JP6811565B2 - Laminated body and film structure including it - Google Patents

Laminated body and film structure including it Download PDF

Info

Publication number
JP6811565B2
JP6811565B2 JP2016158894A JP2016158894A JP6811565B2 JP 6811565 B2 JP6811565 B2 JP 6811565B2 JP 2016158894 A JP2016158894 A JP 2016158894A JP 2016158894 A JP2016158894 A JP 2016158894A JP 6811565 B2 JP6811565 B2 JP 6811565B2
Authority
JP
Japan
Prior art keywords
base material
fiber base
resin
main surface
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016158894A
Other languages
Japanese (ja)
Other versions
JP2018023955A (en
Inventor
史朗 野坂
史朗 野坂
坂本 克美
克美 坂本
嘉治 加藤
嘉治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2016158894A priority Critical patent/JP6811565B2/en
Publication of JP2018023955A publication Critical patent/JP2018023955A/en
Application granted granted Critical
Publication of JP6811565B2 publication Critical patent/JP6811565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、樹脂多孔体および繊維基材を備える積層体に関し、特に、分離膜の支持体として適する積層体に関する。 The present invention relates to a laminate having a resin porous body and a fiber base material, and more particularly to a laminate suitable as a support for a separation membrane.

液体や気体に含まれる複数の成分を分離する分離膜は、その透過性能や分離性能を向上させるため、非常に薄い。そのため、分離膜単体では機械的強度が低く、通常、繊維基材が分離膜の支持体として用いられる。この場合、例えば、繊維基材上に分離膜の原料である高分子の溶液を流延することにより、繊維基材で支持された膜構造体が形成される。 The separation membrane that separates a plurality of components contained in a liquid or gas is very thin in order to improve its permeation performance and separation performance. Therefore, the separation membrane alone has low mechanical strength, and a fiber base material is usually used as a support for the separation membrane. In this case, for example, a membrane structure supported by the fiber base material is formed by casting a solution of a polymer which is a raw material of the separation membrane on the fiber base material.

しかし、繊維基材の表面は平滑ではないため、繊維基材上に薄く均質な分離膜を形成させることは困難である。そこで、繊維基材上に多孔質膜を積層し、この積層体を支持体として用いている。このとき、分離膜は、多孔質膜の主面に形成される。 However, since the surface of the fiber base material is not smooth, it is difficult to form a thin and homogeneous separation film on the fiber base material. Therefore, a porous film is laminated on the fiber base material, and this laminated body is used as a support. At this time, the separation membrane is formed on the main surface of the porous membrane.

繊維基材上に多孔質膜を積層する方法としては、繊維基材上に多孔質膜の原料である樹脂の溶液を塗布する方法(コーティング法)、繊維基材に多孔質膜を接着剤で接着させる方法、繊維基材に多孔質膜を熱融着させる方法等が挙げられる。なかでも、素材が制限されず、また、繊維基材および多孔質膜の通気性が阻害され難い点で、コーティング法が好ましく用いられる。 As a method of laminating a porous film on a fiber base material, a method of applying a solution of a resin which is a raw material of the porous film on the fiber base material (coating method), or a method of applying the porous membrane to the fiber base material with an adhesive. Examples thereof include a method of adhering and a method of heat-sealing a porous film to a fiber base material. Among them, the coating method is preferably used because the material is not limited and the air permeability of the fiber base material and the porous membrane is not easily impaired.

繊維基材と多孔質膜との積層体を分離膜の支持体として用いる場合、使用時にかかる圧力によって、繊維基材と多孔質膜との間で層間剥離が生じやすい。そこで、コーティングの際に、多孔質膜の原料である樹脂の少なくとも一部を繊維基材の内部にまで浸透させることで、層間剥離を抑制する方法が提案されている(特許文献1〜3参照)。 When a laminate of a fiber base material and a porous membrane is used as a support for a separation membrane, delamination is likely to occur between the fiber base material and the porous membrane due to the pressure applied during use. Therefore, there has been proposed a method of suppressing delamination by infiltrating at least a part of the resin, which is a raw material of the porous film, into the inside of the fiber base material at the time of coating (see Patent Documents 1 to 3). ).

特開2009−233666号公報Japanese Unexamined Patent Publication No. 2009-233666 特開平09−313905号公報Japanese Unexamined Patent Publication No. 09-313905 特開2014−094501号公報Japanese Unexamined Patent Publication No. 2014-094501

繊維基材上に積層される多孔質膜の平滑性は、繊維基材の構造に影響される。例えば、大きな空隙を備える繊維基材に、多孔質膜の原料である樹脂の溶液を塗布する場合、平滑な多孔質膜は得られ難い。繊維基材の空隙に上記溶液が浸透していき、固化後の多孔質膜の主面に、空隙に対応するように凹みが形成されるためである。この凹みは、例えば、数ミクロンメートルから数十ミクロンメートルオーダーの微細なものである。しかし、分離膜自体が数百ミクロンメートルオーダーの厚みであるため、微細な凹凸であっても、分離膜を薄く均質に形成する際の妨げになり得る。 The smoothness of the porous membrane laminated on the fiber substrate is affected by the structure of the fiber substrate. For example, when a solution of a resin, which is a raw material for a porous film, is applied to a fiber base material having large voids, it is difficult to obtain a smooth porous film. This is because the solution permeates into the voids of the fiber base material, and dents are formed on the main surface of the solidified porous membrane so as to correspond to the voids. This dent is, for example, fine on the order of several microns to several tens of microns. However, since the separation membrane itself has a thickness on the order of several hundred microns, even fine irregularities can hinder the formation of the separation membrane thinly and uniformly.

上記のような凹みは、繊維基材の空隙を埋める程度に十分な量の上記溶液を、繊維基材に塗布することにより軽減できる。しかし、この場合、得られる積層体の通気性が低下する。この積層体を分離膜の支持体として用いると、分離膜の透過性能が低下する。また、コストが増大する。 The above dents can be reduced by applying the above solution in an amount sufficient to fill the voids in the fiber base material to the fiber base material. However, in this case, the air permeability of the obtained laminate is reduced. When this laminate is used as a support for the separation membrane, the permeation performance of the separation membrane deteriorates. It also increases costs.

層間剥離の抑制に重点を置いて、多孔質膜の原料である樹脂を繊維基材の内部にまで十分に浸透させようとすると、その溶液の塗布工程において、当該溶液が繊維基材の裏面まで抜ける裏漏れが発生し易くなる。これにより、製造設備が汚染されて、品質や生産性の低下が生じる。また、繊維基材の主面を覆う多孔質膜の厚みが不均一になり易いため、十分な平滑性が得られ難い。このように、多孔質膜の平滑性と、層間剥離の抑制と、積層体の通気性と、を同時に達成することは困難である。 When the resin, which is the raw material of the porous membrane, is sufficiently permeated into the fiber base material with an emphasis on suppressing delamination, the solution reaches the back surface of the fiber base material in the coating process of the solution. Back leakage is likely to occur. As a result, the manufacturing equipment is contaminated, resulting in deterioration of quality and productivity. Further, since the thickness of the porous film covering the main surface of the fiber base material tends to be non-uniform, it is difficult to obtain sufficient smoothness. As described above, it is difficult to simultaneously achieve the smoothness of the porous film, the suppression of delamination, and the air permeability of the laminate.

本発明の一局面は、樹脂多孔体と、繊維基材と、を備え、前記樹脂多孔体の一部が、前記繊維基材の一方の主面を覆う多孔質膜を形成するとともに、前記樹脂多孔体の他の一部が、前記繊維基材の隙間に入り込んでおり、前記樹脂多孔体の質量が1〜35g/mであり、前記多孔質膜の厚みが1〜100μmであり、前記繊維基材のいずれかの主面にジメチルホルムアミドを滴下してから吸収されるまでの時間が60秒以上である、積層体に関する。 One aspect of the present invention includes a resin porous body and a fiber base material, and a part of the resin porous body forms a porous film covering one main surface of the fiber base material, and the resin. The other part of the porous body has entered the gaps of the fiber base material, the mass of the resin porous body is 1 to 35 g / m 2 , and the thickness of the porous film is 1 to 100 μm. The present invention relates to a laminate in which the time from dropping dimethylformamide onto any main surface of a fiber substrate to being absorbed is 60 seconds or more.

本発明にかかる積層体は、多孔質膜の平滑性に優れる。そのため、この積層体を分離膜の支持体として用いる場合、薄く均質な分離膜を形成することができる。さらに、本発明にかかる積層体は、通気性に優れるとともに、多孔質膜と繊維基材との間の層間剥離が生じ難い。よって、この積層体を支持体として用いた分離膜は、透過性能および分離性能に優れる。 The laminate according to the present invention has excellent smoothness of the porous film. Therefore, when this laminate is used as a support for the separation membrane, a thin and homogeneous separation membrane can be formed. Further, the laminate according to the present invention has excellent breathability and is less likely to cause delamination between the porous film and the fiber base material. Therefore, the separation membrane using this laminated body as a support is excellent in permeation performance and separation performance.

本発明の一実施形態に係る積層体を模式的に示す断面図である。It is sectional drawing which shows typically the laminated body which concerns on one Embodiment of this invention. 実施例1で得られた積層体の多孔質膜の主面を、走査型電子顕微鏡(SEM)を用いて撮影した画像である(倍率1000倍)。It is an image (magnification 1000 times) which took the main surface of the porous film of the laminated body obtained in Example 1 using a scanning electron microscope (SEM). 実施例1で得られた積層体の断面を、SEMを用いて撮影した画像である(倍率500倍)。It is an image (magnification 500 times) which took the cross section of the laminated body obtained in Example 1 using SEM. 比較例2で得られた積層体の多孔質膜の主面を、SEMを用いて撮影した画像である(倍率1000倍)。It is an image (magnification 1000 times) which took the main surface of the porous film of the laminated body obtained in the comparative example 2 using SEM.

本実施形態の積層体は、樹脂多孔体および繊維基材を備える。図1に示すように、樹脂多孔体10の一部は、繊維基材20の一方の主面(第1主面20X)を覆う多孔質膜11を形成し、他の一部は、繊維基材20の隙間に入り込んでいる。言い換えれば、積層体100は、樹脂多孔体10の一部を含む多孔質膜11と、繊維基材20の隙間に入り込んだ樹脂多孔体12および繊維基材20を含む複合領域21と、を備える。 The laminate of this embodiment includes a resin porous body and a fiber base material. As shown in FIG. 1, a part of the resin porous body 10 forms a porous film 11 covering one main surface (first main surface 20X) of the fiber base material 20, and the other part is a fiber group. It has entered the gap of the material 20. In other words, the laminate 100 includes a porous film 11 containing a part of the resin porous body 10 and a composite region 21 including the resin porous body 12 and the fiber base material 20 that have entered the gaps between the fiber base materials 20. ..

