JP6813786B2 - Refrigerant leak detection method and refrigerant leak detection means - Google Patents

Refrigerant leak detection method and refrigerant leak detection means Download PDF

Info

Publication number
JP6813786B2
JP6813786B2 JP2019167089A JP2019167089A JP6813786B2 JP 6813786 B2 JP6813786 B2 JP 6813786B2 JP 2019167089 A JP2019167089 A JP 2019167089A JP 2019167089 A JP2019167089 A JP 2019167089A JP 6813786 B2 JP6813786 B2 JP 6813786B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
pipe
amount
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019167089A
Other languages
Japanese (ja)
Other versions
JP2019207105A (en
Inventor
弘三 堤
弘三 堤
章 鷺池
章 鷺池
Original Assignee
三菱重工冷熱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工冷熱株式会社 filed Critical 三菱重工冷熱株式会社
Priority to JP2019167089A priority Critical patent/JP6813786B2/en
Publication of JP2019207105A publication Critical patent/JP2019207105A/en
Application granted granted Critical
Publication of JP6813786B2 publication Critical patent/JP6813786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍空調装置等に適用される循環路であって、例えば熱交換器、圧縮機、蒸発器等及びこれらを接続する延長配管からなる冷媒循環配管の内部において、液相と気相とに状態変化しながら循環する冷媒の漏洩を検知する冷媒漏洩検知方法及び冷媒漏洩検知手段に関する。 The present invention is a circulation path applied to a refrigerating and air-conditioning device, for example, a liquid phase and a gas phase inside a refrigerant circulation pipe including a heat exchanger, a compressor, an evaporator, and an extension pipe connecting them. The present invention relates to a refrigerant leak detecting method and a refrigerant leak detecting means for detecting the leakage of the refrigerant circulating while changing the state.

従来、冷媒漏洩を検知する方法として、運転状態の冷媒循環配管において、管内が液相状態と認められる冷媒配管内の液冷媒量と、管内がガス(気相)状態と認められる冷媒配管内のガス冷媒量とを、管路に設けた各種センサにより検出された冷媒の圧力及び温度に基づき算出することで、冷媒循環配管内に存在する冷媒の現状トータル量を導出し、更に当該現状トータル量と、既知量として記憶された冷媒の初期トータル量との差分を導出して、冷媒循環配管における冷媒の漏洩量を検知するものがある(例えば、特許文献1参照)。 Conventionally, as a method of detecting refrigerant leakage, in a refrigerant circulation pipe in an operating state, the amount of liquid refrigerant in the refrigerant pipe in which the inside of the pipe is recognized as a liquid phase state and the amount of liquid refrigerant in the refrigerant pipe in which the inside of the pipe is recognized as a gas (gas phase) state are used. By calculating the amount of gas refrigerant based on the pressure and temperature of the refrigerant detected by various sensors provided in the pipeline, the current total amount of refrigerant existing in the refrigerant circulation pipe is derived, and the current total amount is further derived. And, there is a device that detects the leakage amount of the refrigerant in the refrigerant circulation pipe by deriving the difference from the initial total amount of the refrigerant stored as a known amount (see, for example, Patent Document 1).

特開2011−89717号公報(第9頁、第1図)Japanese Unexamined Patent Publication No. 2011-89717 (Page 9, FIG. 1)

しかしながら、特許文献1にあっては、冷媒循環配管を構成する機器のうち、一定量の内容量を有するレシーバやクーラーなど、その内部に液相状態の冷媒及びガス状態の冷媒が液面を介しいずれも存在している機器内の冷媒量を正確に算出することができず、結果として冷媒循環配管内の冷媒のトータル量に誤差が生じ、所期の冷媒漏洩を検知できない虞が生じるという問題がある。 However, in Patent Document 1, among the devices constituting the refrigerant circulation pipe, the liquid phase refrigerant and the gas state refrigerant such as a receiver and a cooler having a certain amount of internal capacity pass through the liquid surface. In either case, the amount of refrigerant in the existing equipment cannot be calculated accurately, and as a result, an error occurs in the total amount of refrigerant in the refrigerant circulation pipe, and there is a risk that the desired refrigerant leakage cannot be detected. There is.

本発明は、このような問題点に着目してなされたもので、冷媒循環配管を構成する各種機器内において液相状態及びガス状態で存在する冷媒のトータル量を正確に導出することで、所期の冷媒漏洩を検知することができる冷媒漏洩検知方法及び冷媒漏洩検知手段を提供することを目的とする。 The present invention has been made by paying attention to such a problem, and by accurately deriving the total amount of the refrigerant existing in the liquid phase state and the gas state in various devices constituting the refrigerant circulation pipe. It is an object of the present invention to provide a refrigerant leak detecting method and a refrigerant leak detecting means capable of detecting a refrigerant leak in the period.

前記課題を解決するために、本発明の冷媒漏洩検知方法は、
冷凍空調装置に適用される冷媒循環配管内を循環する冷媒の漏洩を検知する冷媒漏洩検知方法であって、
前記冷媒循環配管を構成する配管機器のうち一定内容量を有する蓄冷媒機器内の液冷媒の液面レベルをレベルセンサにより検知して、
前記液面レベルに基づき、前記蓄冷媒機器内の前記液面レベルよりも下方の液冷媒量を算出するとともに、前記蓄冷媒機器内の前記液面レベルよりも上方のガス冷媒量を算出し、
少なくとも前記液冷媒量及び前記ガス冷媒量に基づき漏洩検知対象となる現状冷媒量を導出して、
前記現状冷媒量と、前記冷媒循環配管内の基準となる基準冷媒量との差分に基づき、前記冷媒循環配管内の冷媒の漏洩を検知することを特徴としている。
この特徴によれば、冷凍空調装置の運転状況に従って変化する蓄冷媒機器内の液面レベルをレベルセンサにより検知することで、この蓄冷媒機器内で液相・気相で存在する冷媒量を算出でき、冷媒循環配管内の漏洩検知対象となる現状冷媒量を正確に導き出すことができるため、当該現状の冷媒量と基準冷媒量との差分に基づき、冷媒の漏洩の有無や漏出量を精度高く検知することができる。
In order to solve the above problems, the refrigerant leakage detection method of the present invention is used.
Refrigerant circulation that is applied to refrigeration and air conditioners This is a refrigerant leakage detection method that detects the leakage of refrigerant that circulates in the piping.
The level sensor detects the liquid level of the liquid refrigerant in the refrigerant storage device having a certain internal capacity among the piping devices constituting the refrigerant circulation pipe.
Based on the liquid level, the amount of liquid refrigerant below the liquid level in the refrigerant storage device is calculated, and the amount of gas refrigerant above the liquid level in the refrigerant storage device is calculated.
At least based on the amount of the liquid refrigerant and the amount of the gas refrigerant, the current amount of the refrigerant to be detected for leakage is derived.
It is characterized in that leakage of the refrigerant in the refrigerant circulation pipe is detected based on the difference between the current amount of the refrigerant and the reference reference refrigerant amount in the refrigerant circulation pipe.
According to this feature, the amount of refrigerant existing in the liquid phase and the gas phase in the refrigerant storage device is calculated by detecting the liquid level in the refrigerant storage device that changes according to the operating condition of the refrigerating and air-conditioning device with a level sensor. Since the current amount of refrigerant to be detected for leakage in the refrigerant circulation pipe can be accurately derived, the presence or absence of refrigerant leakage and the amount of leakage can be accurately determined based on the difference between the current amount of refrigerant and the reference amount of refrigerant. It can be detected.

前記基準冷媒量は、前記冷媒循環配管内に初期に導入された冷媒量を前記レベルセンサによる検知に基づき導出した初期冷媒量であることを特徴としている。
この特徴によれば、基準冷媒量が、現状冷媒量と同じレベルセンサに基づき導出されるため、これら基準冷媒量と現状冷媒量との差分を算出することで、レベルセンサの個体差や公差による検出誤差が相殺され、検出精度が高まる。
The reference refrigerant amount is characterized in that it is an initial refrigerant amount derived from the amount of the refrigerant initially introduced into the refrigerant circulation pipe based on the detection by the level sensor.
According to this feature, the reference refrigerant amount is derived based on the same level sensor as the current refrigerant amount. Therefore, by calculating the difference between the reference refrigerant amount and the current refrigerant amount, it depends on the individual difference and tolerance of the level sensor. The detection error is offset and the detection accuracy is improved.

本発明の冷媒漏洩検知方法に用いられる冷媒漏洩検知手段は、
前記蓄冷媒機器が、該蓄冷媒機器に接続される液冷媒配管よりも広い平面断面を有することを特徴としている。
この特徴によれば、蓄冷媒機器内の液面レベルの変動が液冷媒配管内の変動よりも緩和されるため、液面の変動による検知誤差の虞を回避できる。
The refrigerant leak detecting means used in the refrigerant leak detecting method of the present invention is
The refrigerant storage device is characterized by having a wider plane cross section than the liquid refrigerant pipe connected to the refrigerant storage device.
According to this feature, the fluctuation of the liquid level in the refrigerant storage device is lessened than the fluctuation in the liquid refrigerant pipe, so that the risk of detection error due to the fluctuation of the liquid level can be avoided.

前記レベルセンサは、前記蓄冷媒機器に連通する連通管を介して設けられることを特徴としている。
この特徴によれば、蓄冷媒機器から所期の位置まで連通管を延設することで、液面レベルの検知を行い易くなるばかりか、蓄冷媒機器内の液面変動の影響を直接受けることが無く、液面が安定する。
The level sensor is characterized in that it is provided via a communication pipe that communicates with the refrigerant storage device.
According to this feature, by extending the communication pipe from the refrigerant storage device to the desired position, not only the liquid level level can be easily detected, but also the liquid level fluctuation in the refrigerant storage device is directly affected. The liquid level is stable.

