimensions and materials of the small split floor plate are determined so as to satisfy the following equation (3).
Figure 0006817918

本発明者等の調査・検討によれば、防振材の上部に面積のある浮床層を配置すると、重量衝撃音で長方形板の曲げ振動が発生し、63Hz帯域および125Hz帯域で共振が生じ易いことが判明した。これに対し、上述のように、1m×1m程度の小割床板を完全に分離して配置して浮床層を構成することで、重量衝撃音に対する界床遮音性能を確保することができた。 According to the investigation and examination by the present inventors, when a floating floor layer having an area is arranged above the vibration isolator, bending vibration of the rectangular plate is generated by the heavy impact sound, and resonance is likely to occur in the 63 Hz band and the 125 Hz band. It has been found. On the other hand, as described above, by arranging the small split floor boards of about 1 m × 1 m completely separated to form the floating floor layer, it was possible to secure the boundary floor sound insulation performance against heavy impact sound.

すなわち、小割床板を密度ρ=1500〜2500kg/m3の材質とし、小割床板の縦横、高さ寸法は、a,b≦1.5m、h≧0.05mとすることが界床での重量衝撃音遮断性能を確保する上で好ましい。密度が上記範囲内の小割床板の材質としては、コンクリートやモルタルや各種繊維補強セメント板(フレキシブル板等)などがある。 That is, the weight at the boundary floor should be such that the small split floor board is made of a material with a density ρ = 1500 to 2500 kg / m 3 and the vertical, horizontal, and height dimensions of the small split floor board are a, b ≤ 1.5 m, and h ≥ 0.05 m. It is preferable for ensuring the impact sound blocking performance. Examples of the material of the small split floor board whose density is within the above range include concrete, mortar, and various fiber reinforced cement boards (flexible board, etc.).

また、浮床層は、均質単板のコンクリートであってよいが、中空床板や合成床板であってもよい。中空床板や合成床板の場合、等価スラブ厚さheを次の式(4)から求め、この等価厚さheを上記式(2)のhに代入し、ヤング率E、密度ρを合成床板または中空床板の値を使用して得られる固有振動数fが上記式(1)を満たすようにすればよい。 Further, the floating floor layer may be a homogeneous single plate concrete, but may be a hollow floor plate or a synthetic floor plate. In the case of a hollow floor board or a synthetic floor board, the equivalent slab thickness he is obtained from the following formula (4), this equivalent thickness he is substituted into h in the above formula (2), and Young's modulus E and density ρ are obtained from the synthetic floor board or The natural frequency f obtained by using the value of the hollow floor plate may satisfy the above equation (1).

Figure 0006817918
ただし、
m:面密度(kg/m2)、E:ヤング率(N/m2)、I:断面2次モーメント(m4
Figure 0006817918
However,
m: Area density (kg / m 2 ), E: Young's modulus (N / m 2 ), I: Moment of inertia of area (m 4 )

また、合成床板または中空床板からなる小割床板の固有振動数fを125Hz帯域よりも高周波側にするには、上記式(3)を満たすように合成床板または中空床板の寸法・面密度・ヤング率・断面2次モーメントを決めればよい。 Further, in order to set the natural frequency f of the small split floor board made of the synthetic floor board or the hollow floor board to a higher frequency side than the 125 Hz band, the dimensions, surface density, and Young's modulus of the synthetic floor board or the hollow floor board are satisfied so as to satisfy the above equation (3). The rate and the moment of inertia of area may be determined.

以上のように、本実施形態によれば、建物における上下階の床衝撃音の遮断性能の確保を行う際に特に重量衝撃音に対する界床遮音性能を確実に確保することができる。 As described above, according to the present embodiment, when ensuring the floor impact sound blocking performance of the upper and lower floors in the building, it is possible to reliably secure the boundary floor sound insulation performance particularly against the heavy impact sound.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、本発明は、マンション等の集合住宅の建物に適用して好ましいが、これに限定されず、ホテルやオフィスビルや学校等の各種建物に適宜適用できることはもちろんである。 Although the embodiments for carrying out the present invention have been described above, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, the present invention is preferably applied to a building of an apartment house such as an apartment, but is not limited to this, and of course, it can be appropriately applied to various buildings such as a hotel, an office building, and a school.

