JP6811955B2 - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP6811955B2
JP6811955B2 JP2016147109A JP2016147109A JP6811955B2 JP 6811955 B2 JP6811955 B2 JP 6811955B2 JP 2016147109 A JP2016147109 A JP 2016147109A JP 2016147109 A JP2016147109 A JP 2016147109A JP 6811955 B2 JP6811955 B2 JP 6811955B2
Authority
JP
Japan
Prior art keywords
electrode plate
battery
negative electrode
positive electrode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016147109A
Other languages
Japanese (ja)
Other versions
JP2018018921A (en
Inventor
池田 毅
毅 池田
Original Assignee
株式会社カペラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カペラ filed Critical 株式会社カペラ
Priority to JP2016147109A priority Critical patent/JP6811955B2/en
Publication of JP2018018921A publication Critical patent/JP2018018921A/en
Application granted granted Critical
Publication of JP6811955B2 publication Critical patent/JP6811955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電極板の表面に活性炭素層を設けて高性能化したバッテリに関する。 The present invention relates to a battery in which an activated carbon layer is provided on the surface of an electrode plate to improve performance.

近年、世界的に自動車のCO排出規制・燃費規制が強化される傾向にあり、日本の自動車産業界でも燃費改善・CO排出量抑制に対応可能な環境対策車の開発が急務となっている。このような環境対策車として、HV(ハイブリッド車)・EV(電気自動車)が周知であるが、その蓄電デバイスとしては、鉛蓄電池よりもエネルギー密度・出力密度の高いニッケル水素電池やリチウムイオン二次電池が採用されている。 In recent years, there has been a tendency for automobile CO 2 emission regulations and fuel efficiency regulations to be tightened worldwide, and there is an urgent need for the Japanese automobile industry to develop environmentally friendly vehicles that can improve fuel efficiency and reduce CO 2 emissions. There is. HVs (hybrid vehicles) and EVs (electric vehicles) are well known as such environmentally friendly vehicles, but their energy storage devices include nickel-hydrogen batteries and lithium-ion secondary vehicles, which have higher energy density and output density than lead-acid batteries. Batteries are used.

しかし、ニッケル水素電池はリチウムイオン二次電池と比べて電池容量が劣り、リチウムイオン二次電池はニッケル水素電池と比べて安全性の面で劣るとされ、また両者とも充電に長時間を要するなど、現状においては一長一短がある。さらに、斯かる蓄電デバイスは材料原価が高いことに加え、安全性対策を講じる必要があるため鉛蓄電池と比べて高コストであり、車両価格の低廉化を困難にしている。 However, nickel-metal hydride batteries are inferior in battery capacity to lithium-ion secondary batteries, lithium-ion secondary batteries are said to be inferior in safety to nickel-metal hydride batteries, and both require a long time to charge. At present, there are advantages and disadvantages. Further, such a power storage device has a high material cost and needs to take safety measures, so that the cost is higher than that of a lead storage battery, which makes it difficult to reduce the vehicle price.

一方、鉛蓄電池は、開発されてから100年以上が経過した古い技術ではあるが、安価で信頼性が高いことから現在でも車両用として主流の地位にある。しかし、鉛蓄電池の理論エネルギー密度はリチウムイオン二次電池よりも大きいにもかかわらず、車両の動力用としては主流になり得なかった。また、鉛蓄電池は太陽光発電や風力発電の分野でもその蓄電デバイスとして汎用されているが、この自然エネルギーを利用した発電においても、時々刻々変動する日照量や風量の状態によりその出力レベルが安定しにくいという問題もある。 On the other hand, lead-acid batteries are an old technology that has been developed for more than 100 years, but they are still in the mainstream position for vehicles because of their low cost and high reliability. However, although the theoretical energy density of lead-acid batteries is higher than that of lithium-ion secondary batteries, they could not become mainstream for vehicle power. Lead-acid batteries are also widely used as storage devices in the fields of solar power generation and wind power generation, but even in power generation using this natural energy, the output level is stable due to the ever-changing sunshine and air volume conditions. There is also the problem that it is difficult to do.

