JP6812937B2 - Rotating machine cooling device - Google Patents

Rotating machine cooling device Download PDF

Info

Publication number
JP6812937B2
JP6812937B2 JP2017182983A JP2017182983A JP6812937B2 JP 6812937 B2 JP6812937 B2 JP 6812937B2 JP 2017182983 A JP2017182983 A JP 2017182983A JP 2017182983 A JP2017182983 A JP 2017182983A JP 6812937 B2 JP6812937 B2 JP 6812937B2
Authority
JP
Japan
Prior art keywords
cooling pipe
rotor shaft
screw mechanism
hole
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017182983A
Other languages
Japanese (ja)
Other versions
JP2019062584A (en
Inventor
創 加藤
創 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017182983A priority Critical patent/JP6812937B2/en
Publication of JP2019062584A publication Critical patent/JP2019062584A/en
Application granted granted Critical
Publication of JP6812937B2 publication Critical patent/JP6812937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ロータ軸の中空部を冷却する回転電機の冷却装置に関する。 The present invention relates to a cooling device for a rotary electric machine that cools a hollow portion of a rotor shaft.

電動機に設けられた中空状のロータ軸に対して、エンジンの動力が伝達される入力軸と一体回転するように結合されたオイルポンプ駆動軸が相対回転可能に挿入され、オイルポンプ駆動軸に形成された油路と、その油路と通じていて外周面に開口する供給孔とによって、ロータ軸の中空部にオイルを供給する冷却装置が知られている(特許文献1)。その他、本発明に関連する先行技術文献として特許文献2が存在する。 The oil pump drive shaft, which is connected to the hollow rotor shaft provided in the electric motor so as to rotate integrally with the input shaft through which the power of the engine is transmitted, is inserted so as to rotate relative to the hollow rotor shaft and is formed on the oil pump drive shaft. There is known a cooling device that supplies oil to a hollow portion of a rotor shaft by means of an oil passage and a supply hole that communicates with the oil passage and opens on an outer peripheral surface (Patent Document 1). In addition, Patent Document 2 exists as a prior art document related to the present invention.

特開2014−60857号公報Japanese Unexamined Patent Publication No. 2014-60857 特開2008−118742号公報Japanese Unexamined Patent Publication No. 2008-118742

ロータ軸の中空部にオイル等の熱媒体を供給する方法として、熱媒体を噴出させる冷却パイプをボルト等の締結部材で固定する方法が考えられるが、振動や熱応力等の諸要因によって冷却パイプを固定する締結部材が緩むおそれがある。 As a method of supplying a heat medium such as oil to the hollow portion of the rotor shaft, a method of fixing the cooling pipe for ejecting the heat medium with a fastening member such as a bolt can be considered, but the cooling pipe is caused by various factors such as vibration and thermal stress. The fastening member for fixing may loosen.

そこで、本発明は、ロータ軸の中空部に熱媒体を供給する冷却パイプを適切に固定できる回転電機の冷却装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a cooling device for a rotary electric machine capable of appropriately fixing a cooling pipe for supplying a heat medium to a hollow portion of a rotor shaft.

本発明の一態様に係る回転電機の冷却装置は、支持部材に対して回転自在に支持された中空状のロータ軸を有する回転電機に適用される回転電機の冷却装置において、前記ロータ軸の中空部に挿入され、熱媒体を噴出させるための貫通孔が側壁に形成された冷却パイプと、前記冷却パイプに形成された雄ねじ部と前記支持部材に形成された雌ねじ部とを含み、前記雄ねじ部と前記雌ねじ部とが互いに噛み合い可能なねじ機構と、を備え、前記冷却パイプは、前記ねじ機構の前記雌ねじ部と前記雄ねじ部とが噛み合った状態でねじ込まれることにより前記支持部材に取り付けられ、かつ前記貫通孔が、前記冷却パイプの径方向に対して外周側よりも内周側が前記ねじ機構を締める方向にずれるように傾けられているものである。 The rotary electric machine cooling device according to one aspect of the present invention is a rotary electric machine cooling device applied to a rotary electric machine having a hollow rotor shaft rotatably supported by a support member, wherein the rotor shaft is hollow. The male-threaded portion includes a cooling pipe inserted into the portion and having a through hole formed in a side wall for ejecting a heat medium, a male-threaded portion formed in the cooling pipe, and a female-threaded portion formed in the support member. The cooling pipe is attached to the support member by being screwed in a state in which the female threaded portion and the male threaded portion of the screw mechanism are engaged with each other. Moreover, the through hole is tilted so that the inner peripheral side of the cooling pipe is deviated from the outer peripheral side in the direction of tightening the screw mechanism with respect to the radial direction of the cooling pipe.

