JP6812199B2 - Pile hole bottom inspection device - Google Patents

Pile hole bottom inspection device Download PDF

Info

Publication number
JP6812199B2
JP6812199B2 JP2016208950A JP2016208950A JP6812199B2 JP 6812199 B2 JP6812199 B2 JP 6812199B2 JP 2016208950 A JP2016208950 A JP 2016208950A JP 2016208950 A JP2016208950 A JP 2016208950A JP 6812199 B2 JP6812199 B2 JP 6812199B2
Authority
JP
Japan
Prior art keywords
pile hole
hole bottom
central
reaction force
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016208950A
Other languages
Japanese (ja)
Other versions
JP2018071086A (en
Inventor
寛 増子
寛 増子
石橋 久義
久義 石橋
真 濱田
真 濱田
渡辺 英彦
英彦 渡辺
利弘 森
利弘 森
将夫 竹田
将夫 竹田
朋岳 梅津
朋岳 梅津
時岡 誠剛
誠剛 時岡
敦 小川
敦 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2016208950A priority Critical patent/JP6812199B2/en
Publication of JP2018071086A publication Critical patent/JP2018071086A/en
Application granted granted Critical
Publication of JP6812199B2 publication Critical patent/JP6812199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、杭孔の杭孔底が支持力を確保できる支持層に達した否かを検査するための杭孔底検査装置に関する。 The present invention relates to a pile hole bottom inspection device for inspecting whether or not the pile hole bottom of a pile hole has reached a support layer capable of securing a bearing capacity.

地盤に穿設した杭孔内に場所打ち杭や既製杭を建て込む場合においては、杭孔底が支持力を確保できる支持層に達したか否かを確認するようにしている(特許文献1参照)。 When a cast-in-place pile or a ready-made pile is built in a pile hole drilled in the ground, it is confirmed whether or not the bottom of the pile hole has reached a support layer that can secure a bearing capacity (Patent Document 1). reference).

特許第5619263号公報Japanese Patent No. 5619263

従来、杭孔底が支持力を確保できる支持層に達したか否かを検査する杭孔底検査方法においては、杭孔底の中央部が支持層に達したか否かを検査している。
しかしながら、地盤の地層が複雑な場合、例えば1つの杭孔底の中央部と杭孔底の周辺部とで支持力が異なることがある。例えば杭孔の直径が比較的大きい場合等、杭孔底の中心部が支持層に達しているとの検査結果が得られた場合であっても、杭孔底の周辺部は支持層に達していない場合がある。
本発明は、杭孔底全体が支持層に達しているか否かを確認できる杭孔底検査装置を提供するものである。
Conventionally, in the pile hole bottom inspection method for inspecting whether or not the pile hole bottom has reached the support layer that can secure the bearing capacity, it is inspected whether or not the central portion of the pile hole bottom has reached the support layer. ..
However, when the stratum of the ground is complicated, for example, the bearing capacity may differ between the central portion of one pile hole bottom and the peripheral portion of the pile hole bottom. For example, when the diameter of the pile hole is relatively large, even when the inspection result that the central part of the pile hole bottom reaches the support layer is obtained, the peripheral part of the pile hole bottom reaches the support layer. It may not be.
The present invention whole Kuianasoko provides a pile hole bottom inspection apparatus that can confirm whether or not reached to the support layer.

発明に係る杭孔底検査装置は、地盤に形成された杭孔の杭孔底が支持層に達しているか否かを検査するための杭孔底検査装置であって、杭孔の中心軸に沿って延長するように設置される中心体と、中心体の外周面を取り巻くように設けられて中心体の中心軸を回転中心として回転可能となった外管と、外管を中心体の中心軸を回転中心として回転させるための回転駆動手段と、外管に設けられて測定手段を杭孔底の中央部の周囲の複数部分に押し付けて当該杭孔底の地盤状態を検査する非中央部検査手段と、非中央部検査手段が杭孔底から受ける力を杭孔底側の孔壁に伝達する反力受け装置と、を備えたので、杭孔底全体が支持層に達しているか否かを確認できるようになるとともに、反力を確実に取ることができるようになり、杭孔底全体が支持層に達しているか否かの検査を正確に行えるようになる
また、回転駆動手段は、外管の外周面を取り囲むように当該外周面に設けられた円環状歯車と、中心体に連結部を介して固定された駆動源と、駆動源により発生した回転力を円環状歯車に伝達する伝達歯車とを備えて構成されたことを特徴とする。
また、非中央部検査手段が、中心体の中心軸と直交する方向に移動可能に設けられたので、杭孔底の中央部の周囲の複数部分を容易に検査することが可能となり、杭孔底全体が支持層に達しているか否かを容易に確認できるようになる。
また、中心体の周囲に非中央部検査手段を複数備えたので、杭孔底の中央部の周囲の複数部分を容易にかつ短時間で検査することが可能となり、杭孔底全体が支持層に達しているか否かを容易かつ短時間で確認できるようになる
た、測定手段を杭孔底の中央部に押し付けて当該杭孔底の地盤状態を検査する中央部検査手段を備えたので、杭孔底全体が支持層に達しているか否かの検査をより正確に行えるようになる。
The pile hole bottom inspection device according to the present invention is a pile hole bottom inspection device for inspecting whether or not the pile hole bottom of a pile hole formed in the ground reaches the support layer, and is a central axis of the pile hole. A central body that is installed so as to extend along the center, an outer pipe that is provided so as to surround the outer peripheral surface of the central body and can rotate around the central axis of the central body, and an outer pipe of the central body. A non-center that inspects the ground condition of the pile hole bottom by pressing a rotation driving means for rotating the central axis as the center of rotation and a measuring means provided on the outer pipe against a plurality of parts around the center of the pile hole bottom. Since it is equipped with a partial inspection means and a reaction force receiving device that transmits the force received from the pile hole bottom by the non-central inspection means to the hole wall on the pile hole bottom side, is the entire pile hole bottom reaching the support layer? It will be possible to confirm whether or not it is, and it will be possible to reliably take the reaction force, and it will be possible to accurately inspect whether or not the entire pile hole bottom has reached the support layer .
Further, the rotary drive means includes an annular gear provided on the outer peripheral surface so as to surround the outer peripheral surface of the outer pipe, a drive source fixed to the central body via a connecting portion, and a rotational force generated by the drive source. It is characterized in that it is provided with a transmission gear that transmits the above to the annular gear.
Further, non-central portion inspection means, so provided movably in the direction perpendicular to the center axis of the central body, it is possible to easily inspect the portions of the periphery of the central portion of Kuianasoko, pile It becomes possible to easily confirm whether or not the entire hole bottom reaches the support layer.
In addition, since a plurality of non-central inspection means are provided around the central body, it is possible to easily and quickly inspect a plurality of parts around the central portion of the pile hole bottom, and the entire pile hole bottom is a support layer. It will be possible to easily and quickly confirm whether or not the value has been reached .
Also, since the measuring means with a central portion inspection means against the central portion to inspect the ground state of the pile hole bottom Kuianasoko, examination of whether the entire Kuianasoko reaches the support layer You will be able to do it more accurately.

杭孔底検査装置を横から見た図。A side view of the pile hole bottom inspection device. 杭孔底検査装置を示す斜視図であり、(a)は非動作時の状態を示す図、(b)は伸長動作時の状態を示す図。It is a perspective view which shows the pile hole bottom inspection apparatus, (a) is the figure which shows the state at the time of non-operation, (b) is the figure which shows the state at the time of extension operation. 杭孔底検査装置を示す平面図であり、(a)は非動作時の状態を示す図、(b)は伸長動作時の状態を示す図。It is a top view which shows the pile hole bottom inspection apparatus, (a) is a figure which shows the state at the time of non-operation, (b) is a figure which shows the state at the time of extension operation. 杭孔底検査装置を示す図であり、(a)は回転動作時の状態を示す斜視図、(b)は回転動作時の状態を示す平面図。It is a figure which shows the pile hole bottom inspection apparatus, (a) is the perspective view which shows the state at the time of a rotation operation, (b) is a plan view which shows the state at the time of a rotation operation. 杭孔底検査装置の移動機構を示す斜視図。The perspective view which shows the moving mechanism of the pile hole bottom inspection apparatus. 外管側対向板及び反力受け板側対向板と回転軸との関係を示す縦断面図。The vertical sectional view which shows the relationship between the outer tube side facing plate and the reaction force receiving plate side facing plate, and the rotation axis. 外管側対向板及び反力受け板側対向板と回転軸との関係を示す平面図であり、(a)は非動作時の状態を示す図、(b)は伸長動作時の状態を示す図。It is a top view which shows the relationship between the outer tube side facing plate and the reaction force receiving plate side facing plate, and the rotation axis, (a) is a figure which shows the state at the time of non-operation, and (b) shows the state at the time of extension operation. Figure.