したがって、安全性・信頼性に優れて比較的低廉な周知の蓄電池において、急速充放電性能と耐久性を大きく向上させることができれば、車両に使用するニッケル水素電池やリチウムイオン二次電池の少なくとも一部を代用可能となって、コスト面で極めて有利なものとなり、また、アイドリングストップ技術や自然エネルギー発電における要請にも充分に応えられるようになる。 Therefore, in a well-known storage battery that is excellent in safety and reliability and is relatively inexpensive, if the rapid charge / discharge performance and durability can be greatly improved, at least one of the nickel-metal hydride batteries and lithium ion secondary batteries used in vehicles. It will be possible to substitute the part, which will be extremely advantageous in terms of cost, and will be able to fully meet the demands of idling stop technology and renewable energy power generation.

そこで、特表2007−506230号公報には、鉛ベース負極と二酸化鉛ベース正極に加えてコンデンサ負極を設けて鉛蓄電池部分と非対称コンデンサ部分を構成するものとして、高電流の充電・放電が行われる間は非対称コンデンサ部分で電荷の受け入れ・放出が優先的に行われる方式とした鉛蓄電池が提案されている。このように、キャパシタと同様に電荷を蓄える部分を蓄電池内に設けたことにより、この部分が電池電極部分と比べて内部抵抗が小さいことで高電流の充電・放電を優先的に行うことになり、充放電性能が向上することに加え電池部分の負担を軽減して、バッテリとしての耐久性も3〜4倍程度向上することになる。 Therefore, in Japanese Patent Application Laid-Open No. 2007-506230, a capacitor negative electrode is provided in addition to the lead-based negative electrode and the lead dioxide-based positive electrode to form a lead-acid battery portion and an asymmetric capacitor portion, and high-current charging / discharging is performed. A lead-acid battery has been proposed in which charge is received and discharged preferentially in the asymmetric capacitor portion. In this way, by providing a part that stores electric charge in the storage battery like the capacitor, this part has a smaller internal resistance than the battery electrode part, so high-current charging / discharging is preferentially performed. In addition to improving the charge / discharge performance, the load on the battery portion is reduced, and the durability of the battery is also improved by about 3 to 4 times.

しかしながら、斯かるハイブリッド式の蓄電池では、キャパシタによる電荷を蓄える部分の面積が正・負の電極面積と比較して小さいことから、全体容量に対するキャパシタ機能の貢献割合は実に小さく、さらに、単にキャパシタと電池を融合したのみではエネルギー密度の大幅な改善は期待することができない。そのため、バッテリとしての総合性能の改善は全体的にはさほど大きくはなく、上述した要請への対応は充分に達成されていないのが現状である。 However, in such a hybrid type storage battery, since the area of the portion where the electric charge is stored by the capacitor is smaller than the positive and negative electrode areas, the contribution ratio of the capacitor function to the total capacity is really small, and moreover, it is simply a capacitor. A significant improvement in energy density cannot be expected simply by fusing batteries. Therefore, the improvement of the overall performance as a battery is not so large as a whole, and the current situation is that the above-mentioned requirements are not sufficiently achieved.

これに対し、本願発明者らは、先に特開2013−247101号公報において、図5に示すようなハイブリッドバッテリを提案している。即ち、二酸化鉛からなる正極板8と鉛からなる負極板9を交互に並べた状態で電解液100に浸漬して鉛バッテリを構成したものであるが、隣り合う正極板8と負極板8が対をなすとともに各内側面に表面積を拡大する活性炭層80,90を有しながら、その間に電解質200を挟装したユニットでキャパシタセルを構成してなる電極体20とし、この複数の電極体20が正極板8と負極板9が向かい合って並ぶ配置として、その向かい合う正極板8を負極板9が中間の電解質100とともに各々電池セル50を構成するものとした。これにより、キャパシタで電荷を貯める部分の割合を拡大しながら優れた充放電性能を実現可能としている。 On the other hand, the inventors of the present application have previously proposed a hybrid battery as shown in FIG. 5 in Japanese Patent Application Laid-Open No. 2013-247101. That is, the positive electrode plate 8 made of lead dioxide and the negative electrode plate 9 made of lead are alternately arranged and immersed in the electrolytic solution 100 to form a lead battery. The adjacent positive electrode plate 8 and the negative electrode plate 8 are adjacent to each other. An electrode body 20 is formed by forming a capacitor cell with a unit having an activated coal layer 80, 90 which forms a pair and expands the surface area on each inner side surface, and an electrolyte 200 is sandwiched between them, and the plurality of electrode bodies 20. The positive electrode plate 8 and the negative electrode plate 9 are arranged so as to face each other, and the negative electrode plate 9 constitutes the battery cell 50 together with the electrolyte 100 in the middle. This makes it possible to realize excellent charge / discharge performance while increasing the proportion of the portion that stores electric charge in the capacitor.

