JP6812233B2 - Pile hole inspection method and pile hole inspection equipment - Google Patents

Pile hole inspection method and pile hole inspection equipment Download PDF

Info

Publication number
JP6812233B2
JP6812233B2 JP2016248024A JP2016248024A JP6812233B2 JP 6812233 B2 JP6812233 B2 JP 6812233B2 JP 2016248024 A JP2016248024 A JP 2016248024A JP 2016248024 A JP2016248024 A JP 2016248024A JP 6812233 B2 JP6812233 B2 JP 6812233B2
Authority
JP
Japan
Prior art keywords
hole
pile hole
moving body
pile
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016248024A
Other languages
Japanese (ja)
Other versions
JP2018100560A (en
Inventor
寛 増子
寛 増子
石橋 久義
久義 石橋
真 濱田
真 濱田
渡辺 英彦
英彦 渡辺
利弘 森
利弘 森
将夫 竹田
将夫 竹田
朋岳 梅津
朋岳 梅津
時岡 誠剛
誠剛 時岡
敦 小川
敦 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2016248024A priority Critical patent/JP6812233B2/en
Publication of JP2018100560A publication Critical patent/JP2018100560A/en
Application granted granted Critical
Publication of JP6812233B2 publication Critical patent/JP6812233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、杭孔の孔底又は孔壁が杭の支持力を確保できる支持層に達した否かを検査するための杭孔検査方法及び杭孔検査装置に関する。 The present invention relates to a pile hole inspection method and a pile hole inspection device for inspecting whether or not the hole bottom or hole wall of a pile hole has reached a support layer capable of ensuring the bearing capacity of the pile.

地盤に穿設した杭孔内に場所打ち杭や既製杭を建て込む場合においては、杭孔の孔底が支持力を確保できる支持層に達したか否かを確認するようにしている(特許文献1参照)。 When building cast-in-place piles or ready-made piles in the pile holes drilled in the ground, it is confirmed whether the bottom of the pile holes has reached the support layer that can secure the bearing capacity (patent). Reference 1).

特許第5619263号公報Japanese Patent No. 5619263

従来、杭孔の孔底が支持力を確保できる支持層に達したか否かを検査する杭孔底検査方法においては、杭孔の孔底の中央部が支持層に達したか否かを検査している。
しかしながら、地盤の地層が複雑な場合、例えば1つの杭孔の孔底の中央部と孔底の周辺部とで支持力が異なることがある。例えば杭孔の直径が比較的大きい場合等、孔底の中心部が支持層に達しているとの検査結果が得られた場合であっても、孔底の周辺部は支持層に達していない場合がある。
本発明は、杭孔の孔底又は孔壁が支持層に達しているか否かを確認できる杭孔検査方法及び杭孔検査装置を提供するものである。
Conventionally, in the pile hole bottom inspection method for inspecting whether or not the hole bottom of the pile hole has reached the support layer that can secure the bearing capacity, whether or not the central portion of the hole bottom of the pile hole has reached the support layer is checked. Inspecting.
However, when the stratum of the ground is complicated, for example, the bearing capacity may differ between the central portion of the hole bottom of one pile hole and the peripheral portion of the hole bottom. Even when the inspection result shows that the central part of the hole bottom reaches the support layer, for example, when the diameter of the pile hole is relatively large, the peripheral part of the hole bottom does not reach the support layer. In some cases.
The present invention provides a pile hole inspection method and a pile hole inspection device capable of confirming whether or not the hole bottom or hole wall of a pile hole reaches the support layer.

本発明に係る杭孔底側検査方法は、地盤に形成された杭孔の孔底又は孔壁が支持層に達しているか否かを検査するための杭孔検査方法であって、地盤に形成された杭孔内の泥水中に、スクリューを有した潜航手段を備えて遠隔操作により泥水中を全方位に潜航可能に構成された移動体を投入して、当該移動体を遠隔操作して杭孔の孔底又は孔壁に移動させ、当該移動体に設けられた測定手段を遠隔操作して杭孔の孔底又は孔壁が支持層に達しているか否かを検査することを特徴とするので、杭孔の孔底又は孔壁が支持層に達しているか否かを確認できるようになる。
また、移動体の位置を確認しながら当該移動体を移動させることを特徴とするので、杭孔における複数の異なる位置での検査を正確かつ確実に行える。また、杭孔の孔壁全体を検査することが可能となるため、支持層に到達した孔壁の深さ位置がわかるようになって、当該深さ位置から杭孔の根入り深さを求めることができるようになり、杭底の位置を適切に決めることができるようになる。
また、移動体を、杭孔の孔底の複数の異なる位置又は杭孔の孔壁における複数の異なる位置に移動させ、当該複数の位置が支持層に達しているか否かを測定手段を遠隔操作して検査することを特徴とするので、杭孔の孔底における複数の異なる位置での検査、及び、杭孔の孔壁における複数の異なる位置での検査を行えるので、杭孔の孔底又は孔壁が支持層に達したか否かを示す信頼性の高い検査結果を得ることができる。
また、移動体にスライム除去手段を設け、測定手段を遠隔操作して杭孔の孔底が支持層に達しているか否かを検査する前に、スライム除去手段で杭孔の孔底上のスライムを除去することを特徴とするので、杭孔施工後、すぐに検査作業を行えるようになる。特に、孔底を検査する際に、孔底に溜まっているスライム等の沈殿物を除去できるため、スライム等の沈殿物が障害とならず、信頼性の高い検査を行うことができるようになる。
本発明に係る杭孔底側検査装置は、地盤に形成された杭孔の孔底又は孔壁が支持層に達しているか否かを検査するための杭孔検査装置であって、地盤に形成された杭孔内の泥水中に投入されて遠隔操作される移動体と、当該移動体に設けられ遠隔操作されて杭孔の孔底又は孔壁が支持層に達しているか否かを検査する測定手段とを備え、移動体は、スクリューを有した潜航手段を備えて遠隔操作により泥水中を全方位に潜航可能に構成されたことを特徴とするので、杭孔の孔底又は孔壁が支持層に達しているか否かを検査できて、杭孔の孔底又は孔壁が支持層に達しているか否かを確認できるようになる。
また、移動体の潜航手段は、移動体の基体に設けられ、基体は、支持柱体と、支持柱体の一端側に設けられた端部支持体とを備え、端部支持体は、複数のスクリュー支持孔を備え、スクリュー支持孔には、スクリュー支持リングが取付けられ、スクリュー支持リングは、外側リングがスクリュー支持孔に回転可能に取付けられて、内側リングが外側リングの内周面に回転可能に取付けられた二重リングにより構成され、内側リングの内周面から内側リングの中心に向けて延長するように設けられたスクリュー支持支柱の先端に形成された回転中心軸に潜航スクリューの回転中心が取付けられて当該スクリューが回転可能に形成されたことを特徴とする
また、移動体が、杭孔の孔底上のスライムを除去するためのスライム除去手段を備えたことを特徴とするので、検査直前に測定面を清掃でき、杭孔施工後に改めて杭孔の孔底を清掃することなく、杭孔施工後、すぐに検査作業を行えるようになる。特に、孔底を検査する際に、孔底に溜まっているスライム等の沈殿物を除去できるため、スライム等の沈殿物が障害とならず、信頼性の高い検査を行うことができるようになる。
The pile hole bottom side inspection method according to the present invention is a pile hole inspection method for inspecting whether or not the hole bottom or hole wall of a pile hole formed in the ground reaches the support layer, and is formed in the ground. A moving body equipped with a diving means having a screw and configured to be able to dive in all directions by remote control is thrown into the muddy water in the pile hole, and the moving body is remotely controlled to pile. It is characterized in that it is moved to the hole bottom or hole wall of the hole, and the measuring means provided in the moving body is remotely controlled to inspect whether or not the hole bottom or hole wall of the pile hole reaches the support layer. Therefore, it becomes possible to confirm whether or not the hole bottom or hole wall of the pile hole reaches the support layer.
Further, since the moving body is moved while confirming the position of the moving body, the inspection at a plurality of different positions in the pile hole can be accurately and surely performed. In addition, since it is possible to inspect the entire hole wall of the pile hole, the depth position of the hole wall that has reached the support layer can be known, and the rooting depth of the pile hole can be obtained from the depth position. You will be able to properly determine the position of the pile bottom.
Further, the moving body is moved to a plurality of different positions on the hole bottom of the pile hole or a plurality of different positions on the hole wall of the pile hole, and the measuring means is remotely controlled to determine whether or not the plurality of positions reach the support layer. Since the inspection can be performed at a plurality of different positions on the hole bottom of the pile hole and at a plurality of different positions on the hole wall of the pile hole, the hole bottom of the pile hole or the hole bottom can be inspected. It is possible to obtain a highly reliable inspection result indicating whether or not the hole wall has reached the support layer.
In addition, a slime removing means is provided on the moving body, and before the measuring means is remotely controlled to inspect whether or not the hole bottom of the pile hole reaches the support layer, the slime removing means is used to slime on the hole bottom of the pile hole. Since it is characterized by removing the pile hole, the inspection work can be performed immediately after the pile hole is constructed. In particular, when inspecting the bottom of the hole, the precipitate such as slime accumulated in the bottom of the hole can be removed, so that the precipitate such as slime does not become an obstacle and the inspection can be performed with high reliability. ..
The pile hole bottom side inspection device according to the present invention is a pile hole inspection device for inspecting whether or not the hole bottom or hole wall of a pile hole formed in the ground reaches the support layer, and is formed in the ground. It is inspected whether or not the moving body that is thrown into the muddy water in the pile hole and remotely controlled and the hole bottom or the hole wall of the pile hole that is provided in the moving body and is remotely controlled reach the support layer. The moving body is provided with a measuring means, and the moving body is provided with a diving means having a screw and is configured to be able to dive in the muddy water in all directions by remote control. Therefore, the bottom or the hole wall of the pile hole is It becomes possible to inspect whether or not the pile hole reaches the support layer, and it becomes possible to confirm whether or not the hole bottom or hole wall of the pile hole reaches the support layer.
Further, the submersible means of the moving body is provided on the base of the moving body, and the base includes a support pillar and an end support provided on one end side of the support pillar, and the number of end supports is plural. The screw support hole is provided with a screw support ring, and the screw support ring is such that the outer ring is rotatably attached to the screw support hole and the inner ring rotates to the inner peripheral surface of the outer ring. Rotation of the submersible screw on a rotation center axis formed at the tip of a screw support strut, which is composed of a double ring that can be attached and extends from the inner peripheral surface of the inner ring toward the center of the inner ring. It is characterized in that the center is attached and the screw is formed rotatably .
Further, since the moving body is provided with a slime removing means for removing slime on the bottom of the pile hole, the measurement surface can be cleaned immediately before the inspection, and the hole of the pile hole is renewed after the pile hole is constructed. Inspection work can be performed immediately after the pile hole is constructed without cleaning the bottom. In particular, when inspecting the bottom of the hole, the precipitate such as slime accumulated in the bottom of the hole can be removed, so that the precipitate such as slime does not become an obstacle and the inspection can be performed with high reliability. ..