前記蓄冷媒機器は、少なくとも気相から液相に状態変化する冷媒を蓄える第1の蓄冷媒機器と、液相から気相に状態変化する冷媒を蓄える第2の蓄冷媒機器とからなることを特徴としている。
この特徴によれば、冷媒が液相と気相とに状態変化しながら循環する冷媒循環配管内において、気相から液相に状態変化する第1の蓄冷媒機器と、液相から気相に状態変化する冷媒を蓄える第2の蓄冷媒機器とで、液面レベルを検知することで、冷媒循環配管全体の冷媒の液相部分と気相部分との境界が明確になり、延いては冷媒の全体量を正確に導出することができる。
The refrigerant storage device includes at least a first refrigerant storage device that stores a refrigerant that changes state from a gas phase to a liquid phase and a second refrigerant storage device that stores a refrigerant that changes state from a liquid phase to a gas phase. It is a feature.
According to this feature, in the refrigerant circulation pipe in which the refrigerant circulates while changing the state between the liquid phase and the gas phase, the first refrigerant storage device that changes the state from the gas phase to the liquid phase and the liquid phase to the gas phase By detecting the liquid level with the second refrigerant storage device that stores the state-changing refrigerant, the boundary between the liquid-phase part and the gas-phase part of the refrigerant in the entire refrigerant circulation pipe becomes clear, and by extension, the refrigerant. The total amount of can be accurately derived.

実施例1における冷媒循環配管を示す配管図及びその制御ブロック図である。It is a piping diagram which shows the refrigerant circulation piping in Example 1, and is a control block diagram thereof. (a)は液面計を示す一部断面図であり、(b)は(a)のA−A断面図である。(A) is a partial cross-sectional view showing a liquid level gauge, and (b) is a cross-sectional view taken along the line AA of (a). 実施例2における冷媒循環配管を示す配管図である。It is a piping diagram which shows the refrigerant circulation piping in Example 2. FIG.

本発明に係る冷媒漏洩検知方法及び冷媒漏洩検知手段を実施するための形態を実施例に基づいて以下に説明する。 A mode for implementing the refrigerant leakage detection method and the refrigerant leakage detection means according to the present invention will be described below based on examples.

実施例1に係る冷媒漏洩検知方法につき、図1及び図2を参照して説明する。先ず図1の符号1は、2元冷凍サイクルの冷凍空調装置の低元側冷凍サイクルに適用される冷媒循環配管である。 The refrigerant leakage detection method according to the first embodiment will be described with reference to FIGS. 1 and 2. First, reference numeral 1 in FIG. 1 is a refrigerant circulation pipe applied to the low source side refrigeration cycle of the refrigeration and air conditioner of the dual refrigeration cycle.

冷媒循環配管1は、内部が閉系の循環路として、密封状態で連通接続した配管部材からなる。冷媒循環配管1の各構成機器は、その内部に存在する冷媒の相状態ごとに分類すると、内部冷媒が気相状態であるガス冷媒配管2と、気相から液相に状態変化する冷媒を蓄える第1の蓄冷媒機器としてのレシーバ10と、内部冷媒が液相状態である液冷媒配管3と、また液相から気相に状態変化する冷媒を蓄える第2の蓄冷媒機器としてのクーラー20とから構成される。さらにガス冷媒配管2は、主として低圧ガス配管2aと高圧ガス配管2bとからなり、また液冷媒配管3は、主として低圧液配管3aと高圧液配管3bとからなる。 The refrigerant circulation pipe 1 is composed of a pipe member that communicates and connects in a sealed state as a circulation path whose inside is closed. When each component device of the refrigerant circulation pipe 1 is classified according to the phase state of the refrigerant existing inside the refrigerant circulation pipe 1, it stores the gas refrigerant pipe 2 in which the internal refrigerant is in the gas phase state and the refrigerant whose state changes from the gas phase to the liquid phase. A receiver 10 as a first refrigerant storage device, a liquid refrigerant pipe 3 in which the internal refrigerant is in a liquid phase state, and a cooler 20 as a second refrigerant storage device for storing a refrigerant whose state changes from the liquid phase to the gas phase. Consists of. Further, the gas refrigerant pipe 2 is mainly composed of a low pressure gas pipe 2a and a high pressure gas pipe 2b, and the liquid refrigerant pipe 3 is mainly composed of a low pressure liquid pipe 3a and a high pressure liquid pipe 3b.

なお本実施例の冷媒循環配管1は、2元冷凍サイクルにおける低元側冷凍サイクルとして構成され、冷媒として沸点が比較的低いR23が適用されており、カスケードコンデンサ9を介し、別の閉系の循環路であって沸点が比較的高い冷媒(R404A等)が適用された高元側冷凍サイクル50と熱交換するものである。R23は、周知のようにオゾン層の破壊がない代替フロンとして適用されるが、一方で地球温暖化係数(GWP)が高い冷媒として知られており、その漏洩を厳密に検知する必要がある。 The refrigerant circulation pipe 1 of this embodiment is configured as a low-source refrigeration cycle in a dual refrigeration cycle, and R23 having a relatively low boiling point is applied as a refrigerant, and another closed system is used via a cascade capacitor 9. It exchanges heat with the high-source side refrigeration cycle 50 to which a refrigerant (R404A or the like) having a relatively high boiling point is applied in the circulation path. As is well known, R23 is applied as an alternative CFC that does not deplete the ozone layer, but on the other hand, it is known as a refrigerant having a high global warming potential (GWP), and its leakage needs to be strictly detected.

なお、本実施例では冷媒としてR23が適用されているが、他の代替フロン、アンモニアや炭酸ガス等の冷媒にも適用可能である。また本実施例では2元冷凍サイクルの低元側冷凍サイクルに適用されているが、これに限らず、閉系の循環路を構成するものであれば種々の冷凍空調装置に適用可能である。 Although R23 is applied as the refrigerant in this embodiment, it can also be applied to other refrigerants such as CFC substitutes, ammonia and carbon dioxide. Further, in this embodiment, the application is applied to the low source side refrigeration cycle of the dual refrigeration cycle, but the present invention is not limited to this, and can be applied to various refrigeration and air conditioners as long as it constitutes a closed circulation path.

図1を参照して冷媒循環配管1の循環路を順に説明する。図1において白抜き矢印は低圧状態の冷媒を示し、また黒塗り矢印は高圧状態の冷媒を示す。 The circulation path of the refrigerant circulation pipe 1 will be described in order with reference to FIG. In FIG. 1, the white arrow indicates the refrigerant in the low pressure state, and the black arrow indicates the refrigerant in the high pressure state.

先ず、クーラー20で液相から気相に状態変化した低圧ガス状態の冷媒は、クーラー20から送出されると、該冷媒に含まれる液体部分が液分離器4にて分離され、ガス冷媒配管2のうちの低圧ガス配管2aを介し低元コンプレッサユニット5に導入される。 First, when the low-pressure gas-state refrigerant whose state has changed from the liquid phase to the gas phase in the cooler 20 is sent out from the cooler 20, the liquid portion contained in the refrigerant is separated by the liquid separator 4, and the gas refrigerant pipe 2 It is introduced into the low-source compressor unit 5 via the low-pressure gas pipe 2a.

低元コンプレッサユニット5は、低圧ガスを高圧状態に昇圧するコンプレッサ6と、補機としての油分離器7とから主として構成される。コンプレッサ6は、図示しない回転機構若しくは往復機構等で生じた駆動力により低圧ガスを圧縮して高圧状態に昇圧するものであり、また油分離器7は、冷媒内に混入した潤滑油を分離してコンプレッサ6に戻すものである。 The low source compressor unit 5 is mainly composed of a compressor 6 that boosts low pressure gas to a high pressure state and an oil separator 7 as an auxiliary machine. The compressor 6 compresses the low-pressure gas by a driving force generated by a rotating mechanism or a reciprocating mechanism (not shown) and boosts the pressure to a high-pressure state, and the oil separator 7 separates the lubricating oil mixed in the refrigerant. It is returned to the compressor 6.

低元コンプレッサユニット5に導入された冷媒は、コンプレッサ6にて昇圧されて高圧ガスとしてガス冷媒配管2のうちの高圧ガス配管2bに送出され、カスケードコンデンサ9に導入される。カスケードコンデンサ9は、本実施例の冷媒循環配管1である低元側冷凍サイクルの凝縮器2cと、高元側冷凍サイクル50の蒸発器50aとを一体に構成した熱交換器である。 The refrigerant introduced into the low-source compressor unit 5 is boosted by the compressor 6 and sent out as high-pressure gas to the high-pressure gas pipe 2b of the gas refrigerant pipe 2, and is introduced into the cascade condenser 9. The cascade condenser 9 is a heat exchanger in which the condenser 2c of the low-source side refrigeration cycle, which is the refrigerant circulation pipe 1 of the present embodiment, and the evaporator 50a of the high-source side refrigeration cycle 50 are integrally formed.

すなわちカスケードコンデンサ9に導入された高圧ガス状態の冷媒は、凝縮器2cにて高元側冷凍サイクル50の蒸発器50aとの熱交換により冷却されて、気相から液相に状態変化するとともに、レシーバ10に導入される。 That is, the high-pressure gas-state refrigerant introduced into the cascade condenser 9 is cooled by heat exchange with the evaporator 50a of the high-source side refrigeration cycle 50 in the condenser 2c, and the state changes from the gas phase to the liquid phase. It is introduced in the receiver 10.

レシーバ10は、比較的大径の横置き略円筒形状の一定内容量を有する耐高圧仕様の密封容器からなり、該密封容器の上端部に冷媒の入口部となる高圧ガス配管2bとの接続部10a、及び該密封容器の下端部に冷媒の出口部となる高圧液配管3bとの接続部10bを備える。さらにレシーバ10は、該密封容器の内部に、上層部に貯留されるガス(気相)状態の冷媒と、下層部に貯留される液相状態の冷媒とが、該液相状態の冷媒の液面を境界面としていずれも存在している。 The receiver 10 is composed of a high-pressure resistant sealed container having a relatively large diameter and a substantially cylindrical shape that is horizontally placed and has a constant internal capacity, and is connected to a high-pressure gas pipe 2b that serves as an inlet for a refrigerant at the upper end of the sealed container. The 10a and the lower end of the sealed container are provided with a connection portion 10b with a high-pressure liquid pipe 3b serving as an outlet portion of the refrigerant. Further, in the receiver 10, inside the sealed container, the gas (gas phase) state refrigerant stored in the upper layer portion and the liquid phase state refrigerant stored in the lower layer portion are liquids of the liquid phase state refrigerant. Both exist with the surface as the boundary surface.