繊維基材20の隙間とは、第1主面20Xに形成された凹部や、繊維基材20を構成する構成繊維20F同士の空隙を含む。繊維基材20の隙間は、具体的には、例えば以下のように定義できる。まず、積層体100を水平面に載置する。この水平面に置かれた積層体100の断面をみたとき、繊維基材20の最も多孔質膜11側に位置する構成繊維20Fの上記水平面の法線方向の長さを4等分し、第1主面20X側から1/4の長さまでの領域を第1領域20Fa、第1領域20Fa以外の領域を第2領域20Fbとする。また、第1領域20Faと第2領域20Fbとの境界線を、境界線Lbとする。繊維基材20の隙間は、繊維基材20の最も多孔質膜11側に位置し、繊維基材20の面方向に隣接する構成繊維20Fの境界線Lbの端部同士をつなぐ直線Lから、第2主面20Y側の領域をいう。なお、多孔質膜11は、繊維基材20の最も多孔質膜11側に位置する構成繊維20Fの、第1領域20Faの外縁に接触する樹脂多孔体である。 The gaps between the fiber base materials 20 include recesses formed on the first main surface 20X and gaps between the constituent fibers 20F constituting the fiber base material 20. Specifically, the gap between the fiber base materials 20 can be defined as follows, for example. First, the laminated body 100 is placed on a horizontal plane. Looking at the cross section of the laminated body 100 placed on the horizontal plane, the length of the constituent fibers 20F located on the most porous film 11 side of the fiber base material 20 in the normal direction of the horizontal plane is divided into four equal parts, and the first The region from the main surface 20X side to the length of 1/4 is referred to as the first region 20Fa, and the region other than the first region 20F is referred to as the second region 20Fb. Further, the boundary line between the first region 20Fa and the second region 20Fb is defined as the boundary line Lb. The gap between the fiber base materials 20 is located on the most porous film 11 side of the fiber base material 20, and is formed from a straight line L connecting the ends of the boundary lines Lb of the constituent fibers 20F adjacent to each other in the plane direction of the fiber base material 20. The area on the 20Y side of the second main surface. The porous film 11 is a resin porous body that contacts the outer edge of the first region 20F of the constituent fibers 20F located on the most porous film 11 side of the fiber base material 20.

(繊維基材)
繊維基材20は、分離膜の支持体、さらには積層体100の支持体として機能する。繊維基材20の第1主面20Xには、多孔質膜11が形成される。繊維基材20の他方の主面(第2主面20Y)にも、積層体100あるいは分離膜にさらなる機能(例えば、柔軟性、接着性、潤滑性、滑り防止性、断熱性、吸湿性、遮光性等)を付与するための層が積層されてもよい。
(Fiber base material)
The fiber base material 20 functions as a support for the separation membrane and further as a support for the laminate 100. A porous film 11 is formed on the first main surface 20X of the fiber base material 20. The other main surface (second main surface 20Y) of the fiber base material 20 also has additional functions (eg, flexibility, adhesiveness, lubricity, anti-slip property, heat insulating property, hygroscopic property) in the laminate 100 or the separation membrane. Layers for imparting light-shielding properties, etc.) may be laminated.

分離膜には高い透過性能が求められるため、支持体である繊維基材20もまた、高い通気性および空隙率を備えることが好ましい。これらの観点から、繊維基材20としては、織物、編物、不織布等の繊維構造体が好ましい。なかでも、平滑な多孔質膜11が形成され易い点で、不織布が好ましい。織物および編物では、繊維同士が交絡しながら規則的に配列している。そのため、その主面には、繊維が交絡する点を凸部、繊維同士の隙間を凹部とする落差の大きな凹凸が現れやすい。この主面に樹脂多孔体10の原料樹脂を付与し、固化させると、得られる多孔質膜11には、繊維基材20の主面の凹部に沿うように凹みが生じる。一方、不織布は、繊維同士がランダムに交絡しているため、織物や編物と比較して主面の凹凸の落差は小さく、平滑になり易い。よって、その主面に形成される多孔質膜11もまた、平滑になり易い。 Since the separation membrane is required to have high permeation performance, it is preferable that the fiber base material 20 as a support also has high air permeability and porosity. From these viewpoints, the fiber base material 20 is preferably a fiber structure such as a woven fabric, a knitted fabric, or a non-woven fabric. Of these, a non-woven fabric is preferable because a smooth porous film 11 is easily formed. In woven and knitted fabrics, the fibers are entwined and regularly arranged. Therefore, unevenness with a large head is likely to appear on the main surface, with the points where the fibers are entangled as convex portions and the gaps between the fibers as concave portions. When the raw material resin of the resin porous body 10 is applied to the main surface and solidified, the obtained porous film 11 is provided with a dent along the concave portion of the main surface of the fiber base material 20. On the other hand, in the non-woven fabric, since the fibers are randomly entangled with each other, the difference in unevenness of the main surface is smaller than that of the woven fabric or knitted fabric, and the non-woven fabric tends to be smooth. Therefore, the porous film 11 formed on the main surface thereof also tends to be smooth.

不織布の製法は特に限定されないが、なかでも、平滑で均質な構造の主面を有する不織布が得られ易い点で、湿式法やエレクトロスピニング法が好ましい。繊維基材20は、単層でもよいし、多層構造であってもよい。繊維基材20が不織布を含む多層構造である場合、不織布を最外層に配置し、この不織布に多孔質膜11を形成すればよい。 The method for producing the non-woven fabric is not particularly limited, but among them, the wet method and the electrospinning method are preferable in that a non-woven fabric having a main surface having a smooth and homogeneous structure can be easily obtained. The fiber base material 20 may have a single layer or a multi-layer structure. When the fiber base material 20 has a multilayer structure including a non-woven fabric, the non-woven fabric may be arranged in the outermost layer, and the porous film 11 may be formed on the non-woven fabric.

繊維基材20の厚み(繊維基材20が多層構造である場合、全体の厚み)は特に限定されない。機械的強度を考慮すると、繊維基材20は厚いほど望ましい。一方、分離膜とした場合の軽量性や小型化を考慮すると、繊維基材20は過度に厚くないことが望ましい。これらの観点から、繊維基材20の厚みは、10μm以上が好ましく、1000μm以下が好ましい。繊維基材20の厚みは、20μm以上がより好ましく、400μm以下がより好ましい。繊維基材20の厚みがこの範囲であれば、繊維基材20の第1主面20Xに原料樹脂の溶液(原料樹脂溶液)を塗布する場合、裏漏れが抑制され易い。 The thickness of the fiber base material 20 (when the fiber base material 20 has a multilayer structure, the total thickness) is not particularly limited. Considering the mechanical strength, the thicker the fiber base material 20, the more desirable it is. On the other hand, in consideration of lightness and miniaturization when the separation membrane is used, it is desirable that the fiber base material 20 is not excessively thick. From these viewpoints, the thickness of the fiber base material 20 is preferably 10 μm or more, and preferably 1000 μm or less. The thickness of the fiber base material 20 is more preferably 20 μm or more, and more preferably 400 μm or less. When the thickness of the fiber base material 20 is within this range, back leakage is easily suppressed when the raw material resin solution (raw material resin solution) is applied to the first main surface 20X of the fiber base material 20.

繊維基材20を構成する構成繊維20Fの材質も特に限定されず、例えば、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂等が挙げられる。これらは、単独で、あるいは、2種以上を組み合わせて用いられる。なかでも、耐熱性の観点から、ポリエステル樹脂が好ましい。繊維基材20が多層構造である場合、互いに材質の異なる構成繊維20Fで構成される繊維基材20を複数、積層してもよい。構成繊維20Fの繊度は、特に限定されない。 The material of the constituent fiber 20F constituting the fiber base material 20 is also not particularly limited, and examples thereof include a polyolefin resin, a polyester resin, and a polyamide resin. These may be used alone or in combination of two or more. Of these, polyester resin is preferable from the viewpoint of heat resistance. When the fiber base material 20 has a multi-layer structure, a plurality of fiber base materials 20 made of constituent fibers 20F made of different materials may be laminated. The fineness of the constituent fiber 20F is not particularly limited.

分離膜は、例えば、殺菌処理や高温ガス分離のために75〜125℃程度の高い温度で処理される場合がある。そのため、構成繊維20Fの融点は高いほど望ましい。融点の高い繊維を用いることにより、構成繊維20Fの溶融あるいは軟化による繊維基材20の変形、および、繊維基材20の空隙の閉塞が抑制されて、分離膜としての性能が発揮され易くなる。構成繊維20Fの融点は150℃以上が好ましく、170℃以上がより好ましく、200℃以上が特に好ましい。繊維基材20が多層構造である場合、各層を構成する構成繊維20Fの融点が、それぞれ上記範囲を満たすことが好ましい。 The separation membrane may be treated at a high temperature of about 75 to 125 ° C. for sterilization treatment or high temperature gas separation, for example. Therefore, the higher the melting point of the constituent fiber 20F, the more desirable it is. By using a fiber having a high melting point, deformation of the fiber base material 20 due to melting or softening of the constituent fiber 20F and clogging of the voids of the fiber base material 20 are suppressed, and the performance as a separation membrane is easily exhibited. The melting point of the constituent fiber 20F is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, and particularly preferably 200 ° C. or higher. When the fiber base material 20 has a multilayer structure, it is preferable that the melting points of the constituent fibers 20F constituting each layer satisfy the above ranges.

繊維基材20のフラジール法(JIS L 1913 フラジール形法)で測定される通気度(フラジール通気度)は、分離膜の透過性能の観点から、高いほど望ましい。一方、繊維基材20の第1主面20Xに均質な多孔質膜11を形成する観点からは、上記通気度は過度に高くないことが望ましい。これらの観点から、フラジール通気度は0.2〜20cm/cm/秒であることが好ましく、0.5〜10cm/cm/秒であることがより好ましく、0.5〜3cm/cm/秒であることが特に好ましい。繊維基材20が多層構造である場合、繊維基材20全体での通気度が上記範囲を満たすことが好ましい。また、フラジール通気度がこの範囲であれば、繊維基材20の第1主面20Xに原料樹脂溶液を塗布する場合、原料樹脂溶液の裏漏れが抑制され易い。 The higher the air permeability (Frazil air permeability) measured by the Frazier method (JIS L 1913 Frazier method) of the fiber base material 20, the more desirable it is from the viewpoint of the permeation performance of the separation membrane. On the other hand, from the viewpoint of forming a homogeneous porous film 11 on the first main surface 20X of the fiber base material 20, it is desirable that the air permeability is not excessively high. From these viewpoints, it is preferable that the Frazier air permeability is 0.2~20cm 3 / cm 2 / sec, more preferably 0.5~10cm 3 / cm 2 / sec, 0.5 to 3 cm 3 It is particularly preferably / cm 2 / sec. When the fiber base material 20 has a multilayer structure, it is preferable that the air permeability of the entire fiber base material 20 satisfies the above range. Further, when the Frazier air permeability is within this range, when the raw material resin solution is applied to the first main surface 20X of the fiber base material 20, back leakage of the raw material resin solution is likely to be suppressed.

繊維基材20の空隙率は、分離膜の透過性能の観点から、高いほど望ましい。一方、繊維基材20の第1主面20Xに均質な多孔質膜11が形成され易い点で、繊維基材20の空隙率は過度に高くないことが望ましい。これらの観点から、繊維基材20の空隙率は10〜45%が好ましい。空隙率の上限は40%がより好ましく、空隙率の下限は25%がより好ましい。繊維基材20が多層構造である場合、各層が上記範囲を満たすことが好ましい。 The higher the porosity of the fiber base material 20, the more desirable it is from the viewpoint of the permeation performance of the separation membrane. On the other hand, it is desirable that the porosity of the fiber base material 20 is not excessively high in that a homogeneous porous film 11 is easily formed on the first main surface 20X of the fiber base material 20. From these viewpoints, the porosity of the fiber base material 20 is preferably 10 to 45%. The upper limit of the porosity is more preferably 40%, and the lower limit of the porosity is more preferably 25%. When the fiber base material 20 has a multilayer structure, it is preferable that each layer satisfies the above range.