杭孔検査装置を用いた杭孔検査方法の概要を示す模式図。The schematic diagram which shows the outline of the pile hole inspection method using the pile hole inspection apparatus. 移動体の構造を示す斜視図。The perspective view which shows the structure of a moving body. 測定手段による測定方法を示す図。The figure which shows the measuring method by a measuring means.

実施形態1
実施形態1に係る杭孔検査方法は、図1に示すように、地盤に形成された杭孔Hの孔底B側が支持層に達しているか否かを検査するために、地盤に形成された杭孔H内の泥水W中に遠隔操作により泥水W中を移動可能に構成された移動体1を投入し、当該移動体1を遠隔操作して杭孔Hの孔底B側に移動させた後に当該移動体1に設けられた測定手段14を遠隔操作して杭孔Hの孔底B及び杭孔Hの孔底B側の孔壁Cが支持層に達しているか否かを検査する方法であり、以下、当該方法を実現するための実施形態1に係る杭孔検査装置について説明する。
Embodiment 1
As shown in FIG. 1, the pile hole inspection method according to the first embodiment is formed in the ground in order to inspect whether or not the hole bottom B side of the pile hole H formed in the ground reaches the support layer. A moving body 1 configured to be movable in the muddy water W by remote control was thrown into the muddy water W in the pile hole H, and the moving body 1 was remotely controlled to move to the hole bottom B side of the pile hole H. Later, a method of remotely controlling the measuring means 14 provided on the moving body 1 to inspect whether or not the hole bottom B of the pile hole H and the hole wall C on the hole bottom B side of the pile hole H reach the support layer. The pile hole inspection device according to the first embodiment for realizing the method will be described below.

図1に示すように、杭孔検査装置は、遠隔操作対象となる移動体1と、移動体1の自己位置を検出するための位置検出手段2と、移動体1を遠隔操作するための遠隔操作制御装置3とを備える。 As shown in FIG. 1, the pile hole inspection device includes a moving body 1 to be remotely controlled, a position detecting means 2 for detecting the self-position of the moving body 1, and a remote control for remotely controlling the moving body 1. It includes an operation control device 3.

移動体1は、例えば図2に示すように、基体11に、杭孔H内の泥水W中を潜航するための潜航手段12と、杭孔Hの孔底B上のスライム及び杭孔Hの孔底B側の孔壁C上のスライムを除去するためのスライム除去手段13と、遠隔操作により杭孔Hの孔底B側が支持層に達しているか否かを検査する測定手段14と、位置検出手段2とを備える。 As shown in FIG. 2, for example, the moving body 1 includes a diving means 12 for diving in the muddy water W in the pile hole H, and slime and the pile hole H on the hole bottom B of the pile hole H on the base 11. Slime removing means 13 for removing slime on the hole wall C on the hole bottom B side, measuring means 14 for inspecting whether or not the hole bottom B side of the pile hole H reaches the support layer by remote control, and positions. A detection means 2 is provided.

移動体1の基体11は、支持柱体21と、支持柱体21の一端側に設けられた端部支持体22とを備える。
支持柱体21は、例えば両端が開口した中空状(筒状)に形成され、一端開口23には、スライム吸引ホース24の一端部が接続され、支持柱体21の他端開口部側には、測定手段14が取付けられる。
端部支持体22は、例えば支持柱体21の中心線を中心として支持柱体21の周方向に沿って互いに90°隔てた位置に中心が位置されるように構成された4つの潜航スクリュー支持孔25を備える。潜航スクリュー支持孔25には、潜航スクリュー30を備えた潜航スクリュー支持リング31が取付けられている。
The base 11 of the moving body 1 includes a support column 21 and an end support 22 provided on one end side of the support column 21.
The support pillar 21 is formed in a hollow shape (cylindrical shape) with both ends open, for example, one end of the slime suction hose 24 is connected to the one end opening 23, and the other end opening side of the support pillar 21 is connected. , The measuring means 14 is attached.
The end support 22 is, for example, four submersible screw supports configured so that the center is located at a position 90 ° away from each other along the circumferential direction of the support column 21 with the center line of the support column 21 as the center. It is provided with a hole 25. A dive screw support ring 31 provided with a dive screw 30 is attached to the dive screw support hole 25.