本発明の一形態に係る冷却装置が適用されたモータ・ジェネレータを備えた動力伝達装置を示した断面図。FIG. 5 is a cross-sectional view showing a power transmission device including a motor generator to which a cooling device according to an embodiment of the present invention is applied. 図1の部分拡大図。A partially enlarged view of FIG. 冷却パイプの斜視図。Perspective view of the cooling pipe. 冷却パイプの正面図。Front view of the cooling pipe. 図4の矢印Vaから見た状態を示した図。The figure which showed the state seen from the arrow Va of FIG. 図4の矢印Vbから見た状態を示した図。The figure which showed the state seen from the arrow Vb of FIG. 図4のVI-VI線に関する断面を拡大した拡大断面図。An enlarged cross-sectional view of the cross section of the VI-VI line in FIG. 冷却パイプの作用効果を示した説明図。Explanatory drawing which showed the action effect of a cooling pipe. 図2のVIII-VIII線に関する断面を拡大した拡大断面図。An enlarged cross-sectional view of FIG. 2 with respect to lines VIII-VIII. トルク変換部の作用効果を示した説明図。Explanatory drawing which showed the action effect of the torque conversion part.

図1に示した動力伝達装置1はハイブリッド車両に搭載されるハイブリッドトランスアクスルとして構成されている。動力伝達装置1はモータ・ジェネレータ2と、モータ・ジェネレータ2及びその他の構成要素を収容するケース3と、ケース3内に設けられ、モータ・ジェネレータ2を支持するカバー4とを含んでいる。モータ・ジェネレータ2はケース3に固定されたステータ6と、ステータ6の内周に配置されたロータ7とを備えている。ロータ7は中空状のロータ軸10と、ロータ軸10に設けられたロータコア11とを有する。 The power transmission device 1 shown in FIG. 1 is configured as a hybrid transaxle mounted on a hybrid vehicle. The power transmission device 1 includes a motor generator 2, a case 3 that houses the motor generator 2 and other components, and a cover 4 that is provided in the case 3 and supports the motor generator 2. The motor generator 2 includes a stator 6 fixed to the case 3 and a rotor 7 arranged on the inner circumference of the stator 6. The rotor 7 has a hollow rotor shaft 10 and a rotor core 11 provided on the rotor shaft 10.

ロータ軸10はその両端部に配置された軸受9を介在させた状態でケース3及びカバー4にて軸線Axの回りに回転自在に支持されている。ケース3及びカバー4はロータ軸10に対して静止した状態の固定要素である。ロータコア11は鋼板が軸線Ax方向に積層された積層体として構成され、一対の固定プレート12によって挟み込まれた状態でロータ軸10に固定されている。 The rotor shaft 10 is rotatably supported around the axis Ax by the case 3 and the cover 4 with bearings 9 arranged at both ends thereof interposed therebetween. The case 3 and the cover 4 are fixed elements in a stationary state with respect to the rotor shaft 10. The rotor core 11 is configured as a laminated body in which steel plates are laminated in the Ax direction of the axis, and is fixed to the rotor shaft 10 in a state of being sandwiched by a pair of fixing plates 12.

動力伝達装置1には、モータ・ジェネレータ2のロータ7を冷却する冷却装置15が設けられている。冷却装置15は、ロータ軸10の中空部10aに挿入された冷却パイプ16と、冷却パイプ16をカバー4に固定するためのねじ機構17と、冷却パイプ16に熱媒体の一例としてのオートマティックトランスミッションフルード(ATF)を供給する供給装置18とを含んでいる。供給装置18は不図示のオイルポンプから圧送されるATFを導く油路(不図示)を含み、その油路は冷却パイプ16に接続される。 The power transmission device 1 is provided with a cooling device 15 for cooling the rotor 7 of the motor generator 2. The cooling device 15 includes a cooling pipe 16 inserted into the hollow portion 10a of the rotor shaft 10, a screw mechanism 17 for fixing the cooling pipe 16 to the cover 4, and an automatic transmission fluid as an example of a heat medium in the cooling pipe 16. Includes a supply device 18 for supplying (ATF). The supply device 18 includes an oil passage (not shown) for guiding an ATF pumped from an oil pump (not shown), and the oil passage is connected to a cooling pipe 16.