実施形態1
実施形態1に係る杭孔底検査方法は、地盤に形成された杭を建て込むための杭孔の杭孔底が支持層に達しているか否かを検査するために杭孔底の複数部分の地盤状態を検査する方法であり、以下、当該方法を実現するための杭孔底検査装置について説明する。
Embodiment 1
The pile hole bottom inspection method according to the first embodiment is a method of inspecting a plurality of parts of the pile hole bottom in order to inspect whether or not the pile hole bottom of the pile hole for building a pile formed in the ground reaches the support layer. This is a method for inspecting the ground condition, and the pile hole bottom inspection device for realizing the method will be described below.

図1に示すように、杭孔底検査装置1は、杭孔底101の中央部を検査する中央部検査装置2と、杭孔底101の中央部以外を検査する非中央部検査装置3と、反力受け装置4とを備える。尚、図1は、図2(b)に示す杭孔底検査装置1の下側の位置する反力受け板43及び円弧板54を切断して図2(b)の矢印A方向から当該杭孔底検査装置1を見た図である。
当該杭孔底検査装置1は、例えば図外の場所打ち杭掘削機の掘削バケット取付部や揚重機の吊り下げ部等の重機のヘッド105にアタッチメント106を介して取付けられ、重機を操作して杭孔底101に設置される。即ち、杭孔底検査装置1は、掘削された杭孔100内に入れられた泥水中に沈められて杭孔底101に設置される。
As shown in FIG. 1, the pile hole bottom inspection device 1 includes a central portion inspection device 2 for inspecting the central portion of the pile hole bottom 101 and a non-central portion inspection device 3 for inspecting other than the central portion of the pile hole bottom 101. , The reaction force receiving device 4 is provided. Note that FIG. 1 shows the pile by cutting the reaction force receiving plate 43 and the arc plate 54 located below the pile hole bottom inspection device 1 shown in FIG. 2 (b) from the direction of arrow A in FIG. 2 (b). It is a figure which looked at the hole bottom inspection apparatus 1.
The pile hole bottom inspection device 1 is attached to the head 105 of a heavy machine such as an excavation bucket attachment part of a cast-in-place pile excavator or a suspension part of a lifting machine (not shown) via an attachment 106, and operates the heavy machine. It is installed at the bottom of the pile hole 101. That is, the pile hole bottom inspection device 1 is submerged in muddy water placed in the excavated pile hole 100 and installed at the pile hole bottom 101.

中央部検査装置2は、杭孔100の中心軸に沿って延長するように設置される中心体21と、中心体21に設置された油圧シリンダー22と、油圧シリンダー22のピストンロッド24の先端に設けられた測定手段80とを備える。ここでは、当該測定手段80と、測定手段80を杭孔底101に押し付ける押圧手段としての油圧シリンダー22とにより、中央部検査手段が構成される。
中心体21は、例えば、油圧シリンダー22のシリンダー23が収納されて固定される有底の円筒状に形成され、当該円筒の底には油圧シリンダー22のピストンロッド24を貫通させる貫通孔25が形成されている。当該円筒の上部開口には蓋21tが取り付けられることにより、油圧シリンダー22のシリンダー23が当該円筒内に収納されて固定される。そして、この円筒の上部開口に取付けられた蓋21tがアタッチメント106を介して重機のヘッド105に取付けられる。
The central inspection device 2 is provided at the tip of the central body 21 installed so as to extend along the central axis of the pile hole 100, the hydraulic cylinder 22 installed in the central body 21, and the piston rod 24 of the hydraulic cylinder 22. It is provided with a measuring means 80 provided. Here, the central portion inspection means is configured by the measuring means 80 and the hydraulic cylinder 22 as a pressing means for pressing the measuring means 80 against the pile hole bottom 101.
For example, the central body 21 is formed in a bottomed cylindrical shape in which the cylinder 23 of the hydraulic cylinder 22 is housed and fixed, and a through hole 25 through which the piston rod 24 of the hydraulic cylinder 22 is passed is formed at the bottom of the cylinder. Has been done. By attaching a lid 21t to the upper opening of the cylinder, the cylinder 23 of the hydraulic cylinder 22 is housed and fixed in the cylinder. Then, the lid 21t attached to the upper opening of the cylinder is attached to the head 105 of the heavy machine via the attachment 106.

反力受け装置4は、中心体21の外周面において周方向に等間隔隔てた各位置に連結されて中心体21の中心軸99と直交する方向に延長するように設けられた反力伝達手段としての複数の油圧シリンダー41と、当該各油圧シリンダー41の各ピストンロッド42の先端にそれぞれ取付けられて反力を杭孔100の杭孔底101側の孔壁102に伝達する反力受け板43とを備える。
反力受け板43は、杭孔100の内周面を形成する孔壁102の円弧の曲率に概ね対応した曲率の外面43a及び内面43bを有した例えば鋼板により形成される。尚、施工する杭孔100の径寸法に応じて孔壁102の円弧の曲率が異なることになるが、杭孔100の孔壁102の円弧の曲率に応じて当該曲率に対応した曲率を有した反力受け板43に変更すればよい。
即ち、反力伝達手段として複数の油圧シリンダー41は、油圧シリンダー22及び中心体21が受ける反力を反力受け板43に伝達する反力伝達手段として機能する。
反力伝達手段としての油圧シリンダー41は、中心体21の上下側(中心体21の延長方向両端側)において、例えば、図3に示すように、中心体21の外周面の周方向に中心角90°を隔てた各位置に連結されている。即ち、図2(b)に示すように、中心体21の上側に4つの油圧シリンダー41を備えるとともに中心体21の下側に4つの油圧シリンダー41を備え、中心体21の周方向の同一位置に設けられた上下の油圧シリンダー41,41の各ピストンロッド42,42の先端にそれぞれ反力受け板43が1つずつ連結されている。そして、8つの油圧シリンダー41を同時に作動させることにより、4つの反力受け板43を中心体21の径方向に沿って移動させることができるように構成されている。
The reaction force receiving device 4 is a reaction force transmitting means provided so as to be connected to each position on the outer peripheral surface of the central body 21 at equal intervals in the circumferential direction and to extend in a direction orthogonal to the central axis 99 of the central body 21. A reaction force receiving plate 43 attached to the tip of each piston rod 42 of each of the hydraulic cylinders 41 and transmitting the reaction force to the hole wall 102 on the pile hole bottom 101 side of the pile hole 100. And.
The reaction force receiving plate 43 is formed of, for example, a steel plate having an outer surface 43a and an inner surface 43b having a curvature substantially corresponding to the curvature of the arc of the hole wall 102 forming the inner peripheral surface of the pile hole 100. The curvature of the arc of the hole wall 102 differs depending on the diameter of the pile hole 100 to be constructed, but the curvature corresponding to the curvature of the arc of the hole wall 102 of the pile hole 100 is provided. It may be changed to the reaction force receiving plate 43.
That is, as the reaction force transmitting means, the plurality of hydraulic cylinders 41 function as reaction force transmitting means for transmitting the reaction force received by the hydraulic cylinder 22 and the central body 21 to the reaction force receiving plate 43.
The hydraulic cylinder 41 as the reaction force transmitting means has a central angle on the upper and lower sides of the central body 21 (both ends in the extension direction of the central body 21) in the circumferential direction of the outer peripheral surface of the central body 21, for example, as shown in FIG. It is connected to each position separated by 90 °. That is, as shown in FIG. 2B, four hydraulic cylinders 41 are provided on the upper side of the central body 21 and four hydraulic cylinders 41 are provided on the lower side of the central body 21, and the positions of the central body 21 in the circumferential direction are the same. A reaction force receiving plate 43 is connected to the tips of the piston rods 42 and 42 of the upper and lower hydraulic cylinders 41 and 41 provided in the above. Then, by operating the eight hydraulic cylinders 41 at the same time, the four reaction force receiving plates 43 can be moved along the radial direction of the central body 21.