本発明によれば、建物の界床での重量衝撃音遮断性能の確保が高性能で可能となり、マンション等の集合住宅での生活音の苦情などの解消に貢献することができる。 According to the present invention, it is possible to secure the heavy impact sound blocking performance on the boundary floor of a building with high performance, and it is possible to contribute to the elimination of complaints about living sounds in condominiums and other condominiums.

10 床スラブ
11 第1の遮音界床構造
12 防振材、防振支承
13 浮床層
13a,13b,13c 小割床板
14 支持脚
15 パーティクルボード
16 フローリング
21 第2の遮音界床構造
22 クッション層
23 合板
10 Floor slab 11 First sound insulation floor structure 12 Anti-vibration material, anti-vibration support 13 Floating floor layers 13a, 13b, 13c Small split floor board 14 Support legs 15 Particle board 16 Flooring 21 Second sound insulation floor structure 22 Cushion layer 23 plywood

Claims (7)

建物の床スラブの上部に防振支承を介して浮床層を配置することで重量床衝撃音に対する界床の遮音性向上を図るための遮音界床構造の構築方法であって、
前記浮床層を構成する床板を小割形状にして複数枚の小割床板から構成し、前記浮床層として前記複数枚の小割床板を隣接して密に配置し前記小割床板の固有振動数fが以下の式(1)、前記小割床板の密度ρが1500〜2500kg/m3、前記小割床板の厚さh,縦長さa,横長さbがh≧0.05m,a≦1.5m,b≦1.5mをそれぞれ満たすように前記小割床板の寸法・密度・曲げ剛性を決定し、前記決定された寸法・密度・曲げ剛性を有する小割床板を設置することを特徴とする遮音界床構造の構築方法。
ただし、前記小割床板の縦長さ、横長さ、厚さの各寸法をa、b、h(m)とし、前記床板の材質のヤング率をE(N/m2)、密度をρ(kg/m3)とすると、前記小割床板の固有振動数(最小値)は以下の式(2)で与えられる。
Figure 0006817918
It is a method of constructing a sound insulation boundary floor structure to improve the sound insulation of the boundary floor against heavy floor impact sound by arranging a floating floor layer on the upper part of the floor slab of the building via anti-vibration bearings.
The floorboards which constitute the floating floor layers with a small split shape composed of a plurality of small split floorboards, densely arranged adjacent the plurality of small split floor plate as the floating floor layer, the natural frequency of the small split floor The number f is the following formula (1), the density ρ of the small split floor board is 1500 to 2500 kg / m 3 , the thickness h, vertical length a, and horizontal length b of the small split floor board is h ≧ 0.05 m, a ≦ 1.5. Sound insulation is characterized in that the dimensions, density, and bending rigidity of the small split floor board are determined so as to satisfy m and b ≦ 1.5 m, respectively, and the small split floor board having the determined dimensions, density, and bending rigidity is installed. How to build a boundary floor structure.
However, the vertical length, horizontal length, and thickness of the small split floor board are set to a, b, and h (m), the Young's modulus of the material of the floor board is E (N / m 2 ), and the density is ρ (kg). If / m 3 ), the natural frequency (minimum value) of the small split floor plate is given by the following equation (2).
Figure 0006817918
前記小割床板の寸法・材質を次の式(3)を満たすように決定する請求項1に記載の遮音界床構造の構築方法。
Figure 0006817918
The method for constructing a sound insulation floor structure according to claim 1, wherein the dimensions and materials of the small split floor board are determined so as to satisfy the following formula (3).
Figure 0006817918
前記小割床板を合成床板または中空床板から構成し、前記合成床板または前記中空床板の等価厚さheを次の式(4)から求め、
式(2)においてhに前記求めたheを代入し、ヤング率E、密度ρを前記合成床板または前記中空床板の値を使用して得られる前記固有振動数fが式(1)を満たす請求項1に記載の遮音界床構造の構築方法。
Figure 0006817918
ただし、
m:面密度(kg/m2)、E:ヤング率(N/m2)、I:断面2次モーメント(m4
The small split floor board is composed of a synthetic floor board or a hollow floor board, and the equivalent thickness he of the synthetic floor board or the hollow floor board is obtained from the following formula (4).
A claim that the natural frequency f obtained by substituting the obtained he for h in the formula (2) and using the Young's modulus E and the density ρ with the values of the synthetic floor board or the hollow floor board satisfies the formula (1). Item 4. The method for constructing a sound insulation floor structure according to Item 1.
Figure 0006817918
However,
m: Area density (kg / m 2 ), E: Young's modulus (N / m 2 ), I: Moment of inertia of area (m 4 )
次の式(3)を満たすように前記合成床板または前記中空床板の寸法・面密度・ヤング率・断面2次モーメントを決める請求項3に記載の遮音界床構造の構築方法。
Figure 0006817918
The method for constructing a sound insulation floor structure according to claim 3, wherein the dimensions, surface density, Young's modulus, and moment of inertia of area of the synthetic floor board or the hollow floor board are determined so as to satisfy the following formula (3).
Figure 0006817918
