JP6815039B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6815039B2
JP6815039B2 JP2018541353A JP2018541353A JP6815039B2 JP 6815039 B2 JP6815039 B2 JP 6815039B2 JP 2018541353 A JP2018541353 A JP 2018541353A JP 2018541353 A JP2018541353 A JP 2018541353A JP 6815039 B2 JP6815039 B2 JP 6815039B2
Authority
JP
Japan
Prior art keywords
plate
pipeline
fluid
microtubule
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018541353A
Other languages
Japanese (ja)
Other versions
JP2019504984A (en
Inventor
リム,ジョンソ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2019504984A publication Critical patent/JP2019504984A/en
Application granted granted Critical
Publication of JP6815039B2 publication Critical patent/JP6815039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/105Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance formed by the tube through which the fluid flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/107Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は熱交換装置に関するもので、より詳しくは、熱抵抗を大きく減少してガスやオイルのようなエネルギー資源の使用量を最小化しながら温水及び暖房の効率を高めることができる熱交換装置に関するものである。 The present invention relates to a heat exchange device, and more particularly to a heat exchange device capable of increasing the efficiency of hot water and heating while greatly reducing the thermal resistance and minimizing the amount of energy resources such as gas and oil. It is a thing.

一般に、熱交換装置は熱伝導効率の良い熱交換体を通じて温度の高い流体から温度の低い流体に熱を伝達する装置であって、エアコン、ボイラー、冷蔵庫、ヒーターなどの製品で主に用いられる。 In general, a heat exchanger is a device that transfers heat from a fluid having a high temperature to a fluid having a low temperature through a heat exchanger having good heat conduction efficiency, and is mainly used in products such as air conditioners, boilers, refrigerators, and heaters.

その中で、ボイラーは密閉された容器に盛られた水を容器内部または外部で加熱して温水または高温、高圧の水蒸気を発生させる装置であって、ボイラーによって発生された温水または水蒸気は高温状態であるので、このような高温の特性を利用して冬季暖房用として用いるか発生された水蒸気の高圧特性を利用して火力発電所の蒸気タービンなどを可動させることで電力を生産するなど多様な分野に利用されている。 Among them, a boiler is a device that heats water filled in a closed container inside or outside the container to generate hot water or high-temperature, high-pressure steam, and the hot water or steam generated by the boiler is in a high-temperature state. Therefore, it is used for winter heating by utilizing such high temperature characteristics, or electricity is produced by moving the steam turbine of a thermal power plant by utilizing the high pressure characteristics of generated steam. It is used in the field.

特に、他の化石燃料に比べて環境汚染が少ない天然ガスの消費は全世界的に大きく増えており、最近シェールガス(shale gas)の採掘により今後天然ガスを利用した暖房及び温水はより一層拡大されることと期待される。 In particular, the consumption of natural gas, which has less environmental pollution than other fossil fuels, has increased significantly worldwide, and the recent mining of shale gas will further expand heating and hot water using natural gas in the future. Expected to be done.

現在、暖房や温水のための家庭用及び産業用ガスボイラーのような熱交換装置が大きく普及されており、廃熱を回収して再利用するコンデンシング技術の開発により、その効率も20%以上大きく増加された。しかしながら、地球温暖化による異常気象現象によって冬の平均温度は漸次に下がるだけでなく厳しい寒さが数日間持続したりし、それによりオイル、ガスなどのエネルギー資源の消費はより増加するようになった。 Currently, heat exchange devices such as household and industrial gas boilers for heating and hot water are widely used, and the efficiency is 20% or more due to the development of condensin technology that recovers and reuses waste heat. It was greatly increased. However, due to extreme weather events caused by global warming, not only the average temperature in winter gradually decreased, but also severe cold weather continued for several days, which led to an increase in consumption of energy resources such as oil and gas. ..

従って、ガスやオイル、電気などのエネルギーの使用量を最小化しながら温水及び暖房の効率を高めることができる熱交換装置に対する開発の必要性が大きく台頭された。 Therefore, there is a great need to develop a heat exchange device that can improve the efficiency of hot water and heating while minimizing the amount of energy used such as gas, oil, and electricity.

韓国登録実用新案公報第20−0255210号(登録日:2001.11.12)Korea Registered Utility Model Gazette No. 20-0255210 (Registration date: 2001.11.12)

本発明は前述した問題点を解決するために創案されたもので、熱抵抗を大きく減小してガスやオイル、電気のようなエネルギー資源の使用量を最小化しながら温水及び暖房の効率を高めることができる熱交換装置を提供することを目的とする。 The present invention was devised to solve the above-mentioned problems, and greatly reduces thermal resistance to improve the efficiency of hot water and heating while minimizing the use of energy resources such as gas, oil, and electricity. It is an object of the present invention to provide a heat exchange device capable of providing a heat exchanger.

前述した目的を達するために、本発明の一側面による熱交換装置は、流入または流出される流体を分配または統合する流体分配/統合部と、流体分配/統合部に結合され、複数の板の内部に少なくとも一つの管路が単位面積当たりの流量に基づいて複数の管路に分岐し、分岐されたそれぞれの管路が単位面積当たりの流量に基づいて少なくとも一段階以上再分岐する流体管路が形成された流体管路プレートと、複数の板の内部に流体管路プレートの最終段階によって分岐されたそれぞれの管路に対応して直線方向の管路が形成された微細管路プレートと、を含み、流体分配/統合部及び流体管路プレートは微細管路プレートを基準として対称的に形成されることを特徴とする。 To achieve the above-mentioned objectives, the heat exchange device according to one aspect of the present invention is coupled to a fluid distribution / integration unit that distributes or integrates inflow or outflow fluid, and a fluid distribution / integration unit, which is composed of a plurality of plates. A fluid pipeline in which at least one pipeline branches into a plurality of pipelines based on the flow rate per unit area, and each branched pipeline re-branches at least one step based on the flow rate per unit area. A fluid pipeline plate in which is formed, and a fine pipeline plate in which linear pipelines are formed corresponding to each of the fluid pipelines branched by the final stage of the fluid pipeline plate inside the plurality of plates. The fluid distribution / integration section and the fluid pipeline plate are characterized in that they are formed symmetrically with respect to the fine pipeline plate.