非中央部検査装置3は、中心体21の外周面を取り巻くように設けられて中心体21の中心軸99を回転中心として回転可能となった外管31と、外管31の外周面において周方向に等間隔隔てた各位置に連結された複数のガイド手段32と、各ガイド手段32にそれぞれ取付けられた油圧シリンダー33と、油圧シリンダー33のピストンロッド33aの先端に設けられた測定手段80と、外管31及び当該外管31に取付けられた複数のガイド手段32を中心体21の中心軸99を回転中心として回転させるための回転駆動手段34とを備える。ここでは、当該測定手段80と、測定手段80を杭孔底101に押し付ける押圧手段としての油圧シリンダー33とにより、非中央部検査手段が構成される。 The non-central inspection device 3 is provided so as to surround the outer peripheral surface of the central body 21, and is rotatable around the central axis 99 of the central body 21. A plurality of guide means 32 connected to each position at equal intervals in the direction, a hydraulic cylinder 33 attached to each guide means 32, and a measuring means 80 provided at the tip of the piston rod 33a of the hydraulic cylinder 33. The outer pipe 31 and a plurality of guide means 32 attached to the outer pipe 31 are provided with a rotation driving means 34 for rotating the central axis 99 of the central body 21 as a rotation center. Here, the non-central portion inspection means is configured by the measuring means 80 and the hydraulic cylinder 33 as a pressing means for pressing the measuring means 80 against the pile hole bottom 101.

外管31は、中心体21の外周面上から脱落しないように、下端側(一端側)が、中心体21に形成された回転受け35に支持されている。この回転受け35は、外管31の下端側の円管部が挿入される円環溝を備えた構成である。 The lower end side (one end side) of the outer pipe 31 is supported by a rotary receiver 35 formed on the central body 21 so as not to fall off from the outer peripheral surface of the central body 21. The rotary receiver 35 has a configuration provided with an annular groove into which a circular tube portion on the lower end side of the outer tube 31 is inserted.

回転駆動手段34は、例えば、外管31の外周面を取り囲むように当該外周面に設けられた円環状歯車36と、中心体21に連結部37aを介して固定されたモータ等の駆動源37と、駆動源37により発生した回転力を円環状歯車36に伝達する伝達歯車38とを備える。 The rotary drive means 34 is, for example, a drive source 37 such as an annular gear 36 provided on the outer peripheral surface of the outer pipe 31 so as to surround the outer peripheral surface, and a motor or the like fixed to the central body 21 via a connecting portion 37a. And a transmission gear 38 that transmits the rotational force generated by the drive source 37 to the annular gear 36.

ガイド手段32は、中心体21の径方向に沿って伸縮可能に構成された伸縮構成部50と、非中央部検査手段が受ける反力を反力受け板43に伝達する反力伝達手段と、油圧シリンダー33を中心体21の径方向に沿って移動させる移動手段70とを備える。 The guide means 32 includes a telescopic component 50 configured to be expandable and contractible along the radial direction of the central body 21, a reaction force transmitting means for transmitting the reaction force received by the non-central inspection means to the reaction force receiving plate 43, and a reaction force transmitting means. A moving means 70 for moving the hydraulic cylinder 33 along the radial direction of the central body 21 is provided.

伸縮構成部50は、外管31の外周面において周方向に等間隔隔てた各位置に連結されて中心体21の中心軸99と直交する方向及び中心体21の中心軸99に沿った方向に延長するように設けられた外管側対向板51と、反力受け板側スライド機構52と、駆動源としての上述した油圧シリンダー41とを備えて構成される。 The expansion / contraction component 50 is connected to each position on the outer peripheral surface of the outer pipe 31 at equal intervals in the circumferential direction, in a direction orthogonal to the central axis 99 of the central body 21 and in a direction along the central axis 99 of the central body 21. It is configured to include an outer pipe side facing plate 51 provided so as to extend, a reaction force receiving plate side slide mechanism 52, and the above-mentioned hydraulic cylinder 41 as a drive source.

反力受け板側スライド機構52は、反力受け板側対向板53と、反力受け板側対向板53に設けられた円弧板54と、移動力伝達手段55とを備える。 The reaction force receiving plate side slide mechanism 52 includes a reaction force receiving plate side facing plate 53, an arc plate 54 provided on the reaction force receiving plate side facing plate 53, and a moving force transmitting means 55.

反力受け板側対向板53は、外管側対向板51と同様に、中心体21の中心軸99と直交する方向及び中心体21の中心軸99に沿った方向に延長するように設けられる。
外管側対向板51は、例えば、中心体21の径方向に長い長方形の2枚の鋼板の板51a,51aの板面同士が平行に対向するように構成され、同様に、反力受け板側対向板53は、例えば、中心体21の径方向に長い長方形の2枚の鋼板の板53a,53aの板面同士が平行に対向するように構成される(図7参照)。
そして、外管側対向板51及び反力受け板側対向板53は、外管側対向板51の反力受け板側と反力受け板側対向板53の外管側とが互いに重なるように構成される。例えば、図6,図7に示すように、外管側対向板51を構成する2枚の板51a,51aの外面に反力受け板側対向板53を構成する2枚の板53a,53aの内面が対向するように、これら外管側対向板51及び反力受け板側対向板53が配置される。そして、油圧シリンダー41の駆動により反力受け板43に径方向の移動力が加わった場合に、当該移動力が円弧板54に伝達されることで、当該円弧板54及び反力受け板側対向板53が径方向に移動する。油圧シリンダー41のピストンロッド42が伸長する伸長動作を行う場合、当該力が移動力伝達手段55を介して円弧板54に伝達され、また、油圧シリンダー41のピストンロッド42が縮退する縮径動作を行う場合、当該力が反力受け板43を介して円弧板54に伝達される。
尚、図示しないが、外管側対向板51を構成する2枚の板51a,51aの内面に反力受け板側対向板53を構成する2枚の板53a,53aの外面が対向するように、これら外管側対向板51及び反力受け板側対向板53が配置された構成としてもよい。
The reaction force receiving plate side facing plate 53 is provided so as to extend in a direction orthogonal to the central axis 99 of the central body 21 and a direction along the central axis 99 of the central body 21, similarly to the outer pipe side facing plate 51. ..
The outer pipe side facing plate 51 is configured such that, for example, the plate surfaces of two rectangular steel plates 51a and 51a long in the radial direction of the central body 21 face each other in parallel, and similarly, the reaction force receiving plate The side facing plates 53 are configured such that, for example, the plate surfaces of two rectangular steel plates 53a, 53a long in the radial direction of the central body 21 face each other in parallel (see FIG. 7).
Then, in the outer pipe side facing plate 51 and the reaction force receiving plate side facing plate 53, the reaction force receiving plate side of the outer pipe side facing plate 51 and the outer pipe side of the reaction force receiving plate side facing plate 53 overlap each other. It is composed. For example, as shown in FIGS. 6 and 7, two plates 53a, 53a forming the reaction force receiving plate side facing plate 53 on the outer surface of the two plates 51a, 51a forming the outer pipe side facing plate 51. The outer pipe side facing plate 51 and the reaction force receiving plate side facing plate 53 are arranged so that the inner surfaces face each other. Then, when a moving force in the radial direction is applied to the reaction force receiving plate 43 by driving the hydraulic cylinder 41, the moving force is transmitted to the arc plate 54, so that the arc plate 54 and the reaction force receiving plate side face each other. The plate 53 moves in the radial direction. When the piston rod 42 of the hydraulic cylinder 41 is extended, the force is transmitted to the arc plate 54 via the moving force transmitting means 55, and the piston rod 42 of the hydraulic cylinder 41 is retracted. When doing so, the force is transmitted to the arc plate 54 via the reaction force receiving plate 43.
Although not shown, the outer surfaces of the two plates 53a, 53a constituting the reaction force receiving plate side facing plate 53 face each other on the inner surfaces of the two plates 51a, 51a constituting the outer pipe side facing plate 51. , The outer pipe side facing plate 51 and the reaction force receiving plate side facing plate 53 may be arranged.