ところが、このように薄板状の二酸化鉛板8と鉛板9を電極板としてキャパシタとバッテリを実現させた構成にあっては、その電極板の腐食が比較的短期間で進んでしまい、充分なる耐久性を確保することが困難であった。また、電極板のキャパシタを構成する部分に活性炭素層を設けたことで、蓄電量の拡大が期待されたが、活性炭素層に通常のナノカーボンを使用しても、その蓄電量の拡大は充分とは言い難かった。 However, in the configuration in which the thin plate-shaped lead dioxide plate 8 and the lead plate 9 are used as the electrode plates to realize the capacitor and the battery, the corrosion of the electrode plates progresses in a relatively short period of time, which is sufficient. It was difficult to ensure durability. In addition, by providing an activated carbon layer in the part of the electrode plate that constitutes the capacitor, it was expected that the amount of electricity stored would increase, but even if ordinary nanocarbon is used for the activated carbon layer, the amount of electricity stored will increase. It was hard to say that it was enough.

特表2007−506230号公報Special Table 2007-506230 特開2013−247101号公報Japanese Unexamined Patent Publication No. 2013-247101

本発明は、上記のような問題を解決しようとするものであり、総合性能に優れたバッテリを低コストで提供することを課題とする。 The present invention is intended to solve the above problems, and an object of the present invention is to provide a battery having excellent overall performance at a low cost.

そこで、本発明は、導電体に各々接続された正極板と負極板を交互に並べた状態で電解液に浸漬してなるバッテリにおいて、前記正極板はアルミニウム又はアルミニウム合金からなるとともにその表裏両面に酸化ナノカーボンによる活性炭素層が形成され、前記負極板は銅又は銅合金からなるとともにその表裏両面にはナノカーボンによる活性炭素層が形成されている、ことを特徴とするバッテリとした。 Therefore, according to the present invention, in a battery in which positive electrode plates and negative electrode plates connected to conductors are alternately arranged and immersed in an electrolytic solution, the positive electrode plates are made of aluminum or an aluminum alloy and are formed on both the front and back surfaces thereof. The battery is characterized in that an activated carbon layer made of nanocarbon oxide is formed, the negative electrode plate is made of copper or a copper alloy, and an activated carbon layer made of nanocarbon is formed on both the front and back surfaces thereof.

このように、バッテリを構成する対の電極板にアルミと銅の組み合わせを用いたことで、鉛と二酸化鉛の組み合わせを用いる場合と比べて、電極板の耐食性が高まって優れた耐久性を発揮するものとなるが、その対の電極の表面に活性炭素層を設ける際に、正極には酸化ナノカーボンを用い、負極にはナノカーボンを用いたことにより、コストの高騰を招くことなく活性炭素層に通常のナノカーボンを用いる場合と比べて高容量化が実現されるとともに、充放電性能にも一層優れたものとなる。 In this way, by using the combination of aluminum and copper for the pair of electrode plates that make up the battery, the corrosion resistance of the electrode plates is improved and excellent durability is exhibited compared to the case where the combination of lead and lead dioxide is used. However, when the active carbon layer is provided on the surface of the pair of electrodes, nanocarbon oxide is used for the positive electrode and nanocarbon is used for the negative electrode, so that the activated carbon does not cause a rise in cost. Compared with the case where ordinary nanocarbon is used for the layer, the capacity is increased and the charge / discharge performance is further improved.