繊維基材20の空隙率(%)は、繊維基材20の単位面積あたりの質量W(g/cm)と、繊維基材20の厚みWT(cm)と、構成繊維20Fの比重d(g/cm)から、下記式(1)で算出できる。
(式1) 空隙率=(1−(W/WT)/d)×100
The void ratio (%) of the fiber base material 20 is the mass W (g / cm 2 ) per unit area of the fiber base material 20, the thickness WT (cm) of the fiber base material 20, and the specific gravity d of the constituent fibers 20F ( From g / cm 3 ), it can be calculated by the following formula (1).
(Equation 1) Porosity = (1- (W / WT) / d) x 100

繊維基材20の空隙率は、繊維基材20以外の材料(例えば、樹脂多孔体10)を積層体100から除去した後、算出してもよい。繊維基材20以外の材料を積層体100から除去する方法としては、例えば、剥離や、繊維基材20は溶解しないもののそれ以外の材料が溶解するような溶媒に浸漬する方法等がある。構成繊維20Fの比重が不明である場合、繊維基材20を熱で溶融するなどして平板状に成形した後、その体積および質量を測定して、比重を算出すればよい。 The porosity of the fiber base material 20 may be calculated after removing a material other than the fiber base material 20 (for example, the resin porous body 10) from the laminate 100. Examples of the method for removing the material other than the fiber base material 20 from the laminate 100 include peeling and a method of immersing the fiber base material 20 in a solvent in which the other materials are dissolved although the fiber base material 20 is not dissolved. When the specific gravity of the constituent fiber 20F is unknown, the fiber base material 20 may be formed into a flat plate by melting with heat, and then the volume and mass thereof may be measured to calculate the specific gravity.

繊維基材20に塗布される樹脂多孔体10の原料樹脂の一部を、繊維基材20の第1主面20Xを覆うように配置するとともに、他の一部を繊維基材20の隙間に配置するためには、繊維基材20に対する原料樹脂溶液の浸透性は過度に高くないことが望ましい。繊維基材20に対する原料樹脂溶液の浸透性は、例えば、繊維基材20に、原料樹脂溶液の溶媒(通常、有機溶媒。例えば、ジメチルホルムアミド)を滴下してから吸収されるまでの時間として評価できる。上記時間が長いほど、繊維基材20と原料樹脂溶液との親和性が低く、繊維基材20に対する原料樹脂溶液の浸透性は低い。 A part of the raw material resin of the resin porous body 10 applied to the fiber base material 20 is arranged so as to cover the first main surface 20X of the fiber base material 20, and the other part is placed in the gap of the fiber base material 20. In order to arrange the fibers, it is desirable that the permeability of the raw material resin solution to the fiber base material 20 is not excessively high. The permeability of the raw material resin solution to the fiber base material 20 is evaluated as, for example, the time from dropping the solvent of the raw material resin solution (usually an organic solvent, for example, dimethylformamide) onto the fiber base material 20 until it is absorbed. it can. The longer the time, the lower the affinity between the fiber base material 20 and the raw material resin solution, and the lower the permeability of the raw material resin solution to the fiber base material 20.

本実施形態では、繊維基材20のいずれかの主面にジメチルホルムアミド(DMF)を滴下してから吸収されるまでの時間(以下、DMF吸収時間)が60秒以上である繊維基材20を用いる。この繊維基材20は、原料樹脂溶液の浸透を抑制する方向に働く。そのため、塗布された原料樹脂溶液から溶媒を除去すると、樹脂多孔体10は、繊維基材20の隙間に配置されるとともに、繊維基材20の一方の主面を覆うようにも配置される。このような繊維基材20は、特に、繊維基材20と有機溶剤との親和性が透過性能に与える影響が少ない分離膜(例えば、気体分離膜)の支持体として好適に用いられる。 In the present embodiment, the fiber base material 20 has a time from dropping dimethylformamide (DMF) onto any main surface of the fiber base material 20 until it is absorbed (hereinafter, DMF absorption time) for 60 seconds or more. Use. The fiber base material 20 works in a direction of suppressing the penetration of the raw material resin solution. Therefore, when the solvent is removed from the applied raw material resin solution, the resin porous body 10 is arranged in the gaps between the fiber base materials 20 and also covers one main surface of the fiber base material 20. Such a fiber base material 20 is particularly preferably used as a support for a separation membrane (for example, a gas separation membrane) in which the affinity between the fiber base material 20 and the organic solvent has little effect on the permeation performance.

DMF吸収時間は、繊維基材20の空隙率を算出する際に用いる方法として記載したのと同じ方法により、繊維基材20以外の材料(例えば、樹脂多孔体10)を積層体100から除去した後、算出してもよい。この場合、DMF吸収時間の測定は、繊維基材20の第1主面20XにDMFを滴下して行ってもよいし、第2主面20YにDMFを滴下して行ってもよい。積層体100の状態のままDMF吸収時間を測定する場合、第2主面20Y側にDMFを滴下する。繊維基材20が多層構造の場合、剥離するなどして中間にあるいずれかの層(中間層)の主面を露出させて、DMF吸収時間を測定してもよい。 For the DMF absorption time, a material other than the fiber base material 20 (for example, the resin porous body 10) was removed from the laminate 100 by the same method described as the method used when calculating the porosity of the fiber base material 20. Later, it may be calculated. In this case, the DMF absorption time may be measured by dropping DMF on the first main surface 20X of the fiber base material 20 or dropping DMF on the second main surface 20Y. When measuring the DMF absorption time in the state of the laminated body 100, DMF is dropped on the second main surface 20Y side. When the fiber base material 20 has a multilayer structure, the DMF absorption time may be measured by exposing the main surface of any of the intermediate layers (intermediate layer) by peeling or the like.

第1主面20XのDMF吸収時間が60秒以上である場合、原料樹脂溶液を繊維基材20の第1主面20Xに塗布すると、原料樹脂溶液の一部は繊維基材20の隙間に浸透するものの、他の一部は第1主面20X上に留まる。第2主面20Y(あるいは、多層構造の場合、中間層の主面)のDMF吸収時間が60秒以上である場合、原料樹脂溶液を繊維基材20の第1主面20Xに塗布すると、原料樹脂溶液の一部は繊維基材20の隙間に浸透するものの、第2主面20Y(あるいは、中間層の主面)によって押しとどめられる。そのため、結果的に、他の一部は第1主面20X上に留まって、多孔質膜11を形成する。多孔質膜11がより形成され易い点で、少なくとも第1主面20XのDMF吸収時間が60秒以上であることが好ましい。剥離強度が高まる点では、第2主面20YのDMF吸収時間が60秒以上であることが好ましい。いずれの場合も、DMF吸収時間は300秒以上であることが好ましい。 When the DMF absorption time of the first main surface 20X is 60 seconds or more, when the raw material resin solution is applied to the first main surface 20X of the fiber base material 20, a part of the raw material resin solution penetrates into the gaps of the fiber base material 20. However, the other part stays on the first main surface 20X. When the DMF absorption time of the second main surface 20Y (or the main surface of the intermediate layer in the case of a multilayer structure) is 60 seconds or more, when the raw material resin solution is applied to the first main surface 20X of the fiber base material 20, the raw material is obtained. Although a part of the resin solution penetrates into the gaps of the fiber base material 20, it is held back by the second main surface 20Y (or the main surface of the intermediate layer). Therefore, as a result, the other part stays on the first main surface 20X to form the porous film 11. It is preferable that the DMF absorption time of at least the first main surface 20X is 60 seconds or more in that the porous film 11 is more easily formed. From the viewpoint of increasing the peel strength, it is preferable that the DMF absorption time of the second main surface 20Y is 60 seconds or more. In either case, the DMF absorption time is preferably 300 seconds or longer.

DMF吸収時間を長くするには、繊維基材20の表面エネルギーと有機溶媒の表面自由エネルギーとの差を大きくすればよい。この具体的な方法として、繊維基材20にフッ素含有樹脂(撥水撥油剤)を付与する方法、繊維基材20をフッ素樹脂を含む繊維により構成する方法、繊維基材20に親水性物質を付与する方法、繊維基材20にプラズマ処理を施す方法等が挙げられる。これらの方法は、分離膜の用途に応じて、適宜選択すればよい。例えば、分離膜として親水性が求められる場合、その支持体である繊維基材20も親水性であることが好ましい。そのため、上記方法のうち、繊維基材20に親水性物質を付与する方法や、繊維基材20にプラズマ処理を施す方法を採用することが好ましい。また、フッ素含有樹脂は、表面自由エネルギーが低く、有機溶媒との親和性を低くする効果が高い点で好ましい。上記処理を行う場合、DMF吸収時間は、上記処理が施された後の繊維基材20に対して測定される。 In order to lengthen the DMF absorption time, the difference between the surface energy of the fiber base material 20 and the surface free energy of the organic solvent may be increased. Specific methods thereof include a method of applying a fluororesin (water and oil repellent) to the fiber base material 20, a method of forming the fiber base material 20 with fibers containing a fluororesin, and a method of applying a hydrophilic substance to the fiber base material 20. Examples thereof include a method of applying the fiber base material 20 and a method of applying a plasma treatment to the fiber base material 20. These methods may be appropriately selected depending on the intended use of the separation membrane. For example, when hydrophilicity is required as a separation membrane, it is preferable that the fiber base material 20 as a support thereof is also hydrophilic. Therefore, among the above methods, it is preferable to adopt a method of imparting a hydrophilic substance to the fiber base material 20 or a method of subjecting the fiber base material 20 to plasma treatment. Further, the fluorine-containing resin is preferable because it has a low surface free energy and a high effect of lowering the affinity with an organic solvent. When the above treatment is performed, the DMF absorption time is measured with respect to the fiber base material 20 after the above treatment.

(樹脂多孔体)
樹脂多孔体10は、連続する多数の孔を有している。樹脂多孔体10の一部は、繊維基材20の第1主面20Xに形成される多孔質膜11として配置されるとともに、他の一部は、繊維基材20の隙間に入り込んで、繊維基材20との複合領域21を形成する。
(Resin porous body)
The resin porous body 10 has a large number of continuous pores. A part of the resin porous body 10 is arranged as a porous film 11 formed on the first main surface 20X of the fiber base material 20, and the other part enters the gap of the fiber base material 20 to form fibers. A composite region 21 with the base material 20 is formed.

多孔質膜11の厚みは1μm以上である。言い換えれば、多孔質膜11の最小の厚みが1μmである。これにより、繊維基材20の構造に起因する凹凸が低減されて、積層体100の一方の主面の平滑性が向上する。一方、複合領域21によりアンカー効果が生じ、多孔質膜11と繊維基材20との剥離強度が物理的に高くなって、多孔質膜11と繊維基材20との間の層間剥離が抑制される。積層体100の主面が平滑化され易くなる点で、多孔質膜11の最小の厚みは、3μm以上であることが好ましい。一方、繊維基材20の通気性(ひいては、分離膜の透過性能)が阻害され難くなる点で、多孔質膜11の最小の厚みは100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、繊維基材20の第1主面20X全体が多孔質膜11により被覆されていることに限られず、本実施形態では、繊維基材20の第1主面20Xの一部が露出する場合を包含する。 The thickness of the porous membrane 11 is 1 μm or more. In other words, the minimum thickness of the porous membrane 11 is 1 μm. As a result, the unevenness caused by the structure of the fiber base material 20 is reduced, and the smoothness of one main surface of the laminate 100 is improved. On the other hand, the composite region 21 causes an anchor effect, the peel strength between the porous film 11 and the fiber base material 20 is physically increased, and delamination between the porous film 11 and the fiber base material 20 is suppressed. To. The minimum thickness of the porous film 11 is preferably 3 μm or more in that the main surface of the laminate 100 is easily smoothed. On the other hand, the minimum thickness of the porous membrane 11 is preferably 100 μm or less, and more preferably 50 μm or less, in that the air permeability of the fiber base material 20 (and thus the permeation performance of the separation membrane) is not easily impaired. preferable. The entire first main surface 20X of the fiber base material 20 is not limited to being covered with the porous film 11, and in the present embodiment, a part of the first main surface 20X of the fiber base material 20 is exposed. Including.