また、外管側対向板51の反力受け板側端部の上下には、外管側対向板51と反力受け板側対向板53とが中心体21の中心軸99に沿った方向及びこれら対向板51,53の板面に直交する方向に離れないように、反力受け板側対向板53の移動をガイドするガイドレール56が設けられている。当該ガイドレール56は、図6に示すように、一端側が外管側対向板51の板51aの上端面又は下端面に連結されて外管側対向板51の板51aの外面との間に反力受け板側対向板53の上下側が入り込む断面凹状の溝57を形成する対向片58を備えた構成である。尚、外管側対向板51を構成する2枚の板51a,51aの内面に反力受け板側対向板53を構成する2枚の板53a,53aの外面が対向するように、これら外管側対向板51及び反力受け板側対向板53が配置された構成とする場合は、当該ガイドレール56は、反力受け板側対向板53の外管側端部の上下に設けるようにしてもよい。 Further, above and below the reaction force receiving plate side end portion of the outer pipe side facing plate 51, the outer pipe side facing plate 51 and the reaction force receiving plate side facing plate 53 are arranged in the direction along the central axis 99 of the central body 21. A guide rail 56 for guiding the movement of the reaction force receiving plate side facing plate 53 is provided so as not to be separated in the direction orthogonal to the plate surfaces of the facing plates 51 and 53. As shown in FIG. 6, the guide rail 56 has one end connected to the upper end surface or the lower end surface of the plate 51a of the outer pipe side facing plate 51 and is opposed to the outer surface of the plate 51a of the outer pipe side facing plate 51. It is configured to include a facing piece 58 forming a groove 57 having a concave cross section into which the upper and lower sides of the force receiving plate side facing plate 53 enter. In addition, these outer pipes so that the outer surfaces of the two plates 53a, 53a constituting the reaction force receiving plate side facing plate 53 face each other on the inner surfaces of the two plates 51a, 51a constituting the outer pipe side facing plate 51. When the side facing plate 51 and the reaction force receiving plate side facing plate 53 are arranged, the guide rail 56 is provided above and below the outer pipe side end portion of the reaction force receiving plate side facing plate 53. May be good.

円弧板54は、反力受け板43の内面43bの円弧の曲率に対応した曲率の外面54a及び内面54bを有した例えば鋼板により形成され、反力受け板側対向板53を構成する各板53a,53aの反力受け板側の端部から延長するように設けられている。各円弧板54,54は、各板53a,53aの反力受け板側の端部から中心体21の周方向に沿って互いに反対方向に延長するように設けられている。換言すれば、各円弧板54,54は、中心体21の中心軸99を中心とする同一円弧面上に位置される。
尚、反力受け板側対向板53の板53aと当該板53aに設けられた円弧板54とは、一体、又は、別体に形成される。
伸縮構成部50を備えたことにより、図2(b),図3(b)に示すように、円弧板54を中心体21の径方向外側に移動させる伸長動作が可能となる。
また、回転駆動手段34を備えたことにより、図4に示すように、円弧板54を中心体21の周方向に沿って移動させる回転動作が可能となる。
The arc plate 54 is formed of, for example, a steel plate having an outer surface 54a and an inner surface 54b having a curvature corresponding to the curvature of the arc of the inner surface 43b of the reaction force receiving plate 43, and each plate 53a constituting the reaction force receiving plate side facing plate 53. , 53a is provided so as to extend from the end of the reaction force receiving plate side. The arc plates 54, 54 are provided so as to extend in opposite directions along the circumferential direction of the central body 21 from the end portions of the plates 53a, 53a on the reaction force receiving plate side. In other words, the arc plates 54 and 54 are located on the same arc plane centered on the central axis 99 of the central body 21.
The plate 53a of the reaction force receiving plate side facing plate 53 and the arc plate 54 provided on the plate 53a are formed integrally or separately.
By providing the expansion / contraction component 50, as shown in FIGS. 2 (b) and 3 (b), it is possible to perform an extension operation of moving the arc plate 54 radially outward of the central body 21.
Further, by providing the rotation driving means 34, as shown in FIG. 4, the rotation operation of moving the arc plate 54 along the circumferential direction of the central body 21 becomes possible.

移動力伝達手段55は、円弧板54,54及び反力受け板側対向板53を反力受け板43の径方向(中心体21の径方向)の移動に伴って当該径方向に移動させるために、当該円弧板54,54を反力受け板43の内面43bに近接させた状態に維持して反力受け板43に加わる径方向の移動力を円弧板54に伝達する機構である。
移動力伝達手段55は、例えば、円弧板54の内面54bと接触する接触部材45と、当該接触部材45を反力受け板43の内面43bに固定する固定部材46とを備える。
接触部材45は、例えば、回転駆動手段34の駆動により円弧板54が反力受け板43の内面43bに沿って中心体2の周方向に移動する場合に円弧板54の内面54bと接触して回転可能なコロと呼ばれる回転体により形成される。
The moving force transmitting means 55 moves the arc plates 54 and 54 and the reaction force receiving plate side facing plate 53 in the radial direction as the reaction force receiving plate 43 moves in the radial direction (the radial direction of the central body 21). In addition, it is a mechanism that keeps the arc plates 54 and 54 close to the inner surface 43b of the reaction force receiving plate 43 and transmits the radial moving force applied to the reaction force receiving plate 43 to the arc plate 54.
The moving force transmitting means 55 includes, for example, a contact member 45 that contacts the inner surface 54b of the arc plate 54, and a fixing member 46 that fixes the contact member 45 to the inner surface 43b of the reaction force receiving plate 43.
The contact member 45 comes into contact with the inner surface 54b of the arc plate 54 when, for example, the arc plate 54 moves in the circumferential direction of the central body 2 along the inner surface 43b of the reaction force receiving plate 43 by the drive of the rotation driving means 34. It is formed by a rotating body called a rotatable roller.

移動手段70は、外管側対向板51の反力受け板側と反力受け板側対向板53の外管側とが互いに重なるように構成された外管側対向板51及び反力受け板側対向板53に延長するように形成されたガイド孔61と、非中央部検査手段の油圧シリンダー33をガイド孔61に沿って移動させる移動機構62とを備えて構成される。 The moving means 70 includes an outer pipe side facing plate 51 and a reaction force receiving plate configured so that the reaction force receiving plate side of the outer pipe side facing plate 51 and the outer pipe side of the reaction force receiving plate side facing plate 53 overlap each other. It is configured to include a guide hole 61 formed so as to extend to the side facing plate 53, and a moving mechanism 62 for moving the hydraulic cylinder 33 of the non-central inspection means along the guide hole 61.

ガイド孔61は、中心体21の中心軸99と直交する方向に延長するように外管側対向板51に形成されて当該外管側対向板51の反力受け板側端に開口する長孔と、中心体21の中心軸99と直交する方向に延長するように反力受け板側対向板53に形成されて当該反力受け板側対向板53の外管側端に開口する長孔とを備え、各長孔の開口側が各対向板51,53の板面と直交する方向に重なるように構成される。 The guide hole 61 is an elongated hole formed in the outer pipe side facing plate 51 so as to extend in a direction orthogonal to the central axis 99 of the central body 21 and opened at the reaction force receiving plate side end of the outer pipe side facing plate 51. And an elongated hole formed in the reaction force receiving plate side facing plate 53 so as to extend in a direction orthogonal to the central axis 99 of the central body 21 and opening at the outer pipe side end of the reaction force receiving plate side facing plate 53. The opening side of each elongated hole is configured to overlap in a direction orthogonal to the plate surface of each of the opposing plates 51 and 53.