また、このバッテリにおいて、その隣り合う正極板と負極板が対をなしてその間に誘電体を挟装してなるユニットでキャパシタセルを構成し、複数の前記キャパシタセルが正極板と負極板が向かい合って並ぶ配置とされて、この向かい合う正極板と負極板が中間の電解液とともに各々電池セルを構成している、ことを特徴とするバッテリとすれば、交互に並ぶ正極板と負極板を対にしてキャパシタセルを構成するとともに、複数並んだキャパシタセルの対向面となる正極板と負極板とで電池セルを構成したことにより、正極板と負極板において電池を構成する部分に対しキャパシタで電荷を溜める部分の割合を大きく確保することができ、且つ、対の正極板と負極板で完全なるキャパシタセルになるとともに、対向する正極板と負極板と間の電解液とで完全なる電池セルになるため、バッテリとキャパシタの両機能を充分に発揮しながら、優れた急速充放電性能と耐久性を実現可能なハイブリッドバッテリとなる。 Further, in this battery, a capacitor cell is formed by a unit in which adjacent positive electrode plates and negative electrode plates are paired and a dielectric is sandwiched between them, and the positive electrode plate and the negative electrode plate face each other in the plurality of the capacitor cells. If the battery is arranged side by side and the positive electrode plates and the negative electrode plates facing each other form a battery cell together with an intermediate electrolytic solution, the positive electrode plates and the negative electrode plates that are alternately arranged are paired. By forming the battery cell with the positive electrode plate and the negative electrode plate which are the facing surfaces of the plurality of capacitor cells arranged side by side, the positive electrode plate and the negative electrode plate are charged with the capacitor for the portion constituting the battery. A large proportion of the part to be stored can be secured, and the pair of positive electrode plate and negative electrode plate becomes a complete battery cell, and the electrolytic solution between the opposite positive electrode plate and negative electrode plate becomes a complete battery cell. Therefore, it becomes a hybrid battery that can realize excellent rapid charge / discharge performance and durability while fully exerting both functions of the battery and the capacitor.

さらに、このハイブリッド化したバッテリにおいて、そのキャパシタセルを、正極板と負極板の間に挟装された内側部分が、所定のシール材で電解液に対し密封されていることを特徴としたものとすれば、キャパシタセルの内部が電解液側に開放されることによるキャパシタ機能の低下・劣化を回避することができる。 Further, the hybrid battery is characterized in that the inner portion of the capacitor cell sandwiched between the positive electrode plate and the negative electrode plate is sealed with a predetermined sealing material with respect to the electrolytic solution. , It is possible to avoid deterioration / deterioration of the capacitor function due to the inside of the capacitor cell being opened to the electrolytic solution side.

アルミ又はアルミ合金製の正極板の表裏両面に酸化ナノカーボンによる活性炭素層を設け、銅又は銅合金製の負極板の表裏両面にナノカーボンによる活性炭素層を設けた本発明によると、低コストでも総合性能に優れたバッテリとすることができる。 According to the present invention, an activated carbon layer made of nanocarbon oxide is provided on both front and back surfaces of a positive electrode plate made of aluminum or an aluminum alloy, and an activated carbon layer made of nanocarbon is provided on both front and back surfaces of a negative electrode plate made of copper or a copper alloy. However, it can be a battery with excellent overall performance.

本発明における第1の実施の形態のバッテリの構成を示す縦断面図である。It is a vertical sectional view which shows the structure of the battery of the 1st Embodiment in this invention. 図1のバッテリの斜視図である。It is a perspective view of the battery of FIG. 本発明における第2の実施の形態のバッテリの構成を示す縦断面図である。It is a vertical sectional view which shows the structure of the battery of the 2nd Embodiment in this invention. 図1のバッテリの斜視図である。It is a perspective view of the battery of FIG. 従来例のバッテリの構成を示す縦断面図である。It is a vertical cross-sectional view which shows the structure of the battery of the conventional example.