レシーバ10内部の液面を形成する平面断面は、上下方向に延設される高圧液配管3bの平面断面よりも大なる面積に形成されている。またレシーバ10には、その上側部及び下側部に接続される連通管11,12を介し、液冷媒の液面レベルを計測するための液面計13が連通状態で設けられる。ここで平面断面とは、水平面に平行な断面を意味する。 The plane cross section forming the liquid level inside the receiver 10 is formed in an area larger than the plane cross section of the high-pressure liquid pipe 3b extending in the vertical direction. Further, the receiver 10 is provided with a liquid level gauge 13 for measuring the liquid level of the liquid refrigerant in a communicating state via communication pipes 11 and 12 connected to the upper and lower portions thereof. Here, the plane cross section means a cross section parallel to the horizontal plane.

図2(a),(b)に示されるように、液面計13は、比較的小径の縦置き円筒形状の一定平面断面の耐高圧仕様の密封容器からなり、該密封容器の上部にガス(気相)状態の冷媒が流通する連通管11との接続部13a、及び該密封容器の下部に液相状態の冷媒が流通する連通管12との接続部13bを備えている。すなわち液面計13内はレシーバ10内と連通状態となり同圧となるため、液面計13内の液冷媒の液面レベルは、当該液面計13に連通するレシーバ10内の液冷媒の液面レベルに追従して常に同じ高さに形成される。 As shown in FIGS. 2 (a) and 2 (b), the liquid level gauge 13 is composed of a high-pressure resistant sealed container having a relatively small diameter, a vertically placed cylindrical shape, and a constant plane cross section, and gas is placed on the upper part of the sealed container. A connection portion 13a with a communication pipe 11 through which the (gas phase) refrigerant flows, and a connection portion 13b with the communication pipe 12 through which the liquid phase refrigerant flows are provided below the sealed container. That is, since the inside of the liquid level gauge 13 communicates with the inside of the receiver 10 and has the same pressure, the liquid level of the liquid refrigerant in the liquid level gauge 13 is the liquid of the liquid refrigerant in the receiver 10 communicating with the liquid level gauge 13. It follows the surface level and is always formed at the same height.

更に液面計13について詳述すると、本実施例の液面計13はいわゆるマグネット式液面計であり、液面計13を構成する密封容器の内部には、液相状態の冷媒よりも比重が軽い小径の円柱状のマグネットフロート14が、該密封容器内の液冷媒の液面レベルに従って上下方向に移動可能に配設されている。 Further explaining the liquid level gauge 13 in detail, the liquid level gauge 13 of this embodiment is a so-called magnetic liquid level gauge, and the specific gravity inside the sealed container constituting the liquid level gauge 13 is higher than that of the refrigerant in the liquid phase state. A small-diameter columnar magnet float 14 having a light weight is arranged so as to be movable in the vertical direction according to the liquid level of the liquid refrigerant in the sealed container.

また液面計13を構成する密封容器の側部には、上下方向にかけて透明アクリル板等からなる目視窓16が設けられ、更に目視窓16には、目盛として、磁性体からなるロータが上下方向に複数並設されている(図示略)。個々のロータは、密封容器内のマグネットフロート14の高さ位置に応じて、磁力により反転可能に設けられており、例えばマグネットフロート14が位置する液面レベルよりも下方のロータは所定色が施された表面を向き、当該液面レベルよりも上方のロータは、別の色が施された裏面を向くように構成されている。
更に、液面計13を構成する密封容器の目視窓16とは反対側の側部には、反転したロータにより検知した液面レベルの数値データを、電気信号に変換して発信可能なレベル発信器15が設けられている。レベル発信器15は、例えば後述する制御手段30の入力部32に対し図示しない信号ケーブル等により発信可能とされており、アナログ電流で発信若しくはデジタル信号の時間間隔を数秒・数分おき等と短く設定して発信することで、レシーバ10内の液面レベルの常時の監視が可能となる。
なお、管理者は、目視窓16を介し液面計13内のマグネットフロート14の高さ、すなわち液面レベルを、表面・裏面に反転したロータの色の違いで目視確認することもできる。
Further, a visual window 16 made of a transparent acrylic plate or the like is provided on the side of the sealed container constituting the liquid level gauge 13 in the vertical direction, and a rotor made of a magnetic material is vertically provided on the visual window 16 as a scale. Multiple windows are installed side by side (not shown). The individual rotors are provided so as to be reversible by magnetic force according to the height position of the magnet float 14 in the sealed container. For example, the rotor below the liquid level where the magnet float 14 is located is given a predetermined color. Rotors above the liquid level are configured to face the back side with a different color.
Further, on the side portion of the sealed container constituting the liquid level gauge 13 opposite to the visual window 16, the liquid level level numerical data detected by the inverted rotor is converted into an electric signal and transmitted at a level that can be transmitted. A vessel 15 is provided. The level transmitter 15 can transmit, for example, to the input unit 32 of the control means 30 described later by a signal cable or the like (not shown), and transmits with an analog current or shortens the time interval of the digital signal to several seconds or minutes. By setting and transmitting, it is possible to constantly monitor the liquid level in the receiver 10.
The administrator can also visually check the height of the magnet float 14 in the liquid level gauge 13 through the visual window 16, that is, the liquid level by the difference in the color of the rotor inverted on the front side and the back side.

すなわちレシーバ10は、本発明の冷媒漏洩検知方法に用いられる冷媒漏洩検知手段であって、気相から液相に状態変化する冷媒を蓄える第1の蓄冷媒機器を構成している。 That is, the receiver 10 is a refrigerant leakage detecting means used in the refrigerant leakage detecting method of the present invention, and constitutes a first refrigerant storage device that stores a refrigerant whose state changes from a gas phase to a liquid phase.

なお、レシーバ10内の液冷媒の液面レベル検知手段として、必ずしも本実施例のマグネット式の液面計13に限られず、例えば差圧式や静電容量式の液面計であってもよい。 The liquid level level detecting means of the liquid refrigerant in the receiver 10 is not necessarily limited to the magnet type liquid level gauge 13 of the present embodiment, and may be, for example, a differential pressure type or a capacitance type liquid level gauge.

レシーバ10の下端部から高圧液配管3bに送出された高圧液状態の冷媒は、膨張弁8を通過することで、低圧液状態となり、低圧液配管3aを介してクーラー20に導入され、該クーラー20内にて液相から気相に状態変化する。 The high-pressure liquid refrigerant sent from the lower end of the receiver 10 to the high-pressure liquid pipe 3b enters the low-pressure liquid state by passing through the expansion valve 8, is introduced into the cooler 20 via the low-pressure liquid pipe 3a, and is introduced into the cooler 20. The state changes from the liquid phase to the gas phase within 20.

クーラー20は、比較的大径の横置き略円筒形状の一定内容量を有する耐高圧仕様の密封容器からなり、該密封容器の下端部に冷媒の入口部となる低圧液配管3aとの接続部20b、及び該密封容器の上端部に冷媒の出口部となる低圧ガス配管2aとの接続部20aを備える。さらにクーラー20は、該密封容器の内部に、上層部に貯留されるガス(気相)状態の冷媒と、下層部に貯留される液相状態の冷媒とが、該液相状態の冷媒の液面を境界面としていずれも存在している。 The cooler 20 is composed of a high-pressure resistant sealed container having a relatively large diameter and a substantially cylindrical shape that is horizontally placed and has a constant internal capacity, and is connected to a low-pressure liquid pipe 3a that serves as an inlet for a refrigerant at the lower end of the sealed container. 20b and a connection portion 20a with a low-pressure gas pipe 2a serving as an outlet portion of the refrigerant are provided at the upper end portion of the sealed container. Further, in the cooler 20, the refrigerant in the gas (gas phase) state stored in the upper layer portion and the refrigerant in the liquid phase state stored in the lower layer portion are liquids of the refrigerant in the liquid phase state inside the sealed container. Both exist with the surface as the boundary surface.

クーラー20内部の液面を形成する平面断面は、上下方向に延設される低圧液配管3aの平面断面よりも大なる面積に形成されている。またクーラー20には、その上側部及び下側部に接続される連通管21,22を介し、液冷媒の液面レベルを計測するための液面計23が連通状態で設けられる。 The plane cross section forming the liquid level inside the cooler 20 is formed in an area larger than the plane cross section of the low pressure liquid pipe 3a extending in the vertical direction. Further, the cooler 20 is provided with a liquid level gauge 23 for measuring the liquid level of the liquid refrigerant in a communicating state via communication pipes 21 and 22 connected to the upper and lower portions thereof.

液面計23は、比較的小径の縦置き円筒形状の一定平面断面の耐高圧仕様の密封容器からなり、該密封容器の上部にガス(気相)状態の冷媒が流通する連通管21との接続部、及び該密封容器の下部に液相状態の冷媒が流通する連通管22との接続部を備えている。すなわち液面計23内はクーラー20内と連通状態となり同圧となるため、液面計23内の液冷媒の液面レベルは、当該液面計23に連通するクーラー20内の液冷媒の液面レベルに追従して常に同じ高さに形成される。 The liquid level gauge 23 is composed of a high-pressure resistant sealed container having a relatively small diameter, a vertically placed cylindrical shape, and a constant plane cross section, and communicates with a communication pipe 21 in which a gas (gas phase) refrigerant flows in the upper part of the sealed container. A connection portion and a connection portion with a communication pipe 22 through which a liquid-phase gas flows are provided below the sealed container. That is, since the inside of the liquid level gauge 23 communicates with the inside of the cooler 20 and has the same pressure, the liquid level of the liquid refrigerant in the liquid level gauge 23 is the liquid of the liquid refrigerant in the cooler 20 communicating with the liquid level gauge 23. It follows the surface level and is always formed at the same height.