移動機構62は、図5に示すように、非中央部検査手段の油圧シリンダー33に固定されたモータ等の駆動源63の回転力をウォームホイール64と当該ウォームホイール64に噛み合うように回転軸67に形成されたウォーム65とで構成されたウォームギヤ66を介して回転軸67に伝達し、回転軸67の両端部に取付けられたピニオン68をガイド孔61の後述するラック73に噛み合わせた構成である。尚、回転軸67は回転可能なようにギヤボックス71に設けられた貫通孔72に、図外のベアリング等で保持されている。また、回転軸67の両端には、反力受け板側対向板53の外面に接触する鍔体69,69を備える。
移動機構62を備えていることにより、非中央部検査手段の油圧シリンダー33をガイド孔61を介して中心体21の径方向に移動させることが可能となる。
As shown in FIG. 5, the moving mechanism 62 has a rotating shaft 67 so that the rotational force of a drive source 63 such as a motor fixed to the hydraulic cylinder 33 of the non-central inspection means meshes with the worm wheel 64 and the worm wheel 64. It is transmitted to the rotating shaft 67 via a worm gear 66 composed of the worm 65 formed in the above, and pinions 68 attached to both ends of the rotating shaft 67 are meshed with a rack 73 described later in the guide hole 61. is there. The rotating shaft 67 is held in a through hole 72 provided in the gearbox 71 so as to be rotatable by a bearing or the like (not shown). Further, both ends of the rotating shaft 67 are provided with flanges 69, 69 that come into contact with the outer surface of the reaction force receiving plate side facing plate 53.
By providing the moving mechanism 62, the hydraulic cylinder 33 of the non-central inspection means can be moved in the radial direction of the central body 21 via the guide hole 61.

ガイド孔61は、例えば、図6に示すように、各対向板51,53の板51a,53aの外面側の下面にピニオン68が噛み合うラック73を備え、かつ、各対向板51,53の板51a,53aの内面側に回転軸67を挟み込む挟持孔74を備えた構成となっている。つまり、回転軸67の両端には、外管側対向板51に設けられた一対のラック73,73に噛み合う一対のピニオン68,68と、反力受け板側対向板53に設けられた一対のラック73,73に噛み合う一対のピニオン68,68とを備え、回転軸67の両端の軸部が、外管側対向板51に設けられた一対の挟持孔74及び反力受け板側対向板53に設けられた一対の挟持孔74で挟まれた構成となっている。当該構成とすれば、回転軸67と挟持孔74とが接触して反力を伝達するので、ピニオン68とラック73とに反力が加わらないようにできる。
即ち、非中央部検査手段が受けた反力は、反力伝達手段を構成する、回転軸67、挟持孔74、対向板51,53、固定部材46を介して、反力受け板43に伝達できるように構成されている。
As shown in FIG. 6, the guide hole 61 is provided with a rack 73 on which the pinion 68 meshes with the lower surface of the plates 51a, 53a of the facing plates 51, 53 on the outer surface side, and the plates of the facing plates 51, 53. The structure is provided with a holding hole 74 for sandwiching the rotating shaft 67 on the inner surface side of the 51a and 53a. That is, at both ends of the rotating shaft 67, a pair of pinions 68 and 68 that mesh with the pair of racks 73 and 73 provided on the outer tube side facing plate 51 and a pair of pinions 68 and 68 provided on the reaction force receiving plate side facing plate 53. A pair of pinions 68 and 68 that mesh with the racks 73 and 73 are provided, and the shaft portions at both ends of the rotating shaft 67 are a pair of holding holes 74 and a reaction force receiving plate side facing plate 53 provided in the outer tube side facing plate 51. It is configured to be sandwiched between a pair of holding holes 74 provided in. With this configuration, the rotating shaft 67 and the holding hole 74 come into contact with each other to transmit the reaction force, so that the reaction force can be prevented from being applied to the pinion 68 and the rack 73.
That is, the reaction force received by the non-central inspection means is transmitted to the reaction force receiving plate 43 via the rotating shaft 67, the holding holes 74, the facing plates 51 and 53, and the fixing member 46, which constitute the reaction force transmitting means. It is configured so that it can be done.

測定手段80は、例えば、単に杭孔底101の地盤に押し当てられる手段、あるいは、単に杭孔底101の地盤に貫入する手段である。
単に杭孔底101の地盤に押し当てられる手段、例えば、杭孔底101の地盤を押圧する押圧板等の押圧部によって測定手段80を構成した場合、油圧シリンダー等の押圧手段で当該押圧部を押圧して当該押圧部を杭孔底101の地盤に接触させた後に当該押圧部を押圧できなくなるまでの、油圧シリンダーのピストンロッドの伸長量、又は、地盤の変形量(地盤の沈み込み量)、又は、押圧抵抗等を評価値として用いればよい。尚、当該測定手段80としての押圧部は、例えば、先端部を湾曲面状、又は、球面状、又は、平面状等に形成して杭孔底101の地盤に接触する面積を大きくすることで杭孔底101の地盤に貫入しにくいように構成されたものを用いることが好ましい。
また、単に杭孔底101の地盤に貫入する手段、例えば、杭孔底101の地盤に貫入する貫入棒等の貫入部によって測定手段80を構成した場合、油圧シリンダー等の押圧手段で当該貫入部を押圧して当該貫入部を杭孔底101の地盤に接触させた後に当該貫入部を押圧できなくなるまでの、油圧シリンダーのピストンロッドの伸長量、又は、貫入部の貫入量、又は、貫入抵抗等を評価値として用いればよい。尚、当該測定手段80としての貫入部は、例えば、先端部を円錐状、又は、角錐状、又は、先鋭状、又は、矢尻状、又は、柱状等に形成して杭孔底101の地盤に接触する面積を小さくすることで杭孔底101の地盤に貫入しやすいように構成されたものを用いることが好ましい。
The measuring means 80 is, for example, a means that is simply pressed against the ground of the pile hole bottom 101, or a means that simply penetrates into the ground of the pile hole bottom 101.
When the measuring means 80 is configured by a means that is simply pressed against the ground of the pile hole bottom 101, for example, a pressing portion such as a pressing plate that presses the ground of the pile hole bottom 101, the pressing portion is pressed by a pressing means such as a hydraulic cylinder. The amount of extension of the piston rod of the hydraulic cylinder or the amount of deformation of the ground (the amount of sinking of the ground) until the pressing portion cannot be pressed after the pressing portion is brought into contact with the ground of the pile hole bottom 101. , Or the pressing resistance or the like may be used as the evaluation value. The pressing portion as the measuring means 80 is formed by, for example, forming the tip portion into a curved surface shape, a spherical shape, a flat shape, or the like to increase the area of contact with the ground of the pile hole bottom 101. It is preferable to use one that is configured so as not to penetrate the ground of the pile hole bottom 101.
Further, when the measuring means 80 is configured by a means for simply penetrating into the ground of the pile hole bottom 101, for example, a penetrating portion such as a penetrating rod penetrating into the ground of the pile hole bottom 101, the penetrating portion is formed by a pressing means such as a hydraulic cylinder. The amount of extension of the piston rod of the hydraulic cylinder, the amount of penetration of the penetration, or the penetration resistance until the penetration cannot be pressed after the penetration is brought into contact with the ground of the pile hole bottom 101. Etc. may be used as the evaluation value. The intrusion portion as the measuring means 80 is formed on the ground of the pile hole bottom 101, for example, by forming the tip portion into a conical shape, a pyramid shape, a sharp shape, an arrowhead shape, a columnar shape, or the like. It is preferable to use one that is configured so that it can easily penetrate the ground of the pile hole bottom 101 by reducing the contact area.