多孔質膜11の最小の厚みは、積層体100の断面から算出される。具体的には、積層体100の断面の所定のサイズ(例えば、約250μm×約180μm)を、倍率500倍に拡大して撮影したSEM画像において、多孔質膜11の表面から繊維基材20に向かって、多孔質膜11の法線に平行な直線を引いたときの、多孔質膜11の表面から境界線Lbまでの長さが最小になる箇所(最小地点)を決定し、その長さを測定する。繊維基材20が多孔質膜11から露出している箇所がある場合、この箇所が最小地点であり、その長さは0である。異なる10箇所の切断面に対して、それぞれ最小地点を決定してその長さを測定し、これらの平均値を多孔質膜11の最小の厚みとする。 The minimum thickness of the porous film 11 is calculated from the cross section of the laminated body 100. Specifically, in an SEM image taken by magnifying a predetermined size of a cross section of the laminate 100 (for example, about 250 μm × about 180 μm) at a magnification of 500 times, the surface of the porous film 11 is transferred to the fiber base material 20. Toward, a point (minimum point) where the length from the surface of the porous film 11 to the boundary line Lb is minimized when a straight line parallel to the normal line of the porous film 11 is drawn is determined, and the length is determined. To measure. When there is a portion where the fiber base material 20 is exposed from the porous membrane 11, this portion is the minimum point, and the length thereof is 0. The minimum points are determined for each of the 10 different cut surfaces, the lengths thereof are measured, and the average value thereof is taken as the minimum thickness of the porous membrane 11.

複合領域21において、樹脂多孔体10は繊維基材20の全体に均一に入り込んでいなくてもよく、樹脂多孔体10を含まない領域が形成されていてもよい。樹脂多孔体10は、多孔質膜11とは反対側の積層体100の主面(繊維基材20の第2主面20Y)から露出しないことが好ましい。つまり、繊維基材20の第2主面20Y側には、樹脂多孔体10を含まない領域(繊維領域22)が形成されていることが好ましい。積層体100の通気性が高まるためである。 In the composite region 21, the resin porous body 10 may not uniformly penetrate into the entire fiber base material 20, and a region that does not contain the resin porous body 10 may be formed. It is preferable that the resin porous body 10 is not exposed from the main surface (second main surface 20Y of the fiber base material 20) of the laminate 100 on the side opposite to the porous film 11. That is, it is preferable that a region (fiber region 22) that does not contain the resin porous body 10 is formed on the second main surface 20Y side of the fiber base material 20. This is because the air permeability of the laminated body 100 is enhanced.

積層体100に含まれる樹脂多孔体10の質量は、1〜35g/mと非常に少ない。よって、繊維基材20が有する通気性が阻害され難い。繊維基材20は、上記のとおり原料樹脂溶液の浸透性が低いため、このような少ない量であっても、繊維基材20の第1主面20Xには、多孔質膜11が形成される。均質な多孔質膜11が形成され易い点で、積層体100に含まれる樹脂多孔体10の質量は4g/m以上であることが好ましく、通気性がより阻害され難い点で、25g/m以下であることが好ましい。また、積層体100に含まれる樹脂多孔体10の質量が上記範囲であると、コストが抑制されるとともに、積層体100を製造する際に原料樹脂の凝集によって生じる応力が低減されて、得られる積層体100の変形(カール)が抑制される。 The mass of the resin porous body 10 contained in the laminated body 100 is as small as 1 to 35 g / m 2 . Therefore, the air permeability of the fiber base material 20 is not easily impaired. Since the fiber base material 20 has low permeability of the raw material resin solution as described above, the porous film 11 is formed on the first main surface 20X of the fiber base material 20 even with such a small amount. .. The mass of the resin porous body 10 contained in the laminated body 100 is preferably 4 g / m 2 or more in that a homogeneous porous film 11 is easily formed, and 25 g / m in that the air permeability is less likely to be impaired. It is preferably 2 or less. Further, when the mass of the resin porous body 10 contained in the laminated body 100 is within the above range, the cost is suppressed and the stress generated by the aggregation of the raw material resin during the production of the laminated body 100 is reduced. Deformation (curl) of the laminated body 100 is suppressed.

積層体100に含まれる樹脂多孔体10の質量は、樹脂多孔体10以外の材料(例えば、繊維基材20)を積層体100から除去した後、測定すればよい。樹脂多孔体10以外の材料を積層体100から除去する方法としては、例えば、剥離、あるいは、樹脂多孔体10は溶解しないもののそれ以外の材料が溶解するような溶媒に浸漬する方法等が挙げられる。あるいは、積層体100全てを溶解させた後、その溶解液中の樹脂多孔体10の成分量を定量分析することにより、積層体100に含まれる樹脂多孔体10の質量を算出してもよい。あるいは、積層体100の質量を測定した後、積層体100から樹脂多孔体10を除去して得られた樹脂多孔体10以外の材料の質量を測定し、その差から積層体100に含まれる樹脂多孔体10の質量を求めてもよい。 The mass of the resin porous body 10 contained in the laminated body 100 may be measured after removing a material other than the resin porous body 10 (for example, the fiber base material 20) from the laminated body 100. Examples of the method for removing the material other than the resin porous body 10 from the laminate 100 include peeling or a method of immersing the resin porous body 10 in a solvent in which the other materials are dissolved although the resin porous body 10 is not dissolved. .. Alternatively, the mass of the resin porous body 10 contained in the laminated body 100 may be calculated by quantitatively analyzing the amount of the component of the resin porous body 10 in the solution after dissolving all the laminated body 100. Alternatively, after measuring the mass of the laminated body 100, the mass of the material other than the resin porous body 10 obtained by removing the resin porous body 10 from the laminated body 100 is measured, and the resin contained in the laminated body 100 is measured from the difference. The mass of the porous body 10 may be determined.

樹脂多孔体10の原料樹脂は、繊維基材20上に製膜できる限り特に限定されず、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンスルフィド樹脂、液晶性ポリエステル樹脂、芳香族ポリアミド樹脂、ポリアミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂、ポリベンゾチアゾール樹脂、ポリスルホン樹脂、セルロース樹脂、ポリウレタン樹脂、アクリル樹脂等が挙げられる。これら樹脂は、単独で、あるいは2種以上を混合して用いられる。また、上記樹脂の共重合体(グラフト重合体、ブロック共重合体、ランダム共重合体等)を、単独で、あるいは2種以上組み合わせて用いてもよい。さらに、上記樹脂の骨格(ポリマー鎖)を、主鎖あるいは側鎖に含む重合体を用いてもよい。なかでも、耐熱性に優れ、また、多孔質膜11を形成し易い点で、ポリスルホン樹脂、ポリエーテルスルホン樹脂が好ましい。 The raw material resin of the resin porous body 10 is not particularly limited as long as a film can be formed on the fiber base material 20, and for example, a polyimide resin, a polyamideimide resin, a polyethersulfone resin, a polyetherimide resin, a polycarbonate resin, a polyphenylene sulfide resin, etc. Examples thereof include liquid crystal polyester resin, aromatic polyamide resin, polyamide resin, polybenzoxazole resin, polybenzoimidazole resin, polybenzothiazole resin, polysulfone resin, cellulose resin, polyurethane resin, acrylic resin and the like. These resins may be used alone or in admixture of two or more. Further, the copolymers of the above resins (graft polymer, block copolymer, random copolymer, etc.) may be used alone or in combination of two or more. Further, a polymer containing the skeleton (polymer chain) of the resin in the main chain or the side chain may be used. Of these, polysulfone resins and polyethersulfone resins are preferable because they have excellent heat resistance and easily form the porous film 11.

上記のとおり、分離膜は、75〜125℃程度の高温で処理される場合があるため、樹脂多孔体10の融点もまた高いほど望ましい。融点の高い樹脂多孔体10を用いることにより、樹脂多孔体10の溶融あるいは軟化による変形、および、孔の閉塞が抑制されて、分離膜としての性能が発揮され易くなる。樹脂多孔体10の融点は、150℃以上が好ましく、170℃以上がより好ましく、200℃以上が特に好ましい。原料樹脂がガラス転移温度を有する場合、同様の観点から、原料樹脂のガラス転移温度は150℃以上が好ましく、200℃以上がより好ましい。 As described above, since the separation membrane may be treated at a high temperature of about 75 to 125 ° C., it is desirable that the melting point of the resin porous body 10 is also high. By using the resin porous body 10 having a high melting point, deformation due to melting or softening of the resin porous body 10 and clogging of pores are suppressed, and the performance as a separation membrane is easily exhibited. The melting point of the resin porous body 10 is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, and particularly preferably 200 ° C. or higher. When the raw material resin has a glass transition temperature, the glass transition temperature of the raw material resin is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, from the same viewpoint.

積層体100の多孔質膜11側の主面100Xの算術平均粗さRaは、1.3μm以下であることが好ましく、1μm以下であることがより好ましい。これにより、主面100X上に薄い分離膜を均一な厚みで形成させ易くなる。よって、得られる分離膜の分離性能および透過性能が向上する。算術平均粗さRaは、表面の平滑性をあらわす指標であり、値が小さいほど平滑性が高い。算術平均粗さRaは、JIS B 0601に準じて、接触式の表面粗さ測定機によって測定することができる。なお、多孔質膜11を積層体100から剥離して、その積層体100に対向していた主面の算術平均粗さRaを測定すると、1.3μmを大きく超える。このことは、樹脂多孔体10の一部が、繊維基材20の隙間に入り込んでいたことを示す。 The arithmetic average roughness Ra of the main surface 100X on the porous film 11 side of the laminated body 100 is preferably 1.3 μm or less, and more preferably 1 μm or less. This makes it easy to form a thin separation film on the main surface 100X with a uniform thickness. Therefore, the separation performance and the permeation performance of the obtained separation membrane are improved. The arithmetic mean roughness Ra is an index showing the smoothness of the surface, and the smaller the value, the higher the smoothness. The arithmetic mean roughness Ra can be measured by a contact type surface roughness measuring machine according to JIS B 0601. When the porous film 11 is peeled off from the laminated body 100 and the arithmetic average roughness Ra of the main surface facing the laminated body 100 is measured, it greatly exceeds 1.3 μm. This indicates that a part of the resin porous body 10 has entered the gap of the fiber base material 20.

樹脂多孔体10(特に、多孔質膜11)の空隙率は、分離膜の透過性能の観点から、高いほど望ましい。一方、多孔質膜11の平滑性を高める点では、多孔質膜11の空隙率は過度に高くないことが望ましい。これらの観点から、多孔質膜11の空隙率は50〜95%が好ましい。多孔質膜11の空隙率の上限は90%がより好ましく、下限は60%がより好ましい。 The higher the porosity of the resin porous body 10 (particularly the porous membrane 11), the more desirable it is from the viewpoint of the permeation performance of the separation membrane. On the other hand, in terms of improving the smoothness of the porous membrane 11, it is desirable that the porosity of the porous membrane 11 is not excessively high. From these viewpoints, the porosity of the porous membrane 11 is preferably 50 to 95%. The upper limit of the porosity of the porous membrane 11 is more preferably 90%, and the lower limit is more preferably 60%.

多孔質膜11の空隙率は、積層体100から多孔質膜11を剥離して、その多孔質膜11の単位面積あたりの質量W2(g/cm)と、多孔質膜11の厚みWT2(cm)と、原料樹脂の比重d2(g/cm)を用いて、上記式(1)により算出できる。原料樹脂の比重が不明である場合、原料樹脂を熱で溶融するなどして平板状に成形した後、その体積および質量を測定して、比重を算出すればよい。多孔質膜11の厚みWT2は、厚み計により測定できる。 The porosity of the porous film 11 is the mass W2 (g / cm 2 ) per unit area of the porous film 11 after peeling the porous film 11 from the laminate 100, and the thickness WT2 (thickness WT2) of the porous film 11. It can be calculated by the above formula (1) using cm) and the specific gravity d2 (g / cm 3 ) of the raw material resin. When the specific gravity of the raw material resin is unknown, the raw material resin may be formed into a flat plate by melting with heat, and then the volume and mass thereof may be measured to calculate the specific gravity. The thickness WT2 of the porous film 11 can be measured by a thickness meter.