前記隣接する小割床板が互いに分離したままの状態で振動するように前記浮床層が構築される請求項1〜4のいずれか1項に記載の遮音界床構造の構築方法。 The method for constructing a sound insulation boundary floor structure according to any one of claims 1 to 4, wherein the floating floor layer is constructed so that the adjacent small split floor plates vibrate in a state of being separated from each other. 建物の床スラブの上部に防振支承を介して浮床層を配置することで重量床衝撃音に対する界床の遮音性向上を図るための遮音界床構造であって、
前記浮床層を構成する床板が小割形状にされて複数枚の小割床板から構成され、前記浮床層として前記複数枚の小割床板が隣接して密に配置され、
前記小割床板の固有振動数fが以下の式(1)、前記小割床板の密度ρが1500〜2500kg/m 3 、前記小割床板の厚さh,縦長さa,横長さbがh≧0.05m,a≦1.5m,b≦1.5mをそれぞれ満たすように前記小割床板の寸法・密度・曲げ剛性が決定され、前記決定された寸法・密度・曲げ剛性を有する小割床板が設置されたことを特徴とする建物の遮音界床構造。
ただし、前記小割床板の縦長さ、横長さ、厚さの各寸法をa、b、h(m)とし、前記床板の材質のヤング率をE(N/m 2 )、密度をρ(kg/m 3 )とすると、前記小割床板の固有振動数(最小値)は以下の式(2)で与えられる
Figure 0006817918
It is a sound insulation boundary floor structure for improving the sound insulation of the boundary floor against heavy floor impact sound by arranging a floating floor layer on the upper part of the floor slab of the building via anti-vibration bearings.
The floor board constituting the floating floor layer is formed into a small split shape and is composed of a plurality of small split floor boards, and the plurality of small split floor boards are closely arranged adjacent to each other as the floating floor layer.
The natural frequency f of the small split floor board is the following equation (1), the density ρ of the small split floor board is 1500 to 2500 kg / m 3 , and the thickness h, the vertical length a, and the horizontal length b of the small split floor board are h. The dimensions, density, and flexural rigidity of the small split floor board are determined so as to satisfy ≧ 0.05 m, a ≦ 1.5 m, and b ≦ 1.5 m, respectively, and the small split floor board having the determined dimensions, density, and flexural rigidity is installed. The sound insulation floor structure of the building is characterized by being done .
However, the vertical length, horizontal length, and thickness of the small split floor board are set to a, b, and h (m), the Young's modulus of the material of the floor board is E (N / m 2 ), and the density is ρ (kg). If / m 3 ), the natural frequency (minimum value) of the small split floor plate is given by the following equation (2) .
Figure 0006817918
建物の床スラブの上部に防振支承を介して浮床層を配置することで重量床衝撃音に対する界床の遮音性向上を図るための遮音界床構造の設計方法であって、
前記浮床層を構成する床板を小割形状にし、その小割床板の固有振動数fが以下の式(1)、前記小割床板の密度ρが1500〜2500kg/m3、前記小割床板の厚さh,縦長さa,横長さbがh≧0.05m,a≦1.5m,b≦1.5mをそれぞれ満たすように前記小割床板の寸法・密度・曲げ剛性を決定することを特徴とする遮音界床構造の設計方法。
ただし、前記小割床板の縦長さ、横長さ、厚さの各寸法をa、b、h(m)とし、前記床板の材質のヤング率をE(N/m2)、密度をρ(kg/m3)とすると、前記小割床板の固有振動数(最小値)は以下の式(2)で与えられる。
Figure 0006817918
It is a method of designing a sound insulation boundary floor structure to improve the sound insulation of the boundary floor against heavy floor impact sound by arranging a floating floor layer on the upper part of the floor slab of the building via anti-vibration bearings.
The floor board constituting the floating floor layer is formed into a small split shape, the natural frequency f of the small split floor board is the following formula (1), the density ρ of the small split floor board is 1500 to 2500 kg / m 3 , and the small split floor board It is characterized in that the dimensions, density, and flexural rigidity of the small split floor board are determined so that the thickness h, the vertical length a, and the horizontal length b satisfy h ≧ 0.05 m, a ≦ 1.5 m, and b ≦ 1.5 m, respectively. How to design a sound insulation floor structure.
However, the vertical length, horizontal length, and thickness of the small split floor board are a, b, and h (m), the Young's modulus of the material of the floor board is E (N / m 2 ), and the density is ρ (kg). If / m 3 ), the natural frequency (minimum value) of the small split floor plate is given by the following equation (2).
Figure 0006817918
JP2017175667A 2017-09-13 2017-09-13 Sound insulation floor structure construction method, design method and building sound insulation floor structure Active JP6817918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017175667A JP6817918B2 (en) 2017-09-13 2017-09-13 Sound insulation floor structure construction method, design method and building sound insulation floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017175667A JP6817918B2 (en) 2017-09-13 2017-09-13 Sound insulation floor structure construction method, design method and building sound insulation floor structure