図2〜図4、図5A及び図5Bに示したように、冷却パイプ16は、内部通路20aが形成された円筒状の側壁20と、側壁20の内部通路20aと通じる開口21aを有し側壁20の一端部に接続された頭部21と、側壁20の他端部において内部通路20aを塞ぐキャップ22とを備えている。側壁20には内部通路20aに通じていて外周面に開口する複数の(本形態では4つの)貫通孔25が形成されている。頭部21には六角棒スパナを嵌め込むことができるボルト穴21bが形成されている。冷却パイプ16にATFが供給されると、ATFは頭部21の開口21aを介して内部通路20aに導かれる。内部通路20aはキャップ22にて塞がれているので、内部通路20aに導かれたATFは各貫通孔25から噴出してロータ軸10の中空部10aに供給される。 As shown in FIGS. 2 to 4, 5A and 5B, the cooling pipe 16 has a cylindrical side wall 20 on which the internal passage 20a is formed and an opening 21a communicating with the internal passage 20a of the side wall 20. A head portion 21 connected to one end of the side wall 20 and a cap 22 for closing the internal passage 20a at the other end of the side wall 20 are provided. The side wall 20 is formed with a plurality of (four in this embodiment) through holes 25 that lead to the internal passage 20a and open to the outer peripheral surface. A bolt hole 21b into which a hexagon wrench can be fitted is formed in the head 21. When the ATF is supplied to the cooling pipe 16, the ATF is guided to the internal passage 20a through the opening 21a of the head 21. Since the internal passage 20a is closed by the cap 22, the ATF guided to the internal passage 20a is ejected from each through hole 25 and supplied to the hollow portion 10a of the rotor shaft 10.

図2にも示したように、ねじ機構17は冷却パイプ16の側壁20の外周面に形成された雄ねじ部17aと、カバー4の貫通孔4aの内周面に形成された雌ねじ部17bとを含む。ねじ機構17は右ねじとして構成されており、雄ねじ部17aと雌ねじ部17bとは互いに噛み合い可能である。冷却パイプ16はカバー4に形成された貫通孔4a及びロータ軸10の中空部10aのそれぞれに挿入された状態で時計方向にねじ込まれることによりカバー4に固定される。本形態では、冷却パイプ16がカバー4に固定された状態で各貫通孔25がロータコア11の軸線Ax方向の中央部に位置するように各貫通孔25の形成位置が設定されている。これにより、ロータコア11の中央部にATFが供給されるためATFによるロータコア11に対する冷却効果が軸線Ax方向に関して偏りにくい。 As shown in FIG. 2, the screw mechanism 17 has a male screw portion 17a formed on the outer peripheral surface of the side wall 20 of the cooling pipe 16 and a female screw portion 17b formed on the inner peripheral surface of the through hole 4a of the cover 4. Including. The screw mechanism 17 is configured as a right-handed screw, and the male screw portion 17a and the female screw portion 17b can mesh with each other. The cooling pipe 16 is fixed to the cover 4 by being screwed clockwise while being inserted into the through hole 4a formed in the cover 4 and the hollow portion 10a of the rotor shaft 10. In this embodiment, the formation positions of the through holes 25 are set so that the through holes 25 are located at the center of the rotor core 11 in the axial direction Ax direction while the cooling pipe 16 is fixed to the cover 4. As a result, the ATF is supplied to the central portion of the rotor core 11, so that the cooling effect of the ATF on the rotor core 11 is less likely to be biased in the axis Ax direction.