(積層体)
上記のような構成を備える積層体100の繊維基材20(厳密には、複合領域21)と多孔質膜11との間の剥離強度は、例えば、0.15N/cm以上であり、0.2N/cm以上が好ましく、0.4N/cm以上がより好ましい。剥離強度がこの範囲であると、積層体100を分離膜の支持体として用いる場合、分離対象物質を透過する際にかかる圧力による界面剥離が抑制される。上記剥離強度は、JIS L 1086に準じて、以下のように測定できる。まず、多孔質膜11の繊維基材20とは反対側の主面にホットメルトテープを接着する。引張試験機にて当該ホットメルトテープと繊維基材20とが常に180°の角度となるように、両者を一定の速度で引張っていき、多孔質膜11と繊維基材20とが剥離するときの荷重を測定する。この荷重をホットメルトテープの幅で除することにより、剥離強度が算出される。
(Laminate)
The peel strength between the fiber base material 20 (strictly speaking, the composite region 21) and the porous film 11 of the laminate 100 having the above structure is, for example, 0.15 N / cm or more, and 0. 2N / cm or more is preferable, and 0.4N / cm or more is more preferable. When the peel strength is in this range, when the laminate 100 is used as a support for the separation membrane, interfacial peeling due to the pressure applied when the substance to be separated is permeated is suppressed. The peel strength can be measured as follows according to JIS L 1086. First, the hot melt tape is adhered to the main surface of the porous film 11 opposite to the fiber base material 20. When the hot melt tape and the fiber base material 20 are pulled at a constant speed with a tensile tester so that the hot melt tape and the fiber base material 20 are always at an angle of 180 °, and the porous film 11 and the fiber base material 20 are peeled off. Measure the load of. The peel strength is calculated by dividing this load by the width of the hot melt tape.

積層体100のガーレ法(JIS L 1913 ガーレ形法)で測定された透気度(以下、ガーレ透気度)は、分離膜の透過性能の観点から、1〜1000秒/100mlであることが好ましい。ガーレ透気度は、5秒/100ml以上であることがより好ましく、また、800秒/100ml以下であることがより好ましい。ガーレ透気度がこの範囲であると、分離対象物質の透過を阻害せず、分離膜としての透過性能を充分に発揮できる一方、積層体100の多孔質膜11の表面に分離膜を形成する際、分離膜の原料が積層体100を透過してしまうことが抑制されて、より均質な分離膜が形成され易くなる。ガーレ透気度が小さいほど、透気度は高い。 The air permeability (hereinafter referred to as “Gale air permeability”) measured by the Gale method (JIS L 1913 Gale method) of the laminate 100 is 1 to 1000 seconds / 100 ml from the viewpoint of the permeation performance of the separation membrane. preferable. The Gale air permeability is more preferably 5 seconds / 100 ml or more, and more preferably 800 seconds / 100 ml or less. When the Gale air permeability is within this range, the permeation performance of the separation film can be sufficiently exhibited without inhibiting the permeation of the substance to be separated, while the separation film is formed on the surface of the porous film 11 of the laminate 100. At that time, it is suppressed that the raw material of the separation film permeates the laminate 100, and a more homogeneous separation film is easily formed. The smaller the Gale air permeability, the higher the air permeability.

(積層体の製造方法)
上記のような積層体100は、例えば、繊維基材20を準備する工程と、原料樹脂溶液を準備する工程と、繊維基材20の第1主面20Xに、上記原料樹脂溶液を塗布する工程(塗布工程)と、塗布された原料樹脂溶液の溶媒を除去する工程(溶媒除去工程)と、を含む方法により製造される。
(Manufacturing method of laminated body)
The laminate 100 as described above includes, for example, a step of preparing the fiber base material 20, a step of preparing a raw material resin solution, and a step of applying the raw material resin solution to the first main surface 20X of the fiber base material 20. It is produced by a method including (coating step) and a step of removing the solvent of the applied raw material resin solution (solvent removing step).

溶媒除去工程において、繊維基材20に塗布された原料樹脂が固化(あるいは凝固)するとともに、原料樹脂に多数の孔が形成される。原料樹脂に孔を形成する方法は、乾式製膜法および湿式製膜法に大別される。乾式製膜法は、乾燥により溶媒を除去する方法であり、原料樹脂溶液の溶媒の蒸発に伴って多数の孔が形成される。湿式製膜法は、原料樹脂溶液が塗布された繊維基材20を原料樹脂の貧溶媒を含む凝固液に浸漬させて、貧溶媒と溶媒とを置換することによって、原料樹脂を凝固させるとともに、溶媒を除去する方法である。最後に、貧溶媒を除去することにより、多数の孔を有する樹脂多孔体10が得られる。 In the solvent removing step, the raw material resin applied to the fiber base material 20 is solidified (or solidified), and a large number of pores are formed in the raw material resin. The method of forming pores in the raw material resin is roughly classified into a dry film forming method and a wet film forming method. The dry film-forming method is a method of removing the solvent by drying, and a large number of pores are formed as the solvent of the raw material resin solution evaporates. In the wet film forming method, the fiber base material 20 coated with the raw material resin solution is immersed in a coagulating solution containing a poor solvent of the raw material resin to replace the poor solvent with the solvent, thereby coagulating the raw material resin and at the same time. This is a method for removing a solvent. Finally, by removing the poor solvent, a resin porous body 10 having a large number of pores can be obtained.

繊維基材20の第1主面20Xに原料樹脂溶液を塗布する方法は特に限定されず、例えば、原料樹脂溶液をダイから膜状に吐出する方法(ダイキャスト法)、第1主面20Xに樹脂溶液を塗付して余剰分をナイフなどでかきとる方法(ナイフコート法)、原料樹脂溶液をロール上に供給しながらロールに第1主面20Xを当接させて、原料樹脂溶液をロールから第1主面20Xに転写する方法(ロールコート法)などがある。 The method of applying the raw material resin solution to the first main surface 20X of the fiber base material 20 is not particularly limited, and for example, a method of discharging the raw material resin solution from the die in a film form (die casting method), the first main surface 20X. A method of applying a resin solution and scraping off excess with a knife (knife coating method), a method of abutting the first main surface 20X on the roll while supplying the raw material resin solution onto the roll, and rolling the raw material resin solution. There is a method of transferring from to the first main surface 20X (roll coating method).

樹脂多孔体10の原料樹脂を溶解する溶媒としては、原料樹脂との相溶性や孔の形成性に応じて適宜選択すればよい。例えば、原料樹脂としてポリスルホン樹脂またはポリエーテルスルホン樹脂を用いる場合、上記溶媒としては、DMF、ジメチルアセトアミド、メチルピロリドンなどが好適に用いられる。 The solvent for dissolving the raw material resin of the resin porous body 10 may be appropriately selected depending on the compatibility with the raw material resin and the porosity. For example, when a polysulfone resin or a polyethersulfone resin is used as the raw material resin, DMF, dimethylacetamide, methylpyrrolidone and the like are preferably used as the solvent.

原料樹脂の濃度は特に限定されない。なかでも、上記範囲の空隙率を備える多孔質膜11が形成され易い点で、原料樹脂の濃度は35質量%以下が好ましく、25質量%以下がより好ましい。一方、多孔質膜11の平滑性が高まる点で、原料樹脂の濃度は10質量%以上が好ましく、12質量%以上がより好ましい。 The concentration of the raw material resin is not particularly limited. Among them, the concentration of the raw material resin is preferably 35% by mass or less, more preferably 25% by mass or less, in that the porous film 11 having a porosity in the above range is easily formed. On the other hand, the concentration of the raw material resin is preferably 10% by mass or more, more preferably 12% by mass or more, in that the smoothness of the porous film 11 is improved.

原料樹脂溶液の粘度は、繊維基材20への過剰な浸透が抑制されて、第1主面20Xに均質な多孔質膜11が形成され易い点で、高い方が望ましい。一方、繊維基材20の隙間に原料樹脂が入り込み易くなる点では、原料樹脂溶液の粘度は過度に高くないことが望ましい。これらの点を考慮すると、B型粘度計を用いて、常温(20〜25℃)で回転数12rpmで測定したときの原料樹脂溶液の粘度は、100mPa・s以上、20000mPa・s以下が好ましい。なかでも、原料樹脂溶液の粘度は、300mPa・s以上がより好ましく、700mPa・s以上が特に好ましい。また、原料樹脂溶液の粘度は、10000mPa・s以下がより好ましい。なお、原料樹脂溶液の粘度が低すぎると、塗布工程の際に、原料樹脂溶液が繊維基材20の塗布面とは反対側の面(第2主面20Y)にまで浸透し、裏漏れする場合がある。原料樹脂溶液が裏漏れすると、塗布装置が汚染されるとともに、繊維基材20に付着する原料樹脂、特に、繊維基材20の第1主面20X上に留まる原料樹脂が減少し、所望の積層体100を得ることが難しくなる。原料樹脂溶液の粘度は、原料樹脂の濃度や増粘剤の添加によって制御することができる。 The viscosity of the raw material resin solution is preferably high in that excessive penetration into the fiber base material 20 is suppressed and a homogeneous porous film 11 is easily formed on the first main surface 20X. On the other hand, it is desirable that the viscosity of the raw material resin solution is not excessively high in that the raw material resin easily enters the gaps between the fiber base materials 20. Considering these points, the viscosity of the raw material resin solution when measured at room temperature (20 to 25 ° C.) at a rotation speed of 12 rpm using a B-type viscometer is preferably 100 mPa · s or more and 20000 mPa · s or less. Among them, the viscosity of the raw material resin solution is more preferably 300 mPa · s or more, and particularly preferably 700 mPa · s or more. Further, the viscosity of the raw material resin solution is more preferably 10,000 mPa · s or less. If the viscosity of the raw material resin solution is too low, the raw material resin solution permeates to the surface (second main surface 20Y) opposite to the coating surface of the fiber base material 20 during the coating process and leaks back. In some cases. When the raw material resin solution leaks back, the coating apparatus is contaminated, and the raw material resin adhering to the fiber base material 20, particularly the raw material resin remaining on the first main surface 20X of the fiber base material 20, is reduced, so that the desired lamination is performed. It becomes difficult to obtain body 100. The viscosity of the raw material resin solution can be controlled by the concentration of the raw material resin and the addition of a thickener.

上記のように、繊維基材20にフッ素含有樹脂あるいは親水性物質(以下、まとめて吸収時間延長材料)を付与する場合、および/または、繊維基材20にプラズマ処理を施す場合、吸収時間延長材料の付与工程あるいはプラズマ処理工程(以下、まとめて吸収時間延長工程)を塗布工程の前に行う。繊維基材20に吸収時間延長材料を付与する方法は特に限定されず、例えば、繊維基材20を吸収時間延長材料の水溶液に浸漬し、乾燥および加熱する方法が挙げられる。 As described above, when a fluorine-containing resin or a hydrophilic substance (hereinafter collectively referred to as an absorption time extending material) is applied to the fiber base material 20, and / or when plasma treatment is applied to the fiber base material 20, the absorption time is extended. A material application step or a plasma treatment step (hereinafter collectively referred to as an absorption time extension step) is performed before the coating step. The method of applying the absorption time extending material to the fiber base material 20 is not particularly limited, and examples thereof include a method of immersing the fiber base material 20 in an aqueous solution of the absorption time extending material, drying and heating the fiber base material 20.