クーラー20に設けられた液面計23は、上記したレシーバ10に設けられた液面計13と同様に構成されているため、その詳細な説明は省略する。 Since the liquid level gauge 23 provided in the cooler 20 has the same configuration as the liquid level gauge 13 provided in the receiver 10 described above, detailed description thereof will be omitted.

すなわちクーラー20は、本発明の冷媒漏洩検知方法に用いられる冷媒漏洩検知手段であって、液相から気相に状態変化する冷媒を蓄える第2の蓄冷媒機器を構成している。 That is, the cooler 20 is a refrigerant leakage detecting means used in the refrigerant leakage detecting method of the present invention, and constitutes a second refrigerant storage device that stores a refrigerant whose state changes from a liquid phase to a gas phase.

次に、冷媒循環配管1内に存在する冷媒量の検知方法について説明する。 Next, a method of detecting the amount of refrigerant existing in the refrigerant circulation pipe 1 will be described.

冷媒循環配管1内に存在する冷媒量(重量)の全量は、気相状態で存在する冷媒量(重量)と、液相状態で存在する冷媒量(重量)とを合算することで導出される。全冷媒量(重量)は、後述する制御手段によって算出されるものであり、冷媒循環配管1に配設された圧力ゲージPG1〜PG3及び液面計13,14等と、配管機器内の容積等の既知量を記憶する記憶部31と、これら計測器で計測されたデータに基づき算出する制御部33等を備えた制御手段30により算出される。 The total amount of refrigerant (weight) existing in the refrigerant circulation pipe 1 is derived by adding up the amount of refrigerant (weight) existing in the gas phase state and the amount of refrigerant (weight) existing in the liquid phase state. .. The total amount (weight) of the refrigerant is calculated by a control means described later, and the pressure gauges PG1 to PG3 arranged in the refrigerant circulation pipe 1, the liquid level gauges 13, 14, etc., the volume in the piping equipment, etc. It is calculated by the control means 30 including the storage unit 31 that stores the known amount of the above, and the control unit 33 that calculates based on the data measured by these measuring instruments.

冷媒循環配管1のうち、低圧ガス配管2a内には、低圧状態のガス冷媒のみで満たされていると想定される。低圧ガス配管2aの内部容積(V1)は一定量であって既知量のため、変数として低圧ガス配管2aの内部圧力(P1)を圧力ゲージPG2,PG3に基づき計測し、ガス密度を算出することで、低圧ガス配管2a内の冷媒重量である冷媒量(W1)を算出することができる。 It is assumed that the low-pressure gas pipe 2a of the refrigerant circulation pipe 1 is filled only with the gas refrigerant in the low-pressure state. Since the internal volume (V1) of the low-pressure gas pipe 2a is a constant amount and is a known amount, the internal pressure (P1) of the low-pressure gas pipe 2a is measured as a variable based on the pressure gauges PG2 and PG3, and the gas density is calculated. Therefore, the amount of refrigerant (W1), which is the weight of the refrigerant in the low-pressure gas pipe 2a, can be calculated.

また、低圧ガス配管2aを構成する液分離器4内には、厳密には僅かに液冷媒が存在しているが、その量は低圧ガス配管2aの内部容積(V1)に比して極少量であるため、計算に含めずとも計測精度を確保することができる。 Strictly speaking, a small amount of liquid refrigerant is present in the liquid separator 4 constituting the low-pressure gas pipe 2a, but the amount thereof is extremely small compared to the internal volume (V1) of the low-pressure gas pipe 2a. Therefore, the measurement accuracy can be ensured without including it in the calculation.

なお、別の変数として配管機器の内部温度を実測することで、より精密に冷媒量(重量)を算出できるが、運転時若しくは非運転時の温度として想定される所定値を予め設定することで、温度を実測せずとも計測精度を確保することができる。 The amount of refrigerant (weight) can be calculated more accurately by actually measuring the internal temperature of the piping equipment as another variable, but by setting a predetermined value that is assumed as the temperature during operation or non-operation in advance. , The measurement accuracy can be ensured without actually measuring the temperature.

同様に、冷媒循環配管1のうち、高圧ガス配管2b内には、高圧状態のガス冷媒のみで満たされていると想定される。高圧ガス配管2bの内部容積(V2)は一定量であって既知量のため、変数として高圧ガス配管2bの内部圧力(P2)を圧力ゲージPG1に基づき計測し、ガス密度を算出することで、高圧ガス配管2b内の冷媒量(W2)を算出することができる。 Similarly, it is assumed that the high-pressure gas pipe 2b of the refrigerant circulation pipe 1 is filled with only the high-pressure gas refrigerant. Since the internal volume (V2) of the high-pressure gas pipe 2b is a constant amount and is a known amount, the internal pressure (P2) of the high-pressure gas pipe 2b is measured as a variable based on the pressure gauge PG1 and the gas density is calculated. The amount of refrigerant (W2) in the high-pressure gas pipe 2b can be calculated.

また冷媒循環配管1のうち、液冷媒配管3を構成する高圧液配管3b及び低圧液配管3a内には、液相状態の冷媒のみで満たされていると想定される。高圧液配管3b及び低圧液配管3aの内部容積(V3)は一定量であって既知量のため、変数として高圧液配管3bの内部圧力(P2)を圧力ゲージPG1に基づき計測し高圧液密度を算出するとともに、変数として低圧液配管3aの内部圧力(P1)を圧力ゲージPG2に基づき計測し低圧液密度を算出することで、高圧液配管3b及び低圧液配管3a内の冷媒量(W3)を算出することができる。 Further, among the refrigerant circulation pipes 1, it is assumed that the high-pressure liquid pipe 3b and the low-pressure liquid pipe 3a constituting the liquid refrigerant pipe 3 are filled only with the refrigerant in the liquid phase state. Since the internal volume (V3) of the high-pressure liquid pipe 3b and the low-pressure liquid pipe 3a is a constant amount and is a known amount, the internal pressure (P2) of the high-pressure liquid pipe 3b is measured based on the pressure gauge PG1 as a variable to measure the high-pressure liquid density. In addition to the calculation, the internal pressure (P1) of the low-pressure liquid pipe 3a is measured as a variable based on the pressure gauge PG2, and the low-pressure liquid density is calculated to obtain the amount of refrigerant (W3) in the high-pressure liquid pipe 3b and the low-pressure liquid pipe 3a. Can be calculated.

なお、本発明で適用される冷媒は、その液体状態では非圧縮性流体として扱うことができるため、高圧液配管3b及び低圧液配管3aの内部圧力を実測せずとも、計測精度を確保することができる。すなわち、高圧液配管3b及び低圧液配管3a内の冷媒量(W3)は、冷凍空調装置の運転時・非運転時若しくは運転の状態に関わらず、変動の無い常に一定の既知量として扱うことができる。 Since the refrigerant applied in the present invention can be treated as an incompressible fluid in its liquid state, the measurement accuracy should be ensured without actually measuring the internal pressures of the high-pressure liquid pipe 3b and the low-pressure liquid pipe 3a. Can be done. That is, the amount of refrigerant (W3) in the high-pressure liquid pipe 3b and the low-pressure liquid pipe 3a can be treated as a constant known amount that does not fluctuate regardless of whether the refrigerating air conditioner is operating, not operating, or in an operating state. it can.

次に冷媒循環配管1のうち、レシーバ10内の冷媒量の検出について説明する。 Next, detection of the amount of refrigerant in the receiver 10 in the refrigerant circulation pipe 1 will be described.

先ず、レシーバ10内の液冷媒の液面レベルを上記した液面計13に基づき検知する。本実施例の場合、レシーバ10内の液冷媒の液面レベルは、上記したように、液面計13内のマグネットフロート14の高さ位置に応じて表裏反転するロータによって検知可能となっており、反転したロータにより検知した液面レベルの数値データを、レベル発信器15により電気信号に変換して後述する制御手段30の入力部32に発信することで常時検知される。検知したレシーバ10内の液冷媒の液面レベルを境界として、レシーバ10内の液面レベルよりも下方には液相状態の冷媒が貯留され、また液面レベルよりも上方には気相状態の冷媒が貯留されていると認定できる。なお、レシーバ10内の液面レベルは、管理者が液面計13の目視窓16を介しマグネットフロート14の表裏に施された配色を読み取ることで検知することもできる。 First, the liquid level of the liquid refrigerant in the receiver 10 is detected based on the liquid level meter 13 described above. In the case of this embodiment, as described above, the liquid level of the liquid refrigerant in the receiver 10 can be detected by the rotor that flips over according to the height position of the magnet float 14 in the liquid level meter 13. The numerical data of the liquid level detected by the inverted rotor is converted into an electric signal by the level transmitter 15 and transmitted to the input unit 32 of the control means 30 described later, so that the data is always detected. With the liquid level of the liquid refrigerant in the receiver 10 as the boundary, the liquid-phase refrigerant is stored below the liquid level in the receiver 10, and the gas-phase state is above the liquid level. It can be certified that the refrigerant is stored. The liquid level in the receiver 10 can also be detected by the administrator reading the color scheme applied to the front and back of the magnet float 14 through the visual window 16 of the liquid level meter 13.

制御手段30の制御部33は、レシーバ10の任意の液面レベルにおける内容積、すなわちレシーバ10内部の下端から当該液面レベルまでの内容積を算出可能とされている。よってレシーバ10内の液面レベルを検知することで、当該液面レベル以下に存在する液冷媒の内容積(V4)を算出し、またレシーバ10の上部に設けられたガス冷媒用の圧力ゲージPG1にて計測したレシーバ10上部の内部圧力(P5)に基づき液密度を算出することで、レシーバ10内部の液冷媒の冷媒量(W4)を算出することができる。 The control unit 33 of the control means 30 can calculate the internal volume of the receiver 10 at an arbitrary liquid level, that is, the internal volume from the lower end inside the receiver 10 to the liquid level. Therefore, by detecting the liquid level in the receiver 10, the internal volume (V4) of the liquid refrigerant existing below the liquid level is calculated, and the pressure gauge PG1 for the gas refrigerant provided above the receiver 10 is calculated. By calculating the liquid density based on the internal pressure (P5) of the upper part of the receiver 10 measured in the above, the amount of refrigerant (W4) of the liquid refrigerant inside the receiver 10 can be calculated.