図6に示したように、冷却パイプ16の各貫通孔25は径方向Dに対して外周側OSよりも内周側ISがねじ機構17を締める方向である時計方向CWにずれるように傾けられている。換言すれば、各貫通孔25は、それぞれの中心線clが冷却パイプ16の径方向Dに対して反時計方向CCWに傾くように形成されている。さらに言い換えれば、各貫通孔25は、それぞれの中心線clが冷却パイプ16の中心Cを通り径方向Dに延びる基準線SLと平行で、かつ基準線SLから所定距離xだけオフセットされるように形成されている。 As shown in FIG. 6, each through hole 25 of the cooling pipe 16 is tilted with respect to the radial direction D so that the inner peripheral side IS rather than the outer peripheral side OS deviates in the clockwise direction CW which is the direction in which the screw mechanism 17 is tightened. ing. In other words, each through hole 25 is formed so that its center line cl is inclined counterclockwise CCW with respect to the radial direction D of the cooling pipe 16. In other words, each through hole 25 is such that each center line cl is parallel to the reference line SL extending in the radial direction D through the center C of the cooling pipe 16 and is offset by a predetermined distance x from the reference line SL. It is formed.

冷却パイプ16にATFが供給されると図7に矢印で示したように各貫通孔25からATFが噴出する。そのため、ATFの噴出方向がねじ機構17を緩める方向である反時計方向CCWとなる一方で、ATFの噴出による反作用としての反力モーメントRMがねじ機構17を締める方向である時計方向CWに働く。これにより、ATFの噴出中はねじ機構17を締めるトルクが働き続けてねじ機構17の緩みが抑制されるから冷却パイプ16を適切に固定できる。 When ATF is supplied to the cooling pipe 16, ATF is ejected from each through hole 25 as shown by an arrow in FIG. 7. Therefore, the ejection direction of the ATF is the counterclockwise CCW in which the screw mechanism 17 is loosened, while the reaction force moment RM as a reaction due to the ejection of the ATF acts in the clockwise CW in the direction of tightening the screw mechanism 17. As a result, the torque for tightening the screw mechanism 17 continues to work during the ejection of the ATF, and the loosening of the screw mechanism 17 is suppressed, so that the cooling pipe 16 can be appropriately fixed.

図8に示したように、ロータ軸10の内周面10bには、複数の(本形態では4つの)トルク変換部30が周方向に関して等間隔(本形態では90°間隔)に設けられている。各トルク変換部30はロータ軸10の内周面10bの一部が径方向に後退する形状に構成されている。各トルク変換部30は、反時計方向CCWの前方に位置する第1壁部30aと、第1壁部30aに接続され反時計方向CCWの後方に位置する第2壁部30bとを含む。各壁部30a、30bの径方向に対する傾きは第1壁部30aが第2壁部30bよりも小さくなっており、第1壁部30aと第2壁部30bとの接続部は鋭角的に形成されている。 As shown in FIG. 8, a plurality of (four in this embodiment) torque conversion units 30 are provided on the inner peripheral surface 10b of the rotor shaft 10 at equal intervals (90 ° intervals in this embodiment) in the circumferential direction. There is. Each torque conversion unit 30 is configured such that a part of the inner peripheral surface 10b of the rotor shaft 10 retracts in the radial direction. Each torque conversion unit 30 includes a first wall portion 30a located in front of the counterclockwise CCW and a second wall portion 30b connected to the first wall portion 30a and located behind the counterclockwise CCW. The inclination of each of the wall portions 30a and 30b in the radial direction is smaller in the first wall portion 30a than in the second wall portion 30b, and the connecting portion between the first wall portion 30a and the second wall portion 30b is formed at an acute angle. Has been done.

図8及び図9に示したように、冷却パイプ16の各貫通孔25からATFが噴出すると、ATFの一部はトルク変換部30の第2壁部30bによって第1壁部30aに誘導されつつ第1壁部30aに衝突する。この衝突によってトルク変換部30が受けた力Fは反時計方向CCWのトルクTに変換される。これにより、ロータ軸10にトルクTが加えられるため、そのトルクTを反時計方向CCWのロータ軸10の回転を加速させ又は時計方向CWのロータ軸10の回転を減速させることに利用できる。 As shown in FIGS. 8 and 9, when the ATF is ejected from each through hole 25 of the cooling pipe 16, a part of the ATF is guided to the first wall portion 30a by the second wall portion 30b of the torque conversion unit 30. It collides with the first wall portion 30a. The force F received by the torque conversion unit 30 due to this collision is converted into the torque T in the counterclockwise direction CCW. As a result, the torque T is applied to the rotor shaft 10, and the torque T can be used to accelerate the rotation of the rotor shaft 10 in the counterclockwise direction CCW or to decelerate the rotation of the rotor shaft 10 in the clockwise direction CW.