潜航スクリュー支持リング31は、二重リングにより構成される。外側リング32が潜航スクリュー支持孔25に回転可能に取付けられ、内側リング33が外側リング32の内周面に回転可能に取付けられる。例えば、外側リング32の外周面において周方向に互いに180°離れた位置に設けられた図外の回転支軸が潜航スクリュー支持孔25の図外の軸受孔に取付けられることで、外側リング32が外側リング32の中心軸と直交する軸を回転中心軸として回転可能に構成される。また、内側リング33の外周面において周方向に互いに180°離れた位置に設けられた図外の回転支軸が外側リング32の内周面の図外の軸受孔に取付けられることで、内側リング33が内側リング33の中心軸と直交する軸を回転中心軸として回転可能に構成される。尚、外側リング32の回転中心軸と内側リング33の回転中心軸とが外側リング32の周方向において互いに90°離れた位置に設けられる。
そして、潜航スクリュー30が内側リング33の中心軸を回転中心軸34として回転可能に設けられる。例えば、内側リング33の内周面から内側リング33の中心に向けて延長するように設けられた潜航スクリュー支持支柱35の先端に形成された回転中心軸34に潜航スクリュー30の回転中心が取付けられて潜航スクリュー30が回転可能に形成される。
即ち、内側リング33の回転中心軸、及び、外側リング32の回転中心軸が、遠隔操作制御装置3の制御装置52からの制御信号により制御される図外のステップモータ等で回転制御されることによって、潜航スクリュー30の回転中心軸34の向きを変更でき、移動体1が全方位に潜航可能に構成されている(図2(b)参照)。また、潜航スクリュー30の回転中心軸34は遠隔操作制御装置3の制御装置52からの制御信号により制御される図外のモータにより回転駆動するように構成されている。
つまり、潜航スクリュー支持孔25と、潜航スクリュー支持孔25に回転可能に設けられた外側リング32と、外側リング32の内側に回転可能に設けられた内側リング33と、内側リング33に回転可能に取付けられ潜航スクリュー30とにより、移動体1を潜航させて移動させる潜航手段12が構成される。
The submersible screw support ring 31 is composed of a double ring. The outer ring 32 is rotatably attached to the submersible screw support hole 25, and the inner ring 33 is rotatably attached to the inner peripheral surface of the outer ring 32. For example, the outer ring 32 can be formed by attaching an unexpected rotation support shaft provided at a position 180 ° away from each other in the circumferential direction on the outer peripheral surface of the outer ring 32 to an unexpected bearing hole of the submersible screw support hole 25. The axis orthogonal to the central axis of the outer ring 32 is rotatably configured as the rotation central axis. Further, an unexpected rotation support shaft provided at a position 180 ° away from each other in the circumferential direction on the outer peripheral surface of the inner ring 33 is attached to an unexpected bearing hole on the inner peripheral surface of the outer ring 32, whereby the inner ring is formed. The axis 33 is rotatably configured with an axis orthogonal to the central axis of the inner ring 33 as a rotation center axis. The rotation center axis of the outer ring 32 and the rotation center axis of the inner ring 33 are provided at positions separated from each other by 90 ° in the circumferential direction of the outer ring 32.
Then, the dive screw 30 is rotatably provided with the central axis of the inner ring 33 as the rotation center axis 34. For example, the rotation center of the diving screw 30 is attached to the rotation center shaft 34 formed at the tip of the submersible screw support column 35 provided so as to extend from the inner peripheral surface of the inner ring 33 toward the center of the inner ring 33. The submersible screw 30 is rotatably formed.
That is, the rotation center axis of the inner ring 33 and the rotation center axis of the outer ring 32 are rotationally controlled by a step motor or the like (not shown) controlled by a control signal from the control device 52 of the remote operation control device 3. The direction of the rotation central axis 34 of the dive screw 30 can be changed, and the moving body 1 can dive in all directions (see FIG. 2B). Further, the rotation center axis 34 of the dive screw 30 is configured to be rotationally driven by a motor (not shown) controlled by a control signal from the control device 52 of the remote control control device 3.
That is, the dive screw support hole 25, the outer ring 32 rotatably provided in the dive screw support hole 25, the inner ring 33 rotatably provided inside the outer ring 32, and the inner ring 33 can be rotated. The attached submersible screw 30 constitutes a submersible means 12 for submerging and moving the moving body 1.

スライム除去手段13は、空気や水を噴射させる噴射装置により構成される。例えば、移動体1の端部支持体22に圧縮空気や圧縮水を生成する圧縮装置37が搭載されるとともに、端部支持体22の側面に圧縮装置37からの圧縮空気や圧縮水を噴射させる噴射ノズル38が設けられる。 The slime removing means 13 is composed of an injection device that injects air or water. For example, a compression device 37 that generates compressed air or compressed water is mounted on the end support 22 of the moving body 1, and the compressed air or compressed water from the compression device 37 is injected onto the side surface of the end support 22. An injection nozzle 38 is provided.

図3に示すように、測定手段14は、例えば、杭孔Hの孔底B又は杭孔Hの孔底B側の孔壁Cの地盤に押し付けられる測定部40と、測定部40を孔底B又は孔壁Cの地盤に押し付ける押圧手段41と、評価値を測定する図外の測定器とを備える。
測定部40は、地盤に押し当てられる手段、例えば地盤を押圧する押圧板等の押圧部、又は、地盤に貫入する手段、例えば地盤に貫入する貫入棒等の貫入部により形成される。
押圧手段41は、例えば油圧シリンダーにより形成される。尚、当該油圧シリンダーのシリンダー42は、支持柱体21の中空部に位置された状態で、支持柱体21の他端開口端面に取付ブラケット43等の取付手段によって取付けられている。そして、支持柱体21に取付けられた油圧シリンダー41のピストンロッド44の先端に、測定部40を形成する押圧部又は貫入部が設けられる。
取付ブラケット43は、例えば、シリンダー42の周方向に沿って所定の間隔を隔てて2つ以上設けられる。取付ブラケット43は、例えば120°間隔を隔てて3つ、又は、90°間隔を隔てて4つ設けられて、当該複数の取付ブラケット43によりシリンダー42が支持柱体21に取付けられている。
そして、スライムが吸引装置24aに繋がれたスライム吸引ホース24で吸引されることによって各取付ブラケット43,43間の隙間を介して支持柱体21内に取り込まれた後スライム吸引ホース24を経由して地上に排出されるように構成されている。
As shown in FIG. 3, the measuring means 14 has, for example, a measuring unit 40 pressed against the ground of the hole bottom B of the pile hole H or the hole wall C on the hole bottom B side of the pile hole H, and the measuring unit 40 at the hole bottom. It is provided with a pressing means 41 for pressing against the ground of B or the hole wall C, and a measuring instrument (not shown) for measuring an evaluation value.
The measuring unit 40 is formed by means for pressing against the ground, for example, a pressing portion such as a pressing plate for pressing the ground, or a means for penetrating into the ground, for example, a penetrating portion such as a penetrating rod penetrating into the ground.
The pressing means 41 is formed by, for example, a hydraulic cylinder. The cylinder 42 of the hydraulic cylinder is positioned in the hollow portion of the support column 21, and is attached to the other end opening end surface of the support column 21 by a mounting means such as a mounting bracket 43. Then, a pressing portion or a penetrating portion forming the measuring portion 40 is provided at the tip of the piston rod 44 of the hydraulic cylinder 41 attached to the support column body 21.
Two or more mounting brackets 43 are provided, for example, along the circumferential direction of the cylinder 42 at predetermined intervals. For example, three mounting brackets 43 are provided at 120 ° intervals, or four mounting brackets 43 are provided at 90 ° intervals, and the cylinder 42 is attached to the support column 21 by the plurality of mounting brackets 43.
Then, the slime is sucked by the slime suction hose 24 connected to the suction device 24a, and is taken into the support column 21 through the gaps between the mounting brackets 43 and 43, and then passes through the slime suction hose 24. It is configured to be discharged to the ground.

測定部40が押圧部により形成された場合、油圧シリンダー41を遠隔操作して押圧部を杭孔Hの孔底B又は杭孔Hの孔底B側の孔壁Cの地盤に押し付けて当該地盤に所定の荷重を加えた場合の当該地盤の変位量(油圧シリンダー41のピストンロッド44の伸長量)を評価値として用いればよい。即ち、支持層として必要な地盤の条件として、予め、地盤に加える所定の荷重と当該所定の荷重を加えた場合の地盤の所定の変位量との関係を求めておいて、地盤に所定の荷重を加えた場合に地盤の変位量が所定の変位量よりも小さければ当該地盤が支持層に達していると判定する。尚、当該測定部40としての押圧部は、例えば、先端部を湾曲面状、又は、球面状、又は、平面状等に形成して地盤に接触する面積を大きくすることで地盤に貫入しにくいように構成されたものを用いることが好ましい。 When the measuring portion 40 is formed by the pressing portion, the hydraulic cylinder 41 is remotely operated to press the pressing portion against the ground of the hole bottom B of the pile hole H or the hole wall C on the hole bottom B side of the pile hole H. The displacement amount of the ground (the extension amount of the piston rod 44 of the hydraulic cylinder 41) when a predetermined load is applied may be used as an evaluation value. That is, as a condition of the ground required as a support layer, the relationship between the predetermined load applied to the ground and the predetermined displacement amount of the ground when the predetermined load is applied is obtained in advance, and the predetermined load is applied to the ground. If the displacement amount of the ground is smaller than the predetermined displacement amount when the above is added, it is determined that the ground has reached the support layer. The pressing portion as the measuring portion 40 is difficult to penetrate into the ground by forming the tip portion in a curved surface shape, a spherical shape, a flat shape, or the like to increase the area in contact with the ground. It is preferable to use the one configured as described above.