以下に、図面を参照しながら本発明を実施するための形態を説明する。尚、本発明において、ナノカーボンにはカーボンナノチューブも含まれるものとし、キャパシタとは電気二重層キャパシタに限定されずに電荷を蓄えることのできる電子部品としてのコンデンサと同義のものとする。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the present invention, nanocarbons also include carbon nanotubes, and a capacitor is not limited to an electric double layer capacitor and is synonymous with a capacitor as an electronic component capable of storing electric charges.

図1は、本発明における第1の実施の形態である単素子タイプのバッテリ1Aを縦断面図で示している。このバッテリ1Aは、導電体に接続される正極板11Aと負極板12Aを対向させてその間と各外側面側に電解液浸漬材15を密着配置したことにより電解液に浸漬した状態にしたものであり、破線はバッテリ素子を収納するケースを示している。 FIG. 1 shows a vertical sectional view of a single element type battery 1A according to the first embodiment of the present invention. The battery 1A is in a state of being immersed in the electrolytic solution by facing the positive electrode plate 11A and the negative electrode plate 12A connected to the conductor and arranging the electrolytic solution dipping material 15 in close contact between them and on each outer surface side. Yes, the broken line indicates the case where the battery element is housed.

そして、このバッテリ1Aは、正極板11Aを構成する金属薄板がアルミニウム又はアルミニウム合金からなるとともにその表裏両面を総て覆うように酸化ナノカーボンによる活性炭素層110が形成されており、且つ、負極板12Aを構成する金属薄板が銅又は銅合金からなるとともに、その表裏両面の総てを覆うようにナノカーボンによる活性炭素層120が形成されている点が、本発明の最大の特徴部分となっている。 In the battery 1A, the thin metal plate constituting the positive electrode plate 11A is made of aluminum or an aluminum alloy, and the activated carbon layer 110 made of nanocarbon oxide is formed so as to cover both the front and back surfaces thereof, and the negative electrode plate. The most characteristic part of the present invention is that the thin metal plate constituting 12A is made of copper or a copper alloy, and the activated carbon layer 120 made of nanocarbon is formed so as to cover all the front and back surfaces thereof. There is.

図2は、図1のバッテリ1Aの応用例であって、前述した単素子のバッテリ1Aの複数個を、正極板11Aと負極板12Aが対向するように交互に複数配置してなるバッテリ1Bを斜視図で示している。図示したように、正極板11Aと負極板12Aは同一形状・同一サイズのものが対向配置され、その表裏と同一形状・同一サイズの表裏を有する電解液浸漬材15が、その間と両端側に密着配置されており、正極板11Aからは導電体に接続される端子111が、負極板12Aからは端子121が各々露出している。 FIG. 2 is an application example of the battery 1A of FIG. 1, wherein a plurality of the above-mentioned single-element batteries 1A are alternately arranged so that the positive electrode plate 11A and the negative electrode plate 12A face each other. It is shown in a perspective view. As shown in the figure, the positive electrode plate 11A and the negative electrode plate 12A are arranged so as to face each other with the same shape and the same size, and the electrolytic solution dipping material 15 having the same shape and the same size as the front and back surfaces is in close contact between them and both ends. The terminals 111 connected to the conductor are exposed from the positive electrode plate 11A, and the terminals 121 are exposed from the negative electrode plate 12A.

このようにバッテリの電極板として、その正極板11Aがアルミニウム又はアルミニウム合金からなり、その負極板12Aが銅又は銅合金からなるものとしたことで、鉛蓄電池と比べて格段に耐久性に優れたものとなるが、正極板11Aの表裏両面に酸化ナノカーボンによる活性炭素層110を形成し、負極板12Aの表裏両面にナノカーボンによる活性炭素層120が形成する改良を加えたことだけで、その他の構成は同様で両電極板の活性炭素層をナノカーボンで形成したものと比べて、二次電池としての充放電性能に優れながらその蓄電容量が一層大きくなることが本願発明者らの実験により明らかとなっている。 As described above, as the electrode plate of the battery, the positive electrode plate 11A is made of aluminum or an aluminum alloy, and the negative electrode plate 12A is made of copper or a copper alloy. Therefore, the durability is remarkably excellent as compared with the lead storage battery. However, only by making improvements such that the activated carbon layer 110 made of nanocarbon oxide is formed on both the front and back surfaces of the positive electrode plate 11A and the activated carbon layer 120 made of nanocarbon is formed on both the front and back sides of the negative electrode plate 12A. According to the experiments by the inventors of the present application, the structure of the above is the same, and the charge / discharge performance of the secondary battery is superior to that of the activated carbon layer of both electrode plates formed of nanocarbon, but the storage capacity is further increased. It has become clear.