Publications (2)

Publication Number Publication Date
JP2019052435A JP2019052435A (en) 2019-04-04
JP6817918B2 true JP6817918B2 (en) 2021-01-20

Family

ID=66014433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017175667A Active JP6817918B2 (en) 2017-09-13 2017-09-13 Sound insulation floor structure construction method, design method and building sound insulation floor structure

Country Status (1)

Country Link
JP (1) JP6817918B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7266005B2 (en) * 2020-03-13 2023-04-27 東急建設株式会社 Dry double floor structure

Also Published As

Publication number Publication date
JP2019052435A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
KR20090015988A (en) Acoustical isolation floor underlayment system
KR20120003557A (en) Interfloor noise proofing material for absorbing light-weight impact noise and heavy weight impact noise
KR101828708B1 (en) Construction structures and methods for their construction interlayer noise reduction
JP6817918B2 (en) Sound insulation floor structure construction method, design method and building sound insulation floor structure
KR101598342B1 (en) Floor structure for impact sound reduction
KR101488443B1 (en) Vibration absorbing device for reducing inter layer noise and floor structure using the same
KR20090004554A (en) Floor materials of sound-proof for floor
KR20180015395A (en) Floor system for reducing floor impact noise
JP4919673B2 (en) Damping structure for buildings
KR200374808Y1 (en) Floating floor structure for reducing floor a crashing sound in apartment house
KR100920200B1 (en) Plywood panel type floating floor system using damping plywood
JP7512555B2 (en) Noise reduction structure and method
JP2022057240A (en) Anti-vibration floating floor
JP2010112013A (en) Vibration control building
JP6826406B2 (en) Floor structure and ceiling structure
KR20160109653A (en) Double floor system for reduction of structure-borne noise
JP7207901B2 (en) Impact noise reduction structure and impact noise reduction method
JP6928428B2 (en) Sound insulation floor structure
RU2555986C2 (en) Low-noise earthquake-resistant manufacturing building
JP7266005B2 (en) Dry double floor structure
JP5140370B2 (en) Floor structure
JP7201174B2 (en) Ceiling anti-vibration material and ceiling anti-vibration structure
JP4227781B2 (en) Sound insulation double floor
JP7074582B2 (en) Building ceiling structure
JP6470923B2 (en) Dry double floor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191105

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20191118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191209

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191217

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200214

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200225

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200421

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200825

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200915

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20200925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20201012

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201124

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201222

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201225

R150 Certificate of patent or registration of utility model

Ref document number: 6817918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350