前述した熱交換装置は、複数の板の内部に流体管路プレートの最終段階によって分岐されたそれぞれの管路に対応する管路が形成され、それぞれの管路が単位面積当たりの流量に基づいて少なくとも一段階以上複数の管路に分岐する中間流体管路が形成された中間管路プレートをさらに含むことができる。この場合、微細管路プレートは複数の板の内部に中間管路プレートの最終段階によって分岐されたそれぞれの管路に対応する管路が直線方向に形成され、中間管路プレートは微細管路プレートを基準として対称的に形成される。 In the heat exchange device described above, pipelines corresponding to the respective pipelines branched by the final stage of the fluid pipeline plate are formed inside a plurality of plates, and each pipeline is based on the flow rate per unit area. It may further include an intermediate pipeline plate in which an intermediate fluid pipeline is formed that branches into a plurality of pipelines at least in one stage or more. In this case, in the microtubule plate, the pipes corresponding to the respective pipes branched by the final stage of the intermediate pipe plate are formed in a linear direction inside the plurality of plates, and the intermediate pipe plate is the microtubule plate. Is formed symmetrically with respect to.

ここで、流体管路プレート、微細管路プレート及び中間管路プレートは所定の深さと幅で凸面と凹面が繰り返される板状からなる。 Here, the fluid pipeline plate, the microtubule plate, and the intermediate pipeline plate have a plate shape in which convex and concave surfaces are repeated at a predetermined depth and width.

また、微細管路プレートまたは微細管路プレートを基準として下端の中間管路プレートに複数の発火点が形成される。 In addition, a plurality of ignition points are formed on the lower intermediate pipeline plate with reference to the microtubule plate or the microtubule plate.

ここで、流体管路プレート及び中間管路プレートは1:2または1:3でそれぞれの管路が分岐することが好ましい。 Here, it is preferable that the fluid pipeline plate and the intermediate pipeline plate have their respective pipelines branched at 1: 2 or 1: 3.

また、流体管路プレートはダイカスト(die casting)または切削加工を利用して円形の管路が形成され、中間管路プレート及び微細管路プレートはエッチング(etching)を利用して管路が形成されることが好ましい。 In addition, a circular pipeline is formed in the fluid pipeline plate by using die casting or cutting, and an intermediate pipeline plate and a fine pipeline plate are formed by etching (etching). Is preferable.

また、流体管路プレート、中間管路プレート及び微細管路プレートは管路が設置された二つの板をブレイジングまたははんだ付け方式で接合して形成されることができる。 Further, the fluid pipeline plate, the intermediate pipeline plate and the microtubule plate can be formed by joining two plates in which the pipeline is installed by a brazing or soldering method.

また、流体管路プレート及び中間管路プレートはそれぞれ管路の分岐される段階に対応して複数の層が結合して構成されることができる。 Further, the fluid pipeline plate and the intermediate pipeline plate can each be configured by combining a plurality of layers corresponding to the stage in which the pipeline is branched.

また、流体管路プレート、微細管路プレート及び中間管路プレートはそれぞれ平たい板からなって互いに結合され、微細管路プレートまたは微細管路プレートを基準として下方の中間管路プレートの位置に少なくとも一本の熱線が水平方向に設置されることができる。 In addition, the fluid pipeline plate, the microtubule plate, and the intermediate pipeline plate are each composed of flat plates and are connected to each other, and at least one position of the intermediate pipeline plate below the microtubule plate or the microtubule plate. The heat rays of the book can be installed horizontally.

また、中間管路プレート及び微細管路プレートは3Dプリンターを利用して一体に形成されることもできる。 Further, the intermediate pipeline plate and the microtubule plate can be integrally formed by using a 3D printer.

本発明によれば、温水器、ボイラーのような熱交換装置の熱抵抗を大きく減小して、ガスやオイル、電気のようなエネルギー資源の使用量を最小化しながら温水及び暖房の効率を高めることができる。 According to the present invention, the thermal resistance of heat exchangers such as water heaters and boilers is greatly reduced to improve the efficiency of hot water and heating while minimizing the use of energy resources such as gas, oil and electricity. be able to.

また、本発明によれば、流体が流れる管路を単位面積当たりの流量に基づいて複数の段階に分岐することによって熱交換機に流入して流出されるまでの流体の流れが円滑に行われるできる。 Further, according to the present invention, by branching the pipeline through which the fluid flows into a plurality of stages based on the flow rate per unit area, the fluid can flow smoothly until it flows into the heat exchanger and flows out. ..

また、本発明によれば、管路の分岐構造と微細管の形成を板構造で形成することによって、ボイラーの製造を容易にするだけでなく、製造費用を大きく節減することができる。 Further, according to the present invention, by forming the branch structure of the pipeline and the formation of the microtubule with a plate structure, not only the production of the boiler can be facilitated, but also the production cost can be greatly reduced.

また、本発明によれば、熱交換装置を微細管路プレートを基準として対称的な構造で形成し、それぞれの管路の単位面積当たり流量に基づいて管路が分岐される構造を形成することによって、内部を流れる流体の圧力損失を減少し、気泡の生成を防ぎ、流体の流れに障害が発生することを防止することができる。 Further, according to the present invention, the heat exchange device is formed with a symmetrical structure with respect to the fine pipeline plate, and a structure in which the pipeline is branched based on the flow rate per unit area of each pipeline is formed. As a result, the pressure loss of the fluid flowing inside can be reduced, the formation of bubbles can be prevented, and the flow of the fluid can be prevented from being obstructed.