図3は、本発明における第2の実施の形態である単素子タイプのバッテリ2Aを縦断面図で示している。このバッテリ2Aは、前述した第1の実施の形態と同様に、正極板11Aを構成する金属薄板がアルミニウム又はアルミニウム合金からなるとともにその表裏両面に酸化ナノカーボンによる活性炭素層110が形成されており、負極板12Aを構成する金属薄板が銅又は銅合金からなるとともに、その表裏両面の総てを覆うようにナノカーボンによる活性炭素層120が形成されている点で、前述した実施の形態と共通している。 FIG. 3 shows a vertical cross-sectional view of the single element type battery 2A according to the second embodiment of the present invention. In the battery 2A, the metal thin plate constituting the positive electrode plate 11A is made of aluminum or an aluminum alloy, and the activated carbon layer 110 made of nanocarbon oxide is formed on both the front and back surfaces thereof, as in the first embodiment described above. The metal thin plate constituting the negative electrode plate 12A is made of copper or a copper alloy, and the activated carbon layer 120 made of nanocarbon is formed so as to cover all the front and back surfaces thereof, which is common to the above-described embodiment. doing.

即ち、本実施の形態においても、正極板11Aの表裏両面を覆う活性炭素層110が酸化ナノカーボンで構成されているが、本実施の形態では、隣り合う正極板11Aと負極板12Aが対をなしてその間に誘電体14を挟装してなるユニットでキャパシタセル3Aを構成し、2つのキャパシタセル3Aが、正極板11Aと負極板12Aを向かい合うように配置されており、この向かい合う正極板11Aと負極板12Aが中間の電解液浸漬材15とともに、電池セルを構成している点を特徴としている。 That is, also in the present embodiment, the active carbon layer 110 covering both the front and back surfaces of the positive electrode plate 11A is composed of nanocarbon oxide, but in the present embodiment, the adjacent positive electrode plate 11A and the negative electrode plate 12A are paired. A capacitor cell 3A is formed by a unit having a dielectric 14 sandwiched between them, and two capacitor cells 3A are arranged so that the positive electrode plate 11A and the negative electrode plate 12A face each other, and the positive electrode plates 11A facing each other. The negative electrode plate 12A and the negative electrode plate 12A together with the electrolytic solution dipping material 15 in the middle form a battery cell.

このような構成としたことで、過剰なコストアップを招くことなく、正極板11Aと負極板12Aにおいて電池を構成する部分に対しキャパシタで電荷を溜める部分の割合を大きく確保することができ、且つ、対の正極板11Aと負極板11Bで完全なるキャパシタセル3Aになるとともに、対向する正極板と負極板と間の電解液とで完全なる電池セルになって、キャパシタとバッテリを複合した単素子のハイブリッドバッテリとなっている。 With such a configuration, it is possible to secure a large ratio of the portion of the positive electrode plate 11A and the negative electrode plate 12A that stores the charge with the capacitor to the portion constituting the battery without causing an excessive cost increase. , The pair of positive electrode plate 11A and the negative electrode plate 11B form a complete capacitor cell 3A, and the electrolytic solution between the opposing positive electrode plate and the negative electrode plate forms a complete battery cell, and a single element in which the capacitor and the battery are combined. It is a hybrid battery of.