(変形例)
上記形態はハイブリッド車両の動力伝達装置1に搭載されるモータ・ジェネレータ2に適用される冷却装置であるが例示にすぎない。例えば、電気自動車に使用されるモータ・ジェネレータを冷却装置の適用対象とする形態に変更できる。また、車両用以外の用途に使用されるモータ・ジェネレータに適用される形態に変更することもできる。これらのモータ・ジェネレータを電動機又は発電機に置換した形態に変更することもできる。
(Modification example)
The above embodiment is a cooling device applied to the motor generator 2 mounted on the power transmission device 1 of the hybrid vehicle, but is merely an example. For example, the motor generator used in an electric vehicle can be changed to a form to which a cooling device is applied. It can also be changed to a form applicable to motor generators used for applications other than vehicles. It is also possible to change these motor generators to a form in which they are replaced with electric motors or generators.

上記形態はカバー4に冷却パイプ16が取り付けられているが、ケース3に冷却パイプ16を取り付ける形態に変更することもできる。ねじ機構17は右ねじであるが、ねじ機構17を左ねじの形態にも変更できる。左ねじの形態の場合は貫通孔25の形成方向が図示の形態とは反対向きとなる。図8及び図9に示したトルク変換部30をロータ軸10の内周面10bから内部側に突出させた形態に変更することもできる。 In the above form, the cooling pipe 16 is attached to the cover 4, but it can be changed to the form in which the cooling pipe 16 is attached to the case 3. The screw mechanism 17 is a right-hand thread, but the screw mechanism 17 can be changed to a left-hand thread. In the case of the left-handed screw form, the formation direction of the through hole 25 is opposite to that in the illustrated form. It is also possible to change the torque conversion unit 30 shown in FIGS. 8 and 9 so as to project inward from the inner peripheral surface 10b of the rotor shaft 10.

上述した実施の形態及び変形例のそれぞれから導き出される本発明の態様を以下に記載する。 Aspects of the present invention derived from each of the above-described embodiments and modifications are described below.

本発明の一態様に係る回転電機の冷却装置は、支持部材に対して回転自在に支持された中空状のロータ軸を有する回転電機に適用される回転電機の冷却装置において、前記ロータ軸の中空部に挿入され、熱媒体を噴出させるための貫通孔が側壁に形成された冷却パイプと、前記冷却パイプに形成された雄ねじ部と前記支持部材に形成された雌ねじ部とを含み、前記雄ねじ部と前記雌ねじ部とが互いに噛み合い可能なねじ機構と、を備え、前記冷却パイプは、前記ねじ機構の前記雌ねじ部と前記雄ねじ部とが噛み合った状態でねじ込まれることにより前記支持部材に取り付けられ、かつ前記貫通孔が、前記冷却パイプの径方向に対して外周側よりも内周側が前記ねじ機構を締める方向にずれるように傾けられているものである。例えば、上記形態及び上記変形例においては、ケース3又はカバー4が支持部材の一例に相当し、モータ・ジェネレータ2、電動機又は発電機が回転電機の一例に相当し、ATFが熱媒体の一例に相当する。 The rotary electric machine cooling device according to one aspect of the present invention is a rotary electric machine cooling device applied to a rotary electric machine having a hollow rotor shaft rotatably supported by a support member, wherein the rotor shaft is hollow. The male-threaded portion includes a cooling pipe inserted into the portion and having a through hole formed in a side wall for ejecting a heat medium, a male-threaded portion formed in the cooling pipe, and a female-threaded portion formed in the support member. The cooling pipe is attached to the support member by being screwed in a state in which the female threaded portion and the male threaded portion of the screw mechanism are engaged with each other. Moreover, the through hole is tilted so that the inner peripheral side of the cooling pipe is deviated from the outer peripheral side in the direction of tightening the screw mechanism with respect to the radial direction of the cooling pipe. For example, in the above form and the above modification, the case 3 or the cover 4 corresponds to an example of a support member, the motor generator 2, the electric motor or the generator corresponds to an example of a rotary electric machine, and the ATF corresponds to an example of a heat medium. Equivalent to.