また、本発明によれば、化石燃料を燃料で用いないで、電気を利用して電気熱線を通じて流体を加熱することによって、化石燃料の使用を節減すると同時に、短時間で流体を加熱することができる。 Further, according to the present invention, the use of fossil fuel can be reduced and the fluid can be heated in a short time by heating the fluid through an electric heat ray using electricity without using fossil fuel as fuel. it can.

本発明の一実施例による熱交換装置の見掛けケースを示した図面であって、図1aは見掛けケースの斜視図であり、図1bは見掛けケースの平面図であり、図1cは見掛けケースの側面図である。It is a drawing which showed the apparent case of the heat exchange apparatus by one Example of this invention, FIG. 1a is a perspective view of the apparent case, FIG. 1b is a plan view of the apparent case, and FIG. 1c is a side surface of the apparent case. It is a figure. 本発明の一実施例による熱交換装置の構成を概略的に示した図面である。It is a drawing which showed schematic the structure of the heat exchange apparatus by one Example of this invention. 図2に示した熱交換装置の流体分配/統合部の例を概略的に示した図面である。It is a drawing which showed typically the example of the fluid distribution / integration part of the heat exchange apparatus shown in FIG. 図2に示した熱交換装置の流体管路プレートを概略的に示した図面である。It is a drawing which showed schematicly the fluid conduit plate of the heat exchange apparatus shown in FIG. 図2に示した熱交換装置の微細管路プレートを概略的に示した図面である。It is a drawing which showed schematicly the microtubule plate of the heat exchange apparatus shown in FIG. 図2に示した熱交換装置の中間管路プレートを概略的に示した図面である。It is a figure which showed schematicly the intermediate pipeline plate of the heat exchange apparatus shown in FIG. 図6に示した中間管路プレートの発火点が設置される例を示した図面である。It is a drawing which showed the example in which the ignition point of the intermediate pipeline plate shown in FIG. 6 is installed. 流体管路プレート、微細管路プレート及び中間管路プレートが結合された熱交換装置の斜視図である。It is a perspective view of the heat exchange apparatus which combined the fluid line plate, the microtubule plate and the intermediate line plate. 図2に示した熱交換装置の管路の形成例を示した断面図である。It is sectional drawing which showed the formation example of the pipeline of the heat exchange apparatus shown in FIG. 本発明の他の実施例による熱交換装置の側断面図である。It is a side sectional view of the heat exchange apparatus according to another embodiment of this invention. 図10に示した熱交換装置の平面図である。It is a top view of the heat exchange apparatus shown in FIG.

以下、添付された図面を参照して本発明の実施例による熱交換装置を詳細に説明する。 Hereinafter, the heat exchange apparatus according to the embodiment of the present invention will be described in detail with reference to the attached drawings.

図1は本発明の一実施例による熱交換装置の見掛けケースを示した図面であって、図1aは見掛けケースの斜視図であり、図1bは見掛けケースの平面図であり、図1cは見掛けケースの側面図である。 FIG. 1 is a drawing showing an apparent case of a heat exchange device according to an embodiment of the present invention, FIG. 1a is a perspective view of the apparent case, FIG. 1b is a plan view of the apparent case, and FIG. 1c is an apparent case. It is a side view of a case.

図1によれば、本発明の実施例による熱交換装置は、図1に示したような見掛けケース10 内に装着されることができる。この時、見掛けケース10は直方体の形状で具現されることができ、上面と下面にはガス、オイル、水などの流体の流入及び流出のための配管が貫通される配管口12が形成されることができる。 According to FIG. 1, the heat exchange device according to the embodiment of the present invention can be mounted in the apparent case 10 as shown in FIG. At this time, the apparent case 10 can be embodied in the shape of a rectangular parallelepiped, and piping ports 12 through which pipes for inflow and outflow of fluids such as gas, oil, and water are penetrated are formed on the upper surface and the lower surface. be able to.

図2は本発明の実施例による熱交換装置の構成を概略的に示した図面である。 FIG. 2 is a drawing schematically showing a configuration of a heat exchange device according to an embodiment of the present invention.

図2によれば、本発明の実施例による熱交換装置は、流体分配/統合部110、流体管路プレート120、微細管路プレート130及び中間管路プレート140を含むことができる。 According to FIG. 2, the heat exchange apparatus according to the embodiment of the present invention can include a fluid distribution / integration unit 110, a fluid pipeline plate 120, a microtubule plate 130, and an intermediate pipeline plate 140.

流体分配/統合部110は、熱交換装置の流体流入口側及び流体流出口側にそれぞれ設置され、流入または流出される流体を分配または統合する。この時、流体分配部110は図3に示したように、熱交換装置に流入される流体を1次分配器112で複数の管路114に分配し、それぞれの管路114を通じて流れる流体を複数のプレート分配器116で分配する。 The fluid distribution / integration unit 110 is installed on the fluid inlet side and the fluid outlet side of the heat exchanger, respectively, and distributes or integrates the inflow or outflow fluid. At this time, as shown in FIG. 3, the fluid distribution unit 110 distributes the fluid flowing into the heat exchange device to the plurality of pipelines 114 by the primary distributor 112, and a plurality of fluids flowing through the respective pipelines 114. Distribute with the plate distributor 116 of.

流体統合部110は流体分配部110と同じ構造からなり、流体分配部110と対称的に設置されるので、流体分配部110と同じ参照番号を付与した。この時、流体統合部110は熱交換装置から流出される流体を複数のプレート統合器116を利用して統合し、それぞれのプレート統合器116を通じて流れる流体を複数の管路114に再統合し、最終統合器112でそれぞれの管路114を通じて流出される流体を統合して外部へ排出する。以下では流体統合部110に対する説明は流体分配部110の説明を参照する。 Since the fluid integration unit 110 has the same structure as the fluid distribution unit 110 and is installed symmetrically with the fluid distribution unit 110, it is given the same reference number as the fluid distribution unit 110. At this time, the fluid integration unit 110 integrates the fluid flowing out of the heat exchanger using the plurality of plate integraters 116, and reintegrates the fluid flowing through each plate integrater 116 into the plurality of pipelines 114. The final integrater 112 integrates the fluid flowing out through the respective pipelines 114 and discharges it to the outside. In the following, the description of the fluid integration unit 110 will refer to the description of the fluid distribution unit 110.