そして、その正極板11Aのキャパシタを構成する活性炭素層110の内側面が、酸化ナノナノカーボンで構成されたことにより、これを通常のナノカーボンで構成したものと比べて、低コストで蓄電容量が格段に大きくなるとともに電池性能に一層優れたものとなることが、本願発明者らの実験により判明している。 Since the inner surface of the activated carbon layer 110 constituting the capacitor of the positive electrode plate 11A is made of nano-nanocarbon oxide, the storage capacity can be reduced at a lower cost as compared with the one made of ordinary nanocarbon. It has been found by experiments by the inventors of the present application that the battery performance becomes significantly higher as well as significantly larger.

また、本実施の形態では、そのキャパシタセル3Aにおいて、正極板11Aと負極板12Aの間に挟装された部分、即ち正極板11Aと負極板12Aの内側面である活性炭素層110,120及び誘電体14で構成される内部側が、シール材20により電解液浸漬材15由来の電解液に対して密封されている点も特徴としており、キャパシタセル3A内部が電解液側に開放されることによるキャパシタ機能の低下・劣化を回避可能としている。 Further, in the present embodiment, in the capacitor cell 3A, the portions sandwiched between the positive electrode plate 11A and the negative electrode plate 12A, that is, the activated carbon layers 110 and 120 which are the inner surfaces of the positive electrode plate 11A and the negative electrode plate 12A and Another feature is that the inner side composed of the dielectric 14 is sealed with the electrolytic solution derived from the electrolytic solution dipping material 15 by the sealing material 20, and the inside of the capacitor cell 3A is opened to the electrolytic solution side. It is possible to avoid deterioration and deterioration of the capacitor function.

図4は、前述したバッテリ2Aの応用例を斜視図で示したものであり、正極板11Aと負極板12Aを間に誘電体14を挟んで内側部分をシールしてなるキャパシタセル3Aの複数個を、隣り合うキャパシタセル3Aの正極板11Aと負極板11Bが対向するように配置しながら、その間と両端側に電解液浸漬材15挟装して各々電池セルを構成したものとなっており、このような構成を採用することで、キャパシタ性能の向上に加え、バッテリ性能が相乗的に向上したものとなっている。 FIG. 4 is a perspective view showing an application example of the battery 2A described above, in which a plurality of capacitor cells 3A formed by sandwiching a dielectric 14 between a positive electrode plate 11A and a negative electrode plate 12A and sealing an inner portion thereof. The positive electrode plate 11A and the negative electrode plate 11B of the adjacent capacitor cells 3A are arranged so as to face each other, and the electrolytic solution dipping material 15 is sandwiched between them and both ends to form a battery cell. By adopting such a configuration, in addition to the improvement of the capacitor performance, the battery performance is synergistically improved.

以上、述べたように、本発明により、総合性能に優れたバッテリを低コストで提供できるようになった。 As described above, according to the present invention, it has become possible to provide a battery having excellent overall performance at low cost.

1A,2B,2A,2B バッテリ、3A キャパシタセル、11A 正極板、12A 負極板、14 誘電体、15 電解液浸漬材、20 シール材、110,120 活性炭素層、111,121 端子 1A, 2B, 2A, 2B battery, 3A capacitor cell, 11A positive electrode plate, 12A negative electrode plate, 14 dielectric, 15 electrolyte immersion material, 20 sealant, 110, 120 activated carbon layer, 111, 121 terminals

Claims (1)

導電体に各々接続された正極板と負極板を交互に並べた状態で電解液に浸漬してなるバッテリにおいて、前記正極板はアルミニウム又はアルミニウム合金からなるとともにその表裏両面に酸化ナノカーボンによる活性炭素層が形成され、前記負極板は銅又は銅合金からなるとともにその表裏両面にはナノカーボンによる活性炭素層が形成されており、隣り合う前記正極板と前記負極板が対をなしてその間に誘電体を挟装してなるユニットでキャパシタセルを構成するとともに、複数の前記キャパシタセルが前記正極板と前記負極板が向かい合って並ぶ配置とされて、前記向かい合う正極板と負極板が中間の前記電解液とともに各々電池セルを構成しており、前記キャパシタセルは、前記正極板と負極板の間に挟装された内側部分が所定のシール材で前記電解液に対し密封されている、ことを特徴とするバッテリ。