この態様の冷却装置によれば、冷却パイプの側壁に形成される貫通孔は、冷却パイプの径方向に対して外周側よりも内周側がねじ機構を締める方向にずれるように傾けられている。そのため、熱媒体の噴出方向がねじ機構を緩める方向となる一方で、熱媒体の噴出による反作用としての反力モーメントがねじ機構を締める方向に働く。これにより、熱媒体の噴出中はねじ機構を締めるトルクが働き続けてねじ機構の緩みが抑制されるから冷却パイプを適切に固定できる。 According to the cooling device of this aspect, the through hole formed in the side wall of the cooling pipe is inclined so that the inner peripheral side of the cooling pipe is deviated from the outer peripheral side in the direction of tightening the screw mechanism. Therefore, while the ejection direction of the heat medium is the direction of loosening the screw mechanism, the reaction force moment as a reaction due to the ejection of the heat medium acts in the direction of tightening the screw mechanism. As a result, the torque for tightening the screw mechanism continues to work while the heat medium is ejected, and the loosening of the screw mechanism is suppressed, so that the cooling pipe can be appropriately fixed.

上記態様において、貫通孔が、冷却パイプの径方向に対して外周側よりも内周側がねじ機構を締める方向にずれるように傾けられていることに関しては、以下のように特定することもできる。すなわち、貫通孔は、その中心線が冷却パイプの径方向に対してねじ機構を緩める方向に傾くように形成されている。また、貫通孔は、その中心線が、冷却パイプの中心を通り径方向に延びる基準線と平行で、かつ基準線から所定距離だけオフセットされるように形成されている。 In the above aspect, it can be specified as follows that the through hole is tilted so that the inner peripheral side is deviated from the outer peripheral side in the radial direction of the cooling pipe in the direction of tightening the screw mechanism. That is, the through hole is formed so that its center line is inclined in the direction of loosening the screw mechanism with respect to the radial direction of the cooling pipe. Further, the through hole is formed so that its center line is parallel to the reference line extending in the radial direction through the center of the cooling pipe and is offset by a predetermined distance from the reference line.

2 モータ・ジェネレータ(回転電機)
4 カバー(支持部材)
10 ロータ軸
10a 中空部
15 冷却装置
16 冷却パイプ
17 ねじ機構
17a 雄ねじ部
17b 雌ねじ部
20 側壁
25 貫通孔
OS 冷却パイプの外周側
IS 冷却パイプの内周側
2 Motor generator (rotary machine)
4 Cover (support member)
10 Rotor shaft 10a Hollow part 15 Cooling device 16 Cooling pipe 17 Thread mechanism 17a Male thread part 17b Female thread part 20 Side wall 25 Through hole OS Outer peripheral side of cooling pipe IS Inner peripheral side of cooling pipe

Claims (1)

支持部材に対して回転自在に支持された中空状のロータ軸を有する回転電機に適用される回転電機の冷却装置において、
前記ロータ軸の中空部に挿入され、熱媒体を噴出させるための貫通孔が側壁に形成された冷却パイプと、
前記冷却パイプに形成された雄ねじ部と前記支持部材に形成された雌ねじ部とを含み、前記雄ねじ部と前記雌ねじ部とが互いに噛み合い可能なねじ機構と、
を備え、
前記冷却パイプは、前記ねじ機構の前記雌ねじ部と前記雄ねじ部とが噛み合った状態でねじ込まれることにより前記支持部材に取り付けられ、かつ前記貫通孔が、前記冷却パイプの径方向に対して外周側よりも内周側が前記ねじ機構を締める方向にずれるように傾けられている、
回転電機の冷却装置。
In a rotary electric machine cooling device applied to a rotary electric machine having a hollow rotor shaft rotatably supported by a support member,
A cooling pipe inserted into the hollow portion of the rotor shaft and having a through hole formed in the side wall for ejecting a heat medium.
A screw mechanism including a male threaded portion formed on the cooling pipe and a female threaded portion formed on the support member so that the male threaded portion and the female threaded portion can mesh with each other.
With
The cooling pipe is attached to the support member by being screwed in a state where the female screw portion and the male screw portion of the screw mechanism are meshed with each other, and the through hole is on the outer peripheral side with respect to the radial direction of the cooling pipe. The inner peripheral side is tilted so as to be displaced in the direction of tightening the screw mechanism.
Cooling device for rotary electric machines.
JP2017182983A 2017-09-22 2017-09-22 Rotating machine cooling device Active JP6812937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017182983A JP6812937B2 (en) 2017-09-22 2017-09-22 Rotating machine cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017182983A JP6812937B2 (en) 2017-09-22 2017-09-22 Rotating machine cooling device