測定部40が貫入部により形成された場合、油圧シリンダー41を遠隔操作して貫入部を杭孔Hの孔底B又は杭孔Hの孔底B側の孔壁Cの地盤に押し付けて当該地盤に所定の荷重を加えた場合の当該地盤に対する貫入部の貫入量(油圧シリンダー41のピストンロッド44の伸長量)を評価値として用いればよい。即ち、支持層として必要な地盤の条件として、予め、地盤に加える所定の荷重と当該所定の荷重を加えた場合の貫入部の所定の貫入量との関係を求めておいて、地盤に所定の荷重を加えた場合に貫入部の貫入量が所定の貫入量よりも小さければ当該地盤が支持層に達していると判定する。尚、当該測定部40としての貫入部は、例えば、先端部を円錐状、又は、角錐状、又は、先鋭状、又は、矢尻状、又は、柱状等に形成して地盤に接触する面積を小さくすることで地盤に貫入しやすいように構成されたものを用いることが好ましい。 When the measuring portion 40 is formed by the penetration portion, the hydraulic cylinder 41 is remotely operated to press the penetration portion against the ground of the hole bottom B of the pile hole H or the hole wall C on the hole bottom B side of the pile hole H. The amount of penetration of the penetration portion into the ground (the amount of extension of the piston rod 44 of the hydraulic cylinder 41) when a predetermined load is applied to the ground may be used as an evaluation value. That is, as a condition of the ground required as a support layer, the relationship between a predetermined load applied to the ground and a predetermined penetration amount of the intrusion portion when the predetermined load is applied is obtained in advance, and a predetermined value is applied to the ground. If the penetration amount of the penetration portion is smaller than the predetermined penetration amount when a load is applied, it is determined that the ground has reached the support layer. The penetration portion of the measuring portion 40 has, for example, a conical, pyramidal, sharp-edged, arrowhead-shaped, or columnar shape at the tip to reduce the area in contact with the ground. It is preferable to use one that is configured so that it can easily penetrate the ground.

また、油圧シリンダー41を遠隔操作して上述した測定部40としての押圧部や貫入部を杭孔Hの孔底B又は杭孔Hの孔底B側の孔壁Cの地盤に押し付けて当該地盤に所定の荷重を加えた場合の押圧抵抗や貫入抵抗を評価値として用いてもよい。この場合、支持層として必要な地盤の条件として、予め、地盤に加える所定の荷重と当該所定の荷重を加えた場合の押圧抵抗や貫入抵抗との関係を求めておいて、地盤に所定の荷重を加えた場合に押圧抵抗や貫入抵抗が所定値よりも大きければ当該地盤が支持層に達していると判定する。
上述した評価値としての油圧シリンダー41のピストンロッド44の伸長量、地盤の変形量(地盤の沈み込み量)、貫入部の貫入量は、移動体1に設けられた図外の測定器としての変位センサ(ストロークセンサ)や測距センサ等で測定すればよい。また、上述した評価値としての押圧抵抗、貫入抵抗は、測定器としての油圧シリンダー41への油圧供給量、あるいは、測定部40の先端に設けた図外の測定器としてのロードセル等で計測される荷重値等で測定すればよい。
Further, the hydraulic cylinder 41 is remotely controlled to press the pressing portion or the intrusion portion as the measuring portion 40 described above against the ground of the hole bottom B of the pile hole H or the hole wall C on the hole bottom B side of the pile hole H. The pressing resistance and the penetration resistance when a predetermined load is applied may be used as an evaluation value. In this case, as a condition of the ground required as a support layer, the relationship between the predetermined load applied to the ground and the pressing resistance and the penetration resistance when the predetermined load is applied is obtained in advance, and the predetermined load is applied to the ground. If the pressing resistance and the penetration resistance are larger than the predetermined values when the above is added, it is determined that the ground has reached the support layer.
The amount of extension of the piston rod 44 of the hydraulic cylinder 41, the amount of deformation of the ground (the amount of subduction of the ground), and the amount of penetration of the intrusion portion as the above-mentioned evaluation values are as an unexpected measuring instrument provided on the moving body 1. It may be measured by a displacement sensor (stroke sensor), a distance measuring sensor, or the like. Further, the pressing resistance and the penetration resistance as the above-mentioned evaluation values are measured by the amount of oil supply to the hydraulic cylinder 41 as a measuring instrument, or a load cell as an unexpected measuring instrument provided at the tip of the measuring unit 40. It may be measured by the load value or the like.

尚、測定手段14による測定時における地盤からの反力は、移動体1を地盤の方向に潜航させる潜航手段12による推進力で受けるようにする。即ち、測定部40で地盤を押圧する方向と移動体1の推進方向とが同じ方向となるように潜航スクリュー30の回転を制御することによって、測定手段14による測定時における地盤からの反力を移動体1で受けるようにする。また、当該移動体1の推進力で反力を受けきれないような場合には、例えば、移動体1を杭孔Hの孔底Bの中心位置に固定されたポール60(図1参照)に連結するための図外の伸縮アームを当該移動体1に設け、この伸縮アームの先端に設けられた把持部でポール60を把持するように移動体1及び伸縮アームを遠隔操作して移動体1をポール60に連結することにより、測定時における地盤からの反力を受ける構成とすればよい。 The reaction force from the ground at the time of measurement by the measuring means 14 is received by the propulsive force by the submersible means 12 that submerges the moving body 1 in the direction of the ground. That is, by controlling the rotation of the submersible screw 30 so that the direction in which the measuring unit 40 presses the ground and the propulsion direction of the moving body 1 are the same direction, the reaction force from the ground at the time of measurement by the measuring means 14 is measured. Receive it with the moving body 1. When the reaction force cannot be received by the propulsive force of the moving body 1, for example, the moving body 1 is attached to a pole 60 fixed at the center position of the hole bottom B of the pile hole H (see FIG. 1). A telescopic arm (not shown) for connecting is provided on the moving body 1, and the moving body 1 and the telescopic arm are remotely operated so that the pole 60 is gripped by the grip portion provided at the tip of the telescopic arm. By connecting the above to the pole 60, the reaction force from the ground at the time of measurement may be received.

位置検出手段2は、自己位置情報取得手段15と、自己位置情報取得手段15から取得されるデータに基づいて移動体1の自己位置データを算出する位置算出手段16とを備えて構成される。
当該位置検出手段2は、例えば、基体11に取付けられたジャイロスコープ及び加速度センサーにより構成された自己位置情報取得手段15と、基体11又は遠隔操作制御装置3に設けられて、移動体1が移動する毎に当該ジャイロスコープ及び加速度センサーから取得されるデータに基づいて移動体1の自己位置データを算出する位置算出プログラムにより構成された位置算出手段16とを備える。
即ち、位置算出手段16は、ジャイロスコープからの移動体1の方位データ(ロール、ピッチ及びヨー角の角度)と、加速度センサーからの移動体1のX、Y及びZ軸の3方向の加速度とを受信し、加速度を方位データにより絶対座標に変換して積分することにより、移動体1の自己位置情報(移動体の姿勢及び移動距離)を算出する。
当該位置検出手段2は、例えば、図1,図2に示すように、移動体1の支持柱体21の先端側に搭載される。
The position detecting means 2 includes a self-position information acquiring means 15 and a position calculating means 16 that calculates the self-position data of the moving body 1 based on the data acquired from the self-position information acquiring means 15.
The position detecting means 2 is provided on, for example, a self-position information acquiring means 15 composed of a gyroscope and an acceleration sensor attached to the base 11, and the base 11 or the remote operation control device 3, and the moving body 1 moves. It is provided with a position calculation means 16 configured by a position calculation program that calculates the self-position data of the moving body 1 based on the data acquired from the gyroscope and the acceleration sensor each time.
That is, the position calculating means 16 includes the orientation data (roll, pitch and yaw angle angles) of the moving body 1 from the gyroscope and the acceleration of the moving body 1 from the acceleration sensor in the three directions of the X, Y and Z axes. Is received, and the acceleration is converted into absolute coordinates by the orientation data and integrated to calculate the self-position information (posture and moving distance of the moving body) of the moving body 1.
The position detecting means 2 is mounted on the tip end side of the support column 21 of the moving body 1, for example, as shown in FIGS. 1 and 2.

図1に示すように、遠隔操作制御装置3は、操作部50と、画像表示器51と、制御装置52とを備える。制御装置52が、操作部50で操作された内容に基づいて、移動体1の潜航手段12のモータに制御信号を送信するとともに、位置検出手段2からの移動体1の自己位置情報を受信して、画像表示器51の表示画面上に杭孔H内での移動体1の位置を表示する。
また、制御装置52が、測定手段14による測定結果を受信して、画像表示器51の表示画面上に表示する。
As shown in FIG. 1, the remote control control device 3 includes an operation unit 50, an image display 51, and a control device 52. The control device 52 transmits a control signal to the motor of the submersible means 12 of the moving body 1 based on the contents operated by the operation unit 50, and receives the self-position information of the moving body 1 from the position detecting means 2. The position of the moving body 1 in the pile hole H is displayed on the display screen of the image display 51.
Further, the control device 52 receives the measurement result by the measuring means 14 and displays it on the display screen of the image display 51.