上述した評価値としての油圧シリンダーのピストンロッドの伸長量、地盤の変形量(地盤の沈み込み量)、貫入部の貫入量は、測定器としての図外の変位センサ(ストロークセンサ)や測距センサ等で測定すればよい。また、上述した評価値としての押圧抵抗、貫入抵抗は、油圧シリンダーへの油圧供給量で測定すればよい。 The amount of extension of the piston rod of the hydraulic cylinder, the amount of deformation of the ground (the amount of sinking of the ground), and the amount of penetration of the intrusion part as the above-mentioned evaluation values are the displacement sensor (stroke sensor) and distance measurement which are not shown in the figure as measuring instruments. It may be measured with a sensor or the like. Further, the pressing resistance and the penetration resistance as the evaluation values described above may be measured by the amount of hydraulic pressure supplied to the hydraulic cylinder.

杭孔底検査装置1の動作について説明する。
まず、重機のヘッド105と中心体21の蓋21tとをアタッチメント(接続手段)106を介して連結し、重機を操作して、杭孔底検査装置1を杭孔底101に移動させる。
そして、伸長動作を行う。つまり、反力伝達手段としての各油圧シリンダー41を駆動させて反力受け板43を杭孔底101側の孔壁102に押し当てて反力を取る。
そして、中央部検査手段の油圧シリンダー22を駆動させて測定手段80を杭孔底101の中央部の地盤に押し付けることによって当該杭孔底101の中央部の地盤の強度を検査する。
また、移動機構62及び回転駆動手段34を駆動させて、非中央部検査手段の各油圧シリンダー33を中心体21の周方向及び径方向の所望の位置に移動させた後に、各油圧シリンダー33を駆動させて測定手段80を杭孔底101の中央部以外の地盤に押し付けることによって当該杭孔底101の中央部以外の地盤の強度を検査する。
The operation of the pile hole bottom inspection device 1 will be described.
First, the head 105 of the heavy machine and the lid 21t of the central body 21 are connected via the attachment (connecting means) 106, and the heavy machine is operated to move the pile hole bottom inspection device 1 to the pile hole bottom 101.
Then, the stretching operation is performed. That is, each hydraulic cylinder 41 as a reaction force transmitting means is driven to press the reaction force receiving plate 43 against the hole wall 102 on the pile hole bottom 101 side to take the reaction force.
Then, the strength of the ground at the center of the pile hole bottom 101 is inspected by driving the hydraulic cylinder 22 of the central inspection means and pressing the measuring means 80 against the ground at the center of the pile hole bottom 101.
Further, after driving the moving mechanism 62 and the rotary driving means 34 to move each hydraulic cylinder 33 of the non-central inspection means to a desired position in the circumferential direction and the radial direction of the central body 21, each hydraulic cylinder 33 is moved. By driving and pressing the measuring means 80 against the ground other than the central portion of the pile hole bottom 101, the strength of the ground other than the central portion of the pile hole bottom 101 is inspected.

杭孔底101の地盤の強度は、上述した評価値を用いて判定すればよい。
この場合、予め支持層に必要な基準評価値を実験で求めておき、測定した評価値が基準評価値に達していれば、当該杭孔底101の地盤が支持層に達しているものと判断し、測定した評価値が基準評価値に達していなければ、当該杭孔100の底をさらに掘削して杭孔の深度を深くした後に再度測定を行い、測定した評価値が基準評価値に達するまで、杭孔の深度を深くする。
そして、杭孔底101の地盤の評価値が基準評価値に達した後、当該杭孔内に鉄籠を挿入し、杭孔内の泥水をコンクリートに置換して場所打ちコンクリート杭を施工することにより、杭底側が支持層に確実に支持された信頼性の高い場所打ちコンクリート杭を施工できるようになる。
The strength of the ground of the pile hole bottom 101 may be determined using the above-mentioned evaluation value.
In this case, the standard evaluation value required for the support layer is obtained in advance by an experiment, and if the measured evaluation value reaches the standard evaluation value, it is determined that the ground of the pile hole bottom 101 has reached the support layer. If the measured evaluation value does not reach the standard evaluation value, the bottom of the pile hole 100 is further excavated to deepen the depth of the pile hole, and then the measurement is performed again, and the measured evaluation value reaches the standard evaluation value. To deepen the depth of the pile hole.
Then, after the evaluation value of the ground of the pile hole bottom 101 reaches the standard evaluation value, an iron cage is inserted into the pile hole, the muddy water in the pile hole is replaced with concrete, and a cast-in-place concrete pile is constructed. This makes it possible to construct a highly reliable cast-in-place concrete pile in which the pile bottom side is reliably supported by the support layer.

実施形態1に係る杭孔底検査装置1によれば、杭孔底101の非中央部の複数個所及び中央部の地盤の強度を測定することができるので、杭孔底全体が支持層に達しているか否かの確認を容易かつ正確に行えるようになる。即ち、杭孔底101の複数部分の地盤状態を検査することが可能となり、杭孔底全体が支持層に達しているか否かを確認できるようになる。
また、中心体21を備え、非中央部検査手段が、中心体21の中心軸99と直交する方向及び中心体21の周方向に移動可能に設けられた構成としているので、杭孔底101の中央部の周囲の複数部分を容易に検査することが可能となる。
また、中心体21の周囲に非中央部検査手段を複数備えているので、杭孔底101の中央部の周囲の複数部分を容易にかつ短時間で検査することが可能となる。
また、非中央部検査手段が杭孔底101から受ける力を杭孔底101側の孔壁102に伝達する反力受け装置4を備えているので、反力を確実に取ることができるようになり、杭孔底全体が支持層に達しているか否かの検査を正確に行えるようになる。
According to the pile hole bottom inspection device 1 according to the first embodiment, the strength of the ground at a plurality of non-central portions and the central portion of the pile hole bottom 101 can be measured, so that the entire pile hole bottom reaches the support layer. It will be possible to easily and accurately confirm whether or not it is. That is, it becomes possible to inspect the ground condition of a plurality of portions of the pile hole bottom 101, and it becomes possible to confirm whether or not the entire pile hole bottom reaches the support layer.
Further, since the central body 21 is provided and the non-central inspection means is provided so as to be movable in the direction orthogonal to the central axis 99 of the central body 21 and the circumferential direction of the central body 21, the pile hole bottom 101 It is possible to easily inspect a plurality of parts around the central part.
Further, since a plurality of non-central portion inspection means are provided around the central body 21, it is possible to easily and quickly inspect a plurality of portions around the central portion of the pile hole bottom 101.
Further, since the non-central inspection means is provided with the reaction force receiving device 4 for transmitting the force received from the pile hole bottom 101 to the hole wall 102 on the pile hole bottom 101 side, the reaction force can be reliably taken. Therefore, it becomes possible to accurately inspect whether or not the entire pile hole bottom reaches the support layer.