In a battery in which positive electrode plates and negative electrode plates connected to a conductor are alternately arranged and immersed in an electrolytic solution, the positive electrode plates are made of aluminum or an aluminum alloy, and activated carbon by nanocarbon oxide is used on both the front and back surfaces thereof. A layer is formed, and the negative electrode plate is made of copper or a copper alloy, and an activated carbon layer made of nanocarbon is formed on both the front and back surfaces thereof. Adjacent positive electrode plates and the negative electrode plates are paired and dielectric is formed between them. A capacitor cell is formed by a unit sandwiching a body, and a plurality of the capacitor cells are arranged so that the positive electrode plate and the negative electrode plate are arranged so as to face each other. Each battery cell is formed together with the liquid, and the capacitor cell is characterized in that the inner portion sandwiched between the positive electrode plate and the negative electrode plate is sealed with a predetermined sealing material with respect to the electrolytic solution. Battery.

JP2016147109A 2016-07-27 2016-07-27 Battery Active JP6811955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016147109A JP6811955B2 (en) 2016-07-27 2016-07-27 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016147109A JP6811955B2 (en) 2016-07-27 2016-07-27 Battery

Publications (2)

Publication Number Publication Date
JP2018018921A JP2018018921A (en) 2018-02-01
JP6811955B2 true JP6811955B2 (en) 2021-01-13

Family

ID=61081998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016147109A Active JP6811955B2 (en) 2016-07-27 2016-07-27 Battery

Country Status (1)

Country Link
JP (1) JP6811955B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284138A (en) * 1997-04-07 1998-10-23 Sony Corp Electric charge storing part compounded battery
JP2006196235A (en) * 2005-01-12 2006-07-27 Hitachi Ltd Battery-capacitor composite element
CN103201216B (en) * 2010-12-31 2015-07-22 海洋王照明科技股份有限公司 Composite material of carbon-coated graphene oxide, preparation method and application thereof
EP2833462A4 (en) * 2012-03-28 2015-12-23 Oceans King Lighting Science Solid electrolyte battery

Also Published As

Publication number Publication date
JP2018018921A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
KR101379957B1 (en) A Stepwise Electrode Assembly, and a Battery Cell, Battery Pack and Device Comprising the Same
JP4960702B2 (en) High performance energy storage device
CN203895565U (en) Secondary battery, battery pack comprising secondary battery and device comprising battery pack
JPH11238528A (en) Lithium secondary battery
KR102119535B1 (en) Battery Cell Comprising Electrode Lead Facing Outer Surface of Electrode Assembly
JP2013243062A (en) Battery
WO2014162674A1 (en) Lead acid storage battery
JP2008159315A (en) Lithium ion occlusion/release type organic electrolyte storage battery
US11189886B2 (en) Stack-type nonaqueous electrolyte secondary battery
KR20120031606A (en) Electrode lead whose protection layer for anti-corrosion is selectively formed, and secondary battery comprising thereof
US20220393249A1 (en) Secondary battery and device including the same
JP2010527499A (en) Electrochemical cell and energy storage device
JP4311442B2 (en) Power storage device
US10991985B2 (en) Secondary battery
KR20130012469A (en) Energy storage module
KR102188429B1 (en) Jelly-Roll Type Electrode Having Uncoated Part of Electrode Active Material
US20200212504A1 (en) Compact absorbent glass mat battery
US9553302B2 (en) Electrode assemblage and rechargeable battery using the same
JP6398111B2 (en) Lead acid battery
JP6811955B2 (en) Battery
JP2018085166A (en) Hybrid capacitor battery
JP7463652B2 (en) Cylindrical secondary battery including piezoelectric and thermoelectric elements
JP2007048668A (en) Battery and battery pack
JP6197426B2 (en) Lead acid battery
KR101596489B1 (en) Pouch for Secondary Cell, Pouch Type Secondary Cell and Device Comprising the Same Having Long-life Efficiency

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201208

R150 Certificate of patent or registration of utility model

Ref document number: 6811955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150