実施形態1の杭孔検査装置を用いた検査方法について説明する。
まず、地盤に形成された杭孔H内の泥水W中に移動体1を投入し、当該移動体1の潜航手段12を遠隔操作して移動体1を杭孔Hの孔底B側の測定対象位置に移動させる。この際、操作者は、遠隔操作制御装置3の画像表示器51の表示画面に表示される移動体1の位置追跡画像を見ながら、操作部50を操作して潜航手段12の潜航スクリュー30の向きを調整し、目的とする測定対象位置に移動体1を移動させる。
そして、移動体1が測定対象位置まで移動したことを確認した後、スライム除去手段13を作動させて、測定対象位置の地盤上のスライムを除去した後、押圧手段41を操作して測定部40を地盤に押し付ける(図3(b)参照)とともに、測定部40で地盤を押圧する方向と移動体1の推進方向とが同じ方向となるように潜航スクリュー30の回転を制御することによって測定を行う。そして、測定器で測定された評価値が遠隔操作制御装置3の制御装置52に送信され、当該評価値が画像表示器51の表示画面上に表示される。
この場合、予め支持層に必要な基準評価値を実験で求めておき、当該基準評価値を制御装置52に記憶させておく。
そして、制御装置52は、受信した評価値と基準評価値とを比較して、当該地盤が支持層に達しているか否かを画像表示器51の表示画面に表示する。
An inspection method using the pile hole inspection device of the first embodiment will be described.
First, the moving body 1 is thrown into the muddy water W in the pile hole H formed in the ground, and the submersible means 12 of the moving body 1 is remotely controlled to measure the moving body 1 on the hole bottom B side of the pile hole H. Move to the target position. At this time, the operator operates the operation unit 50 while viewing the position tracking image of the moving body 1 displayed on the display screen of the image display 51 of the remote control control device 3, and the dive screw 30 of the dive means 12. The orientation is adjusted, and the moving body 1 is moved to the target measurement target position.
Then, after confirming that the moving body 1 has moved to the measurement target position, the slime removing means 13 is operated to remove the slime on the ground at the measurement target position, and then the pressing means 41 is operated to operate the measuring unit 40. Is pressed against the ground (see FIG. 3B), and the measurement is performed by controlling the rotation of the submersible screw 30 so that the direction of pressing the ground by the measuring unit 40 and the propulsion direction of the moving body 1 are the same. Do. Then, the evaluation value measured by the measuring device is transmitted to the control device 52 of the remote control control device 3, and the evaluation value is displayed on the display screen of the image display 51.
In this case, the reference evaluation value required for the support layer is obtained in advance by an experiment, and the reference evaluation value is stored in the control device 52.
Then, the control device 52 compares the received evaluation value with the reference evaluation value, and displays on the display screen of the image display 51 whether or not the ground has reached the support layer.

実施形態1においては、杭孔Hの孔底Bにおける複数の異なる位置、及び、杭孔Hの孔底B側の孔壁Cの周方向に沿った複数の異なる位置において、測定手段14による検査を行う。
即ち、杭孔Hの孔底B側の複数の異なる位置において、測定手段14による検査を行う。
In the first embodiment, the inspection by the measuring means 14 is performed at a plurality of different positions of the pile hole H in the hole bottom B and at a plurality of different positions along the circumferential direction of the hole wall C on the hole bottom B side of the pile hole H. I do.
That is, the inspection by the measuring means 14 is performed at a plurality of different positions on the hole bottom B side of the pile hole H.

そして、測定した評価値が基準評価値に達していれば、当該孔底B側の地盤が支持層に達しているものと判断し、測定した評価値が基準評価値に達していなければ、当該杭孔Hの底をさらに掘削して杭孔Hの深度を深くした後に再度測定を行い、測定した評価値が基準評価値に達するまで、杭孔Hの深度を深くする。
そして、孔底B側の地盤の評価値が基準評価値に達した後、当該杭孔H内に鉄筋籠を挿入し、杭孔H内の泥水Wをコンクリートに置換して場所打ちコンクリート杭を施工することにより、杭孔Hの杭底側、即ち、杭孔Hの孔底B及び杭孔Hの孔底B側の孔壁Cが支持層に確実に支持された信頼性の高い場所打ちコンクリート杭を施工できるようになる。
Then, if the measured evaluation value reaches the standard evaluation value, it is determined that the ground on the hole bottom B side has reached the support layer, and if the measured evaluation value does not reach the standard evaluation value, the said After further excavating the bottom of the pile hole H to deepen the depth of the pile hole H, the measurement is performed again, and the depth of the pile hole H is deepened until the measured evaluation value reaches the reference evaluation value.
Then, after the evaluation value of the ground on the hole bottom B side reaches the standard evaluation value, a reinforcing bar cage is inserted into the pile hole H, and the muddy water W in the pile hole H is replaced with concrete to form a cast-in-place concrete pile. By construction, the pile bottom side of the pile hole H, that is, the hole bottom B of the pile hole H and the hole wall C on the hole bottom B side of the pile hole H are reliably supported by the support layer in a highly reliable cast-in-place. You will be able to construct concrete piles.

実施形態1によれば、測定手段14を備えた移動体1を遠隔操縦して、杭孔Hの孔底Bにおける複数の異なる位置での検査、及び、杭孔Hの孔底B側の孔壁Cの周方向に沿った複数の異なる位置での検査を行えるので、孔底B及び孔底B側の孔壁Cが支持層に達したか否かを示す信頼性の高い検査結果を得ることができる。
また、杭孔検査装置の移動体1が位置検出手段2を備えているので、遠隔操作者が移動体1の位置を確認しながら検査を行えるようになり、複数の異なる位置での検査を正確かつ確実に行える。
また、杭孔検査装置の移動体1がスライム除去手段13を備え、検査直前に測定面を清掃できるので、杭孔Hを施工後に改めて杭孔Hの孔底B及び杭孔Hの孔底B側の孔壁Cを清掃することなく、杭孔施工後、すぐに検査作業を行えるようになる。特に、孔底Bを検査する際に、孔底Bに溜まっているスライム等の沈殿物を除去できるため、スライム等の沈殿物が障害とならず、信頼性の高い検査を行うことができるようになる。
また、移動体1の位置を確認しながら当該移動体1を移動させて検査を行えるので、孔壁Cの周方向に沿った各位置での地盤の状態が詳細にわかる。従って、孔壁Cの周囲の地盤全体が支持層に達していることや、孔壁Cの周囲の地盤の一定の部分が支持層に達しているが孔壁Cの周囲の地盤のある部分が支持層に達していないことがわかるようになり、例えば、支持層の境界が杭孔Hの周囲で斜めになっていることがわかるようになる。孔壁Cの周囲の地盤全体が支持層に達していない場合、孔壁Cの周囲の地盤全体が支持層に達するまで杭孔Hの底をさらに掘削し、孔壁Cの周囲の地盤全体が支持層に達した後、所望の根入り深さになるまで杭孔Hの底をさらに掘削することにより、杭を支持層に確実に支持させることができる杭孔Hを形成することが可能となる。
また、図外のドリリングバケットを回転させて地盤を少しづつ掘削し、掘削後の孔の孔壁Cの状態を、移動体1の位置を確認しながら当該移動体1を移動させて検査することにより、杭孔Hの孔壁Cの状態を地上側から順番に検査していくことが可能となり、杭孔Hの孔壁全体を検査することが可能となる。この場合、支持層に到達した孔壁Cの深さ位置がわかるようになるので、当該深さ位置から杭孔Hの根入り深さを求めることができるようになり、孔底Bの位置を適切に決めることができるようになる。
また、ドリリングバケットにより杭孔Hを形成した後、移動体1の位置を確認しながら当該移動体1を移動させて杭孔Hの孔壁全体又は孔底全体を検査することが可能となる。
また、移動体1が潜航手段12を備え、他端が吸引装置24aに繋がれたスライム吸引ホース24の一端が移動体1に繋がれたので、潜航スクリュー30で泥水Wをかき混ぜて、スライムをスライム吸引ホース24を介して地上に吸い出すことができ、検査作業とともにスライム吸引作業を行うことができるようになる。尚、スライムを吸引した後に検査を行うことが好ましい。
According to the first embodiment, the moving body 1 provided with the measuring means 14 is remotely controlled to inspect the pile hole H at a plurality of different positions in the hole bottom B, and the hole on the hole bottom B side of the pile hole H. Since the inspection can be performed at a plurality of different positions along the circumferential direction of the wall C, a highly reliable inspection result indicating whether or not the hole bottom B and the hole wall C on the hole bottom B side have reached the support layer can be obtained. be able to.
Further, since the moving body 1 of the pile hole inspection device is provided with the position detecting means 2, the remote operator can perform the inspection while confirming the position of the moving body 1, and can accurately perform the inspection at a plurality of different positions. And surely.
Further, since the moving body 1 of the pile hole inspection device is provided with the slime removing means 13 and the measurement surface can be cleaned immediately before the inspection, the hole bottom B of the pile hole H and the hole bottom B of the pile hole H are reconstructed after the pile hole H is constructed. Inspection work can be performed immediately after the pile hole is constructed without cleaning the hole wall C on the side. In particular, when inspecting the hole bottom B, the sediment such as slime accumulated in the hole bottom B can be removed, so that the precipitate such as slime does not become an obstacle and the inspection can be performed with high reliability. become.
Further, since the moving body 1 can be moved and inspected while checking the position of the moving body 1, the state of the ground at each position along the circumferential direction of the hole wall C can be known in detail. Therefore, the entire ground around the hole wall C reaches the support layer, and a certain part of the ground around the hole wall C reaches the support layer but there is a part of the ground around the hole wall C. It can be seen that the support layer has not been reached, for example, the boundary of the support layer is slanted around the pile hole H. If the entire ground around the hole wall C does not reach the support layer, the bottom of the pile hole H is further excavated until the entire ground around the hole wall C reaches the support layer, and the entire ground around the hole wall C is removed. After reaching the support layer, by further excavating the bottom of the pile hole H until the desired rooting depth is reached, it is possible to form a pile hole H capable of reliably supporting the pile to the support layer. Become.
In addition, the drilling bucket (not shown) is rotated to excavate the ground little by little, and the state of the hole wall C of the hole after excavation is inspected by moving the moving body 1 while checking the position of the moving body 1. As a result, the state of the hole wall C of the pile hole H can be inspected in order from the ground side, and the entire hole wall of the pile hole H can be inspected. In this case, since the depth position of the hole wall C that has reached the support layer can be known, the rooting depth of the pile hole H can be obtained from the depth position, and the position of the hole bottom B can be determined. You will be able to make appropriate decisions.
Further, after the pile hole H is formed by the drilling bucket, the moving body 1 can be moved while checking the position of the moving body 1 to inspect the entire hole wall or the entire hole bottom of the pile hole H.
Further, since the moving body 1 is provided with the submersible means 12 and one end of the slime suction hose 24 whose other end is connected to the suction device 24a is connected to the moving body 1, the muddy water W is stirred by the submersible screw 30 to mix the slime. It can be sucked to the ground through the slime suction hose 24, and the slime suction work can be performed together with the inspection work. It is preferable to perform the inspection after sucking the slime.