流体管路プレート120は流体分配/統合部110にそれぞれ結合され、複数の板の内部に少なくとも一つの管路が単位面積当たりの流量に基づいて複数の管路に分岐し、分岐されたそれぞれの管路が単位面積当たりの流量に基づいて少なくとも一段階以上再分岐する流体管路が形成される。この時、流体管路プレート120は、図4に示したように、所定の深さと幅で凸面と凹面が繰り返される板状からなることができる。また、流体管路プレート120は一方の板にダイカスト(die casting)または切削加工を利用して半円形の管路溝を形成し、他方の板に対向する半円形の管路溝を形成した後、二つの板をブレイジングまたははんだ付け方式で接合することができる。また、流体管路プレート120は、図4に示したように、管路が分岐する段階によって複数の層で具現されることもできる。即ち、最上端層の流体管路プレート122は流体分配部110から流体が流入される流体流入孔125が垂直に形成され、二番目層の流体管路プレート124の上端にはそれぞれの流体流入孔125を通じて流体が流れる上端管路126とそれぞれの流体流入孔125が分岐する形態の分岐流入孔126が垂直に形成されることができる。このような層構造は管路の分岐する段階によって複数の層に具現されることができる。この時、それぞれの管路は1:2または1:3の形態で分岐することができ、分岐するそれぞれの管路の直径は分岐前の管路の単位面積当たりの流量に基づいて決めることができる。即ち、A管路が三つのB管路に分岐されたと仮定すれば、単位面積当たりの流量は数学式1のように成立することができる。 The fluid pipeline plate 120 is each coupled to the fluid distribution / integration unit 110, and at least one pipeline is branched into a plurality of pipelines based on the flow rate per unit area inside the plurality of plates, and each of the branched pipelines is branched. A fluid pipeline is formed in which the pipeline re-branches at least one step based on the flow rate per unit area. At this time, as shown in FIG. 4, the fluid pipeline plate 120 can be formed of a plate shape in which convex and concave surfaces are repeated at a predetermined depth and width. Further, the fluid pipeline plate 120 is formed by forming a semi-circular pipeline groove on one plate by using die casting or cutting, and then forming a semi-circular pipeline groove facing the other plate. , Two plates can be joined by blazing or soldering method. Further, as shown in FIG. 4, the fluid pipeline plate 120 can be embodied in a plurality of layers depending on the stage in which the pipeline branches. That is, in the fluid pipeline plate 122 of the uppermost layer, fluid inflow holes 125 into which fluid flows from the fluid distribution unit 110 are vertically formed, and each fluid inflow hole is formed at the upper end of the fluid pipeline plate 124 of the second layer. The upper end pipeline 126 through which the fluid flows through 125 and the branch inflow hole 126 in which each fluid inflow hole 125 branches can be formed vertically. Such a layered structure can be embodied in a plurality of layers depending on the branching stage of the pipeline. At this time, each pipeline can be branched in the form of 1: 2 or 1: 3, and the diameter of each branching pipeline can be determined based on the flow rate per unit area of the pipeline before branching. it can. That is, assuming that the A pipeline is branched into three B pipelines, the flow rate per unit area can be established as in the mathematical formula 1.

(数1)
(π/4)×(A管路の直径)×A管路の流体速度= 3×(π/4)×(B管路の直径)×B管路の流体速度
(Number 1)
(Π / 4) × (Diameter of A pipeline) 2 × Fluid velocity of A pipeline = 3 × (π / 4) × (Diameter of B pipeline) 2 × Fluid velocity of B pipeline

ここで、分岐前の管路の流量と分岐後の管路の合わせた流量が異なる場合、流体の流れに障害が発生する虞があるので、それぞれの管路の間の流量は一定するように保持されることが好ましい。従って、数学式1のような単位面積当たりの流量に基づいて分岐されるそれぞれの管路の直径を決めることができる。 Here, if the flow rate of the pipeline before branching and the combined flow rate of the pipeline after branching are different, there is a possibility that the fluid flow may be obstructed, so the flow rate between each pipeline should be constant. It is preferably retained. Therefore, the diameter of each branch can be determined based on the flow rate per unit area as in the mathematical formula 1.

微細管路プレート130は複数の板の内部に流体管路プレート120の最終段階によって分岐されたそれぞれの管路に対応して直線方向の管路が形成される。即ち、微細管路プレート130は、図5aに示したように、流体管路プレート120と同じ形態の複数の板からなり、それぞれの板の内部に流体管路プレート120の最終段階によって分岐された管路に対応する管路132が直線方向に形成される。この時、微細管路プレート130はエッチング(etching)を利用して二つの板にそれぞれ互いに対向する半円形の管路を形成し、ブレイジングまたははんだ付け方式で接合することができる。ここで、流体分配/統合部110及び流体管路プレート120は微細管路プレート130を基準として対称的に形成されることが好ましい。 In the microtubule plate 130, linear pipelines are formed inside the plurality of plates corresponding to the respective pipelines branched by the final stage of the fluid pipeline plate 120. That is, as shown in FIG. 5a, the microtubule plate 130 is composed of a plurality of plates having the same shape as the fluid pipe plate 120, and is branched inside each plate by the final stage of the fluid pipe plate 120. The pipeline 132 corresponding to the pipeline is formed in the linear direction. At this time, the microtubule plate 130 can form semicircular pipelines facing each other on the two plates by utilizing etching, and can be joined by a brazing or soldering method. Here, the fluid distribution / integration portion 110 and the fluid pipeline plate 120 are preferably formed symmetrically with respect to the microtubule plate 130.