(膜構造体)
膜構造体は、上記積層体100と、分離機能を有する分離膜と、を備える。上記積層体100は、分離膜の支持体として機能する。分離膜の材料は特に限定されず、目的に応じて、従来公知の材料を用いればよい。
(Membrane structure)
The membrane structure includes the laminated body 100 and a separation membrane having a separation function. The laminate 100 functions as a support for the separation membrane. The material of the separation membrane is not particularly limited, and conventionally known materials may be used depending on the intended purpose.

分離膜の具体例としては、集塵フィルター、空調フィルター、ナノろ過膜、逆浸透膜、正浸透膜、浸透気化膜および気体分離膜(例えば、二酸化炭素分離膜、水素分離膜、酸素富化膜、酸素透過膜等)等が例示できる。なかでも、本実施形態の積層体100は、有機溶媒との親和性が低減されているため、分離対象物質が有機溶媒を含まないことが好ましい。また、吸収時間延長材料としてフッ素含有樹脂を用いた場合、水への親和性も低減する。そのため、積層体100は、特に集塵フィルター、空調フィルター等の気体分離膜の支持体として適している。 Specific examples of the separation membrane include a dust collection filter, an air conditioning filter, a nanofiltration membrane, a reverse osmosis membrane, a forward osmosis membrane, a permeation vaporization membrane and a gas separation membrane (for example, a carbon dioxide separation membrane, a hydrogen separation membrane, and an oxygen enrichment membrane). , Oxygen permeable membrane, etc.) can be exemplified. Among them, it is preferable that the substance to be separated does not contain the organic solvent because the laminate 100 of the present embodiment has a reduced affinity with the organic solvent. In addition, when a fluorine-containing resin is used as the absorption time extending material, the affinity for water is also reduced. Therefore, the laminated body 100 is particularly suitable as a support for a gas separation membrane such as a dust collecting filter and an air conditioning filter.

[実施例]
以下、実施例により本発明をさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例における性能の評価は、以下の(1)〜(8)の方法に従った。
[Example]
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. The performance in the examples was evaluated according to the following methods (1) to (8).

(1)DMF吸収時間
ビュレットにDMFを入れ、ビュレットの先端を、繊維基材の第1主面から1cmの高さに調整した。ビュレットからDMFを一滴滴下させ、滴下から、液滴が繊維基材に吸収されて鏡面反射が消え、湿潤だけが残る状態までの時間を測定した。測定時間が300秒を超えた場合は、測定を停止して、測定時間を300秒以上とした。同様の試験を、繊維基材の場所をかえて5回行い、測定時間の平均値を算出した。なお、実施例では、樹脂多孔体が付与される前の繊維基材を用いた。後述する評価(2)および(7)も同様である。
(1) DMF absorption time DMF was placed in the burette, and the tip of the burette was adjusted to a height of 1 cm from the first main surface of the fiber base material. A drop of DMF was dropped from the burette, and the time from the drop until the drop was absorbed by the fiber substrate, the specular reflection disappeared, and only the wetness remained was measured. When the measurement time exceeded 300 seconds, the measurement was stopped and the measurement time was set to 300 seconds or more. The same test was performed 5 times by changing the location of the fiber base material, and the average value of the measurement times was calculated. In the examples, the fiber base material before the resin porous body was applied was used. The same applies to the evaluations (2) and (7) described later.

(2)繊維基材の空隙率
繊維基材を20cm×20cmに切り取り、試料とした。試料の任意の10点の厚みを厚み計で測定し、平均化して、試料の厚みとした。また、試料の質量を電子天秤で測定して、面積あたりの質量を算出し、上記式1により空隙率を算出した。なお、実施例では、繊維基材としてポリエチレンテレフタレート製の不織布を用いたため、比重には1.36g/cmを用いた。
(2) Porosity of the fiber base material The fiber base material was cut into a size of 20 cm × 20 cm and used as a sample. The thickness of any 10 points of the sample was measured with a thickness gauge and averaged to obtain the thickness of the sample. Further, the mass of the sample was measured with an electronic balance, the mass per area was calculated, and the porosity was calculated by the above formula 1. In the examples, since a non-woven fabric made of polyethylene terephthalate was used as the fiber base material, a specific gravity of 1.36 g / cm 3 was used.

(3)積層体の多孔質膜側の主面の算術平均粗さRa
積層体の多孔質膜側の主面の算術表面粗さRaを、表面粗さ測定機(サーフテストエクストリーム SV−3000CNC、株式会社ミツトヨ製)を用いて測定した。測定は、任意の5点に対して行い、平均値を算出した。算術表面粗さRaが0.1μm以上、2μm以下の場合、カットオフ長0.8mm、測定長さ5mm、バンド幅2.67μmで測定した。算術表面粗さRaが2μmより大きく10μm以下の場合、カットオフ長2.5mm、測定長さ15mm、バンド幅8.33μmで測定した。
(3) Arithmetic mean roughness Ra of the main surface of the laminate on the porous film side
The arithmetic surface roughness Ra of the main surface of the laminated body on the porous film side was measured using a surface roughness measuring machine (Surftest Extreme SV-3000CNC, manufactured by Mitutoyo Co., Ltd.). The measurement was performed on any 5 points, and the average value was calculated. When the arithmetic surface roughness Ra was 0.1 μm or more and 2 μm or less, the measurement was performed with a cutoff length of 0.8 mm, a measurement length of 5 mm, and a bandwidth of 2.67 μm. When the arithmetic surface roughness Ra was larger than 2 μm and 10 μm or less, the measurement was performed with a cutoff length of 2.5 mm, a measurement length of 15 mm, and a bandwidth of 8.33 μm.

(4)剥離強度
積層体を30mm×100mmに切り取り、5つの試料を準備した。幅25mm×長さ90mmのホットメルトテープを、試料の多孔質膜の繊維基材とは反対側の主面に貼り付け、120℃で24秒加熱して接着した。ホットメルトテープとともに多孔質膜の一端を50mm剥がし、ホットメルトテープの短辺と繊維基材とをそれぞれ引張試験機のクランプに挟んだ(つかみ間隔50mm)。ホットメルトテープと繊維基材とが50mm剥離するまで、クランプを引張速度100mm/分で離していった。剥離開始時から50mm剥離するまでにかかる荷重を測定し、平均値を算出した。平均値の算出は、荷重の極大値の大きい点から順次3点、荷重の極大値の小さい点から順次3点の計6点の平均値を算出した。同様の測定を5つ試料に対して行い、これらの平均値を剥離強度とした。なお、多孔質膜と繊維基材とが剥離する前に、多孔質膜とホットメルトテープとが剥離した場合、剥離強度は測定上限以上であるとした。
(4) Peeling strength The laminate was cut into 30 mm × 100 mm, and five samples were prepared. A hot melt tape having a width of 25 mm and a length of 90 mm was attached to the main surface of the sample porous membrane opposite to the fiber base material, and heated at 120 ° C. for 24 seconds for adhesion. One end of the porous film was peeled off together with the hot melt tape by 50 mm, and the short side of the hot melt tape and the fiber base material were sandwiched between the clamps of the tensile tester (grasping interval 50 mm). The clamps were separated at a tensile speed of 100 mm / min until the hot melt tape and the fiber substrate were separated by 50 mm. The load applied from the start of peeling to the peeling of 50 mm was measured, and the average value was calculated. The average value was calculated by calculating the average value of a total of 6 points, 3 points sequentially from the point where the maximum value of the load was large, and 3 points sequentially from the point where the maximum value of the load was small. The same measurement was performed on 5 samples, and the average value of these was taken as the peel strength. If the porous membrane and the hot melt tape were peeled off before the porous membrane and the fiber base material were peeled off, the peeling strength was considered to be at least the upper limit of measurement.

(5)ガーレ透気度
積層体について、JIS L 1913に準じ、ガーレ形法による透気度を測定した。
(5) Gale Air Permeability The air permeability of the laminated body was measured by the Gale method according to JIS L 1913.

(6)樹脂多孔体の質量
繊維基材を20cm×20cmに切り取り、3つの試料を準備した。それぞれの試料の質量を測定し、平均値を算出した。別途、同じ繊維基材を用いて積層体を作製し、この積層体を20cm×20cmに切り取って、3つの試料を得た。それぞれの質量を測定し、各平均値を算出した。積層体の平均の質量と繊維基材の平均の質量との差分を積層体の面積(0.04m)で除して、単位面積当たりの樹脂多孔体の平均の質量(g/m)を算出した。
(6) Mass of resin porous body The fiber base material was cut into 20 cm × 20 cm, and three samples were prepared. The mass of each sample was measured and the average value was calculated. Separately, a laminate was prepared using the same fiber base material, and the laminate was cut into a size of 20 cm × 20 cm to obtain three samples. Each mass was measured and each average value was calculated. Dividing the difference between the average mass of the laminate and the average mass of the fiber substrate by the area of the laminate (0.04 m 2 ), the average mass of the resin porous body per unit area (g / m 2 ) Was calculated.

(7)フラジール通気度
繊維基材について、JIS L 1913に準じ、フラジール形法による通気度を測定した。
(7) Frazier air permeability The air permeability of the fiber base material was measured by the Frazier method according to JIS L 1913.

(8)粘度測定
原料樹脂溶液の粘度を、B型粘度計(型番BM型、株式会社東京計器製造所製)を用いて12rpmの回転数で測定した。測定温度は22℃で行った。
(8) Viscosity measurement The viscosity of the raw material resin solution was measured at a rotation speed of 12 rpm using a B-type viscometer (model number BM type, manufactured by Tokyo Keiki Seisakusho Co., Ltd.). The measurement temperature was 22 ° C.

(9)多孔質膜の厚み
積層体を、表面に対して垂直方向に切断し、断面観察試料を作製した。断面観察試料の断面(約250μm×約180μm)を、走査型電子顕微鏡(商品名「S−3000N」、株式会社日立ハイテクノロジーズ製)を用いて倍率500倍で撮影し、得られたSEM画像をコンピュータに取り込んだ。多孔質膜の表面から繊維基材に向かって、多孔質膜の法線に平行な直線を引いたときの、多孔質膜の表面から繊維基材までの長さが最小になる箇所(最小地点)を決定し、その長さを測定した。繊維基材が多孔質膜から露出している箇所がある場合、測定値を0とした。異なる10の切断面に対して、それぞれ最小地点を決定してその長さを測定し、これらの平均値を算出した。
(9) Thickness of Porous Membrane The laminated body was cut in the direction perpendicular to the surface to prepare a cross-section observation sample. Cross-section observation The cross section (about 250 μm × about 180 μm) of the sample was photographed with a scanning electron microscope (trade name “S-3000N”, manufactured by Hitachi High-Technologies Corporation) at a magnification of 500 times, and the obtained SEM image was obtained. I imported it to my computer. The point where the length from the surface of the porous membrane to the fiber substrate is minimized (minimum point) when a straight line parallel to the normal of the porous membrane is drawn from the surface of the porous membrane toward the fiber substrate. ) Was determined and its length was measured. When there was a part where the fiber base material was exposed from the porous membrane, the measured value was set to 0. For each of the 10 different cut surfaces, the minimum point was determined, the length was measured, and the average value of these was calculated.

[実施例1]
(1)繊維基材の準備
繊維基材として、湿式法で製造されたポリエチレンテレフタレート(融点260℃)製の不織布を用いた。不織布の空隙率は39%、厚みは90μm、フラジール通気度は1.09cm/cm/秒であった。
[Example 1]
(1) Preparation of Fiber Base Material As the fiber base material, a non-woven fabric made of polyethylene terephthalate (melting point 260 ° C.) manufactured by a wet method was used. The porosity of the non-woven fabric was 39%, the thickness was 90 μm, and the Frazier air permeability was 1.09 cm 3 / cm 2 / sec.