実施形態2
測定部40が、油圧シリンダー41のピストンロッド44の先端に取付けられた回転ファンにより形成された構成としてもよい。この場合、測定時においては回転ファンを孔底B又は孔壁Cに押し付け、非測定時において回転ファンを回転させることにより、スライムが各取付ブラケット43,43間の隙間を介して支持柱体21の内部空間内に取り込まれまれやすくなり、スライム吸引効果が向上する。
Embodiment 2
The measuring unit 40 may be formed by a rotary fan attached to the tip of the piston rod 44 of the hydraulic cylinder 41. In this case, by pressing the rotary fan against the hole bottom B or the hole wall C during measurement and rotating the rotary fan during non-measurement, the slime is supported by the support pillar 21 through the gap between the mounting brackets 43 and 43. It becomes easier to be taken into the internal space of the body, and the slime suction effect is improved.

実施形態3
測定手段14は、ピストンロッド44の先端に土圧計等の圧力検出手段を取付けた構成としてもよい。この場合、例えば、地盤に接触させた土圧計が圧力を検出してから所定の圧力値が測定されるまでのピストンロッド44の伸長量を図外の変位センサ(ストロークセンサ)や測距センサ等で測定することにより、当該圧力を検出してから所定の圧力値が測定されるまでのピストンロッド44の伸長量を地盤を評価するための評価値として用いる。この場合も、予め支持層に必要な基準評価値を実験で求めておき、測定した評価値が基準評価値に達していれば(即ち、測定した評価値(ピストンロッドの伸長量)が基準評価値(ピストンロッドの伸長量)以下の場合には)、当該地盤が支持層に達しているものと判断し、測定した評価値が基準評価値に達していなければ(即ち、測定した評価値(ピストンロッドの伸長量)が基準評価値(ピストンロッドの伸長量)よりも大きい場合には)、当該杭孔Hの底をさらに掘削して杭孔Hの深度を深くした後に再度測定を行い、測定した評価値が基準評価値に達するまで、杭孔Hの深度を深くするようにすればよい。
尚、例えば、圧力を検出してから所定の圧力値が測定されるまでの地盤の凹み量を測距センサ等で測定し、この凹み量を地盤の剛性を評価するための評価値として評価してもよい。
また、油圧シリンダー41に一定の油圧を供給してピストンロッド44を伸長させることで土圧計を地盤に押し付けた場合の圧力値を評価値として用いてもよい。
また、ピストンロッド44の先端に測定部40としての硬度計を設けて当該硬度計を地盤に押し付けるとともに、硬度計で地盤を押圧する方向と移動体1の推進方向とが同じ方向となるように潜航スクリュー30の回転を制御することによって、当該硬度計で測定された硬度値を評価値として用いてもよい。
尚、これら評価値も、遠隔操作制御装置3の制御装置52に送信され、当該評価値が画像表示器51の表示画面上に表示される。
Embodiment 3
The measuring means 14 may have a configuration in which a pressure detecting means such as an earth pressure gauge is attached to the tip of the piston rod 44. In this case, for example, a displacement sensor (stroke sensor), a distance measuring sensor, etc., which are not shown in the figure, determine the amount of extension of the piston rod 44 from the time when the earth pressure gauge in contact with the ground detects the pressure until the predetermined pressure value is measured. The amount of extension of the piston rod 44 from the detection of the pressure to the measurement of a predetermined pressure value is used as an evaluation value for evaluating the ground. In this case as well, the reference evaluation value required for the support layer is obtained in advance by experiment, and if the measured evaluation value reaches the reference evaluation value (that is, the measured evaluation value (extension amount of the piston rod) is the reference evaluation. If it is less than or equal to the value (extension amount of the piston rod), it is judged that the ground has reached the support layer, and if the measured evaluation value does not reach the standard evaluation value (that is, the measured evaluation value (that is, the measured evaluation value). (If the extension amount of the piston rod) is larger than the standard evaluation value (extension amount of the piston rod)), the bottom of the pile hole H is further excavated to deepen the depth of the pile hole H, and then the measurement is performed again. The depth of the pile hole H may be increased until the measured evaluation value reaches the reference evaluation value.
For example, the amount of dent in the ground from the detection of pressure to the measurement of a predetermined pressure value is measured by a distance measuring sensor or the like, and this amount of dent is evaluated as an evaluation value for evaluating the rigidity of the ground. You may.
Further, the pressure value when the soil pressure gauge is pressed against the ground by supplying a constant oil pressure to the hydraulic cylinder 41 and extending the piston rod 44 may be used as an evaluation value.
Further, a hardness tester as a measuring unit 40 is provided at the tip of the piston rod 44 to press the hardness tester against the ground, and the direction of pressing the ground with the hardness tester and the propulsion direction of the moving body 1 are in the same direction. By controlling the rotation of the dive screw 30, the hardness value measured by the hardness tester may be used as an evaluation value.
These evaluation values are also transmitted to the control device 52 of the remote control control device 3, and the evaluation values are displayed on the display screen of the image display 51.

実施形態4
測定手段14は、表面波の伝達速度の違いに基づいて地盤の硬軟を推定する手法である表面波検査法を実現するための測定手段であっても良い。
表面波検査法を実現するための測定手段14は、図示しないが、移動体1に設けられて地盤を叩くなどしてレイリー波と呼ばれる表面波を発生させるハンマー等の起振手段と、表面波を検知するために2点に設置された検出器とで構成され、2点の検出器間に伝播する表面波の伝播時間を評価値として、地盤の硬軟を判定する。この場合、検出器は、測定時に別途、孔底B又は孔底B側の孔壁Cに設置し、2点の検出器で検出された表面波の情報を例えば遠隔操作制御装置3に設けられた解析プログラムで解析して評価値としての伝播時間を算出するようにすればよい。
Embodiment 4
The measuring means 14 may be a measuring means for realizing a surface wave inspection method, which is a method of estimating the hardness of the ground based on the difference in the transmission speed of the surface wave.
Although not shown, the measuring means 14 for realizing the surface wave inspection method is provided on the moving body 1 and is provided with a vibration means such as a hammer that generates a surface wave called a Rayleigh wave by hitting the ground, and a surface wave. It is composed of detectors installed at two points to detect the above, and the hardness of the ground is judged by using the propagation time of the surface wave propagating between the two points as an evaluation value. In this case, the detector is separately installed on the hole bottom B or the hole wall C on the hole bottom B side at the time of measurement, and the surface wave information detected by the two detectors is provided, for example, in the remote control control device 3. The propagation time as an evaluation value may be calculated by analyzing with an analysis program.