尚、上述した測定手段80の地盤との接触面に土圧計等の圧力検出手段を取付けて、例えば、杭孔底101に移動させた土圧計が土圧を検出してから所定の土圧値が測定されるまでのピストンロッドの伸長量を測定することにより、当該土圧を検出してから所定の土圧値が測定されるまでのピストンロッドの伸長量を杭孔底101の地盤の剛性を評価するための評価値として用いてもよい。この場合も、予め支持層に必要な基準評価値を実験で求めておき、測定した評価値が基準評価値に達していれば(即ち、測定した評価値(ピストンロッドの伸長量)が基準評価値(ピストンロッドの伸長量)以下の場合には)、当該杭孔底101の地盤が支持層に達しているものと判断し、測定した評価値が基準評価値に達していなければ(即ち、測定した評価値(ピストンロッドの伸長量)が基準評価値(ピストンロッドの伸長量)よりも大きい場合には)、当該杭孔100の底をさらに掘削して杭孔の深度を深くした後に再度測定を行い、測定した評価値が基準評価値に達するまで、杭孔の深度を深くするようにすればよい。
また、油圧シリンダーに一定の油圧を供給してピストンロッドを伸長させることで測定手段80の土圧計を地盤に押し付けた場合の土圧値を評価値として用いてもよい。
また、測定手段80の地盤との接触面に硬度計を設けて地盤に押し付けた当該硬度計で測定された硬度値を評価値として用いてもよい。
A pressure detecting means such as an earth pressure gauge is attached to the contact surface of the measuring means 80 with the ground, and for example, the earth pressure gauge moved to the bottom 101 of the pile hole detects the earth pressure and then a predetermined earth pressure value. By measuring the amount of extension of the piston rod until the measurement of the earth pressure, the amount of extension of the piston rod from the detection of the earth pressure until the predetermined earth pressure value is measured is the rigidity of the ground of the pile hole bottom 101. May be used as an evaluation value for evaluating. In this case as well, the reference evaluation value required for the support layer is obtained in advance by experiment, and if the measured evaluation value reaches the reference evaluation value (that is, the measured evaluation value (extension amount of the piston rod) is the reference evaluation. If it is less than or equal to the value (extension amount of the piston rod), it is judged that the ground of the pile hole bottom 101 has reached the support layer, and if the measured evaluation value does not reach the reference evaluation value (that is, When the measured evaluation value (extension amount of the piston rod) is larger than the standard evaluation value (extension amount of the piston rod), the bottom of the pile hole 100 is further excavated to deepen the depth of the pile hole, and then again. The measurement may be performed and the depth of the pile hole may be increased until the measured evaluation value reaches the reference evaluation value.
Further, the earth pressure value when the earth pressure gauge of the measuring means 80 is pressed against the ground by supplying a constant oil pressure to the hydraulic cylinder to extend the piston rod may be used as an evaluation value.
Further, a hardness meter may be provided on the contact surface of the measuring means 80 with the ground, and the hardness value measured by the hardness meter pressed against the ground may be used as the evaluation value.

また、上記では、非中央部検査手段を中心体21の径方向に沿って移動させる移動手段70を備えた構成を例示したが、移動手段70を備えない構成としてもよい。例えば、非中央部検査手段としての油圧シリンダー33が外管側対向板51又は反力受け板側対向板53に固定された構成としてもよい。 Further, in the above description, the configuration including the moving means 70 for moving the non-central portion inspection means along the radial direction of the central body 21 is illustrated, but the configuration may not include the moving means 70. For example, the hydraulic cylinder 33 as the non-central portion inspection means may be fixed to the outer pipe side facing plate 51 or the reaction force receiving plate side facing plate 53.

また、反力受け装置の油圧シリンダーを杭孔100の径方向に延長するように設けた1つの油圧シリンダーで構成し、この油圧シリンダーのシリンダーに、当該油圧シリンダーの中心軸と上下方向に直交するように中央部検査手段の油圧シリンダー22及び非中央部検査手段の油圧シリンダー33を固定した構成の杭孔底検査装置としてもよい。この場合、杭孔100の径方向に延長するように設けた1つの油圧シリンダーのピストンロッドの先端に設けた反力受け板43と当該油圧シリンダーのシリンダーの底端に設けた反力受け板43とを杭孔底101側の孔壁102に突っ張らせて反力を取るようにすればよい。
即ち、非中央部検査手段及び中央部検査手段の反力を取ることができれば、反力受け装置の油圧シリンダーを上述したように1つで構成してもよいし、実施形態1で説明したように複数で構成してもよい。
Further, the hydraulic cylinder of the reaction force receiving device is composed of one hydraulic cylinder provided so as to extend in the radial direction of the pile hole 100, and the cylinder of this hydraulic cylinder is orthogonal to the central axis of the hydraulic cylinder in the vertical direction. As described above, the pile hole bottom inspection device may have a structure in which the hydraulic cylinder 22 of the central inspection means and the hydraulic cylinder 33 of the non-central inspection means are fixed. In this case, a reaction force receiving plate 43 provided at the tip of a piston rod of one hydraulic cylinder provided so as to extend in the radial direction of the pile hole 100 and a reaction force receiving plate 43 provided at the bottom end of the cylinder of the hydraulic cylinder. And may be stretched against the hole wall 102 on the bottom 101 side of the pile hole to take the reaction force.
That is, if the reaction force of the non-central part inspection means and the central part inspection means can be taken, the hydraulic cylinder of the reaction force receiving device may be configured by one as described above, or as described in the first embodiment. It may be composed of a plurality of.

また、非中央部検査手段、中央部検査手段の押圧手段として、油圧シリンダー以外の押圧手段を用いてもよい。 Further, as the pressing means for the non-central inspection means and the central inspection means, a pressing means other than the hydraulic cylinder may be used.

尚、中央部検査手段を備えない杭孔底検査装置を用いて、杭孔底101の中央部の周囲の複数部分を検査することにより、杭孔底が支持層に達しているか否かを検査するようにしてもよい。杭孔底101の中央部以外が支持層に達していて、杭孔底101の中央部だけが支持層に達していないことは考えにくいので、杭孔底の中央部の周囲の複数部分を検査する非中央部検査手段を備えて中央部検査手段を備えない杭孔底検査装置を用いた場合であっても、杭孔底全体が支持層に達しているか否かの検査を正確に行えるようになると考えられる。 It should be noted that, by inspecting a plurality of parts around the central portion of the pile hole bottom 101 using a pile hole bottom inspection device not provided with a central portion inspection means, it is inspected whether or not the pile hole bottom reaches the support layer. You may try to do it. Since it is unlikely that the support layer is reached except for the central portion of the pile hole bottom 101 and only the central portion of the pile hole bottom 101 does not reach the support layer, a plurality of parts around the central portion of the pile hole bottom are inspected. Even when a pile hole bottom inspection device equipped with non-central inspection means and not provided with central inspection means is used, it is possible to accurately inspect whether the entire pile hole bottom reaches the support layer. It is thought that

実施形態2
場所打ち杭掘削機の掘削バケットやアースオーガーのヘッド等の掘削手段に、中央部検査手段及び非中央部検査手段のうち少なくとも非中央部検査手段を備えたアタッチメントを取付けることにより構成された杭孔底検査装置としてもよい。
この場合、非中央部検査手段は、実施形態1で説明した構成のものを用いたり、あるいは、場所打ち杭掘削機の掘削バケットやアースオーガーのヘッド等の掘削手段と、当該掘削手段に設けられた測定器とを備えた構成としてもよい。この場合、測定器として例えば土圧計又は硬度計を用い、場所打ち杭掘削機やアースオーガー等の重機で掘削手段を操作して当該掘削手段に設けられた土圧計又は硬度計に一定の押圧力を付与して地盤に押し付けた当該土圧計又は硬度計で測定された圧力値又は硬度値に基づいて、杭孔底の中央部の周囲の複数部分が支持層に達しているか否かを確認できるようになる。
Embodiment 2
A pile hole configured by attaching an attachment having at least the non-central inspection means of the central inspection means and the non-central inspection means to the excavation means such as the excavation bucket of the cast-in-place pile excavator and the head of the earth auger. It may be used as a bottom inspection device.
In this case, the non-central inspection means may be the one having the configuration described in the first embodiment, or may be provided in the excavation means such as the excavation bucket of the cast-in-place pile excavator or the head of the earth auger, and the excavation means. It may be configured to include a measuring instrument. In this case, for example, a soil pressure gauge or a hardness tester is used as a measuring instrument, and the excavation means is operated by a heavy machine such as a cast-in-place pile excavator or an earth auger to press a constant pressing force on the soil pressure gauge or the hardness tester provided in the excavation means. Based on the pressure value or hardness value measured by the soil pressure gauge or hardness tester pressed against the ground, it can be confirmed whether or not multiple parts around the central part of the pile hole bottom reach the support layer. Will be.

実施形態3
各実施形態1,2では、測定手段を杭孔底101の地盤に貫入させたり、測定手段を杭孔底101の地盤に押し付ける構成を備えた杭孔底検査装置1を例示したが、測定手段に杭孔底101の地盤の土砂を採取するための図外の採取部を設けて、当該採取部を地盤に突き刺して土砂を採取する構成を備えた杭孔底検査装置1としてもよい。この場合、実施形態1,2での支持層確認に加えて、採取した土砂に基づいて地質を判断することにより、杭孔底全体が支持層に達しているか否かの確認も行えるようになり、支持層確認の精度を向上できる。
Embodiment 3
In the first and second embodiments, the pile hole bottom inspection device 1 having a configuration in which the measuring means is penetrated into the ground of the pile hole bottom 101 or the measuring means is pressed against the ground of the pile hole bottom 101 has been exemplified. The pile hole bottom inspection device 1 may be provided with a collecting portion (not shown) for collecting the earth and sand of the pile hole bottom 101, and the collecting portion may be pierced into the ground to collect the earth and sand. In this case, in addition to the support layer confirmation in the first and second embodiments, it is possible to confirm whether or not the entire pile hole bottom has reached the support layer by determining the geology based on the collected earth and sand. , The accuracy of support layer confirmation can be improved.