一方、エッチング技術は物質表面の選択された部分に所望のパターンを発生させるために酸やその他腐蝕剤を用いて化学的に腐食させて取り除く技術で、半導体集積回路の製造工程などで用いられる。エッチングにはウェットエッチング、ドライエッチング(プラズマエッチング)、イオンミリングの三種類の方法がある。ウェットエッチングはエッチング液を用いる方法で、低費用で、選択性も良いが、表面を汚し、またレジストをアンダーカットしやすい。プラズマエッチングには中性プラズマを用いるのと荷電プラズマを用いるのがある。アンダーカットは顕著に減少されるが(特に荷電プラズマの場合)選択性が悪い。最後に、イオンミリングはイオンビームでレジストを取り除くことで、選択性、精密度は良いが、作業が遅く、また陽レジストの場合のみに用いることができる(陰レジストでは厚さが変わるためアンダーカットしやすい)。 On the other hand, the etching technique is a technique for chemically corroding and removing a desired pattern on a selected portion of a substance surface by using an acid or other corrosive agent, and is used in a manufacturing process of a semiconductor integrated circuit or the like. There are three types of etching: wet etching, dry etching (plasma etching), and ion milling. Wet etching is a method that uses an etching solution, which is inexpensive and has good selectivity, but it stains the surface and easily undercuts the resist. There are two types of plasma etching, one is neutral plasma and the other is charged plasma. Undercuts are significantly reduced (especially in the case of charged plasmas) but poor selectivity. Finally, ion milling removes the resist with an ion beam, which has good selectivity and precision, but is slow and can only be used with positive resists (undercut because the thickness of negative resists changes). It's easy to do).

ブレイジングまたははんだ付けは金属薄板を接合するためにブレイジング(Brazing)を用いる技術で、硬質はんだ付け(hard soldering)とも言い、真鍮ろう、銀ろうなどを接着剤として接着部を加熱し、これを溶解させて接合する。この時、接着剤をろう材と言い、粉末または板状のものが多い。被接着剤より低溶融点のものを用い、フラックス(溶剤)は接着面の清浄のために用い、ホウ素系のものが多い。全体を加熱接着させる作業を炉内ろう付(furnace brazing)という。 Blazing or soldering is a technique that uses blazing to join thin metal plates. It is also called hard soldering. It heats the bonded part using brass brazing, silver brazing, etc. as an adhesive and melts it. Let and join. At this time, the adhesive is called a brazing material, and is often powdered or plate-shaped. The one with a lower melting point than the adhesive to be adhered is used, and the flux (solvent) is used for cleaning the adhesive surface, and most of them are boron-based. The work of heating and adhering the whole is called furnace brazing.

中間管路プレート140は流体管路プレート120と微細管路プレート130との間に設置されることができる。微細管路プレート130の管路は毛細圧現象を発生させるために1mm以下の直径を有することが好ましいが、このためには流体管路プレート120の最上端の管路の直径を考慮して複数段階の分岐過程が必要な場合もある。 The intermediate pipeline plate 140 can be installed between the fluid pipeline plate 120 and the microtubule plate 130. The conduit of the microtubule plate 130 preferably has a diameter of 1 mm or less in order to generate a capillary pressure phenomenon, but for this purpose, a plurality of conduits are considered in consideration of the diameter of the uppermost conduit of the fluid conduit plate 120. A step branching process may be required.

ここで、毛細管現象は非常に狭い穴を有する管の中に液体が上がる現象で、ボレリ(Giovanni Borelli)は液体が管の中に上がる高さは管の内部直径に反比例することを証明した。通常、管の直径が0.5mmである場合、上がる水の高さは約50mm程度である。 Here, the capillarity is a phenomenon in which a liquid rises into a tube having a very narrow hole, and Giovanni Borelli proved that the height at which the liquid rises into the tube is inversely proportional to the internal diameter of the tube. Normally, when the diameter of the pipe is 0.5 mm, the height of the rising water is about 50 mm.

中間管路プレート140は流体管路プレート120及び毛細管プレート130と同じ形態の複数の板で具現され、それぞれの板の内部に流体管路プレート120の最終段階によって分岐されたそれぞれの管路に対応する管路が形成され、それぞれの管路が単位面積当たりの流量に基づいて少なくとも一段階以上複数の管路に分岐する中間流体管路が形成される。この時、中間管路プレート140は1:2または1:3にそれぞれの管路が分岐された形態がエッチング方式で形成されるか、分岐される段階によって図6に示したように垂直管路が形成された複数の層が結合されることもできる。この場合、それぞれの層の形態は流体管路プレート120の層構造と類似するので、ここではその詳細な説明を省略する。また、中間管路プレート140は微細管路プレート130と同じく、ブレイジングまたははんだ付け方式で薄板を接合して形成されることができる。また、中間管路プレート140及び微細管路プレート130は3Dプリンターを利用して一体に形成されることもできる。この時、3Dプリンターを利用する方法は公知された多様な技術を適用することができ、ここではその詳細な説明を省略する。 The intermediate pipeline plate 140 is embodied by a plurality of plates having the same shape as the fluid pipeline plate 120 and the capillary plate 130, and corresponds to each pipeline branched by the final stage of the fluid pipeline plate 120 inside each plate. An intermediate fluid line is formed in which each line branches into a plurality of lines at least one step based on the flow rate per unit area. At this time, in the intermediate pipeline plate 140, a form in which each pipeline is branched at 1: 2 or 1: 3 is formed by an etching method, or a vertical pipeline is formed as shown in FIG. 6 depending on the stage of branching. Multiple layers in which the is formed can also be combined. In this case, since the form of each layer is similar to the layer structure of the fluid pipeline plate 120, detailed description thereof will be omitted here. Further, the intermediate pipeline plate 140 can be formed by joining thin plates by a brazing or soldering method like the microtubule plate 130. Further, the intermediate pipeline plate 140 and the microtubule pipeline plate 130 can also be integrally formed by using a 3D printer. At this time, various known techniques can be applied to the method using a 3D printer, and detailed description thereof will be omitted here.