実施形態5
測定手段14は、弾性波が物性の異なる境界で屈折や反射などの現象を生じることを利用して地盤構造を検査する手法である弾性波探査法を実現するための測定手段であっても良い。
弾性波探査法を実現するための測定手段14は、図示しないが、移動体1に設けられて地盤を叩くなどして弾性波を発生させるハンマー等の起振手段と、弾性波を検出する検出器とで構成され、起振点から検出点までの弾性波伝達速度を評価値として、地盤の硬軟を判定する。この場合、検出器は、測定時に別途、孔底B又は孔底B側の孔壁Cに設置し、検出器で検出された弾性波の情報を例えば遠隔操作制御装置3に設けられた解析プログラムで解析して評価値としての弾性波伝達速度を算出するようにすればよい。
Embodiment 5
The measuring means 14 may be a measuring means for realizing an elastic wave exploration method, which is a method of inspecting the ground structure by utilizing the fact that elastic waves generate phenomena such as refraction and reflection at boundaries having different physical properties. ..
Although not shown, the measuring means 14 for realizing the elastic wave exploration method is provided on the moving body 1 and is provided with a vibration means such as a hammer that generates elastic waves by hitting the ground, and detection for detecting elastic waves. It is composed of a vessel, and the hardness of the ground is judged by using the elastic wave transmission speed from the vibration point to the detection point as an evaluation value. In this case, the detector is separately installed in the hole bottom B or the hole wall C on the hole bottom B side at the time of measurement, and the information of the elastic wave detected by the detector is input to, for example, an analysis program provided in the remote control control device 3. The elastic wave transmission rate as an evaluation value may be calculated by analyzing with.

実施形態6
測定手段14は、送信アンテナから地盤に発射した電磁波が地盤で反射して受信アンテナで捉えられるまでの伝播時間を計測して地盤構造を探査する電磁波(地中レーダー)探査法を実現するための測定手段であっても良い。
電磁波探査法を実現するための測定手段14は、図示しないが、移動体1に設けられて電磁波を送信する送信アンテナと、移動体1に設けられて地中で反射した電磁波を受信する受信アンテナと、送信アンテナから地中に発射した電磁波が地中で反射して受信アンテナで捉えられるまでの伝播時間を計測する測定装置とで構成され、伝播時間からわかる反射パターンに基づいて地盤構造を画像表示器51の表示画面上に画像化し、この画像に基づいて地盤の硬軟を判定するようにすればよい。
Embodiment 6
The measuring means 14 is for realizing an electromagnetic wave (ground penetrating radar) exploration method for exploring the ground structure by measuring the propagation time until the electromagnetic wave emitted from the transmitting antenna to the ground is reflected by the ground and captured by the receiving antenna. It may be a measuring means.
Although not shown, the measuring means 14 for realizing the electromagnetic wave exploration method is a transmitting antenna provided on the moving body 1 to transmit electromagnetic waves and a receiving antenna provided on the moving body 1 to receive electromagnetic waves reflected in the ground. It consists of a measuring device that measures the propagation time until the electromagnetic waves emitted from the transmitting antenna into the ground are reflected in the ground and captured by the receiving antenna, and the ground structure is imaged based on the reflection pattern that can be seen from the propagation time. An image may be created on the display screen of the display 51, and the hardness of the ground may be determined based on this image.

実施形態7
また、位置検出手段2は、例えば、杭孔Hの孔底の中心位置に固定されたポール60(図1参照)と、ポール60の周囲を取り巻くように設けられた図外のリングと、ポール60とリングとに設けられた図外の複数の受信機と、移動体1に設けられた図外の送信機とを備えた構成とし、送信機から受信機に対して超音波信号や電波信号等を送り、その伝播時間を計測することで送受信機間の距離を測定することにより、移動体1の3次元座標を取得するようにしてもよい。
Embodiment 7
Further, the position detecting means 2 includes, for example, a pole 60 (see FIG. 1) fixed at the center position of the hole bottom of the pile hole H, a ring (not shown) provided so as to surround the pole 60, and a pole. A configuration including a plurality of receivers (not shown) provided on the 60 and the ring and a transmitter (not shown) provided on the moving body 1 is provided, and an ultrasonic signal or a radio wave signal is transmitted from the transmitter to the receiver. Etc. may be sent, and the three-dimensional coordinates of the moving body 1 may be acquired by measuring the distance between the transmitters and receivers by measuring the propagation time thereof.

尚、実施形態では、杭孔Hの孔底Bにおける複数の異なる位置、及び、杭孔Hの孔底B側の孔壁Cの周方向に沿った複数の異なる位置において、測定手段14による検査を行う例を示したが、少なくとも、移動体1を遠隔操作して杭孔Hの孔底Bにおける複数の異なる位置に移動させて、当該移動体1に設けられた測定手段14を遠隔操作して杭孔Hの孔底Bにおける複数の異なる位置が支持層に達しているか否かを検査することにより、杭孔Hの孔底B全体が支持層に達しているか否かを確認できるようになる。 In the embodiment, the inspection by the measuring means 14 is performed at a plurality of different positions of the pile hole H in the hole bottom B and at a plurality of different positions along the circumferential direction of the hole wall C on the hole bottom B side of the pile hole H. However, at least the moving body 1 is remotely operated to move the moving body 1 to a plurality of different positions in the hole bottom B of the pile hole H, and the measuring means 14 provided in the moving body 1 is remotely operated. By inspecting whether or not a plurality of different positions of the pile hole H in the hole bottom B reach the support layer, it is possible to confirm whether or not the entire hole bottom B of the pile hole H reaches the support layer. Become.

また、位置検出手段2を備えない移動体を用いてもよい。即ち、杭孔Hの孔底Bを検査する姿勢を維持した状態で移動体を孔底Bの所定の位置まで移動させて測定を行った後に、移動体をランダムに移動させることにより、杭孔Hの孔底Bにおける複数の異なる位置を検査するようにしてもよい。 Further, a moving body not provided with the position detecting means 2 may be used. That is, the pile hole is made by moving the moving body to a predetermined position of the hole bottom B while maintaining the posture of inspecting the hole bottom B of the pile hole H to perform measurement, and then randomly moving the moving body. A plurality of different positions in the hole bottom B of H may be inspected.

また、スライム除去手段13を備えない移動体を用いてもよい。即ち、スライム除去作業を行った後に、移動体を杭孔H内の泥水W中に投入して検査を行うようにしてもよい。 Further, a moving body not provided with the slime removing means 13 may be used. That is, after performing the slime removal work, the moving body may be thrown into the muddy water W in the pile hole H for inspection.

スライム吸引ホース24を移動体に連結せずに、別途、スライム吸引ホースでスライムを吸引するようにしてもよい。 Instead of connecting the slime suction hose 24 to the moving body, the slime suction hose may be used to suck the slime separately.

また、移動体の形状は、上述した形状でなくても構わない。例えば、潜水艦のような形状、円盤のような形状、球体のような形状等であってもよい。 Further, the shape of the moving body does not have to be the shape described above. For example, it may have a shape like a submarine, a shape like a disk, a shape like a sphere, or the like.

1 移動体、2 位置検出手段、13 スライム除去手段、14 測定手段、
B 杭孔の孔底、C 杭孔の孔壁、H 杭孔。
1 mobile body, 2 position detecting means, 13 slime removing means, 14 measuring means,
B Pile hole bottom, C Pile hole hole wall, H Pile hole.