また制御手段30の制御部33は、レシーバ10の任意の液面レベルにおけるガス冷媒量、すなわちレシーバ10内部の当該液面レベルから上端までの内容積を算出可能とされている。よってレシーバ10内の液面レベルを検知することで、当該液面レベル以上に存在するガス冷媒の内容積(V5)を算出し、またレシーバ10の上部に設けられたガス冷媒用の圧力ゲージPG1にて計測したレシーバ10上部の内部圧力(P5)に基づきガス密度を算出することで、レシーバ10内部のガス冷媒の冷媒量(W5)を算出することができる。 Further, the control unit 33 of the control means 30 can calculate the amount of gas refrigerant at an arbitrary liquid level of the receiver 10, that is, the internal volume inside the receiver 10 from the liquid level to the upper end. Therefore, by detecting the liquid level in the receiver 10, the internal volume (V5) of the gas refrigerant existing above the liquid level is calculated, and the pressure gauge PG1 for the gas refrigerant provided above the receiver 10 is calculated. By calculating the gas density based on the internal pressure (P5) of the upper part of the receiver 10 measured in the above, the amount of refrigerant (W5) of the gas refrigerant inside the receiver 10 can be calculated.

次に冷媒循環配管1のうち、クーラー20内の冷媒量の検出について説明する。 Next, the detection of the amount of refrigerant in the cooler 20 in the refrigerant circulation pipe 1 will be described.

先ず、クーラー20内の液冷媒の液面レベルを上記した液面計23に基づき検知する。本実施例の場合、クーラー20内の液冷媒の液面レベルは、上記した液面計13と同様に、液面計23内のマグネットフロートの高さ位置に応じて表裏反転するロータによって検知可能となっており、反転したロータにより検知した液面レベルの数値データを、レベル発信器により電気信号に変換して後述する制御手段30の入力部32に発信することで常時検知される。検知したクーラー20内の液冷媒の液面レベルを境界として、クーラー20内の液面レベルよりも下方には液相状態の冷媒が貯留され、また液面レベルよりも上方には気相状態の冷媒が貯留されていると認定できる。なお、クーラー20内の液面レベルは、管理者が液面計23の目視窓を介しマグネットフロートの表裏に施された配色を読み取ることで検知することもできる。 First, the liquid level of the liquid refrigerant in the cooler 20 is detected based on the liquid level meter 23 described above. In the case of this embodiment, the liquid level of the liquid refrigerant in the cooler 20 can be detected by a rotor that flips over according to the height position of the magnet float in the liquid level meter 23, similarly to the liquid level meter 13 described above. The numerical data of the liquid level detected by the inverted rotor is converted into an electric signal by the level transmitter and transmitted to the input unit 32 of the control means 30 described later, so that the data is always detected. With the detected liquid level of the liquid refrigerant in the cooler 20 as a boundary, the liquid-phase refrigerant is stored below the liquid level in the cooler 20, and the gas-phase state is above the liquid level. It can be certified that the refrigerant is stored. The liquid level in the cooler 20 can also be detected by the administrator reading the color scheme applied to the front and back of the magnet float through the visual window of the liquid level meter 23.

制御手段30の制御部33は、クーラー20の任意の液面レベルにおける内容積、すなわちクーラー20内部の下端から当該液面レベルまでの内容積を算出可能とされている。よってクーラー20内の液面レベルを検知することで、当該液面レベル以下に存在する液冷媒の内容積(V6)を算出し、またクーラー20の上部に設けられたガス冷媒用の圧力ゲージPG2にて計測したクーラー20上部の内部圧力(P7)に基づき液密度を算出し、クーラー20内部の液冷媒の冷媒量(W6)を算出することができる。 The control unit 33 of the control means 30 can calculate the internal volume of the cooler 20 at an arbitrary liquid level, that is, the internal volume from the lower end inside the cooler 20 to the liquid level. Therefore, by detecting the liquid level in the cooler 20, the internal volume (V6) of the liquid refrigerant existing below the liquid level is calculated, and the pressure gauge PG2 for the gas refrigerant provided above the cooler 20 is calculated. The liquid density can be calculated based on the internal pressure (P7) of the upper part of the cooler 20 measured in the above, and the amount of refrigerant (W6) of the liquid refrigerant inside the cooler 20 can be calculated.

また制御手段30の制御部33は、クーラー20の任意の液面レベルにおけるガス冷媒量、すなわちクーラー20内部の当該液面レベルから上端までの内容積を算出可能とされている。よってクーラー20内の液面レベルを検知することで、当該液面レベル以上に存在するガス冷媒の内容積(V7)を算出し、またクーラー20の上部に設けられたガス冷媒用の圧力ゲージPG2にて計測したクーラー20上部の内部圧力(P7)に基づきガス密度を算出し、レシーバ10内部のガス冷媒の冷媒量(W7)を算出することができる。 Further, the control unit 33 of the control means 30 can calculate the amount of gas refrigerant at an arbitrary liquid level of the cooler 20, that is, the internal volume of the inside of the cooler 20 from the liquid level to the upper end. Therefore, by detecting the liquid level in the cooler 20, the internal volume (V7) of the gas refrigerant existing above the liquid level is calculated, and the pressure gauge PG2 for the gas refrigerant provided above the cooler 20 is calculated. The gas density can be calculated based on the internal pressure (P7) of the upper part of the cooler 20 measured in the above, and the amount of refrigerant (W7) of the gas refrigerant inside the receiver 10 can be calculated.

以上説明したように、本実施例1においては、低圧ガス配管2a、高圧ガス配管2b、高圧液配管3b及び低圧液配管3a、レシーバ10、及びクーラー20の内部の冷媒量(W1)〜(W7)をそれぞれ算出し、これら全てを合算することにより、閉系の循環路である冷媒循環配管1内に含まれる全冷媒量(WT)を導出でき、この全冷媒量(WT)に基づき冷媒の漏洩を検知することができる。 As described above, in the first embodiment, the amount of refrigerant (W1) to (W7) inside the low-pressure gas pipe 2a, the high-pressure gas pipe 2b, the high-pressure liquid pipe 3b and the low-pressure liquid pipe 3a, the receiver 10, and the cooler 20. ) Are calculated and all of them are added up to derive the total amount of refrigerant (WT) contained in the refrigerant circulation pipe 1 which is a closed circulation path, and the total amount of refrigerant (WT) is used as the basis for the amount of refrigerant. Leakage can be detected.

次に、冷媒漏洩検知を制御する制御手段について説明する。 Next, the control means for controlling the refrigerant leakage detection will be described.

図1に示されるように、制御手段30は、冷媒漏洩検知手段を構成するものであって、後述する記憶部31、入力部32、制御部33、表示部34及び出力部35から主として構成され、好適には上記した冷媒循環配管1近傍の図示しない監視室等に配設される。 As shown in FIG. 1, the control means 30 constitutes a refrigerant leakage detecting means, and is mainly composed of a storage unit 31, an input unit 32, a control unit 33, a display unit 34, and an output unit 35, which will be described later. , Preferably, it is arranged in a monitoring room or the like (not shown) near the above-mentioned refrigerant circulation pipe 1.

記憶部31は、各配管部材の配管径、延長、内容積等の変動の無い固定値を記憶するものであり、各冷凍空調装置に適用される冷媒循環配管1ごとに設置初期に入力されるものである。また厳密には温度に基づき変化する液密度やガス密度等の値を、代表温度における値に代替して記憶してもよい。 The storage unit 31 stores fixed values such as the pipe diameter, extension, and internal volume of each pipe member that do not fluctuate, and is input to each refrigerant circulation pipe 1 applied to each refrigerating and air-conditioning device at the initial stage of installation. It is a thing. Strictly speaking, values such as liquid density and gas density that change based on temperature may be stored in place of the values at the representative temperature.

入力部32は、冷媒循環配管1における液面レベルや圧力値等の各種計測値を入力するためのものであり、これらの計測値を電気信号として入力するものでもよいし、管理者が読み取った値をキーボードやタッチパネル等で入力するものでもよい。また入力部32は、冷媒循環配管1における漏洩が発生したと判断される基準となる冷媒重量である漏洩警報設置値(WS)を入力可能とされる。 The input unit 32 is for inputting various measured values such as the liquid level and the pressure value in the refrigerant circulation pipe 1, and these measured values may be input as an electric signal or read by the administrator. The value may be input using a keyboard, touch panel, or the like. Further, the input unit 32 can input a leak alarm installation value (WS), which is a reference refrigerant weight for determining that a leak has occurred in the refrigerant circulation pipe 1.

制御部33は、入力部32に入力された計測値、及び記憶部31に記憶された固定値に基づき、ガス冷媒配管2,液冷媒配管3,レシーバ10及びクーラー20内の液冷媒及びガス冷媒の冷媒量などの計算値を算出し、これらを合計することで冷媒循環配管1における漏洩検知対象となる現状の全冷媒量(WT)を算出するものである。 The control unit 33 is based on the measured value input to the input unit 32 and the fixed value stored in the storage unit 31, the gas refrigerant pipe 2, the liquid refrigerant pipe 3, the receiver 10, and the liquid refrigerant and the gas refrigerant in the cooler 20. By calculating the calculated values such as the amount of the refrigerant in the above and totaling them, the current total amount of the refrigerant (WT) to be detected for leakage in the refrigerant circulation pipe 1 is calculated.