Publications (2)

Publication Number Publication Date
JP2019062584A JP2019062584A (en) 2019-04-18
JP6812937B2 true JP6812937B2 (en) 2021-01-13

Family

ID=66178687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182983A Active JP6812937B2 (en) 2017-09-22 2017-09-22 Rotating machine cooling device

Country Status (1)

Country Link
JP (1) JP6812937B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111054B2 (en) 2019-04-23 2022-08-02 トヨタ自動車株式会社 Lubricating mechanism for bearings of electric motors for vehicles

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167752U (en) * 1979-05-22 1980-12-02
JPS6119812Y2 (en) * 1981-04-13 1986-06-14
DE69923553T2 (en) * 1999-08-10 2006-02-16 The Swatch Group Management Services Ag Drive device with a liquid-cooled electric motor and planetary gear
JP3569888B2 (en) * 1999-10-29 2004-09-29 株式会社山武 Orifice plate
JP2001197705A (en) * 2000-01-12 2001-07-19 Meidensha Corp Cooler for rotor of rotating electric machine
US6727609B2 (en) * 2001-08-08 2004-04-27 Hamilton Sundstrand Corporation Cooling of a rotor for a rotary electric machine
JP2008023608A (en) * 2006-07-18 2008-02-07 Okuma Corp Main spindle device
JP5200747B2 (en) * 2008-08-07 2013-06-05 トヨタ自動車株式会社 Lubricating oil supply device for rotating electrical machines
JP5751105B2 (en) * 2011-09-13 2015-07-22 トヨタ自動車株式会社 Rotating electric machine
DE102012203697A1 (en) * 2012-03-08 2013-09-12 Siemens Aktiengesellschaft Electric machine with a rotor for cooling the electric machine
JP2017060264A (en) * 2015-09-15 2017-03-23 アイシン精機株式会社 Vehicle motor cooling device
DE102016004931B4 (en) * 2016-04-23 2021-01-14 Audi Ag Electrical machine and method for operating an electrical machine

Also Published As

Publication number Publication date
JP2019062584A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US8002060B2 (en) Vehicle wheel driving apparatus and electric motor
JP6333771B2 (en) Spindle structure, electric motor, and machine tool having through holes for fluid flow
WO2015163130A1 (en) Drive device
JP6256013B2 (en) Pulley unit
JP6812937B2 (en) Rotating machine cooling device
US20190363609A1 (en) Rotor Shaft for an Electric Machine and Electric Machine
KR20150038700A (en) Eccentrically rocking-type gear device
US11418092B2 (en) Lubrication mechanism for bearing of vehicle electric motor
JP2009195082A (en) Cooling structure of stator
JP6145120B2 (en) Rotor having flow path for cooling fluid and electric motor including the rotor
JP7192974B2 (en) Rotating electric machine
CN110494631A (en) The attachment relay of gas-turbine unit
JP6919584B2 (en) Motor cooling structure
US20160123197A1 (en) Valve timing controller
JP6364948B2 (en) Cooling structure of rotating electric machine
US9267578B2 (en) Belt tension adjustment apparatus for vehicles
JP5730740B2 (en) Rotating electric machine
KR101826392B1 (en) Gear box
KR102515669B1 (en) Suspension system
JP5387476B2 (en) Motor cooling device
KR102540875B1 (en) Keyless type Rotation Transfer Unit and Hybrid Starter and Generator
JP7370280B2 (en) Steam turbine rotor turning method and turning jig
EP3121488B1 (en) Reduction gear
KR20200000108A (en) Coupling structure of generator of agricultural electric vehicles
JP2012189134A (en) Component attachment structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6812937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151