Claims (7)

地盤に形成された杭孔の孔底又は孔壁が支持層に達しているか否かを検査するための杭孔検査方法であって、
地盤に形成された杭孔内の泥水中に、スクリューを有した潜航手段を備えて遠隔操作により泥水中を全方位に潜航可能に構成された移動体を投入して、当該移動体を遠隔操作して杭孔の孔底又は孔壁に移動させ、当該移動体に設けられた測定手段を遠隔操作して杭孔の孔底又は孔壁が支持層に達しているか否かを検査することを特徴とする杭孔検査方法。
It is a pile hole inspection method for inspecting whether or not the hole bottom or hole wall of a pile hole formed in the ground reaches the support layer.
A mobile body equipped with a diving means having a screw and configured to be able to dive in all directions by remote control is thrown into the muddy water in a pile hole formed in the ground, and the moving body is remotely controlled. Then, it is moved to the hole bottom or hole wall of the pile hole, and the measuring means provided in the moving body is remotely controlled to inspect whether the hole bottom or hole wall of the pile hole reaches the support layer. A featured pile hole inspection method.
移動体の位置を確認しながら当該移動体を移動させることを特徴とする請求項1に記載の杭孔検査方法。 The pile hole inspection method according to claim 1, wherein the moving body is moved while confirming the position of the moving body. 移動体を、杭孔の孔底の複数の異なる位置又は杭孔の孔壁における複数の異なる位置に移動させ、当該複数の位置が支持層に達しているか否かを測定手段を遠隔操作して検査することを特徴とする請求項2に記載の杭孔検査方法。 The moving body is moved to a plurality of different positions on the hole bottom of the pile hole or a plurality of different positions on the hole wall of the pile hole, and the measuring means is remotely controlled to determine whether or not the plurality of positions reach the support layer. The pile hole inspection method according to claim 2, wherein the pile hole is inspected. 移動体にスライム除去手段を設け、測定手段を遠隔操作して杭孔の孔底が支持層に達しているか否かを検査する前に、スライム除去手段で杭孔の孔底上のスライムを除去することを特徴とする請求項1乃至請求項3のいずれか一項に記載の杭孔検査方法。 A slime removing means is provided on the moving body, and the slime removing means is used to remove the slime on the hole bottom of the pile hole before the measuring means is remotely controlled to inspect whether the hole bottom of the pile hole reaches the support layer. The pile hole inspection method according to any one of claims 1 to 3, wherein the pile hole inspection method is performed. 地盤に形成された杭孔の孔底又は孔壁が支持層に達しているか否かを検査するための杭孔検査装置であって、
地盤に形成された杭孔内の泥水中に投入されて遠隔操作される移動体と、当該移動体に設けられ遠隔操作されて杭孔の孔底又は孔壁が支持層に達しているか否かを検査する測定手段とを備え
移動体は、スクリューを有した潜航手段を備えて遠隔操作により泥水中を全方位に潜航可能に構成されたことを特徴とする杭孔検査装置。
A pile hole inspection device for inspecting whether the hole bottom or hole wall of a pile hole formed in the ground reaches the support layer.
Whether or not the moving body that is thrown into the muddy water in the pile hole formed in the ground and remotely controlled and the hole bottom or hole wall of the pile hole that is provided in the moving body and remotely controlled reaches the support layer. and a measuring means for inspecting,
The moving body is a pile hole inspection device characterized in that it is equipped with a diving means having a screw and is configured to be able to dive in all directions in muddy water by remote control .
移動体の潜航手段は、移動体の基体に設けられ、
基体は、支持柱体と、支持柱体の一端側に設けられた端部支持体とを備え、
端部支持体は、複数のスクリュー支持孔を備え、
スクリュー支持孔には、スクリュー支持リングが取付けられ、
スクリュー支持リングは、外側リングがスクリュー支持孔に回転可能に取付けられて、内側リングが外側リングの内周面に回転可能に取付けられた二重リングにより構成され、
内側リングの内周面から内側リングの中心に向けて延長するように設けられたスクリュー支持支柱の先端に形成された回転中心軸に潜航スクリューの回転中心が取付けられて当該スクリューが回転可能に形成されたことを特徴とする請求項5に記載の杭孔検査装置。
The submersible means of the moving body is provided on the base of the moving body.
The substrate includes a support column and an end support provided on one end side of the support column.
The end support has multiple screw support holes and
A screw support ring is attached to the screw support hole,
The screw support ring consists of a double ring with the outer ring rotatably attached to the screw support hole and the inner ring rotatably attached to the inner peripheral surface of the outer ring.
The rotation center of the submersible screw is attached to the rotation center axis formed at the tip of the screw support column provided so as to extend from the inner peripheral surface of the inner ring toward the center of the inner ring, and the screw is rotatably formed. by pile hole inspection apparatus according to claim 5, characterized in that the.
移動体が、杭孔の孔底上のスライムを除去するためのスライム除去手段を備えたことを特徴とする請求項5又は請求項6に記載の杭孔検査装置。 The pile hole inspection apparatus according to claim 5 or 6, wherein the moving body includes a slime removing means for removing slime on the hole bottom of the pile hole.
JP2016248024A 2016-12-21 2016-12-21 Pile hole inspection method and pile hole inspection equipment Active JP6812233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016248024A JP6812233B2 (en) 2016-12-21 2016-12-21 Pile hole inspection method and pile hole inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248024A JP6812233B2 (en) 2016-12-21 2016-12-21 Pile hole inspection method and pile hole inspection equipment

Publications (2)

Publication Number Publication Date
JP2018100560A JP2018100560A (en) 2018-06-28
JP6812233B2 true JP6812233B2 (en) 2021-01-13

Family

ID=62715171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248024A Active JP6812233B2 (en) 2016-12-21 2016-12-21 Pile hole inspection method and pile hole inspection equipment

Country Status (1)

Country Link
JP (1) JP6812233B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774966B (en) * 2021-09-10 2023-01-17 李忠春 Device and method for detecting thickness of concrete cast-in-place pile bottom sediment
CN115198783B (en) * 2022-07-08 2023-09-08 中交第二航务工程局有限公司 Construction control method of compartment type ground continuous wall anchorage foundation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548980B2 (en) * 1988-12-29 1996-10-30 株式会社ジオトップ Judgment of performance / quality of foundation piles, design method, and ground performance measurement device
US5099696A (en) * 1988-12-29 1992-03-31 Takechi Engineering Co., Ltd. Methods of determining capability and quality of foundation piles and of designing foundation piles, apparatus for measuring ground characteristics, method of making hole for foundation pile such as cast-in-situ pile and apparatus therefor
JPH10259610A (en) * 1997-03-18 1998-09-29 Mitsui Constr Co Ltd Periphery reinforcing method for cast-in-place concrete pile
JP2004270188A (en) * 2003-03-05 2004-09-30 Kagero Kobosha:Kk Submersible supporting force measuring device
JP2012036590A (en) * 2010-08-04 2012-02-23 Takenaka Komuten Co Ltd Drilling hole measuring apparatus and program
JP5990495B2 (en) * 2013-06-25 2016-09-14 鹿島建設株式会社 Cast-in-place pile penetration detection device
US20150233230A1 (en) * 2013-12-05 2015-08-20 Pile Dynamics, Inc. Borehole inspecting and testing device and method of using the same

Also Published As

Publication number Publication date
JP2018100560A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
KR102053800B1 (en) Improved ultrasound inspection
JP6463871B2 (en) Borehole test equipment
US10018611B2 (en) Soil compaction system and method
US11753924B2 (en) Ultrasonic borescope for drilled shaft inspection
US11340379B2 (en) Borehole inspecting and testing device and method of using the same
JP6812233B2 (en) Pile hole inspection method and pile hole inspection equipment
CN103306318B (en) A kind of panoramic ultrasonic side wall detector
EP3276085B1 (en) System for calculating construction assistance information
JP5780218B2 (en) Underwater construction equipment and its construction method
CN115390129A (en) In-situ acoustic penetration device with built-in longitudinal and transverse wave transmitting and receiving transducers
JP3405207B2 (en) Judgment method of ground supported by excavator
KR102125664B1 (en) Apparatus for detecting excavation level
KR102116937B1 (en) Underground pipe investigation apparatus
CN102830393B (en) The location measurement method of dredger suction tube
JP3891345B2 (en) Underground curve drilling device and drilling control method using the device
JP4113378B2 (en) Rebar position measurement method
EP3441560B1 (en) Ultrasonic borescope for drilled shaft inspection
JPH04306395A (en) Method and device for detecting fracture and conducting logging
JP6342723B2 (en) Discrimination system of face soil distribution by shield machine
EP3870968A1 (en) Ultrasound scanning system for imaging an object
KR20190114781A (en) Apparatus for mapping buried object and ground cavity through electromagneticwave analysis
JP6873462B2 (en) Outer edge confirmation device for ground improvement body
JPS6378921A (en) Underwater rubble leveling work
JP3476785B2 (en) Equipment for investigating the embedding of rocks on slopes
JP7271813B2 (en) Workmanship control method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6812233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350