漏洩警報設置値(WS)は、適宜の数値を設定入力可能であるが、本実施例では、当該冷媒循環配管1内に初期に投入された冷媒の重量である初期全冷媒量(WA)を、上記した現状の全冷媒量(WT)と同様に、液面計13,23にて検出したレシーバ10,クーラー20内の液面レベル等に基づき入力部32に入力された計測値、及び記憶部31に記憶された固定値に基づき算出することで、初期全冷媒量(WA)として取得し、当該初期全冷媒量(WA)から所定の許容誤差及び許容漏洩量(Wa)を差し引いた数値を、漏洩警報設置値(WS)として設定入力される。 The leakage alarm installation value (WS) can be set and input as an appropriate value, but in this embodiment, the initial total refrigerant amount (WA), which is the weight of the refrigerant initially charged into the refrigerant circulation pipe 1, is used. , The measured value input to the input unit 32 based on the receiver 10 detected by the liquid level gauges 13 and 23, the liquid level in the cooler 20, and the storage, as in the case of the current total refrigerant amount (WT) described above. By calculating based on the fixed value stored in the unit 31, it is acquired as the initial total refrigerant amount (WA), and the predetermined allowable error and the allowable leakage amount (Wa) are subtracted from the initial total refrigerant amount (WA). Is set and input as the leakage alarm installation value (WS).

また制御部33は、算出した現状の全冷媒量(WT)と漏洩警報設置値(WS)との差分を算出し、全冷媒量(WT)が漏洩警報設置値(WS)を上回っている場合は漏洩の無い通常状態と判断し、また全冷媒量(WT)が漏洩警報設置値(WS)以下となった場合は漏洩が発生した異常状態と判断する。すなわち制御部33は、現状冷媒量と、冷媒循環配管内の基準となる基準冷媒量との差分に基づき、冷媒循環配管1内の冷媒の漏洩を検知する。 Further, the control unit 33 calculates the difference between the calculated current total refrigerant amount (WT) and the leak alarm installation value (WS), and when the total refrigerant amount (WT) exceeds the leak alarm installation value (WS). Is determined to be a normal state without leakage, and when the total amount of refrigerant (WT) is equal to or less than the leakage alarm installation value (WS), it is determined to be an abnormal state in which leakage has occurred. That is, the control unit 33 detects the leakage of the refrigerant in the refrigerant circulation pipe 1 based on the difference between the current amount of refrigerant and the reference reference refrigerant amount in the refrigerant circulation pipe 1.

表示部34は、記憶部31に記憶された固定値、入力部32に入力された計測値、及び制御部33で算出された計算値を表示するためのものである。特に図示しないが、表示部34は、例えば上記した固定値、計測値、計算値及び全冷媒量(WT)を一覧に表示する一覧表示画面を表示し、あるいは表示部34は、計算値を経時的に線グラフ等で表示するグラフ表示画面を表示する。 The display unit 34 is for displaying the fixed value stored in the storage unit 31, the measured value input to the input unit 32, and the calculated value calculated by the control unit 33. Although not particularly shown, the display unit 34 displays, for example, a list display screen that displays the above-mentioned fixed value, measured value, calculated value, and total refrigerant amount (WT) in a list, or the display unit 34 displays the calculated value over time. Display a graph display screen that is displayed as a line graph or the like.

また特に図示しないが、表示部34は、制御部33が通常状態と判断した場合は通常画面として例えば青色の背景色で表示し、一方で制御部33が異常状態と判断した場合は、表示部34が異常画面として例えば赤色の背景色、画面の点滅を表示したり、若しくは出力部35が警報音を発することで異常状態を報知する。 Although not particularly shown, the display unit 34 displays a normal screen with, for example, a blue background color when the control unit 33 determines that it is in a normal state, while the display unit 34 displays when it determines that the control unit 33 is in an abnormal state. 34 displays, for example, a red background color and blinking of the screen as an abnormal screen, or the output unit 35 emits an alarm sound to notify the abnormal state.

また出力部35は、記憶部31に記憶された固定値、入力部32に入力された計測値、制御部33で算出された計算値、そして冷媒循環配管1の通常状態または異常状態を外部に出力するものであり、各種回線を介し外部発信するものでもよいし、または記憶媒体に記録するものでもよい。 Further, the output unit 35 externally displays the fixed value stored in the storage unit 31, the measured value input to the input unit 32, the calculated value calculated by the control unit 33, and the normal state or abnormal state of the refrigerant circulation pipe 1. It may be output, and may be transmitted externally via various lines, or may be recorded on a storage medium.

上記した冷媒漏洩検知は、常時継続的に行ってもよいし、任意に設定した所定時間毎に間欠的に行ってもよいし、又は冷凍空調機器の運転起動時や一時停止時等の所定イベントが生じたときに行ってもよく、これらを複合して行うこともできる。 The above-mentioned refrigerant leakage detection may be performed continuously at all times, intermittently at predetermined time intervals set arbitrarily, or at a predetermined event such as when the refrigerating and air-conditioning equipment is started or temporarily stopped. This may be performed when the above occurs, or a combination of these may be performed.

好適には冷媒漏洩検知は、冷凍空調機器の運転時には継続的または数分毎に行うとともに、冷凍空調機器の非運転時には数時間毎に行うことで、運転時に漏洩した場合に早期の応急措置を講ずることができ、かつ、外気温の影響を受け易く冷媒が相変化しやすい冷凍空調装置の非運転時に、相変化を原因とする配管内の圧力変動により冷媒が漏洩した場合、当該漏洩状態で運転を開始してしまう虞を回避して復旧措置を講ずることができる。 Preferably, the refrigerant leak detection is performed continuously or every few minutes when the refrigerating and air-conditioning equipment is in operation, and every few hours when the refrigerating and air-conditioning equipment is not in operation, so that early emergency measures can be taken in case of leakage during operation. If the refrigerant leaks due to pressure fluctuations in the piping caused by the phase change during non-operation of the refrigeration air conditioner, which can be taken and is easily affected by the outside temperature and the refrigerant changes phase, the leaked state Restoration measures can be taken to avoid the risk of starting operation.

次に、実施例2に係る冷媒漏洩検知方法につき、図3を参照して説明する。尚、前記実施例と同一構成で重複する説明を省略する。 Next, the refrigerant leakage detection method according to the second embodiment will be described with reference to FIG. It should be noted that the same configuration as in the above embodiment and overlapping description will be omitted.

冷媒循環配管40は、内部が閉系の循環路として密封状態で連通接続した配管部材からなり、後述する保護配管41の他は、上記した実施例1の冷媒循環配管1と構成が同じである。 The refrigerant circulation pipe 40 is composed of a piping member that is communicated and connected as a closed circulation path in a sealed state, and has the same configuration as the refrigerant circulation pipe 1 of the first embodiment except for the protection pipe 41 described later. ..

図3に示されるように、保護配管41は、液分離器4と低元コンプレッサユニット5との間に配設される低圧ガス配管2aから圧力調整弁43を介して分岐された分岐ガス配管42aと、分岐ガス配管42aが接続される一定容量の密封筐体からなる保護容器45と、保護容器45に接続され圧力調整弁44を介して、低元コンプレッサユニット5とカスケードコンデンサ9との間に配設される高圧ガス配管2bに接続された分岐ガス配管42bとから構成される。 As shown in FIG. 3, the protection pipe 41 is a branch gas pipe 42a branched from the low pressure gas pipe 2a arranged between the liquid separator 4 and the low source compressor unit 5 via the pressure regulating valve 43. Between the low source compressor unit 5 and the cascade condenser 9 via a protective container 45 formed of a sealed housing having a constant capacity to which the branch gas pipe 42a is connected and a pressure regulating valve 44 connected to the protective container 45. It is composed of a branch gas pipe 42b connected to the arranged high pressure gas pipe 2b.

すなわち、冷媒循環配管40は、保護配管41の圧力調整弁43、44を閉塞した状態にあっては、実施例1の冷媒循環配管1とほぼ同じ内容積を有し、また保護配管41の圧力調整弁43、44を開放した状態にあっては、冷媒循環配管1に保護配管41を加えた内容積を有する。 That is, the refrigerant circulation pipe 40 has substantially the same internal volume as the refrigerant circulation pipe 1 of the first embodiment when the pressure adjusting valves 43 and 44 of the protection pipe 41 are closed, and the pressure of the protection pipe 41 When the adjusting valves 43 and 44 are open, the refrigerant circulation pipe 1 has an internal volume in which the protective pipe 41 is added.

圧力調整弁43、44は、例えば運転時において低圧ガス配管2a及び高圧ガス配管2bが適正な所定範囲のガス圧である場合、閉塞状態であり、また一方で、例えば運転停止が一定期間続くと、配管内部の冷媒温度が常温近くに上昇するに伴い、冷媒の一部が蒸発しガス圧が前記した所定範囲を超えて高まる場合、開放状態となり、このようにすることで、保護容器45にガス状態の冷媒を一部流入させ、内部ガス圧の過度の上昇を回避できる。 The pressure regulating valves 43 and 44 are in a closed state when, for example, the low-pressure gas pipe 2a and the high-pressure gas pipe 2b have an appropriate gas pressure within a predetermined range during operation, and on the other hand, for example, when the operation is stopped for a certain period of time. When the temperature of the refrigerant inside the pipe rises to near room temperature and a part of the refrigerant evaporates and the gas pressure rises beyond the above-mentioned predetermined range, the gas pressure becomes an open state. It is possible to prevent an excessive rise in the internal gas pressure by allowing a part of the refrigerant in a gaseous state to flow in.