ここで、微細管路プレート130は複数の板の内部に中間管路プレート140の最終段階によって分岐されたそれぞれの管路に対応する管路が直線方向に形成され、中間管路プレート140は微細管路プレート130を基準として対称的に形成される。この時、微細管路プレート130を基準として下端の中間管路プレート140は、図7に示したように、複数の層構造142、144の中最下層144のそれぞれの板の間に複数の発火点146を備えることができる。ここで、発火点146は管路を流れる流体の温度を高めるためのもので、板と板との間に不規則な形態で備えることができる。また、ここでは、発火点146が中間管路プレート140に形成されたことで示して説明したが、発火点146は微細管路プレート130の最下端の板と板との間に形成されることもできる。 Here, in the microtubule plate 130, pipelines corresponding to the respective pipelines branched by the final stage of the intermediate pipeline plate 140 are formed in a linear direction inside the plurality of plates, and the intermediate pipeline plate 140 is fine. It is formed symmetrically with respect to the pipeline plate 130. At this time, as shown in FIG. 7, the intermediate pipeline plate 140 at the lower end with respect to the microtubule plate 130 has a plurality of ignition points 146 between the respective plates of the plurality of layer structures 142 and 144 of the lowermost middle layer 144. Can be provided. Here, the ignition point 146 is for raising the temperature of the fluid flowing through the pipeline, and can be provided between the plates in an irregular form. Further, here, although the ignition point 146 is shown and described as being formed on the intermediate pipeline plate 140, the ignition point 146 is formed between the lowermost plate of the microtubule plate 130. You can also.

図8は流体管路プレート、微細管路プレート及び中間管路プレートが結合された熱交換装置の斜視図である。 FIG. 8 is a perspective view of a heat exchange device in which a fluid pipeline plate, a microtubule plate, and an intermediate pipeline plate are combined.

図8によれば、本発明の実施例による熱交換装置は流体管路プレート120及び中間管路プレート140をそれぞれ複数の板で形成し、それぞれの板内に分岐された形態の管路を形成することによって微細管路プレート130内に毛細管を形成することができる。 According to FIG. 8, in the heat exchange device according to the embodiment of the present invention, the fluid pipeline plate 120 and the intermediate pipeline plate 140 are each formed of a plurality of plates, and a branched pipeline is formed in each plate. By doing so, capillaries can be formed in the microtubule plate 130.

図9は本発明の実施例による熱交換装置の管路の形成例を示した断面図である。 FIG. 9 is a cross-sectional view showing an example of forming a pipeline of a heat exchange device according to an embodiment of the present invention.

図9に示したように、4つの管路がそれぞれ1:2→1:2→1:3→1:3→1:3に分岐したと仮定すれば、微細管路プレート130には432個の管路が形成される。このような方式で微細管路プレート130は1mm以下の直径を有する毛細管を形成し、流体速度の流れに障害が生ずることを防止することができる。 As shown in FIG. 9, assuming that each of the four pipelines branches in the order of 1: 2 → 1: 2 → 1: 3 → 1: 3 → 1: 3, there are 432 microtubule plates 130. Pipeline is formed. In such a manner, the microtubule plate 130 can form a capillary having a diameter of 1 mm or less, and can prevent the flow of the fluid velocity from being obstructed.

一般的なボイラー装置の場合、外部で供給される熱で管内部の流体を加熱する。この時、管内部の水を加熱するためには外部の熱が管を通じて内部の水に伝達されなければならないが、この過程で管の厚さによる熱抵抗と管の熱伝導率による熱抵抗、管内部の空間体積による熱抵抗などが発生する。 In the case of a general boiler device, the fluid inside the pipe is heated by the heat supplied from the outside. At this time, in order to heat the water inside the pipe, the heat from the outside must be transferred to the water inside through the pipe, but in this process, the thermal resistance due to the thickness of the pipe and the thermal resistance due to the thermal conductivity of the pipe, Thermal resistance is generated due to the volume of space inside the pipe.

本発明の実施例では、一般的に約20mmの直径を有する管を1mm以下で具現することによって、熱抵抗を最小化して流体を瞬間的に加熱することができるようになる。即ち、直径20mmの管はその管壁の厚さが約2mmで、管内部の流体が移動する断面積は0.000314mである。直径が0.5mmの管であると仮定すれば、管壁の厚さは0.15mmであり、内部に流体が移動する断面積は0.000000196mである。単純に算術的に計算すれば、厚さによる熱抵抗は13倍、面積による熱抵抗は1600倍減少したことが分かる。これは、言い替えれば0.5mmの管で構成された束形態の燃焼機内の熱交換機を加熱すれば、熱抵抗がほとんど発生しないということを意味する。既存のボイラーシステムが数百度で加熱して100度以内の温水を生産した場合、本発明の実施例による熱交換装置は100度以内の温度で加熱して90度以上の温水を生産することができる。 In the embodiment of the present invention, by embodying a tube having a diameter of about 20 mm in a diameter of 1 mm or less, the thermal resistance can be minimized and the fluid can be heated instantaneously. That is, a pipe having a diameter of 20 mm has a pipe wall thickness of about 2 mm, and a cross-sectional area where the fluid inside the pipe moves is 0.000314 m 2 . Assuming that the pipe has a diameter of 0.5 mm, the thickness of the pipe wall is 0.15 mm, and the cross-sectional area where the fluid moves inside is 0.0000000196 m 2 . A simple arithmetic calculation shows that the thermal resistance due to thickness decreased by 13 times and the thermal resistance due to area decreased by 1600 times. This means that, in other words, if the heat exchanger in the bundle-shaped combustor composed of 0.5 mm tubes is heated, almost no thermal resistance is generated. When an existing boiler system heats at several hundred degrees to produce hot water within 100 degrees, the heat exchanger according to the embodiment of the present invention can heat at a temperature within 100 degrees to produce hot water at 90 degrees or more. it can.