1 杭孔底検査装置、2 中央部検査装置、3 非中央部検査装置、
4 反力受け装置、21 中心体、22 油圧シリンダー、33 油圧シリンダー、
80 測定手段、100 杭孔、101 杭孔底、102 孔壁。
1 Pile hole bottom inspection device, 2 Central inspection device, 3 Non-central inspection device,
4 Reaction force receiving device, 21 centrosome, 22 hydraulic cylinder, 33 hydraulic cylinder,
80 measuring means, 100 pile holes, 101 pile hole bottoms, 102 hole walls.

Claims (5)

地盤に形成された杭孔の杭孔底が支持層に達しているか否かを検査するための杭孔底検査装置であって、
杭孔の中心軸に沿って延長するように設置される中心体と、
中心体の外周面を取り巻くように設けられて中心体の中心軸を回転中心として回転可能となった外管と、
外管を中心体の中心軸を回転中心として回転させるための回転駆動手段と、
外管に設けられて測定手段を杭孔底の中央部の周囲の複数部分に押し付けて当該杭孔底の地盤状態を検査する非中央部検査手段と、
非中央部検査手段が杭孔底から受ける力を杭孔底側の孔壁に伝達する反力受け装置と、
を備えたことを特徴とする杭孔底検査装置。
It is a pile hole bottom inspection device for inspecting whether the pile hole bottom of a pile hole formed in the ground reaches the support layer.
A centrosome installed so as to extend along the central axis of the pile hole,
An outer tube that is provided so as to surround the outer peripheral surface of the central body and can rotate around the central axis of the central body.
Rotational drive means for rotating the outer tube around the central axis of the centrosome,
A non-central part inspection means provided on the outer pipe and pressing the measuring means against a plurality of parts around the central part of the pile hole bottom to inspect the ground condition of the pile hole bottom .
A reaction force receiving device that transmits the force received from the bottom of the pile hole by the non-central inspection means to the hole wall on the bottom side of the pile hole.
A pile hole bottom inspection device characterized by being equipped with.
回転駆動手段は、外管の外周面を取り囲むように当該外周面に設けられた円環状歯車と、中心体に連結部を介して固定された駆動源と、駆動源により発生した回転力を円環状歯車に伝達する伝達歯車とを備えて構成されたことを特徴とする請求項1に記載の杭孔底検査装置。 The rotary drive means uses an annular gear provided on the outer peripheral surface so as to surround the outer peripheral surface, a drive source fixed to the central body via a connecting portion, and a rotational force generated by the drive source. The pile hole bottom inspection device according to claim 1, further comprising a transmission gear that transmits to an annular gear . 中央部検査手段が、中心体の中心軸と直交する方向に移動可能に設けられたことを特徴とする請求項1又は請求項2に記載の杭孔底検査装置。 Non-central portion inspection means, pile bottom hole inspection apparatus according to claim 1 or claim 2, characterized in that provided movably in the direction perpendicular to the center axis of the central body. 中心体の周囲に非中央部検査手段を複数備えたことを特徴とする請求項1乃至請求項3のいずれか一項に記載の杭孔底検査装置。 Centrosome pile hole bottom inspection apparatus according to any one of claims 1 to 3, characterized in that a plurality of non-central portion inspection means around. 測定手段を杭孔底の中央部に押し付けて当該杭孔底の地盤状態を検査する中央部検査手段を備えたことを特徴とする請求項乃至請求項のいずれか一項に記載の杭孔底検査装置。 The pile according to any one of claims 1 to 4 , characterized in that a central portion inspection means for inspecting the ground condition of the pile hole bottom by pressing the measuring means against the central portion of the pile hole bottom is provided. Hole bottom inspection device.
JP2016208950A 2016-10-25 2016-10-25 Pile hole bottom inspection device Active JP6812199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208950A JP6812199B2 (en) 2016-10-25 2016-10-25 Pile hole bottom inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208950A JP6812199B2 (en) 2016-10-25 2016-10-25 Pile hole bottom inspection device

Publications (2)

Publication Number Publication Date
JP2018071086A JP2018071086A (en) 2018-05-10
JP6812199B2 true JP6812199B2 (en) 2021-01-13

Family

ID=62114837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208950A Active JP6812199B2 (en) 2016-10-25 2016-10-25 Pile hole bottom inspection device

Country Status (1)

Country Link
JP (1) JP6812199B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003811B2 (en) * 2018-04-02 2022-01-21 株式会社三洋物産 Pachinko machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548980B2 (en) * 1988-12-29 1996-10-30 株式会社ジオトップ Judgment of performance / quality of foundation piles, design method, and ground performance measurement device
US5099696A (en) * 1988-12-29 1992-03-31 Takechi Engineering Co., Ltd. Methods of determining capability and quality of foundation piles and of designing foundation piles, apparatus for measuring ground characteristics, method of making hole for foundation pile such as cast-in-situ pile and apparatus therefor
JP3680301B2 (en) * 2001-12-28 2005-08-10 株式会社竹中工務店 Method and apparatus for confirming the presence or absence of slime settling in the expanded portion of the multi-stage expanded cast-in-place concrete pile hole
JP6112663B2 (en) * 2013-07-17 2017-04-12 国立大学法人横浜国立大学 In-situ rock test method and test equipment
US20150233230A1 (en) * 2013-12-05 2015-08-20 Pile Dynamics, Inc. Borehole inspecting and testing device and method of using the same

Also Published As

Publication number Publication date
JP2018071086A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6463871B2 (en) Borehole test equipment
US20090308143A1 (en) Hydrostatically compensated deep sea probe with shear strain gauges
US11340379B2 (en) Borehole inspecting and testing device and method of using the same
US20150233230A1 (en) Borehole inspecting and testing device and method of using the same
JP6112663B2 (en) In-situ rock test method and test equipment
JP2007530923A (en) An improved ball penetration tester for soft soil investigations.
CN112747793B (en) Mine surface subsidence rock movement observation device
CN109653262B (en) Multilayer sleeve pipe open pile capable of being used for measuring pile resistance and evaluating internal soil plug
CN104532886A (en) Pile bottom sediment and pile tip foundation detecting device and method for cast-in-place piles
JP6812199B2 (en) Pile hole bottom inspection device
US20020026824A1 (en) Multi-friction sleeve penetrometer apparatus and method
WO2016178684A1 (en) Borehole inspecting and testing device and method of using the same
CN110658064B (en) Device and method for acquiring optimal supporting force of tunnel fluid lining support in simulation mode
CN107100214A (en) Stake resistance simulation test device
CN108844823B (en) Device and method for measuring side friction resistance of soil layer at any depth
CN110821410A (en) Drilling, sampling and real-time measuring integrated drilling tool
JP6812233B2 (en) Pile hole inspection method and pile hole inspection equipment
JP6812232B2 (en) Hole wall inspection method for pile holes
CN107907402A (en) Chamber palisades are crisp to cut transition type crash simulation instrument
CN211342776U (en) Drilling, sampling and real-time measuring integrated drilling tool
CN210216373U (en) Protection fixing device for pressure box for rock-soil body pressure test
RU2510440C2 (en) Device for complex determination of physical and mechanical properties of soils under field conditions
Tani et al. Down-hole triaxial test to measure average stress-strain relationship of rock mass
JP6812234B2 (en) Pile hole inspection method and pile hole inspection equipment
CN115112485B (en) Soil strength, deformation characteristic and seepage characteristic integrated detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6812199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350