よって、本実施例の冷媒循環配管40は、例えば運転時においては圧力調整弁43、44が閉塞状態であるとして、実施例1と同様の計測により漏洩検知を行う。一方、例えば運転停止が一定期間続く等の特定の場合、配管内部の冷媒温度が常温近くに上昇するに伴い、冷媒の一部が蒸発し内部ガス圧が高まり、圧力調整弁43、44が一時開放されたと考えられ、主として保護容器45からなる保護配管41内には、一定量のガス冷媒のみで満たされていると想定される。保護配管41の内部容積(V8)は一定量であって既知量のため、変数として保護容器45の内部圧力(P8)を圧力ゲージPG4に基づき計測し、ガス密度を算出することで、保護配管41内の冷媒量(W8)を算出することができる。 Therefore, the refrigerant circulation pipe 40 of the present embodiment detects leakage by the same measurement as that of the first embodiment, assuming that the pressure regulating valves 43 and 44 are in a closed state during operation, for example. On the other hand, in a specific case such as when the operation is stopped for a certain period of time, as the temperature of the refrigerant inside the pipe rises to near room temperature, a part of the refrigerant evaporates and the internal gas pressure rises, and the pressure regulating valves 43 and 44 are temporarily closed. It is considered that the protective pipe 41 mainly composed of the protective container 45 is considered to be open, and it is assumed that the inside of the protective pipe 41 mainly composed of the protective container 45 is filled with only a certain amount of gas refrigerant. Since the internal volume (V8) of the protective pipe 41 is a constant amount and is a known amount, the internal pressure (P8) of the protective container 45 is measured as a variable based on the pressure gauge PG4, and the gas density is calculated to calculate the protective pipe. The amount of refrigerant (W8) in 41 can be calculated.

本実施例1においては、低圧ガス配管2a、高圧ガス配管2b、高圧液配管3b及び低圧液配管3a、レシーバ10、及びクーラー20の内部の冷媒量(W1)〜(W7)をそれぞれ算出し、更に保護配管41内の冷媒量(W8)を算出して、これら全てを合算することにより、閉系の循環路である冷媒循環配管40内に含まれる全冷媒量(WT)を導出でき、この全冷媒量(WT)に基づき冷媒の漏洩を検知することができる。 In the first embodiment, the amounts of refrigerants (W1) to (W7) inside the low-pressure gas pipe 2a, the high-pressure gas pipe 2b, the high-pressure liquid pipe 3b, the low-pressure liquid pipe 3a, the receiver 10, and the cooler 20 are calculated, respectively. Further, by calculating the amount of refrigerant (W8) in the protective pipe 41 and adding up all of them, the total amount of refrigerant (WT) contained in the refrigerant circulation pipe 40, which is a closed circulation path, can be derived. Refrigerant leakage can be detected based on the total amount of refrigerant (WT).

以上説明した本発明の冷媒漏洩検知方法によれば、冷凍空調装置の運転状況に従って変化する蓄冷媒機器としてのレシーバ10内,クーラー20内の液面レベルをレベルセンサとしての液面計13,23により検知することで、これらレシーバ10内,クーラー20内で液相・気相で存在する冷媒量を算出でき、冷媒循環配管1内の漏洩検知対象となる現状冷媒量である全冷媒量(WT)を正確に導き出すことができるため、当該全冷媒量(WT)と基準冷媒量である漏洩警報設置値(WS)との差分に基づき、冷媒の漏洩の有無や漏出量を精度高く検知することができる。 According to the refrigerant leakage detection method of the present invention described above, the liquid level gauges 13 and 23 in the receiver 10 as the refrigerant storage device and the liquid level in the cooler 20 as the level sensor change according to the operating condition of the refrigerating air conditioner. The total amount of refrigerant (WT), which is the current amount of refrigerant to be detected for leakage in the refrigerant circulation pipe 1, can be calculated by detecting the amount of refrigerant existing in the liquid phase and the gas phase in the receiver 10 and the cooler 20. ) Can be accurately derived, so the presence or absence of refrigerant leakage and the amount of leakage should be detected with high accuracy based on the difference between the total amount of refrigerant (WT) and the reference refrigerant amount, the leakage alarm installation value (WS). Can be done.

また基準冷媒量が、現状冷媒量と同じレベルセンサとしての液面計13,23に基づき導出されるため、これら基準冷媒量と現状冷媒量との差分を算出することで、液面計13,23の個体差や公差による検出誤差が相殺され、検出精度が高まる。 Further, since the reference refrigerant amount is derived based on the liquid level gauges 13 and 23 as the same level sensor as the current refrigerant amount, the difference between the reference refrigerant amount and the current refrigerant amount is calculated to obtain the liquid level gauge 13, The detection error due to individual differences and tolerances of 23 is offset, and the detection accuracy is improved.

またレシーバ10が、該レシーバ10に接続される液冷媒配管3よりも広い平面断面を有することで、レシーバ10内の液面レベルの変動が液冷媒配管3内の変動よりも緩和されるため、液面の変動による検知誤差の虞を回避できる。 Further, since the receiver 10 has a plane cross section wider than that of the liquid refrigerant pipe 3 connected to the receiver 10, fluctuations in the liquid level in the receiver 10 are mitigated more than fluctuations in the liquid refrigerant pipe 3. It is possible to avoid the risk of detection error due to fluctuations in the liquid level.

同様にクーラー20が、該クーラー20に接続される液冷媒配管3よりも広い平面断面を有することで、クーラー20内の液面レベルの変動が液冷媒配管3内の変動よりも緩和されるため、液面の変動による検知誤差の虞を回避できる。 Similarly, since the cooler 20 has a wider plane cross section than the liquid refrigerant pipe 3 connected to the cooler 20, fluctuations in the liquid level in the cooler 20 are alleviated more than fluctuations in the liquid refrigerant pipe 3. , The risk of detection error due to fluctuation of the liquid level can be avoided.

更に、液面レベルセンサとしてのフロート14は、レシーバ10、クーラー20に連通管11,12、21,22を介し連通する内筒管に設けられるため、レシーバ10、クーラー20から所期の位置まで連通管11,12、21,22を延設することで、液面レベルの検知を行い易くなるばかりか、レシーバ10、クーラー20内の液面変動の影響を直接受けることが無く、液面が安定する。 Further, since the float 14 as a liquid level sensor is provided in the inner cylinder that communicates with the receiver 10 and the cooler 20 via the communication pipes 11, 12, 21 and 22, from the receiver 10 and the cooler 20 to the desired position. By extending the communication pipes 11, 12, 21 and 22, not only the liquid level can be easily detected, but also the liquid level is not directly affected by the fluctuation of the liquid level in the receiver 10 and the cooler 20. Stabilize.

気相から液相に状態変化する冷媒を蓄える第1の蓄冷媒機器としてのレシーバ10と、液相から気相に状態変化する冷媒を蓄える第2の蓄冷媒機器としてのクーラー20とで、また液面レベルを検出することで、冷媒循環配管1全体の冷媒の液相部分と気相部分との境界が明確になり、冷媒の全体量を正確に導出することができる。 The receiver 10 as a first refrigerant storage device for storing the refrigerant whose state changes from the gas phase to the liquid phase, and the cooler 20 as the second refrigerant storage device for storing the refrigerant whose state changes from the liquid phase to the gas phase. By detecting the liquid level, the boundary between the liquid phase portion and the gas phase portion of the refrigerant in the entire refrigerant circulation pipe 1 becomes clear, and the total amount of the refrigerant can be accurately derived.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although examples of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these examples, and any changes or additions within the scope of the gist of the present invention are included in the present invention. Is done.

例えば、前記実施例では、液面レベルを検知する蓄冷媒機器としてレシーバ10及びクーラー20が適用されているが、これに限らず例えば、レシーバ等の気相から液相に状態変化する冷媒を蓄える蓄冷媒機器のみに適用されてもよいし、またはクーラー等の液相から気相に状態変化する冷媒を蓄える蓄冷媒機器のみに適用されてもよい。 For example, in the above embodiment, the receiver 10 and the cooler 20 are applied as the refrigerant storage device for detecting the liquid level, but the present invention is not limited to this, and for example, a refrigerant whose state changes from the gas phase to the liquid phase of the receiver or the like is stored. It may be applied only to the refrigerant storage device, or may be applied only to the refrigerant storage device that stores the refrigerant whose state changes from the liquid phase to the gas phase such as a cooler.

1 冷媒循環配管
2 ガス冷媒配管
2a 低圧ガス配管
2b 高圧ガス配管
3 液冷媒配管
3a 低圧液配管
3b 高圧液配管
5 低元コンプレッサユニット
6 コンプレッサ
8 膨張弁
9 カスケードコンデンサ
10 レシーバ(第1の蓄冷媒機器)
11,12 連通管
13,23 液面計(レベルセンサ)
14 マグネットフロート
15 レベル発信器
16 目視窓
20 クーラー(第2の蓄冷媒機器)
21,22 連通管
30 制御手段
40 冷媒循環配管
41 保護配管
45 保護容器
50 高元側冷凍サイクル
1 Refrigerant circulation piping 2 Gas refrigerant piping 2a Low pressure gas piping 2b High pressure gas piping 3 Liquid refrigerant piping 3a Low pressure liquid piping 3b High pressure liquid piping 5 Low source compressor unit 6 Compressor 8 Expansion valve 9 Cascade condenser 10 Receiver (1st refrigerant storage device) )
11, 12 Communication pipes 13, 23 Liquid level gauge (level sensor)
14 Magnet float 15 Level transmitter 16 Visual window 20 Cooler (second refrigerant storage device)
21, 22 Communication pipe 30 Control means 40 Refrigerant circulation pipe 41 Protective pipe 45 Protective container 50 High source side refrigeration cycle

Claims (4)