図10は本発明の他の実施例による熱交換装置の側断面図であり、図11は図10に示した熱交換装置の平面図である。 FIG. 10 is a side sectional view of the heat exchange device according to another embodiment of the present invention, and FIG. 11 is a plan view of the heat exchange device shown in FIG.

図10及び図11によれば、本発明の実施例による熱交換装置は、流体管路プレート120、微細管路プレート130及び中間管路プレート140が所定の深さと幅で凸面と凹面が繰り返される板状からなる代りに、それぞれが平たい板からなって互いに結合されることができる。この時、微細管路プレート130または微細管路プレート130を基準として下方の中間管路プレート140の位置に少なくとも一本の電気熱線148が水平方向に設置されることができる。この時、微細管路プレート130の微細管路または中間管路プレート140の管路を流れる流体と電気熱線148との間には熱抵抗がほとんどないので流体を短い時間内に加熱することができる。

According to FIGS. 10 and 11, in the heat exchange device according to the embodiment of the present invention, the fluid pipeline plate 120, the microtubule plate 130, and the intermediate pipeline plate 140 are repeatedly convex and concave at a predetermined depth and width. Instead of being plate-shaped, each can be made of flat plates and joined to each other. At this time, at least one electric heat ray 148 can be installed in the horizontal direction at the position of the intermediate pipeline plate 140 below the microtubule plate 130 or the microtubule plate 130. At this time, since there is almost no thermal resistance between the fluid flowing through the microtubule of the microtubule plate 130 or the pipeline of the intermediate pipeline plate 140 and the electric heat ray 148, the fluid can be heated within a short time. ..

Claims (9)

流入または流出される流体を分配または統合する流体分配/統合部と、
前記流体分配/統合部に結合され、複数の板の内部に少なくとも一つの管路が単位面積当たりの流量に基づいて複数の管路に分岐し、分岐されたそれぞれの管路が単位面積当たりの流量に基づいて少なくとも一段階以上再分岐する流体管路が形成された流体管路プレートと、
複数の板の内部に前記流体管路プレートの最終段階によって分岐されたそれぞれの管路に対応する管路が形成され、それぞれの管路が単位面積当たりの流量に基づいて少なくとも一段階以上複数の管路に分岐する中間流体管路が形成された中間管路プレートと、
複数の板の内部に前記中間管路プレートの最終段階によって分岐されたそれぞれの管路に対応する管路が直線方向に形成された微細管路プレートと、を含み、
前記流体分配/統合部、前記流体管路プレート及び前記中間管路プレートは前記微細管路プレートを基準として対称的に形成されることを特徴とする熱交換装置。
A fluid distribution / integration unit that distributes or integrates inflow or outflow fluids,
Coupled to the fluid distribution / integration section, at least one pipeline inside the plurality of plates branches into a plurality of pipelines based on the flow rate per unit area, and each branched pipeline is per unit area. A fluid pipeline plate in which a fluid pipeline is formed that re-branches at least one step based on the flow rate.
Inside the plurality of plates, pipelines corresponding to the respective pipelines branched by the final stage of the fluid pipeline plate are formed, and each pipeline has a plurality of at least one stage based on the flow rate per unit area. An intermediate pipeline plate with an intermediate fluid pipeline that branches into the pipeline,
A microtubule plate in which pipelines corresponding to the respective pipelines branched by the final stage of the intermediate pipeline plate are formed in a linear direction inside the plurality of plates is included.
A heat exchange device characterized in that the fluid distribution / integration unit, the fluid pipeline plate, and the intermediate pipeline plate are formed symmetrically with respect to the microtubule plate.
前記流体管路プレート、前記微細管路プレート及び前記中間管路プレートは所定の深さと幅で凸面と凹面が繰り返される板状からなることを特徴とする請求項1に記載の熱交換装置。 The heat exchange device according to claim 1, wherein the fluid pipeline plate, the microtubule plate, and the intermediate pipeline plate have a plate shape in which convex and concave surfaces are repeated at a predetermined depth and width. 前記微細管路プレートまたは前記微細管路プレートを基準として下方の前記中間管路プレートに複数の発火点が形成されることを特徴とする請求項1に記載の熱交換装置。 The heat exchange device according to claim 1, wherein a plurality of ignition points are formed on the microtubule plate or the intermediate pipe plate below the microtubule plate as a reference. 前記流体管路プレート及び前記中間管路プレートは1:2または1:3でそれぞれの管路が分岐することを特徴とする請求項1に記載の熱交換装置。 The heat exchange device according to claim 1, wherein the fluid pipeline plate and the intermediate pipeline plate have their respective pipelines branched at 1: 2 or 1: 3. 前記流体管路プレートはダイカスト(die casting)または切削加工を利用して円形の管路が形成され、
前記中間管路プレート及び前記微細管路プレートはエッチング(etching)を利用して管路が形成されることを特徴とする請求項1に記載の熱交換装置。
The fluid pipeline plate is formed by using die casting or cutting to form a circular pipeline.
The heat exchange device according to claim 1, wherein a pipeline is formed in the intermediate pipeline plate and the microtubule plate by utilizing etching.
前記流体管路プレート、前記中間管路プレート及び前記微細管路プレートは管路が設置された二つの板をブレイジングまたははんだ付け方式で接合して形成されることを特徴とする請求項1に記載の熱交換装置。 The first aspect of claim 1, wherein the fluid pipeline plate, the intermediate pipeline plate, and the microtubule plate are formed by joining two plates on which pipelines are installed by a brazing or soldering method. Heat exchanger. 前記流体管路プレート及び前記中間管路プレートはそれぞれ管路の分岐される段階に対応して複数の層が結合して構成されることを特徴とする請求項1に記載の熱交換装置。 The heat exchange device according to claim 1, wherein the fluid pipeline plate and the intermediate pipeline plate are formed by combining a plurality of layers corresponding to the stages in which the pipeline is branched. 前記流体管路プレート、前記微細管路プレート及び前記中間管路プレートはそれぞれ平たい板からなって互いに結合され、前記微細管路プレートまたは前記微細管路プレートを基準として下方の前記中間管路プレートの位置に少なくとも一本の熱線が水平方向に設置されることを特徴とする請求項1に記載の熱交換装置。 The fluid pipeline plate, the microtubule plate, and the intermediate pipeline plate are each made of a flat plate and connected to each other, and the microtubule plate or the intermediate pipeline plate below the microtubule plate is used as a reference. The heat exchange device according to claim 1, wherein at least one heat ray is installed in the horizontal direction at the position. 前記中間管路プレート及び前記微細管路プレートは3Dプリンターを利用して一体に形成されることを特徴とする請求項1に記載の熱交換装置。

The heat exchange device according to claim 1, wherein the intermediate pipeline plate and the microtubule plate are integrally formed by using a 3D printer.