(2)吸収時間延長材料の付与(吸収時間延長工程)
次いで、繊維基材をフッ素含有撥水撥油剤(NKガードS−07、日華化学株式会社製)2質量%、イソプロパノール4質量%、水94%に調整した水溶液に浸漬し、その後にマングルを用いて絞った。続いて、120℃で30秒加熱して乾燥し、170℃で1分間、加熱処理して、繊維基材の内部に撥水撥油剤を付着させた。
(2) Addition of absorption time extension material (absorption time extension step)
Next, the fiber base material was immersed in an aqueous solution adjusted to 2% by mass of a fluorine-containing water and oil repellent (NK Guard S-07, manufactured by NICCA CHEMICAL CO., LTD.), 4% by mass of isopropanol, and 94% of water, and then the mangle was added. Squeezed using. Subsequently, it was heated at 120 ° C. for 30 seconds to dry, and then heat-treated at 170 ° C. for 1 minute to attach a water-repellent oil-repellent agent to the inside of the fiber base material.

(3)原料樹脂溶液の準備
ポリエーテルスルホン(ガラス転移温度225℃)を、DMFに溶解し、原料樹脂の濃度が22質量%である原料樹脂溶液を調整した。原料樹脂溶液の22℃、回転数12rpmにおける粘度は2250mPa・sであった。
(3) Preparation of Raw Material Resin Solution Polyether sulfone (glass transition temperature 225 ° C.) was dissolved in DMF to prepare a raw material resin solution having a raw material resin concentration of 22% by mass. The viscosity of the raw material resin solution at 22 ° C. and 12 rpm was 2250 mPa · s.

(4)塗布工程
得られた原料樹脂溶液を、繊維基材上に隙間50μmのアプリケーターで塗布した。次いで、この繊維基材を、凝固液として水を用いた凝固浴に浸漬して原料樹脂を固化させて、積層体を得た。
(4) Coating Step The obtained raw material resin solution was coated on the fiber base material with an applicator having a gap of 50 μm. Next, this fiber base material was immersed in a coagulation bath using water as a coagulation liquid to solidify the raw material resin to obtain a laminate.

準備した繊維基材、原料樹脂溶液、および、得られた積層体の各物性値を上記評価法に従って評価した。結果をまとめて表1に示す。多孔質膜の表面のSEM写真(倍率1000倍)を図2に示す。また、積層体の断面のSEM写真(倍率500倍)を図3に示す。図2の上方に見えるのが多孔質膜である。 The physical characteristic values of the prepared fiber base material, the raw material resin solution, and the obtained laminate were evaluated according to the above evaluation method. The results are summarized in Table 1. An SEM photograph (magnification of 1000 times) of the surface of the porous film is shown in FIG. Further, an SEM photograph (magnification of 500 times) of a cross section of the laminated body is shown in FIG. The porous membrane is visible above FIG.

塗布された原料樹脂溶液が少ないものの、DMF吸収時間の長い繊維基材を用いたため、繊維基材の第1主面には、均質で十分な厚みの多孔質膜が形成されていた。剥離強度も十分に高いため、樹脂多孔体と基材繊維との複合層が形成されていることがわかる。また、断面写真からも、複合層が確認できた。この積層体は、ガーレ透気度の値が小さく、表面平滑性が高かった。また、不織布の素材としてポリエチレンテレフタレートを用いるとともに、樹脂多孔体の原料としてポリエーテルスルホンを用いたため、この積層体は、200℃程度の高温条件でも使用可能である。 Although the amount of the raw material resin solution applied was small, the fiber base material having a long DMF absorption time was used, so that a homogeneous and sufficiently thick porous film was formed on the first main surface of the fiber base material. Since the peel strength is also sufficiently high, it can be seen that a composite layer of the resin porous body and the base fiber is formed. In addition, the composite layer could be confirmed from the cross-sectional photograph. This laminated body had a small value of Gale air permeability and high surface smoothness. Further, since polyethylene terephthalate is used as the material of the non-woven fabric and polyether sulfone is used as the raw material of the resin porous body, this laminate can be used even under high temperature conditions of about 200 ° C.

[実施例2]
繊維基材として、空隙率33%、厚み90μm、フラジール通気度0.73cm/cm/秒の不織布(湿式法で製造されたポリエチレンテレフタレート製不織布)を用いたこと以外、実施例1と同様にして積層体を得て、評価した。結果をまとめて表1に示す。
[Example 2]
Same as Example 1 except that a non-woven fabric having a porosity of 33%, a thickness of 90 μm, and a Frazier air permeability of 0.73 cm 3 / cm 2 / sec (a polyethylene terephthalate non-woven fabric manufactured by a wet method) was used as the fiber base material. The laminate was obtained and evaluated. The results are summarized in Table 1.

塗布された原料樹脂溶液が少ないものの、DMF吸収時間の長い繊維基材を用いたため、繊維基材の第1主面には、均質で十分な厚みの多孔質膜が形成されていた。剥離強度も十分に高いため、樹脂多孔体と基材繊維との複合層が形成されていることがわかる。また、断面写真からも、複合層が確認できた。この積層体は、ガーレ透気度の値が小さく、表面平滑性が高かった。なお、実施例2は、実施例1と比較して繊維基材の空隙率が小さいものの、形成された多孔質膜は薄い。これは、繊維基材の構造の違いによるものだと考えられる。 Although the amount of the raw material resin solution applied was small, the fiber base material having a long DMF absorption time was used, so that a homogeneous and sufficiently thick porous film was formed on the first main surface of the fiber base material. Since the peel strength is also sufficiently high, it can be seen that a composite layer of the resin porous body and the base fiber is formed. In addition, the composite layer could be confirmed from the cross-sectional photograph. This laminated body had a small value of Gale air permeability and high surface smoothness. In Example 2, the porosity of the fiber base material is smaller than that in Example 1, but the formed porous film is thin. This is considered to be due to the difference in the structure of the fiber base material.

[実施例3]
原料樹脂溶液の原料樹脂の濃度を18質量%にしたこと以外、実施例1と同様にして積層体を得て、評価した。結果をまとめて表1に示す。原料樹脂溶液中の原料樹脂の濃度が低いため、実施例1と比較して、ガーレ透気度の値が小さくなった。繊維基材の第1主面には、均質で十分な厚みの多孔質膜が形成されていた。一方、剥離強度から、樹脂多孔体と基材繊維との複合層が形成されていることがわかる。また、断面写真からも、複合層が確認できた。
[Example 3]
A laminate was obtained and evaluated in the same manner as in Example 1 except that the concentration of the raw material resin in the raw material resin solution was 18% by mass. The results are summarized in Table 1. Since the concentration of the raw material resin in the raw material resin solution was low, the value of Gale air permeability was smaller than that of Example 1. A homogeneous and sufficiently thick porous film was formed on the first main surface of the fiber base material. On the other hand, from the peel strength, it can be seen that a composite layer of the resin porous body and the base fiber is formed. In addition, the composite layer could be confirmed from the cross-sectional photograph.

[実施例4]
原料樹脂溶液の原料樹脂の濃度を18質量%にしたこと以外、実施例2と同様にして積層体を得て、評価した。結果をまとめて表1に示す。原料樹脂溶液中の原料樹脂の濃度が低いため、実施例2と比較して、ガーレ透気度の値が小さくなった。繊維基材の第1主面には、均質で十分な厚みの多孔質膜が形成されていた。一方、剥離強度から、樹脂多孔体と基材繊維との複合層が形成されていることがわかる。また、断面写真からも、複合層が確認できた。
[Example 4]
A laminate was obtained and evaluated in the same manner as in Example 2 except that the concentration of the raw material resin in the raw material resin solution was 18% by mass. The results are summarized in Table 1. Since the concentration of the raw material resin in the raw material resin solution was low, the value of Gale air permeability was smaller than that of Example 2. A homogeneous and sufficiently thick porous film was formed on the first main surface of the fiber base material. On the other hand, from the peel strength, it can be seen that a composite layer of the resin porous body and the base fiber is formed. In addition, the composite layer could be confirmed from the cross-sectional photograph.

[実施例5]
原料樹脂溶液の原料樹脂の濃度を20質量%にしたこと以外、実施例2と同様にして積層体を得て、評価した。結果をまとめて表1に示す。原料樹脂溶液中の原料樹脂の濃度が低いため、実施例2と比較して、ガーレ透気度の値が小さくなった。繊維基材の第1主面には、均質で十分な厚みの多孔質膜が形成されていた。一方、剥離強度から、樹脂多孔体と基材繊維との複合層が形成されていることがわかる。また、断面写真からも、複合層が確認できた。
[Example 5]
A laminate was obtained and evaluated in the same manner as in Example 2 except that the concentration of the raw material resin in the raw material resin solution was 20% by mass. The results are summarized in Table 1. Since the concentration of the raw material resin in the raw material resin solution was low, the value of Gale air permeability was smaller than that of Example 2. A homogeneous and sufficiently thick porous film was formed on the first main surface of the fiber base material. On the other hand, from the peel strength, it can be seen that a composite layer of the resin porous body and the base fiber is formed. In addition, the composite layer could be confirmed from the cross-sectional photograph.

[実施例6]
塗布工程において、アプリケーターの隙間を150μmに変更したこと以外、実施例5と同様にして積層体を得て、評価した。結果をまとめて表1に示す。原料樹脂溶液の塗布量が多いため、実施例5と比較して、多孔質膜が厚くなった。そのため、積層体の多孔質膜側の表面平滑性が向上した。剥離強度から、樹脂多孔体と基材繊維との複合層が形成されていることがわかる。また、断面写真からも、複合層が確認できた。
[Example 6]
In the coating step, a laminate was obtained and evaluated in the same manner as in Example 5 except that the gap of the applicator was changed to 150 μm. The results are summarized in Table 1. Since the amount of the raw material resin solution applied was large, the porous film became thicker as compared with Example 5. Therefore, the surface smoothness of the laminated body on the porous film side is improved. From the peel strength, it can be seen that a composite layer of the resin porous body and the base fiber is formed. In addition, the composite layer could be confirmed from the cross-sectional photograph.

[比較例1]
繊維基材として、空隙率66%、厚み130μm、フラジール通気度28.96cm/cm/秒の不織布(湿式法で製造されたポリエチレンテレフタレート製不織布)を用いたこと以外、実施例1と同様にして積層体を得て、評価した。結果をまとめて表1に示す。繊維基材の第1主面には多孔質膜が形成されていたものの、第1主面の露出が多く、積層体の多孔質膜側の表面平滑性は低かった。これは、繊維基材の空隙率が過度に高かったためであると考えられる。
[Comparative Example 1]
Same as Example 1 except that a non-woven fabric having a porosity of 66%, a thickness of 130 μm, and a Frazier air permeability of 28.96 cm 3 / cm 2 / sec (a polyethylene terephthalate non-woven fabric manufactured by a wet method) was used as the fiber base material. The laminate was obtained and evaluated. The results are summarized in Table 1. Although a porous film was formed on the first main surface of the fiber base material, the first main surface was highly exposed and the surface smoothness of the laminate on the porous film side was low. It is considered that this is because the porosity of the fiber base material was excessively high.

[比較例2]
繊維基材として、空隙率48%、厚み85μm、フラジール通気度5.06cm/cm/秒の不織布(湿式法で製造されたポリエチレンテレフタレート製不織布)を用いたこと以外、実施例1と同様にして積層体を得て、評価した。結果をまとめて表1に示す。多孔質膜の表面のSEM写真(倍率1000倍)を図4に示す。この場合も、繊維基材の第1主面には繊維基材の第1主面には多孔質膜が形成されていたものの、第1主面の露出が多く、積層体の多孔質膜側の表面平滑性は低かった。
[Comparative Example 2]
Same as Example 1 except that a non-woven fabric having a porosity of 48%, a thickness of 85 μm, and a Frazier air permeability of 5.06 cm 3 / cm 2 / sec (a polyethylene terephthalate non-woven fabric manufactured by a wet method) was used as the fiber base material. The laminate was obtained and evaluated. The results are summarized in Table 1. An SEM photograph (magnification of 1000 times) of the surface of the porous film is shown in FIG. In this case as well, although a porous film was formed on the first main surface of the fiber base material on the first main surface of the fiber base material, the first main surface was often exposed and the porous film side of the laminate was formed. The surface smoothness of the was low.