冷凍空調装置に適用され、2元冷凍サイクルにおける低元側冷凍サイクルとして構成され、カスケードコンデンサ、レシーバ、膨張弁、クーラー、液分離器、コンプレッサユニットの順に接続される冷媒循環配管内を循環する冷媒の漏洩を検知する冷媒漏洩検知方法であって、
前記冷媒循環配管を構成する配管機器のうち液冷媒配管の上方に接続され、一定内容量を有するとともに前記液冷媒配管よりも広い平面断面を有し、液相から気相に状態変化する冷媒を蓄える密封容器からなる前記クーラー内の液冷媒の液面レベルをレベルセンサにより検知して、
前記液面レベルに基づき、前記クーラー内の前記液面レベルよりも下方の液冷媒量を算出するとともに、前記クーラー内の前記液面レベルよりも上方のガス冷媒量を算出し、
前記クーラーの上方に接続されたガス配管内及び液分離器内の冷媒をガス冷媒と想定し、前記ガス配管内及び前記液分離器内のガス冷媒量を算出し、
前記ガス配管の下方に接続され、一定内容量を有するとともに前記液冷媒配管よりも広い平面断面を有し、気相から液相に状態変化する冷媒を蓄える密封容器からなる前記レシーバ内の液冷媒の液面レベルをレベルセンサにより検知して、
前記液面レベルに基づき、前記レシーバ内の前記液面レベルよりも下方の液冷媒量を算出するとともに、前記レシーバ内の前記液面レベルよりも上方のガス冷媒量を算出し、
前記レシーバの下方に接続された前記液冷媒配管内の冷媒を非圧縮性の液冷媒と想定し、前記液冷媒配管内の液冷媒量を一定の既知量として、
前記液冷媒量及び前記ガス冷媒量を合算することで漏洩検知対象となる現状の全冷媒量を導出して、
前記現状の全冷媒量と、前記冷媒循環配管内の基準となる基準冷媒量との差分に基づき、前記冷媒循環配管内の冷媒の漏洩を、前記冷媒が前記冷媒循環配管内を循環する運転時に、継続的又は間欠的に検知することを特徴とする冷媒漏洩検知方法。
A refrigerant that is applied to a refrigeration and air conditioner and is configured as a low-source refrigeration cycle in a dual refrigeration cycle, and circulates in a refrigerant circulation pipe that is connected in the order of a cascade condenser, a receiver, an expansion valve, a cooler, a liquid separator, and a compressor unit. It is a refrigerant leakage detection method that detects the leakage of
Of the piping equipment that constitutes the refrigerant circulation pipe, a refrigerant that is connected above the liquid refrigerant pipe, has a constant internal capacity, has a wider plane cross section than the liquid refrigerant pipe, and changes its state from the liquid phase to the gas phase. The level sensor detects the liquid level of the liquid refrigerant in the cooler consisting of a sealed container for storage, and then
Based on the liquid level, the amount of liquid refrigerant below the liquid level in the cooler is calculated, and the amount of gas refrigerant above the liquid level in the cooler is calculated.
Assuming that the refrigerant in the gas pipe and the liquid separator connected above the cooler is the gas refrigerant, the amount of the gas refrigerant in the gas pipe and the liquid separator is calculated.
The liquid refrigerant in the receiver, which is connected below the gas pipe, has a constant internal capacity, has a wider plane cross section than the liquid refrigerant pipe, and is a sealed container for storing a refrigerant whose state changes from a gas phase to a liquid phase. The level of the liquid level is detected by the level sensor,
Based on the liquid level, the amount of liquid refrigerant below the liquid level in the receiver is calculated, and the amount of gas refrigerant above the liquid level in the receiver is calculated.
The refrigerant in the liquid refrigerant pipe connected below the receiver is assumed to be an incompressible liquid refrigerant, and the amount of liquid refrigerant in the liquid refrigerant pipe is set to a constant known amount.
By adding up the amount of the liquid refrigerant and the amount of the gas refrigerant, the current total amount of the refrigerant to be detected for leakage is derived.
Based on the difference between the current total amount of refrigerant and the reference reference refrigerant amount in the refrigerant circulation pipe, the leakage of the refrigerant in the refrigerant circulation pipe is caused during the operation in which the refrigerant circulates in the refrigerant circulation pipe. , A method for detecting a refrigerant leak, which comprises continuously or intermittently detecting the refrigerant.
前記基準冷媒量は、前記冷媒循環配管内に初期に導入された冷媒量を前記レベルセンサによる検知に基づき導出した初期冷媒量であることを特徴とする請求項1に記載の冷媒漏洩検知方法。 The refrigerant leakage detection method according to claim 1, wherein the reference refrigerant amount is an initial refrigerant amount obtained by deriving the amount of refrigerant initially introduced into the refrigerant circulation pipe based on detection by the level sensor. 前記低元側冷凍サイクルには、前記液分離器と前記コンプレッサユニットとを接続する配管から分岐した第1配管と、前記コンプレッサユニットと前記カスケードコンデンサと接続する配管から分岐した第2配管と、前記コンプレッサユニットに対し並列接続されるように前記第1配管及び前記第2配管に接続された保護容器と、が含まれ、
前記第1、第2配管内及び前記保護容器内の冷媒量を、保護容器に設けられた圧力ゲージにより計測した保護容器の内部圧力に基づき算出して、前記全冷媒量に含めることを特徴とする請求項1又は2に記載の冷媒漏洩検知方法。
In the low source side refrigeration cycle, a first pipe branched from a pipe connecting the liquid separator and the compressor unit, a second pipe branched from a pipe connecting the compressor unit and the cascade condenser, and the above. The first pipe and a protective container connected to the second pipe so as to be connected in parallel to the compressor unit are included.
The feature is that the amount of refrigerant in the first and second pipes and in the protective container is calculated based on the internal pressure of the protective container measured by the pressure gauge provided in the protective container and included in the total amount of refrigerant. The refrigerant leakage detection method according to claim 1 or 2.
前記低元側冷凍サイクルには、前記第1配管に設けられた第1圧力調整弁と、前記第2配管に設けられた第2圧力調整弁と、が含まれ、
前記低元側冷凍サイクルの運転時には、前記第1、第2圧力調整弁が閉塞され、前記低元側冷凍サイクル運転停止時には、前記第1、第2圧力調整弁が開放されることを特徴とする請求項3に記載の冷媒漏洩検知方法。
The low source side refrigeration cycle includes a first pressure regulating valve provided in the first pipe and a second pressure regulating valve provided in the second pipe.
Wherein during operation of the low-stage-side refrigeration cycle, the first, second pressure regulating valve is closed, the at the low-stage-side refrigeration cycle operation is stopped, and wherein the first, second pressure regulating valve is opened The refrigerant leakage detection method according to claim 3.
JP2019167089A 2019-09-13 2019-09-13 Refrigerant leak detection method and refrigerant leak detection means Active JP6813786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019167089A JP6813786B2 (en) 2019-09-13 2019-09-13 Refrigerant leak detection method and refrigerant leak detection means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167089A JP6813786B2 (en) 2019-09-13 2019-09-13 Refrigerant leak detection method and refrigerant leak detection means

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016227733A Division JP2018084378A (en) 2016-11-24 2016-11-24 Refrigerant leakage detection method and refrigerant leakage detection means

Publications (2)

Publication Number Publication Date
JP2019207105A JP2019207105A (en) 2019-12-05
JP6813786B2 true JP6813786B2 (en) 2021-01-13

Family

ID=68767979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167089A Active JP6813786B2 (en) 2019-09-13 2019-09-13 Refrigerant leak detection method and refrigerant leak detection means

Country Status (1)

Country Link
JP (1) JP6813786B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213591B1 (en) 2021-07-28 2023-01-27 株式会社モバイルコム Solution preparation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340619A (en) * 1991-04-16 1993-12-21 Mitsubishi Juko Reinetsu Kizai Kk Low pressure stage refrigerant system in double-pressure type freezer device
JP2663775B2 (en) * 1991-12-18 1997-10-15 ダイキン工業株式会社 Liquid-filled evaporator
JP4975052B2 (en) * 2009-03-30 2012-07-11 三菱電機株式会社 Refrigeration cycle equipment
JP5789756B2 (en) * 2010-11-30 2015-10-07 パナソニックIpマネジメント株式会社 Refrigeration equipment
EP2910871B1 (en) * 2012-09-21 2019-12-04 Mitsubishi Electric Corporation Refrigeration device
JP5999499B2 (en) * 2012-11-09 2016-09-28 パナソニックIpマネジメント株式会社 Refrigeration equipment
WO2015004747A1 (en) * 2013-07-10 2015-01-15 三菱電機株式会社 Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2019207105A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
EP1852664B1 (en) Air conditioning system
JP5147889B2 (en) Air conditioner
AU2013206635B2 (en) Diagnosis control method of air conditioner
US5009076A (en) Refrigerant loss monitor
US7558700B2 (en) Equipment diagnosis device, refrigerating cycle apparatus, fluid circuit diagnosis method, equipment monitoring system, and refrigerating cycle monitoring system
JP4151679B2 (en) Refrigeration cycle equipment
US20030182950A1 (en) Non-intrusive refrigerant charge indicator
US6308523B1 (en) Simplified subcooling or superheated indicator and method for air conditioning and other refrigeration systems
JP2005351618A (en) Hydraulic circuit diagnosis method
KR200462979Y1 (en) Bladder type expansion tank having a water leakage detecting function
JP6813786B2 (en) Refrigerant leak detection method and refrigerant leak detection means
JP2005291702A (en) Refrigerating cycle monitoring system
Li et al. Virtual refrigerant pressure sensors for use in monitoring and fault diagnosis of vapor-compression equipment
US20060075771A1 (en) Refrigeration mechanical diagnostic protection and control device
US7681407B2 (en) Method and a device for detecting flash gas
JPH10281599A (en) Refrigerant amount determining apparatus
GB2260816A (en) Monitoring fluid quantities
JP2018084378A (en) Refrigerant leakage detection method and refrigerant leakage detection means
CN107102662A (en) A kind of air conditioning for automobiles flow and System Controlled by Measuring Pressure based on WiFi technology
JP2000105032A (en) Refrigerant leak detecting system for refrigerating machine
JP6202274B2 (en) Air conditioner
US20240077237A1 (en) Method of evaluating refrigerant charge within a refrigeration circuit
KR0175347B1 (en) Refrigerant leakage diagnos device of airconditioner
JP7486008B1 (en) Determination device, container refrigeration device, container, determination system, determination method, and program
US20240191924A1 (en) Refrigerant leak determination apparatus, control device, computer readable medium, and refrigerant leak determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6813786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250