JP2018541353A 2016-02-03 2017-01-18 Heat exchanger Active JP6815039B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160013512A KR101646761B1 (en) 2016-02-03 2016-02-03 Heat Exchanging Apparatus
KR10-2016-0013512 2016-02-03
PCT/KR2017/000587 WO2017135595A2 (en) 2016-02-03 2017-01-18 Heat exchanging device

Publications (2)

Publication Number Publication Date
JP2019504984A JP2019504984A (en) 2019-02-21
JP6815039B2 true JP6815039B2 (en) 2021-01-20

Family

ID=56712121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018541353A Active JP6815039B2 (en) 2016-02-03 2017-01-18 Heat exchanger

Country Status (6)

Country Link
US (1) US20200166292A1 (en)
JP (1) JP6815039B2 (en)
KR (1) KR101646761B1 (en)
CN (1) CN108603728A (en)
DE (1) DE112017000640T5 (en)
WO (1) WO2017135595A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282528A (en) * 2018-09-29 2019-01-29 杭州先临易加三维科技有限公司 Heat exchanger, air-conditioning system and heat exchanger method
KR102673571B1 (en) * 2022-12-02 2024-06-07 임종수 Peltier element module and air conditioner including the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JPH0569732A (en) * 1991-09-11 1993-03-23 Zexel Corp Heat exchanger
KR960024210U (en) * 1994-12-30 1996-07-22 Commercial vehicle with load indicator
JP2001170475A (en) * 1999-12-21 2001-06-26 Kunio Nagahama Liquid distributing/gathering mechanism in device executing mass transfer or the like between gas and liquid
KR200255210Y1 (en) 2001-08-20 2001-12-01 민태식 A heat exchanger of gas boiler
US7278474B2 (en) * 2001-10-09 2007-10-09 Mikros Manufacturing, Inc. Heat exchanger
JP2007255719A (en) * 2004-04-30 2007-10-04 T Rad Co Ltd Connection structure of heat exchanger
CN201488410U (en) * 2009-08-28 2010-05-26 周泽生 Multi-stage shunting condenser
WO2011115883A2 (en) * 2010-03-15 2011-09-22 The Trustees Of Dartmouth College Geometry of heat exchanger with high efficiency
US9494370B2 (en) * 2010-12-09 2016-11-15 GeramTec GmbH Homogeneous liquid cooling of LED array
JP5944104B2 (en) * 2011-03-15 2016-07-05 株式会社東芝 Heat exchanger
CN102322757B (en) * 2011-08-08 2013-09-25 刘小江 Honeycomb type heat exchanger adopting multiple times of diffluence and confluence
CN102645117B (en) * 2012-05-02 2013-08-28 西安交通大学 Microchannel cooler
WO2014184915A1 (en) * 2013-05-15 2014-11-20 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
JP6353682B2 (en) * 2014-04-01 2018-07-04 昭和電工株式会社 Boiling cooler
JP5847913B1 (en) * 2014-11-06 2016-01-27 住友精密工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
WO2017135595A2 (en) 2017-08-10
DE112017000640T5 (en) 2018-12-06
CN108603728A (en) 2018-09-28
US20200166292A1 (en) 2020-05-28
KR101646761B1 (en) 2016-08-08
WO2017135595A3 (en) 2018-08-02
JP2019504984A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
CN202675974U (en) Pipe body with central heat-insulating pipelines and U-shaped circularly-distributed pipelines
JP6815039B2 (en) Heat exchanger
US9243853B2 (en) Heat exchanger
JP2019007729A (en) Heat exchanger
CN103616404A (en) Fluid flow heat-exchanging experimental device with ball socket/ball bulge flow control structure
CN103759472A (en) Micro heat exchanger with throttling function
Lorente Constructal law: From microscale to urban-scale design
KR101321751B1 (en) Electric boiler using heat pipe heat exchanger
KR20180087062A (en) Hot Water System Using Secondary Cell
Pasha et al. CFD study of Convective Heat Transfer of Water Flow Through Micro-Pipe with Mixed Constant Wall Temperature and Heat Flux Wall Boundary Conditions
Rymal et al. Numerical design of a high-flux microchannel solar receiver
KR20180087055A (en) A camping water heater
KR20190083609A (en) Heat exchanger and modular heat exchanger equipped with same
CN203273922U (en) Flue gas waste heat recovery device based on helical radial turbulent flow
CN211780991U (en) Clean steam generator
CN207797831U (en) A kind of antifreeze super heat-conductive pipe
Hyder Numbering-up of parallel microchannel arrays to megawatt scale supercritical CO₂ solar thermal receivers
Jung et al. Heat transfer on grooved high density poly ethylene tube for surface water source heat pump
CN104457344A (en) Modular heat exchanger
Brandner et al. Fabrication and testing of microstructure heat exchangers for thermal applications
CN109751470A (en) YZ type pipeline mitered component for fluid conveying
CN103206883B (en) Finned helix tube
CN202281422U (en) Microchannel heat exchanger
RU2756967C2 (en) Dual-channel adapter
CN110953563B (en) Clean steam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201215

R150 Certificate of patent or registration of utility model

Ref document number: 6815039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250