[比較例3]
吸収時間延長工程を行わなかったこと以外、実施例3と同様にして積層体を得て、評価した。結果をまとめて表1に示す。繊維基材のDMF吸収時間が非常に短いため、原料樹脂溶液のほとんどが繊維基材に浸透してしまい、繊維基材の第1主面に形成された多孔質膜からは、第1主面が多く露出していた。そのため、積層体の多孔質膜側の表面平滑性は低かった。
[Comparative Example 3]
A laminate was obtained and evaluated in the same manner as in Example 3 except that the absorption time extension step was not performed. The results are summarized in Table 1. Since the DMF absorption time of the fiber base material is very short, most of the raw material resin solution permeates into the fiber base material, and the first main surface is formed from the porous membrane formed on the first main surface of the fiber base material. Was exposed a lot. Therefore, the surface smoothness of the laminated body on the porous film side was low.

[比較例4]
塗布工程において、アプリケーターの隙間を250μmに変更したこと以外、比較例3と同様にして積層体を得て、評価した。結果をまとめて表1に示す。原料樹脂溶液の塗布量が過剰であったため、比較例3と比較して、多孔質膜が厚くなった。そのため、多孔質膜の表面平滑性は向上したが、ガーレ透気度の値が非常に大きくなった。また、得られた積層体には、原料樹脂の凝集に起因するカールが発生していた。
[Comparative Example 4]
In the coating step, a laminate was obtained and evaluated in the same manner as in Comparative Example 3 except that the gap of the applicator was changed to 250 μm. The results are summarized in Table 1. Since the amount of the raw material resin solution applied was excessive, the porous film became thicker as compared with Comparative Example 3. Therefore, the surface smoothness of the porous membrane was improved, but the value of Gale air permeability became very large. In addition, the obtained laminate had curls due to the aggregation of the raw material resin.

[比較例5]
原料樹脂溶液の原料樹脂の濃度を10質量%にしたこと以外、実施例1と同様にして積層体を得て、評価した。結果をまとめて表1に示す。繊維基材の第1主面には繊維基材の第1主面には多孔質膜が形成されていたものの、第1主面の露出が多く、積層体の多孔質膜側の表面平滑性は低かった。また、裏漏れが発生した。これは、原料樹脂溶液の粘度が低く、塗布工程時に原料樹脂溶液の多くが、繊維基材を通過してしまったためであると考えられる。
[Comparative Example 5]
A laminate was obtained and evaluated in the same manner as in Example 1 except that the concentration of the raw material resin in the raw material resin solution was 10% by mass. The results are summarized in Table 1. Although a porous film was formed on the first main surface of the fiber base material on the first main surface of the fiber base material, the first main surface was often exposed and the surface smoothness of the laminated body on the porous film side was large. Was low. In addition, back leakage occurred. It is considered that this is because the viscosity of the raw material resin solution is low and most of the raw material resin solution has passed through the fiber base material during the coating process.

本発明にかかる積層体は、多孔質膜側の表面平滑性に優れ、さらに、通気性に優れるとともに、多孔質膜と繊維基材との間の層間剥離が生じ難い。そのため、この積層体は、種々の分離膜の支持体として利用できる。 The laminate according to the present invention has excellent surface smoothness on the porous film side, is also excellent in air permeability, and is less likely to cause delamination between the porous film and the fiber base material. Therefore, this laminate can be used as a support for various separation membranes.

100:積層体
100X:多孔質膜側の主面
10:樹脂多孔体
11:多孔質膜
12:繊維基材の隙間に入り込んだ樹脂多孔体
20:繊維基材
20X:第1主面
20Y:第2主面
20F:構成繊維
20Fa:第1領域
20Fb:第2領域
21:複合領域
22:繊維領域
100: Laminated body 100X: Main surface on the porous film side 10: Resin porous body 11: Porous film 12: Resin porous body that has entered the gap between the fiber base materials 20: Fiber base material 20X: First main surface 20Y: First 2 Main surface 20F: Constituent fiber 20Fa: First region 20Fb: Second region 21: Composite region 22: Fiber region

Claims (13)

樹脂多孔体と、繊維基材と、を備え、
前記樹脂多孔体の一部が、前記繊維基材の一方の主面を覆う多孔質膜を形成するとともに、前記樹脂多孔体の他の一部が、前記繊維基材の隙間に入り込んでおり、
前記樹脂多孔体の質量が1〜35g/mであり、
前記多孔質膜の厚みが1〜100μmであり、
前記繊維基材のいずれかの主面にジメチルホルムアミドを滴下してから吸収されるまでの時間が60秒以上であり、
前記繊維基材は、フッ素含有樹脂が付与された繊維基材であるか、または、フッ素樹脂を含む繊維によって構成された繊維基材である、積層体。
It is provided with a resin porous body and a fiber base material.
A part of the resin porous body forms a porous film covering one main surface of the fiber base material, and the other part of the resin porous body has entered the gap of the fiber base material.
The mass of the resin porous body is 1 to 35 g / m 2 .
The thickness of the porous membrane is 1 to 100 μm.
Ri der time more than 60 seconds until absorbed from dropwise dimethylformamide to any of the major surface of the fibrous base material,
The fiber base material is a laminated body which is a fiber base material to which a fluororesin is applied, or is a fiber base material composed of fibers containing a fluororesin .
ガーレ法で測定された透気度が1〜1000秒/100mlである、請求項1に記載の積層体。 The laminate according to claim 1, wherein the air permeability measured by the Gale method is 1 to 1000 seconds / 100 ml. 前記繊維基材の空隙率が10〜45%である、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the fiber base material has a porosity of 10 to 45%. 前記繊維基材のフラジール法で測定された通気度が0.2〜20cm/cm/秒である、請求項1〜3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the air permeability of the fiber base material measured by the Frazier method is 0.2 to 20 cm 3 / cm 2 / sec. 前記繊維基材が不織布である、請求項1〜4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the fiber base material is a non-woven fabric. 前記繊維基材の融点が170℃以上である、請求項1〜5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the fiber base material has a melting point of 170 ° C. or higher. 前記繊維基材を構成する繊維がポリエステル樹脂を含む、請求項1〜6のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the fibers constituting the fiber base material contain a polyester resin. 前記繊維基材は、フッ素含有撥水撥油剤が付与されたポリエステル樹脂である、請求項1〜6のいずれか1項に記載の積層体。The laminate according to any one of claims 1 to 6, wherein the fiber base material is a polyester resin to which a fluorine-containing water-repellent oil-repellent agent is applied. 前記積層体の前記多孔質膜側の主面の算術平均粗さRaが1.30μm以下である、請求項1〜のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 8 , wherein the arithmetic average roughness Ra of the main surface of the laminate on the porous film side is 1.30 μm or less. 前記多孔質膜が、少なくともポリスルホン樹脂およびポリエーテルスルホン樹脂のいずれかを含む、請求項1〜のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 9 , wherein the porous membrane contains at least one of a polysulfone resin and a polyethersulfone resin. 分離膜の支持体である、請求項1〜10のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 10 , which is a support for a separation membrane. 気体分離膜の支持体である、請求項1〜11のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 11 , which is a support for a gas separation membrane. 請求項1〜12のいずれか一項に記載の積層体と、
分離機能を有する分離膜と、を備える膜構造体。
The laminate according to any one of claims 1 to 12 , and the laminate.
A membrane structure comprising a separation membrane having a separation function.
JP2016158894A 2016-08-12 2016-08-12 Laminated body and film structure including it Active JP6811565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016158894A JP6811565B2 (en) 2016-08-12 2016-08-12 Laminated body and film structure including it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016158894A JP6811565B2 (en) 2016-08-12 2016-08-12 Laminated body and film structure including it

Publications (2)

Publication Number Publication Date
JP2018023955A JP2018023955A (en) 2018-02-15
JP6811565B2 true JP6811565B2 (en) 2021-01-13

Family

ID=61193664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016158894A Active JP6811565B2 (en) 2016-08-12 2016-08-12 Laminated body and film structure including it

Country Status (1)

Country Link
JP (1) JP6811565B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979612B2 (en) * 2017-03-30 2021-12-15 パナソニックIpマネジメント株式会社 Method for Producing Porous Membrane Support, Gas Separation Membrane Complex, Porous Membrane Support and Method for Producing Gas Separation Membrane Complex
JP7365165B2 (en) * 2019-08-29 2023-10-19 積水化学工業株式会社 Water treatment membranes, sheet structures and water treatment equipment
WO2024070355A1 (en) * 2022-09-26 2024-04-04 日東電工株式会社 Pervaporation membrane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644212A (en) * 1987-02-26 1989-01-09 Fuji Photo Film Co Ltd Micro-cellular membrane cartridge filter for filteration
JP5789193B2 (en) * 2009-10-21 2015-10-07 三菱製紙株式会社 Semipermeable membrane support, spiral type semipermeable membrane element, and method for producing semipermeable membrane support
JP2014094501A (en) * 2012-11-09 2014-05-22 Daicel Corp Porous film laminate and method for manufacturing the same
US10323354B2 (en) * 2013-07-19 2019-06-18 Asahi Kasei Fibers Corporation Fine cellulose fiber sheet
JP6284818B2 (en) * 2014-04-24 2018-02-28 株式会社ダイセル Porous membrane laminate having micropores and handling strength and method for producing the same

Also Published As

Publication number Publication date
JP2018023955A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP5579169B2 (en) Composite membrane support and composite membrane using the same
Lao et al. “Skin-like” fabric for personal moisture management
KR101757491B1 (en) Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
CN101316646B (en) A braid-reinforced composite hollow fiber membrane
JP6811565B2 (en) Laminated body and film structure including it
US20140231332A1 (en) Separation membrane and separation membrane element
JP6028129B1 (en) Method for producing composite membrane
JP2014208327A (en) Method of manufacturing acidic gas separation composite membrane, and acidic gas separation membrane module
CN104379240A (en) Separation membrane element
JP6979612B2 (en) Method for Producing Porous Membrane Support, Gas Separation Membrane Complex, Porous Membrane Support and Method for Producing Gas Separation Membrane Complex
WO2015016253A1 (en) Separation membrane element
KR20180087268A (en) Method for producing a composite membrane
US11155466B2 (en) Method for preparing graphite sheet
JP2017170293A (en) Semi-permeable membrane support
Zhu et al. Novel poly (vinylidene fluoride)/thermoplastic polyester elastomer composite membrane prepared by the electrospinning of nanofibers onto a dense membrane substrate for protective textiles
JP2014180638A (en) Method for manufacturing semipermeable membrane
JP2014100625A (en) Semipermeable membrane support and method of producing the same
KR102527557B1 (en) Wet-laid nonwoven fabric, manufacturing method thereof, and water treatment membrane including the same
JP5809583B2 (en) Semipermeable membrane support
JP2015229149A (en) Porous hollow fiber membrane manufacturing method, and porous hollow fiber membrane
EP4299167A1 (en) Separation-membrane nonwoven fabric and manufacturing method therefor
JP5374407B2 (en) Semipermeable membrane support
JP5893971B2 (en) Method for producing semipermeable membrane support
JP2014039901A (en) Method for manufacturing carbon dioxide separation complex, carbon dioxide separation complex, and method for manufacturing carbon dioxide separation module using the same, as well as carbon dioxide separation module
JP2014180639A (en) Method for manufacturing semipermeable membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201215

R150 Certificate of patent or registration of utility model

Ref document number: 6811565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250